[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2024153070A - Two-way in-motion charging system - Google Patents

Two-way in-motion charging system Download PDF

Info

Publication number
JP2024153070A
JP2024153070A JP2023066779A JP2023066779A JP2024153070A JP 2024153070 A JP2024153070 A JP 2024153070A JP 2023066779 A JP2023066779 A JP 2023066779A JP 2023066779 A JP2023066779 A JP 2023066779A JP 2024153070 A JP2024153070 A JP 2024153070A
Authority
JP
Japan
Prior art keywords
power
roadside
vehicle
electric vehicle
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023066779A
Other languages
Japanese (ja)
Inventor
行雄 横井
Yukio Yokoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujiwaves Co Ltd
Original Assignee
Fujiwaves Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujiwaves Co Ltd filed Critical Fujiwaves Co Ltd
Priority to JP2023066779A priority Critical patent/JP2024153070A/en
Publication of JP2024153070A publication Critical patent/JP2024153070A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

To provide a power supply system during bi-directional driving capable of efficiently supplying power from a power transmitting means on a driving roadside to an electric vehicle and from the electric vehicle to a power receiving means on the driving roadside.SOLUTION: In this power supply system 1 during bi-directional driving, a driving roadside power transmitting and receiving device 2 includes: a plurality of driving roadside power transmitting and receiving units 21 that are provided along a driving road R and capable of wirelessly transmitting and receiving power between electric vehicles 3; and a driving roadside electric double-layer capacitor 22 that can be supplied with power from the plurality of driving roadside power transmitting and receiving units 21, and an electric vehicle 3 includes: a vehicle-side transmitting and receiving unit 31 capable of receiving and supplying power from/to the driving roadside transmitting and receiving device 2; a secondary battery 32; and a vehicle-side electric double-layer capacitor 33 that temporarily stores power received from the vehicle-side transmitting and receiving unit 31 and temporarily stores regenerative power amount received from a driving motor 3b, can supply the regenerative power amount to the second battery 32 and can supply the part of the regenerative power amount to the vehicle-side transmitting and receiving unit 31.SELECTED DRAWING: Figure 1

Description

本発明は、走行路側の送電手段から走行中の電動車両に無線(ワイヤレス)で給電し得、かつ、電動車両で発生した回生電力量の一部を無線で走行路側の受電手段に給電し得る双方向走行中給電システムに関する。 The present invention relates to a bidirectional in-motion power supply system that can wirelessly supply power from a power transmission means on the road to an electric vehicle while it is in motion, and can wirelessly supply a portion of the regenerative power generated by the electric vehicle to a power receiving means on the road.

近年、走行路に設けられた送電手段(走行路側の送電手段)から電気自動車などの走行中の電動車両に無線で給電する走行中給電システムが、社会インフラとして実装されることで、その地域のカーボンニュートラル実現に大いなる貢献をすると期待されている(例えば、非特許文献1参照)。この電動車両は、走行路側の送電手段から受電した電力量を二次電池に蓄電して車輪を駆動し、また、下り坂などで回生電力量が発生したときにはそれを二次電池に蓄電する。 In recent years, in-motion power supply systems that wirelessly supply power to electric vehicles such as electric cars while in motion from power transmission means (power transmission means on the road) installed on the road are expected to be implemented as social infrastructure and make a great contribution to achieving carbon neutrality in the region (for example, see Non-Patent Document 1). These electric vehicles store the amount of power received from the power transmission means on the road in a secondary battery to drive the wheels, and also store regenerative power generated when going downhill, etc. in the secondary battery.

走行中給電システムの中には、例えば特許文献1及び特許文献2に記載されているように、走行路側の送電手段から電動車両に無線で給電するのに加えて、電動車両で発生した回生電力量によって二次電池の蓄電量が目標上限値を超えるようなときには、回生電力量の一部(余剰電力量)を走行路側の受電手段に無線で給電する双方向走行中給電システムが提案されている。 As described in Patent Documents 1 and 2, for example, among in-motion power supply systems, a bidirectional in-motion power supply system has been proposed that not only wirelessly supplies power to an electric vehicle from a power transmission means on the roadway side, but also wirelessly supplies a portion of the regenerative power (surplus power) to a power receiving means on the roadway side when the amount of power stored in the secondary battery exceeds a target upper limit due to the amount of regenerative power generated by the electric vehicle.

特許文献1の双方向走行中給電システムでは、上り坂の走行路側の送電手段と下り坂の走行路側の受電手段の間に、充放電コントローラにより制御される蓄電手段が設置されている。この蓄電手段は、風力発電システム、太陽光発電パネル、又は系統電源からの電力量も蓄電されるように構成することも可能である。また、特許文献2の双方向走行中給電システムでは、下り坂でない走行路側の複数個の送電手段と下り坂の走行路側の複数個の受電手段の間に、送受電制御装置により制御される共通の蓄電装置が設置されている。 In the bidirectional in-motion power supply system of Patent Document 1, a power storage means controlled by a charge/discharge controller is installed between the power transmission means on the uphill road and the power receiving means on the downhill road. This power storage means can also be configured to store power from a wind power generation system, a solar power generation panel, or a system power source. In addition, in the bidirectional in-motion power supply system of Patent Document 2, a common power storage device controlled by a power transmission/reception control device is installed between multiple power transmission means on the non-downhill road and multiple power receiving means on the downhill road.

特開2015―76930号公報JP 2015-76930 A 特開2021―83143号公報JP 2021-83143 A

堀洋一・横井行雄監修、「電気自動車のモーションコントロールと走行中ワイヤレス給電」、株式会社エヌ・ティー・エス発行、2019年5月17日、p.169―184“走行中給電のためのインフラ技術と国際動向”(高橋俊輔)Yoichi Hori and Yukio Yokoi (eds.), "Motion Control of Electric Vehicles and Wireless Power Supply While Driving", NTS Corporation, May 17, 2019, pp. 169-184 "Infrastructure Technology and International Trends for In-Vehicle Power Supply" (Shunsuke Takahashi)

ところで、走行路側の送電手段から電動車両への給電及び電動車両から走行路側の受電手段への給電は、走行路側の送電手段又は受電手段と電動車両の位置が重なった短い時間にしか行うことができないため、最大限に効率化することが求められる。しかし、特許文献1及び特許文献2に開示されているような双方向走行中給電システムでは、効率化については考慮されていない。 Incidentally, power supply from the roadside power transmission means to the electric vehicle and power supply from the electric vehicle to the roadside power receiving means can only be performed during the short period of time when the roadside power transmission means or power receiving means overlaps with the electric vehicle, so there is a need to maximize efficiency. However, the two-way in-motion power supply systems disclosed in Patent Documents 1 and 2 do not take efficiency into consideration.

本発明は、係る事由に鑑みてなされたものであり、その目的は、走行路側の送電手段から電動車両への給電及び電動車両から走行路側の受電手段への給電を効率化できる双方向走行中給電システムを提供することにある。 The present invention was made in consideration of the above circumstances, and its purpose is to provide a bidirectional in-motion power supply system that can efficiently supply power from a power transmission means on the road to an electric vehicle and from an electric vehicle to a power receiving means on the road.

上記目的を達成するために、請求項1に記載の双方向走行中給電システムは、走行路側送受電装置から走行中の電動車両に無線で給電し得、かつ、該走行路側送受電装置に該電動車両で発生した回生電力量の一部を無線で給電し得る双方向走行中給電システムであって、前記走行路側送受電装置は、走行路に沿って設けられ前記電動車両に給電し得、かつ、前記電動車両から給電され得る複数個の走行路側送受電部と、前記複数個の走行路側送受電部から給電され得る走行路側電気二重層キャパシタと、を有し、前記電動車両は、前記走行路側送受電装置から給電され得、かつ、前記走行路側送受電装置に給電し得る車両側送受電部と、二次電池と、前記車両側送受電部から給電されて一旦蓄電し得、かつ、駆動モータで発生した回生電力量が給電されて一旦蓄電し該回生電力量を前記二次電池に給電し得、前記二次電池に給電されない該回生電力量の一部を前記車両側送受電部に給電し得る車両側電気二重層キャパシタと、を有する。 In order to achieve the above object, the bidirectional in-motion power supply system described in claim 1 is a bidirectional in-motion power supply system capable of wirelessly supplying power from a roadside power transmission and reception device to an electric vehicle in motion, and wirelessly supplying a portion of the regenerative electric power generated by the electric vehicle to the roadside power transmission and reception device, the roadside power transmission and reception device being provided along a roadway and capable of supplying power to the electric vehicle and including a plurality of roadside power transmission and reception units that can be supplied with power from the electric vehicle, and a plurality of roadside power transmission and reception units that can be supplied with power from the roadside power transmission and reception units. The electric vehicle has a roadside electric double layer capacitor, a vehicle side power transmission/reception unit that can be powered by the roadside power transmission/reception device and can supply power to the roadside power transmission/reception device, a secondary battery, and a vehicle side electric double layer capacitor that can be powered by the vehicle side power transmission/reception unit and temporarily store the power, can be powered by the amount of regenerative power generated by the drive motor and temporarily store the power and supply the regenerative power to the secondary battery, and can supply a portion of the regenerative power that is not supplied to the secondary battery to the vehicle side power transmission/reception unit.

請求項2に記載の双方向走行中給電システムは、請求項1に記載の双方向走行中給電システムにおいて、前記走行路側送受電装置は走行路側狭域通信部を有し、前記電動車両は車両側狭域通信部を有し、該走行路側狭域通信部と該車両側狭域通信部は、相互に近づくと無線通信で相手方の位置を検知する。 The two-way in-motion power supply system described in claim 2 is the two-way in-motion power supply system described in claim 1, in which the roadside power transmitting/receiving device has a roadside narrow-range communication unit, the electric vehicle has a vehicle-side narrow-range communication unit, and the roadside narrow-range communication unit and the vehicle-side narrow-range communication unit detect the position of the other party by wireless communication when they approach each other.

請求項3に記載の双方向走行中給電システムは、請求項1又は2に記載の双方向走行中給電システムにおいて、前記走行路側送受電装置及び前記電動車両と通信し前記走行路側送受電装置から前記電動車両への給電及び前記電動車両から前記走行路側送受電装置への給電を管理するシステム管理装置を備え、該システム管理装置は、前記走行路側送受電装置から前記電動車両への給電の電力量と前記電動車両から前記走行路側送受電装置への給電の電力量を相殺して前記電動車両に対する課金情報とする。 The two-way in-motion power supply system according to claim 3 is the two-way in-motion power supply system according to claim 1 or 2, further comprising a system management device that communicates with the roadside power transmission/reception device and the electric vehicle and manages the power supply from the roadside power transmission/reception device to the electric vehicle and the power supply from the electric vehicle to the roadside power transmission/reception device, and the system management device offsets the amount of power supplied from the roadside power transmission/reception device to the electric vehicle and the amount of power supplied from the electric vehicle to the roadside power transmission/reception device to generate billing information for the electric vehicle.

請求項4に記載の双方向走行中給電システムは、請求項1又は2に記載の双方向走行中給電システムにおいて、前記走行路側送受電装置及び前記電動車両と通信し前記走行路側送受電装置から前記電動車両への給電及び前記電動車両から前記走行路側送受電装置への給電を管理するシステム管理装置を備え、前記システム管理装置は、前記電動車両の異常又は前記走行路の異常の情報を受信し、該情報に基づき危険回避情報を送信し得る。 The bidirectional in-motion power supply system according to claim 4 is the bidirectional in-motion power supply system according to claim 1 or 2, further comprising a system management device that communicates with the roadside power transmission/reception device and the electric vehicle and manages the power supply from the roadside power transmission/reception device to the electric vehicle and the power supply from the electric vehicle to the roadside power transmission/reception device, and the system management device can receive information on an abnormality in the electric vehicle or an abnormality in the road, and transmit danger avoidance information based on the information.

本発明に係る双方向走行中給電システムによれば、走行路側の送電手段から電動車両への給電及び電動車両から走行路側の受電手段への給電を効率化することが可能になる。 The bidirectional in-motion power supply system of the present invention makes it possible to efficiently supply power from the power transmission means on the road to the electric vehicle and from the electric vehicle to the power receiving means on the road.

本発明の実施形態に係る双方向走行中給電システムの概念図である。1 is a conceptual diagram of a bidirectional in-motion power supply system according to an embodiment of the present invention. 同上の双方向走行中給電システムの電動車両の走行に伴って給電される電力の受電電圧及び蓄電電圧の様子を示す概略図である。4 is a schematic diagram showing a state of a receiving voltage and a storage voltage of power supplied in accordance with the traveling of an electric vehicle of the bidirectional in-motion power supply system of the above embodiment. FIG. 同上の双方向走行中給電システムの変形例の概念図である。FIG. 4 is a conceptual diagram of a modified example of the bidirectional in-motion power supply system.

以下、本発明を実施するための形態を説明する。本発明の実施形態に係る双方向走行中給電システム1は、図1に示すように、走行路側送受電装置2と電動車両3とシステム管理装置4を備えるシステムである。なお、図1においては、給電を矢印付き実線で示し、制御又は通信を矢印付き破線で示している。また、無線の給電を太い矢印付き実線で示し、無線通信を太い矢印付き破線で示している。 The following describes an embodiment of the present invention. As shown in FIG. 1, a bidirectional in-motion power supply system 1 according to an embodiment of the present invention is a system including a roadside power transmission/reception device 2, an electric vehicle 3, and a system management device 4. Note that in FIG. 1, power supply is indicated by a solid line with an arrow, and control or communication is indicated by a dashed line with an arrow. Wireless power supply is indicated by a solid line with a thick arrow, and wireless communication is indicated by a dashed line with a thick arrow.

走行路側送受電装置2は、走行中の電動車両3に無線で給電し得、かつ、走行路側送受電装置2は、電動車両3で発生した回生電力量の一部(余剰電力量)が無線で給電され得る。走行路側送受電装置2は、走行路側の送電手段であり、かつ、走行路側の受電手段である。無線の給電は、電磁誘導や共振や電界結合などの方式を用いることができる。 The roadside power transmitting and receiving device 2 can wirelessly supply power to the electric vehicle 3 while it is traveling, and can wirelessly supply a portion of the regenerative power (surplus power) generated by the electric vehicle 3. The roadside power transmitting and receiving device 2 is a power transmitting means on the roadside and a power receiving means on the roadside. For wireless power supply, methods such as electromagnetic induction, resonance, and electric field coupling can be used.

走行路側送受電装置2は、複数個の走行路側送受電部21と走行路側電気二重層キャパシタ22と走行路側電力制御部23を有している。 The roadside power transmission and reception device 2 has a plurality of roadside power transmission and reception units 21, a roadside electric double layer capacitor 22, and a roadside power control unit 23.

走行路側送受電部21の各々は、走行路(図では符号Rで示す)に沿って設けられ電動車両3に給電し得る。ここで、本出願で走行路とは、電動車両3がその上を走行するところを言い、例えば、電動車両3が自動車などの場合は高速道路などの道路を言い、電動車両3が鉄道車両などの場合は、レールが敷かれた鉄道を言う。また、走行路側送受電部21の各々は、走行路上に設けられてもよいし、走行路下に埋設されてもよい。 Each of the roadway side power transmitting and receiving units 21 can be provided along the roadway (indicated by the symbol R in the figure) and can supply power to the electric vehicle 3. Here, in this application, the roadway refers to the place on which the electric vehicle 3 travels, and for example, refers to a road such as a highway if the electric vehicle 3 is an automobile, and refers to a railway with rails laid down if the electric vehicle 3 is a railroad vehicle. Also, each of the roadway side power transmitting and receiving units 21 can be provided on the roadway or buried under it.

走行路側送受電部21の各々は、走行路側送受電器21aを有する(図1参照)。走行路側送受電器21aは、無線の給電の方式に応じて、コイル又は電極板を用いることができる。例えば、無線の給電が電磁誘導や共振などの方式の場合はコイル、無線の給電が電界結合などの方式の場合は電極板を用いることができる。この走行路側送受電器21aを介して、走行路側送受電部21の各々は、電動車両3に給電し得るようにできる。なお、走行路側送受電器21aの長さ(長径の長さ)は、特に限定されることはなく、通常の電動車両3の長さよりも小さくても大きくてもよい。 Each of the roadway side power transmitters and receivers 21 has a roadway side power transmitter and receiver 21a (see FIG. 1). The roadway side power transmitter and receiver 21a can be a coil or an electrode plate depending on the wireless power supply method. For example, if the wireless power supply is by electromagnetic induction or resonance, a coil can be used, and if the wireless power supply is by electric field coupling, an electrode plate can be used. Each of the roadway side power transmitter and receivers 21 can supply power to the electric vehicle 3 via the roadway side power transmitter and receiver 21a. The length (length of the major axis) of the roadway side power transmitter and receiver 21a is not particularly limited, and may be smaller or larger than the length of a normal electric vehicle 3.

走行路側送受電部21の各々から電動車両3に給電するときは、走行路側送受電部21の各々は、走行路側電力制御部23を介して地域電力網Pから給電されるようにできる。詳細には、走行路側電力制御部23において地域電力網Pの交流の電力を第1AC/DC変換器23aによりDC(直流)に一旦変換し、それから第1DC/AC変換器23bによりAC(交流)に変換して複数個の走行路側送受電器21aに給電する。なお、地域電力網Pは、複数個の走行路側送受電装置2を含むその地域の電力網であり、その交流の周波数は、一般的に、走行路側送受電器21aに流れる交流の周波数よりもかなり低いものである。 When power is supplied from each of the roadside power transmitting and receiving units 21 to the electric vehicle 3, each of the roadside power transmitting and receiving units 21 can be supplied with power from the local power grid P via the roadside power control unit 23. In detail, in the roadside power control unit 23, the AC power of the local power grid P is once converted to DC (direct current) by the first AC/DC converter 23a, and then converted to AC (alternating current) by the first DC/AC converter 23b to supply power to the multiple roadside power transmitting and receiving devices 21a. The local power grid P is the power grid of the area including the multiple roadside power transmitting and receiving devices 2, and the frequency of the AC is generally much lower than the frequency of the AC flowing through the roadside power transmitting and receiving devices 21a.

電動車両3は、車両側送受電部31と二次電池32と車両側電気二重層キャパシタ33を有している。また、電動車両3は、車両側電力制御部34を有し、車両側送受電部31と二次電池32と車両側電気二重層キャパシタ33の以下に述べる給電は、車両側電力制御部34によって制御される。ここで、本出願で電動車両とは、動力源を電気として走行する車両を言い、例えば、電気自動車、電動の鉄道車両(例えば、登山鉄道車両など)を言う。 The electric vehicle 3 has a vehicle-side power transmitting/receiving unit 31, a secondary battery 32, and a vehicle-side electric double layer capacitor 33. The electric vehicle 3 also has a vehicle-side power control unit 34, and the power supply described below between the vehicle-side power transmitting/receiving unit 31, the secondary battery 32, and the vehicle-side electric double layer capacitor 33 is controlled by the vehicle-side power control unit 34. Here, in this application, an electric vehicle refers to a vehicle that runs on electricity as a power source, such as an electric automobile or an electric railway vehicle (such as a mountain railway vehicle).

車両側送受電部31は、走行路側送受電装置2から給電され得る。車両側送受電部31は、車両側送受電器31aを有し、それを介して走行路側送受電装置2から給電され得るようにすることができる。車両側送受電器31aは、無線の給電の方式に応じ、また、走行路側送受電器21aに対応して、コイル又は電極板を用いることができる。また、車両側送受電器31aで受電した交流の電力は、車両側電力制御部34においてAC/DC変換器34aによりDC(直流)に変換され、後に詳述する車両側電気二重層キャパシタ33に給電されるようにすることができる。 The vehicle-side power transmitting/receiving unit 31 can be supplied with power from the roadside power transmitting/receiving device 2. The vehicle-side power transmitting/receiving unit 31 has a vehicle-side power transmitting/receiving device 31a, and can be configured to be supplied with power from the roadside power transmitting/receiving device 2 via the vehicle-side power transmitting/receiving device 31a. The vehicle-side power transmitting/receiving device 31a can be a coil or an electrode plate depending on the wireless power supply method and corresponding to the roadside power transmitting/receiving device 21a. In addition, the AC power received by the vehicle-side power transmitting/receiving device 31a can be converted to DC (direct current) by an AC/DC converter 34a in the vehicle-side power control unit 34, and can be supplied to the vehicle-side electric double layer capacitor 33, which will be described in detail later.

二次電池32は、車両側電力制御部34により蓄電している電力量が検出される。また、二次電池32は、車両側電力制御部34により充電が制御され、また、それにより放電が制御されて車輪3aを駆動する駆動モータ3bに給電する。二次電池32は、例えばリチウムイオン電池などである。 The amount of power stored in the secondary battery 32 is detected by the vehicle-side power control unit 34. The charging of the secondary battery 32 is controlled by the vehicle-side power control unit 34, and the discharging of the secondary battery 32 is also controlled by the vehicle-side power control unit 34 to supply power to the drive motor 3b that drives the wheels 3a. The secondary battery 32 is, for example, a lithium-ion battery.

車両側電気二重層キャパシタ33は、車両側送受電部31から給電され得、また、電動車両3の減速走行中に駆動モータ3bで発生した回生電力量が給電され得、それらを一旦、蓄電することができる。 The vehicle-side electric double layer capacitor 33 can be supplied with power from the vehicle-side power transmission/reception unit 31, and can also be supplied with regenerative power generated by the drive motor 3b while the electric vehicle 3 is decelerating, and can then temporarily store the power.

ここで、車両側送受電部31から給電される電力は、その車両側送受電器31aと複数個の走行路側送受電部21の走行路側送受電器21aとの間の相対位置の変化等により急激に変動する。また、駆動モータ3bで発生した回生電力は、電動車両3の減速状態の変化等により、急激に変動する。二次電池32が化学変化に伴って蓄電を行うのに対し、車両側電気二重層キャパシタ33は、化学変化を伴わない大容量のキャパシタ(コンデンサ)であるため、急激に変動する車両側送受電部31からの給電及び回生電力量の給電に対して、電流値等の制約も少なく、素早く忠実に反応して効率的に蓄電することができる。 Here, the power supplied from the vehicle-side power transmitting and receiving unit 31 fluctuates suddenly due to changes in the relative position between the vehicle-side power transmitting and receiving unit 31a and the road-side power transmitting and receiving units 21a of the multiple road-side power transmitting and receiving units 21. In addition, the regenerative power generated by the drive motor 3b fluctuates suddenly due to changes in the deceleration state of the electric vehicle 3. While the secondary battery 32 stores power through chemical changes, the vehicle-side electric double layer capacitor 33 is a large-capacity capacitor (condenser) that does not involve chemical changes, so there are few restrictions on the current value, etc., and it can quickly and faithfully respond to the supply of power from the vehicle-side power transmitting and receiving unit 31 and the supply of regenerative power, which fluctuate rapidly, and store power efficiently.

そして、二次電池32がそのとき蓄電している電力量に応じて、電流値等が車両側電力制御部34によって制御されながら、車両側電気二重層キャパシタ33から二次電池32に給電される。 Then, power is supplied from the vehicle-side electric double layer capacitor 33 to the secondary battery 32 while the current value, etc. is controlled by the vehicle-side power control unit 34 according to the amount of power stored in the secondary battery 32 at that time.

例えば、図2に示すように、車両側送受電部31から給電される電力の受電電圧(詳しくは、AC/DC変換器34aでDCに変換された電力の電圧V34a)は、車両側送受電器31aと複数個の走行路側送受電部21の走行路側送受電器21aとの間の相対位置の変化等により、時間とともに急激に変動する。その変動する電力に素早く忠実に反応して、車両側電気二重層キャパシタ33は、効率的に蓄電して行き、その電圧V33は上昇する。そして、二次電池32は、電流値等が制御されながら車両側電気二重層キャパシタ33から給電されて蓄電して行き、その電圧V32が滑らかな勾配で上昇する。 For example, as shown in FIG. 2, the receiving voltage of the power supplied from the vehicle-side power transmitting/receiving unit 31 (more specifically, the voltage V34a of the power converted to DC by the AC/DC converter 34a) fluctuates rapidly over time due to changes in the relative position between the vehicle-side power transmitting/receiving unit 31a and the roadside power transmitting/receiving units 21a of the multiple roadside power transmitting/receiving units 21. Responding quickly and faithfully to the fluctuating power, the vehicle-side electric double layer capacitor 33 efficiently stores electricity, and its voltage V33 rises. The secondary battery 32 is supplied with electricity from the vehicle-side electric double layer capacitor 33 while the current value, etc., is controlled, and stores electricity, and its voltage V32 rises at a smooth gradient.

回生電力量については、二次電池32の電力量が上限に達した場合、車両側電気二重層キャパシタ33は、二次電池32に給電されない回生電力量の一部(余剰電力量)を蓄電しておいて、車両側電力制御部34により制御されて上記の車両側送受電部31に給電することができる。詳細には、車両側電気二重層キャパシタ33からの余剰電力量は、車両側電力制御部34においてDC/AC変換器34bにより電力がAC(交流)に変換され、上記の車両側送受電器31aに給電される。車両側送受電部31(詳細には、車両側送受電器31a)は、上記の走行路側送受電装置2に給電することができる。 Regarding the amount of regenerative power, when the amount of power in the secondary battery 32 reaches its upper limit, the vehicle-side electric double layer capacitor 33 stores a portion of the regenerative power (surplus power) that is not fed to the secondary battery 32, and can be controlled by the vehicle-side power control unit 34 to feed power to the vehicle-side power transmitting and receiving unit 31. In detail, the surplus power from the vehicle-side electric double layer capacitor 33 is converted to AC (alternating current) by the DC/AC converter 34b in the vehicle-side power control unit 34, and fed to the vehicle-side power transmitting and receiving device 31a. The vehicle-side power transmitting and receiving unit 31 (more specifically, the vehicle-side power transmitting and receiving device 31a) can feed power to the roadside power transmitting and receiving device 2.

走行路側送受電装置2においては、上記の走行路側送受電部21の各々は、上記の走行路側送受電器21aを介して、電動車両3から給電され得る。走行路側送受電部21の各々に給電された交流の電力は、走行路側電力制御部23において第2AC/DC変換器23cによりDC(直流)に変換され、走行路側電気二重層キャパシタ22に給電されるようにすることができる。 In the roadside power transmission and reception device 2, each of the roadside power transmission and reception units 21 can be supplied with power from the electric vehicle 3 via the roadside power transmission and reception device 21a. The AC power supplied to each of the roadside power transmission and reception units 21 can be converted to DC (direct current) by the second AC/DC converter 23c in the roadside power control unit 23, and can be supplied to the roadside electric double layer capacitor 22.

ここで、複数個の走行路側送受電部21に給電される電力は、その走行路側送受電器21aと車両側送受電部31の車両側送受電器31aとの間の相対位置の変化等により急激に変動する。走行路側電気二重層キャパシタ22は、車両側電気二重層キャパシタ33と同様に化学変化を伴わない大容量のキャパシタ(コンデンサ)であるため、急激に変動する複数個の走行路側送受電部21からの給電に対して、電流値等の制約も少なく、素早く忠実に反応して効率的に蓄電することができる。 Here, the power supplied to the multiple roadside power transmitters and receivers 21 fluctuates rapidly due to changes in the relative position between the roadside power transmitters and receivers 21a and the vehicle-side power transmitters and receivers 31a of the vehicle-side power transmitters and receivers 31. The roadside electric double layer capacitors 22 are large-capacity capacitors (condensers) that do not undergo chemical changes, like the vehicle-side electric double layer capacitors 33. Therefore, there are few constraints on the current value, etc., and the power supplied from the multiple roadside power transmitters and receivers 21, which fluctuates rapidly, can be quickly and faithfully responded to and efficiently stored.

そして、走行路側電気二重層キャパシタ22に蓄電された電力量は、第2DC/AC変換器23dにより電力がAC(交流)に変換され、安定的に地域電力網Pに給電されるようにすることが可能となる。つまり、電動車両3の回生電力量は、地域電力網Pの電力構成に組み込まれ、他の電動車両3に給電される電力の一部ともなり得る。こうして、地域電力網Pは、総合的かつ安定的な地域の電力網となり得る。 The amount of power stored in the roadside electric double layer capacitor 22 is then converted to AC (alternating current) by the second DC/AC converter 23d, making it possible to stably supply power to the local power grid P. In other words, the amount of regenerative power from the electric vehicle 3 is incorporated into the power configuration of the local power grid P, and can also become part of the power supplied to other electric vehicles 3. In this way, the local power grid P can become a comprehensive and stable local power grid.

このようにして、以上説明した双方向走行中給電システム1は、電動車両3においては車両側電気二重層キャパシタ33が車両側送受電部31から給電される電力量及び回生電力量を一旦蓄電し、走行路側送受電装置2においては走行路側電気二重層キャパシタ22が電動車両3の回生電力量を一旦蓄電するので、走行路側送受電装置2(走行路側の送電手段及び走行路側の受電手段)から電動車両3への給電及び電動車両3から走行路側送受電装置2への給電を効率化できる。 In this way, in the bidirectional in-motion power supply system 1 described above, the vehicle-side electric double layer capacitor 33 in the electric vehicle 3 temporarily stores the amount of power supplied from the vehicle-side power transmission and reception unit 31 and the amount of regenerative power, and in the roadside power transmission and reception device 2, the roadside electric double layer capacitor 22 temporarily stores the amount of regenerative power of the electric vehicle 3, thereby making it possible to efficiently supply power from the roadside power transmission and reception device 2 (roadside power transmission means and roadside power reception means) to the electric vehicle 3 and from the electric vehicle 3 to the roadside power transmission and reception device 2.

双方向走行中給電システム1は、例えば、50個の走行路側送受電器21aが敷設され、各々の走行路側送受電器21aの長さ(長径の長さ)が40mとし、互いの隙間が無視できる程小さいとする。そうすると、40m×50=2000mの区間に50個の走行路側送受電器21aが敷設されていることになる。 In the two-way in-motion power supply system 1, for example, 50 roadside power transmitters and receivers 21a are installed, each of which has a length (longer diameter) of 40 m, and the gaps between them are small enough to be ignored. In this case, 50 roadside power transmitters and receivers 21a are installed in a section of 40 m x 50 = 2000 m.

そして、走行路側送受電装置2から走行中の電動車両3に給電する場合、各々の走行路側送受電器21aから80kWの電力を送電可能とし、その90%を車両側送受電器31aが受電可能とすると、時速80kmで走行している電動車両3は50個の走行路側送受電器21aを90秒で通過し、その電動車両3には、他の電力ロスがないとすると、50個の走行路側送受電器21aにより1800Whの給電が可能となる。 When power is supplied from the roadside power transmitter/receiver 2 to a traveling electric vehicle 3, if it is possible for each roadside power transmitter/receiver 21a to transmit 80 kW of power and the vehicle side power transmitter/receiver 31a to receive 90% of that, then an electric vehicle 3 traveling at 80 km/h will pass 50 roadside power transmitters/receivers 21a in 90 seconds, and assuming there is no other power loss in the electric vehicle 3, it will be possible for the 50 roadside power transmitters/receivers 21a to supply 1,800 Wh of power.

この90秒間の1800Whの電力量を一旦、車両側電気二重層キャパシタ33に蓄電し、それから二次電池32に給電する。 The 1,800 Wh of electricity used for these 90 seconds is temporarily stored in the vehicle's electric double layer capacitor 33 and then supplied to the secondary battery 32.

そうすると、2000mの区間を電動車両3が時速80kmで移動するのに必要なエネルギーが1800Whの場合には、二次電池32が蓄電している電力量は減少しない。もし必要なエネルギーが1800Whよりも小さい場合には、二次電池32が蓄電している電力量は上昇する。もし必要なエネルギーが1800Whよりも大きい場合には、二次電池32が蓄電している電力量は減少することになるが、給電のない場合に比べて可能な走行距離が延びる。 In this case, if the energy required for the electric vehicle 3 to travel a 2000 m section at 80 km/h is 1800 Wh, the amount of power stored in the secondary battery 32 will not decrease. If the required energy is less than 1800 Wh, the amount of power stored in the secondary battery 32 will increase. If the required energy is greater than 1800 Wh, the amount of power stored in the secondary battery 32 will decrease, but the possible travel distance will be longer than when there is no power supply.

一方、車両側送受電器31aから10kWの回生電力を送電可能とし、その90%を50個の走行路側送受電器21aで受電可能とすると、回生電力量の余剰電力量が発生した場合、時速80kmで走行している電動車両3は50個の走行路側送受電器21aを90秒で通過し、電動車両3から50個の走行路側送受電器21aを介して走行路側電気二重層キャパシタ22に225Whの給電が可能となる。 On the other hand, if 10 kW of regenerative power can be transmitted from the vehicle-side power transmitter/receiver 31a and 90% of that can be received by 50 roadside power transmitters/receivers 21a, when there is surplus regenerative power, an electric vehicle 3 traveling at 80 km/h will pass 50 roadside power transmitters/receivers 21a in 90 seconds, and 225 Wh of power can be supplied from the electric vehicle 3 to the roadside electric double layer capacitor 22 via the 50 roadside power transmitters/receivers 21a.

この90秒間の225Whの電力量は走行路側電気二重層キャパシタ22に蓄電される。他の電動車両3についても同様であり、所定のタイミングで走行路側電気二重層キャパシタ22から地域電力網Pに送電することが可能である。 The 225 Wh of power for these 90 seconds is stored in the roadside electric double layer capacitor 22. The same applies to the other electric vehicles 3, and power can be transmitted from the roadside electric double layer capacitor 22 to the local power grid P at a specified timing.

次に、双方向走行中給電システム1における走行路側送受電装置2と電動車両3の変形例について説明する。 Next, we will explain modified examples of the roadside power transmission/reception device 2 and the electric vehicle 3 in the bidirectional in-motion power supply system 1.

走行路側送受電部21の各々は、走行路側送受電器21aの代わりに、図3に示すように、走行路側送電器21bと走行路側受電器21cを有するようにすることができる。この走行路側送電器21bを介して走行路側送受電部21の各々は、電動車両3に給電し得るようにでき、かつ、この走行路側受電器21cを介して走行路側送受電部21の各々は、電動車両3から給電され得るようにできる。このとき、走行路側受電器21cから上記のように走行路側電力制御部23を介して走行路側電気二重層キャパシタ22に給電される。 Each of the roadside power transmitting and receiving units 21 can have a roadside power transmitter 21b and a roadside power receiver 21c, as shown in FIG. 3, instead of the roadside power transmitter 21a. Each of the roadside power transmitting and receiving units 21 can be configured to feed power to the electric vehicle 3 via the roadside power transmitter 21b, and each of the roadside power transmitting and receiving units 21 can be configured to feed power from the electric vehicle 3 via the roadside power receiver 21c. At this time, power is fed from the roadside power receiver 21c to the roadside electric double layer capacitor 22 via the roadside power control unit 23 as described above.

そして、車両側送受電部31は、車両側送受電器31aの代わりに、車両側受電器31bと車両側送電器31cを有するようにすることができる。この車両側受電器31bを介して車両側送受電部31は、走行路側送受電装置2から給電され得るようにすることができ、かつ、この車両側送電器31cを介して走行路側送受電装置2に給電し得るようにすることができる。 The vehicle-side power transmitting and receiving unit 31 can have a vehicle-side power receiver 31b and a vehicle-side power transmitter 31c instead of the vehicle-side power transmitter and receiver 31a. The vehicle-side power transmitting and receiving unit 31 can be fed with power from the roadside power transmitting and receiving device 2 via the vehicle-side power receiver 31b, and can be fed with power to the roadside power transmitting and receiving device 2 via the vehicle-side power transmitter 31c.

次に、走行路側送受電装置2と電動車両3の間の通信(狭域通信)について説明する。この狭域通信のために、走行路側送受電装置2は、走行路側狭域通信部24を有し、電動車両3は、車両側狭域通信部35を有するようにすることができる。走行路側狭域通信部24と車両側狭域通信部35は、相互に近づくと、電磁界や電磁波などによる無線通信で相手方の位置を検知することができ、走行路側送受電装置2から電動車両3に及び電動車両3から走行路側送受電装置2に、より容易に効率的に給電するようにすることができる。また、走行路側送受電装置2は、走行路側狭域通信部24を介して電動車両3の固有のIDを検知することができる。なお、走行路側狭域通信部24は、各々の走行路側送受電部21毎に設けることができ(図1及び図3参照)、又は、複数個の走行路側送受電部21毎に設けることもできる。 Next, communication (narrow-range communication) between the roadside power transmitting and receiving device 2 and the electric vehicle 3 will be described. For this narrow-range communication, the roadside power transmitting and receiving device 2 can have a roadside narrow-range communication unit 24, and the electric vehicle 3 can have a vehicle-side narrow-range communication unit 35. When the roadside narrow-range communication unit 24 and the vehicle-side narrow-range communication unit 35 approach each other, they can detect the other's position by wireless communication using electromagnetic fields or electromagnetic waves, and power can be more easily and efficiently supplied from the roadside power transmitting and receiving device 2 to the electric vehicle 3 and from the electric vehicle 3 to the roadside power transmitting and receiving device 2. The roadside power transmitting and receiving device 2 can detect the unique ID of the electric vehicle 3 via the roadside narrow-range communication unit 24. The roadside narrow-range communication unit 24 can be provided for each roadside power transmitting and receiving unit 21 (see Figures 1 and 3), or can be provided for each of a plurality of roadside power transmitting and receiving units 21.

次に、走行路側送受電装置2とシステム管理装置4の間及び電動車両3とシステム管理装置4の間の通信(広域通信)について説明する。この広域通信のために、走行路側送受電装置2は、走行路側広域通信部25を有し、電動車両3は、車両側広域通信部36を有するようにすることができる。広域通信は、ローカル5Gなどの電磁波を用いた無線通信を用いることができる。 Next, communication (wide area communication) between the roadside power transmitting/receiving device 2 and the system management device 4, and between the electric vehicle 3 and the system management device 4 will be described. For this wide area communication, the roadside power transmitting/receiving device 2 can have a roadside wide area communication unit 25, and the electric vehicle 3 can have a vehicle side wide area communication unit 36. For the wide area communication, wireless communication using electromagnetic waves such as local 5G can be used.

システム管理装置4は、電動車両3を固有のIDで管理し、また、走行路側送受電装置2から電動車両3への給電及び電動車両3から走行路側送受電装置2への給電を管理することができる。システム管理装置4には、管理要員を配置しておくことも可能である。 The system management device 4 manages the electric vehicles 3 by unique IDs, and can also manage the power supply from the roadside power transmission/reception device 2 to the electric vehicles 3 and the power supply from the electric vehicles 3 to the roadside power transmission/reception device 2. It is also possible to have management personnel stationed at the system management device 4.

例えば、電動車両3に給電が必要な場合、システム管理装置4は、電動車両3から必要な電力量等の情報を受け、走行路側送受電装置2に給電を指示することができる。 For example, when power supply is required for the electric vehicle 3, the system management device 4 can receive information such as the required amount of power from the electric vehicle 3 and instruct the roadside power transmission/reception device 2 to supply power.

また、走行路側送受電装置2から電動車両3への給電の後及び電動車両3から走行路側送受電装置2への給電後、システム管理装置4は、その給電の電力量の情報を走行路側送受電装置2及び/又は電動車両3から受信するようにすることができる。システム管理装置4は、走行路側送受電装置2から受信した給電の電力量の情報及び/又は電動車両3から受信した給電の電力量の情報に基づき、走行路側送受電装置2から電動車両3への給電の電力量と電動車両3から走行路側送受電装置2への給電の電力量を相殺して電動車両3に対する課金情報とすることができる。課金情報の具体的な計算方法は、特に限定されるものではないが、例えば、走行路側送受電装置2から電動車両3への給電の電力量は、電動車両3から受信した情報を用い、電動車両3から走行路側送受電装置2への給電の電力量は、走行路側送受電装置2から受信した情報を用い、それらを予め決められた計算式を用いて相殺することが可能である。 After the power is fed from the roadside power transmission and reception device 2 to the electric vehicle 3 and from the electric vehicle 3 to the roadside power transmission and reception device 2, the system management device 4 can receive information on the amount of power fed from the roadside power transmission and reception device 2 and/or the electric vehicle 3. Based on the information on the amount of power fed received from the roadside power transmission and reception device 2 and/or the information on the amount of power fed received from the electric vehicle 3, the system management device 4 can offset the amount of power fed from the roadside power transmission and reception device 2 to the electric vehicle 3 and the amount of power fed from the electric vehicle 3 to the roadside power transmission and reception device 2 to obtain billing information for the electric vehicle 3. The specific method of calculating the billing information is not particularly limited, but for example, the amount of power fed from the roadside power transmission and reception device 2 to the electric vehicle 3 can be calculated using information received from the electric vehicle 3, and the amount of power fed from the electric vehicle 3 to the roadside power transmission and reception device 2 can be calculated using information received from the roadside power transmission and reception device 2, and these can be offset using a predetermined calculation formula.

また、システム管理装置4は、電動車両3の異常又は走行路の異常(異物の存在や事故など)の情報を電動車両3から受信するようにすることも可能である。その情報に基づき、システム管理装置4は、危険回避情報等を当該電動車両3、他の電動車両3又は走行路側送受電装置2などに送信することが可能である。 The system management device 4 can also receive information about abnormalities in the electric vehicle 3 or abnormalities on the road (such as the presence of a foreign object or an accident) from the electric vehicle 3. Based on this information, the system management device 4 can transmit danger avoidance information, etc. to the electric vehicle 3, other electric vehicles 3, or the roadside power transmitting and receiving device 2, etc.

以上、本発明の実施形態に係る双方向走行中給電システムについて説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。 The above describes a bidirectional in-motion power supply system according to an embodiment of the present invention, but the present invention is not limited to the above-described embodiment, and various design modifications are possible within the scope of the matters described in the claims.

1 双方向走行中給電システム
2 走行路側送受電装置
21 走行路側送受電部
21a 走行路側送受電器
21b 走行路側送電器
21c 走行路側受電器
22 走行路側電気二重層キャパシタ
23 走行路側電力制御部
23a 第1AC/DC変換器
23b 第1DC/AC変換器
23c 第2AC/DC変換器
23d 第2DC/AC変換器
24 走行路側狭域通信部
25 走行路側広域通信部
3 電動車両
3a 車輪
3b 駆動モータ
31 車両側送受電部
31a 車両側送受電器
31b 車両側受電器
31c 車両側送電器
32 二次電池
33 車両側電気二重層キャパシタ
34 車両側電力制御部
34a AC/DC変換器
34b DC/AC変換器
35 車両側狭域通信部
36 車両側広域通信部
4 システム管理装置
P 地域電力網
R 走行路
V32 二次電池の蓄電電圧
V33 車両側電気二重層キャパシタの蓄電電圧
V34a 受電電圧(AC/DC変換器でDCに変換された電力の電圧)
REFERENCE SIGNS LIST 1 Bidirectional in-motion power supply system 2 Roadside power transmitting and receiving device 21 Roadside power transmitting and receiving section 21a Roadside power transmitting and receiving device 21b Roadside power transmitter 21c Roadside power receiver 22 Roadside electric double layer capacitor 23 Roadside power control section 23a First AC/DC converter 23b First DC/AC converter 23c Second AC/DC converter 23d Second DC/AC converter 24 Roadside narrow-area communication section 25 Roadside wide-area communication section 3 Electric vehicle 3a Wheel 3b Drive motor 31 Vehicle side power transmitting and receiving section 31a Vehicle side power transmitting and receiving device 31b Vehicle side power receiver 31c Vehicle side power transmitter 32 Secondary battery 33 Vehicle side electric double layer capacitor 34 Vehicle side power control section 34a AC/DC converter 34b DC/AC converter 35 Vehicle-side narrow-area communication unit 36 Vehicle-side wide-area communication unit 4 System management device P Regional power grid R Travel route V32 Storage voltage of secondary battery V33 Storage voltage of vehicle-side electric double-layer capacitor V34a Receiving voltage (voltage of power converted to DC by AC/DC converter)

Claims (4)

走行路側送受電装置から走行中の電動車両に無線で給電し得、かつ、該走行路側送受電装置に該電動車両で発生した回生電力量の一部を無線で給電し得る双方向走行中給電システムであって、
前記走行路側送受電装置は、
走行路に沿って設けられ前記電動車両に給電し得、かつ、前記電動車両から給電され得る複数個の走行路側送受電部と、
前記複数個の走行路側送受電部から給電され得る走行路側電気二重層キャパシタと、
を有し、
前記電動車両は、
前記走行路側送受電装置から給電され得、かつ、前記走行路側送受電装置に給電し得る車両側送受電部と、
二次電池と、
前記車両側送受電部から給電されて一旦蓄電し得、かつ、駆動モータで発生した回生電力量が給電されて一旦蓄電し該回生電力量を前記二次電池に給電し得、前記二次電池に給電されない該回生電力量の一部を前記車両側送受電部に給電し得る車両側電気二重層キャパシタと、
を有する双方向走行中給電システム。
A bidirectional in-motion power supply system capable of wirelessly supplying power from a roadside power transmission and reception device to a traveling electric vehicle and wirelessly supplying a portion of regenerative electric power generated by the electric vehicle to the roadside power transmission and reception device,
The roadside power transmitting and receiving device includes:
a plurality of roadside power transmitting and receiving units provided along a road and capable of supplying power to the electric vehicle and being supplied with power from the electric vehicle;
a roadside electric double layer capacitor to which power can be supplied from the plurality of roadside power transmitting and receiving units;
having
The electric vehicle includes:
A vehicle-side power transmitting and receiving unit that can be supplied with power from the roadside power transmitting and receiving device and can supply power to the roadside power transmitting and receiving device;
A secondary battery;
a vehicle-side electric double layer capacitor that is supplied with power from the vehicle-side power transmitting and receiving unit and that temporarily stores the power, that is supplied with regenerative power generated by a drive motor and that temporarily stores the regenerative power and that can supply the regenerative power to the secondary battery, and that can supply a portion of the regenerative power that is not supplied to the secondary battery to the vehicle-side power transmitting and receiving unit;
A bidirectional in-motion charging system having a
請求項1に記載の双方向走行中給電システムにおいて、
前記走行路側送受電装置は走行路側狭域通信部を有し、前記電動車両は車両側狭域通信部を有し、該走行路側狭域通信部と該車両側狭域通信部は、相互に近づくと無線通信で相手方の位置を検知する双方向走行中給電システム。
In the bidirectional in-motion power supply system according to claim 1,
The roadside power transmitting and receiving device has a roadside short-range communication unit, the electric vehicle has a vehicle-side short-range communication unit, and the roadside short-range communication unit and the vehicle-side short-range communication unit detect the position of the other party through wireless communication when they approach each other.
請求項1又は2に記載の双方向走行中給電システムにおいて、
前記走行路側送受電装置及び前記電動車両と通信し前記走行路側送受電装置から前記電動車両への給電及び前記電動車両から前記走行路側送受電装置への給電を管理するシステム管理装置を備え、
該システム管理装置は、前記走行路側送受電装置から前記電動車両への給電の電力量と前記電動車両から前記走行路側送受電装置への給電の電力量を相殺して前記電動車両に対する課金情報とする双方向走行中給電システム。
In the bidirectional in-motion power supply system according to claim 1 or 2,
a system management device that communicates with the roadside power transmitting and receiving device and the electric vehicle and manages power supply from the roadside power transmitting and receiving device to the electric vehicle and power supply from the electric vehicle to the roadside power transmitting and receiving device,
The system management device is a bidirectional in-motion power supply system in which the amount of power supplied from the roadside power transmitting and receiving device to the electric vehicle and the amount of power supplied from the electric vehicle to the roadside power transmitting and receiving device are offset to obtain billing information for the electric vehicle.
請求項1又は2に記載の双方向走行中給電システムにおいて、
前記走行路側送受電装置及び前記電動車両と通信し前記走行路側送受電装置から前記電動車両への給電及び前記電動車両から前記走行路側送受電装置への給電を管理するシステム管理装置を備え、
前記システム管理装置は、前記電動車両の異常又は前記走行路の異常の情報を受信し、該情報に基づき危険回避情報を送信し得る双方向走行中給電システム。
In the bidirectional in-motion power supply system according to claim 1 or 2,
a system management device that communicates with the roadside power transmitting and receiving device and the electric vehicle and manages power supply from the roadside power transmitting and receiving device to the electric vehicle and power supply from the electric vehicle to the roadside power transmitting and receiving device,
The system management device is a bidirectional in-motion power supply system that can receive information on an abnormality in the electric vehicle or an abnormality on the driving road, and transmit danger avoidance information based on the information.
JP2023066779A 2023-04-16 2023-04-16 Two-way in-motion charging system Pending JP2024153070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023066779A JP2024153070A (en) 2023-04-16 2023-04-16 Two-way in-motion charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023066779A JP2024153070A (en) 2023-04-16 2023-04-16 Two-way in-motion charging system

Publications (1)

Publication Number Publication Date
JP2024153070A true JP2024153070A (en) 2024-10-28

Family

ID=93254601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023066779A Pending JP2024153070A (en) 2023-04-16 2023-04-16 Two-way in-motion charging system

Country Status (1)

Country Link
JP (1) JP2024153070A (en)

Similar Documents

Publication Publication Date Title
CN102803007B (en) The drive system of rolling stock
CN203937528U (en) The rail system with energy exchange station
WO1998050996A2 (en) Remote vehicle charging system
US11161421B2 (en) Auxiliary wireless power transfer system
GB2477166A (en) Transport responsive load system
CN104348519A (en) Rail system having a wired communication zone
KR20140016668A (en) Energy electrified like a bus transit
CN110789544B (en) Energy storage type vehicle non-contact power supply system and method
US10473012B2 (en) Battery leasing and wireless power transfer for passenger rail
CN209381812U (en) Electric vehicle V2X dynamic wireless energy two-way push system
JP2013027159A (en) Charging system
CN110682806A (en) A trolleybus based on wireless charging technology and its operation control method
JP3768982B2 (en) Intermittent power supply type electric vehicle system and electric vehicle
JP2004136860A (en) Power receiving/feeding system
JP2024153070A (en) Two-way in-motion charging system
CN113500919A (en) Three-power-supply-system wheel-rack train power supply conversion circuit, rail transit system and method
Naik Review on Charging Infrastructure for Electric Transit Buses
DE102022125116A1 (en) Traction energy supply method, in particular using a power supply system for motor vehicles, preferably for commercial vehicles for electrically operated heavy traffic
CN114583814A (en) A rail vehicle modular hybrid auxiliary energy system and its control method
CN108891264A (en) bus charging management system and method
JP2016158375A (en) Battery drive system and battery drive method
RU2520640C2 (en) Automotive transport power system with principle of periodic charging, discharging
KR20150129142A (en) System amd method for recharging an electronic automobile using solar light power generation
JP7615978B2 (en) Charging System
KR102226946B1 (en) Tram Contractless Energy Transfer System and Its Control Method