[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2024140402A - Method using optical remote airflow measurement device and wind condition observation system - Google Patents

Method using optical remote airflow measurement device and wind condition observation system Download PDF

Info

Publication number
JP2024140402A
JP2024140402A JP2023051530A JP2023051530A JP2024140402A JP 2024140402 A JP2024140402 A JP 2024140402A JP 2023051530 A JP2023051530 A JP 2023051530A JP 2023051530 A JP2023051530 A JP 2023051530A JP 2024140402 A JP2024140402 A JP 2024140402A
Authority
JP
Japan
Prior art keywords
measurement device
optical remote
artificial
airflow measurement
remote airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023051530A
Other languages
Japanese (ja)
Other versions
JP7403889B1 (en
Inventor
啓朗 坂田
太朗 圓尾
卓也 町田
研一 高祖
武徳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN METEOROLOGICAL CORPORATION
Original Assignee
JAPAN METEOROLOGICAL CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN METEOROLOGICAL CORPORATION filed Critical JAPAN METEOROLOGICAL CORPORATION
Priority to JP2023051530A priority Critical patent/JP7403889B1/en
Priority to PCT/JP2023/017060 priority patent/WO2024202076A1/en
Application granted granted Critical
Publication of JP7403889B1 publication Critical patent/JP7403889B1/en
Publication of JP2024140402A publication Critical patent/JP2024140402A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/08Adaptations of balloons, missiles, or aircraft for meteorological purposes; Radiosondes

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

【課題】光軸誤差の少ない風況観測を行なうことを目的とする。【解決手段】人工飛行体1を飛行させる第1ステップと、光学式遠隔気流計測装置2から射出したレーザー光を前記人工飛行体1に当てる第2ステップと、前記人工飛行体1で反射した光を前記光学式遠隔気流計測装置2で検出する第3ステップとを実行する。【選択図】図1[Problem] The objective is to perform wind observation with little optical axis error. [Solution] A first step is to fly an artificial flying object (1), a second step is to direct a laser beam emitted from an optical remote air current measurement device (2) at the artificial flying object (1), and a third step is to detect the light reflected by the artificial flying object (1) with the optical remote air current measurement device (2). [Selected Figure] Figure 1

Description

特許法第30条第2項適用申請有り (1)令和4年12月19日に、グランド再生可能エネルギー2022国際会議にて発表 (2)令和5年3月22日に、一般社団法人日本風力エネルギー学会発行の日本風力エネルギー学会論文集令和5年2月第46巻第4号(通巻第144号)にて発表Application for application of Article 30, Paragraph 2 of the Patent Act filed. (1) Presented at the Grand Renewable Energy 2022 International Conference on December 19, 2022. (2) Presented in the Proceedings of the Japan Wind Energy Society, Vol. 46, No. 4 (Issue No. 144), February 2023, published by the Japan Wind Energy Society, on March 22, 2023.

本発明は、ドップラーライダーに代表される光学式遠隔気流計測装置を用いた光軸補正や観測に関する方法、及び風況観測システムに関するものである。 The present invention relates to a method for optical axis correction and observation using an optical remote airflow measurement device, such as a Doppler LIDAR, and a wind condition observation system.

特許文献1、非特許文献1にはドップラーLiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)に代表される光学式の遠隔気流計測装置が記載されている。 Patent Document 1 and Non-Patent Document 1 describe optical remote airflow measurement devices, such as Doppler LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging).

特開2021-187258号公報JP 2021-187258 A

「日本気象株式会社ホームページ:ドップラーライダー(https://n-kishou.com/corp/service/observation/streamline/product.html)」"Japan Meteorological Corporation Homepage: Doppler Lidar (https://n-kishou.com/corp/service/observation/streamline/product.html)"

ドップラーライダーに代表される光学式遠隔気流計測装置は、大気中に含まれるエアロゾルにレーザー光を照射した際に発生する散乱光のドップラー効果による波長変移を観測することにより観測対象の相対的な移動速度を観測できる遠隔気流計測装置の一種である。光学式遠隔気流計測装置は、比較的高重量で大掛かりな部品で構成されているため、光軸に誤差が生じやすい。本発明は、光学式遠隔気流計測装置に起因する光軸誤差を補正することにより、より正確な風況観測を行なうことを目的とするものである。 An optical remote airflow measurement device, typified by the Doppler LIDAR, is a type of remote airflow measurement device that can measure the relative movement speed of an object by observing the wavelength shift caused by the Doppler effect of scattered light that occurs when a laser beam is irradiated onto aerosols in the atmosphere. Optical remote airflow measurement devices are composed of relatively heavy and large components, so errors in the optical axis are prone to occur. The present invention aims to perform more accurate wind observations by correcting the optical axis error caused by optical remote airflow measurement devices.

上記課題を解決した方法は、
[1]人工飛行体1を飛行させる第1ステップと、光学式遠隔気流計測装置2から射出したレーザー光を前記人工飛行体1に当てる第2ステップと、前記人工飛行体1で反射した光を前記光学式遠隔気流計測装置2で検出する第3ステップと、を有しているものである。
The method for solving the above problem is as follows:
[1] This method comprises a first step of flying an artificial aircraft 1, a second step of directing a laser beam emitted from an optical remote airflow measurement device 2 at the artificial aircraft 1, and a third step of detecting the light reflected by the artificial aircraft 1 with the optical remote airflow measurement device 2.

[2]上記方法において、更に、前記人工飛行体1を経緯儀3の視野4内に入れる第4ステップを備えることが好ましい。 [2] In the above method, it is preferable to further include a fourth step of placing the artificial aircraft 1 within the field of view 4 of the theodolite 3.

[3]上記各方法において、更に、前記光学式遠隔気流計測装置2で検知される前記人工飛行体1の仰角θGDと、前記経緯儀3の視野4内に入った前記人工飛行体1の仰角θGTとの相違量(以下「仰角相違量」)を取得する第5ステップを備えることが好ましい。 [3] In each of the above methods, it is preferable to further include a fifth step of acquiring the difference between the elevation angle θGD of the artificial aircraft 1 detected by the optical remote airflow measurement device 2 and the elevation angle θGT of the artificial aircraft 1 that is within the field of view 4 of the theodolite 3 (hereinafter, the "elevation angle difference").

[4]上記各方法において、更に、前記光学式遠隔気流計測装置2で検知される前記人工飛行体1の方位角θHDと、前記経緯儀3の視野4内に入った前記人工飛行体1の方位角θHTとの相違量(以下「方位角相違量」)を取得する第6ステップを備えることが好ましい。 [4] In each of the above methods, it is preferable to further include a sixth step of acquiring the difference between the azimuth angle θHD of the artificial aircraft 1 detected by the optical remote airflow measurement device 2 and the azimuth angle θHT of the artificial aircraft 1 that is within the field of view 4 of the theodolite 3 (hereinafter, the "azimuth angle difference amount").

[5]上記各方法において、更に、前記光学式遠隔気流計測装置2から得られる、方位角軸と仰角軸を有する二次元像において、捉えられた前記人工飛行体1の位置から前記仰角相違量および/または前記方位角相違量に相当する分だけシフトした位置における風況を取得する第7ステップを備えることが好ましい。 [5] In each of the above methods, it is preferable to further include a seventh step of acquiring wind conditions at a position shifted by an amount equivalent to the elevation angle difference and/or the azimuth angle difference from the captured position of the artificial aircraft 1 in a two-dimensional image having an azimuth axis and an elevation axis obtained from the optical remote airflow measurement device 2.

[6]上記各方法において、光学式遠隔気流計測装置2が設置されている第1観測地点P1において上記[5]に記載の方法を用いて第1の風況を取得する第71ステップと、
光学式遠隔気流計測装置2が設置されている第2観測地点P2において上記[5]に記載の方法を用いて第2の風況を取得する第72ステップと、を備えることが好ましい。
[6] In each of the above methods, a 71st step of acquiring a first wind condition at a first observation point P1 where an optical remote airflow measurement device 2 is installed using the method described in [5] above;
It is preferable to further include a step (72) of acquiring second wind conditions at the second observation point P2 where the optical remote airflow measurement device 2 is installed, using the method described in [5] above.

[7]上記課題を解決したシステムは、光学式遠隔気流計測装置2と、経緯儀3と、前記光学式遠隔気流計測装置2から得られる、方位角軸と仰角軸を有する二次元像中に捉えられる人工飛行体1とを備えた風況観測システムであって、前記光学式遠隔気流計測装置2は、第1固定部21と、該第1固定部21に対して方位角方向および/または仰角方向に回転可能に固定されている第1回転部22とを有しており、該第1回転部22にはレーザー光射出部27及び光検出部28が備えられており、前記経緯儀3は、第2固定部31と、該第2固定部31に対して方位角方向および/または仰角方向に回転可能に固定されている第2回転部32と、を有しており、該第2回転部32には前記人工飛行体1を視野内に捉える望遠レンズ系が備えられており、前記第1固定部21と前記第2固定部31は直接的又は間接的に固定関係にあるものである。 [7] The system that solves the above problem is a wind observation system that includes an optical remote airflow measurement device 2, an altazimuth mount 3, and an artificial flying object 1 captured in a two-dimensional image having an azimuth axis and an elevation axis obtained from the optical remote airflow measurement device 2, the optical remote airflow measurement device 2 includes a first fixed part 21 and a first rotating part 22 that is fixed to be rotatable in the azimuth direction and/or elevation direction relative to the first fixed part 21, the first rotating part 22 includes a laser light emitting part 27 and a light detecting part 28, the altazimuth mount 3 includes a second fixed part 31 and a second rotating part 32 that is fixed to be rotatable in the azimuth direction and/or elevation direction relative to the second fixed part 31, the second rotating part 32 includes a telephoto lens system that captures the artificial flying object 1 within its field of view, and the first fixed part 21 and the second fixed part 31 are directly or indirectly fixed to each other.

[1]~[7]に付した各符号は便宜上付したものであり発明を限定するものではない。 The reference symbols [1] to [7] are added for convenience and do not limit the invention.

本発明では、人工飛行体を飛行させる第1ステップと、光学式遠隔気流計測装置から射出したレーザー光を人工飛行体に当てる第2ステップと、人工飛行体で反射した光を光学式遠隔気流計測装置で検出する第3ステップとを備えていることにより、より正確な風況観測のための方法および風況観測システムを提供することができるものである。 The present invention provides a method and system for more accurate wind observation by comprising a first step of flying an artificial flying object, a second step of directing laser light emitted from an optical remote airflow measurement device at the artificial flying object, and a third step of detecting the light reflected by the artificial flying object with the optical remote airflow measurement device.

本発明の実施の形態1にかかる方法に供する風況観測システムの一例を示す図である。1 is a diagram showing an example of a wind condition observation system used in a method according to a first embodiment of the present invention; 本発明の実施の形態1にかかる方法に供する風況観測システムを構成する人工飛行体と光学式遠隔気流計測装置と経緯儀を示す図である。FIG. 1 is a diagram showing an artificial flying object, an optical remote airflow measurement device, and a theodolite that constitute a wind condition observation system for use in a method according to a first embodiment of the present invention. 図1に示した経緯儀の視野を示すものである。2 shows the field of view of the theodolite shown in FIG. 1 . 図1に示した光学式遠隔気流計測装置から得られる、方位角軸と仰角軸を有する二次元像である。2 is a two-dimensional image having an azimuth axis and an elevation axis obtained from the optical remote airflow measurement device shown in FIG. 1. 横軸が方位角を示し、縦軸が、図1に示した経緯儀により観測される人工飛行体の方位角に対する仰角と光学式遠隔気流計測装置により観測される人工飛行体の仰角の相違量を示すグラフである。1 is a graph showing the difference between the elevation angle of the artificial aircraft body relative to the azimuth angle observed by the theodolite shown in FIG. 1 and the elevation angle of the artificial aircraft body observed by an optical remote airflow measurement device, while the horizontal axis shows the azimuth angle and the vertical axis shows the difference between the elevation angle of the artificial aircraft body relative to the azimuth angle observed by the theodolite shown in FIG. 図2に示した風況観測システムを用いた風況の観測形態例を示す図である。3 is a diagram showing an example of a wind condition observation form using the wind condition observation system shown in FIG. 2. 本発明の実施の形態2にかかる風況観測システムを示す図である。FIG. 11 is a diagram showing a wind condition observation system according to a second embodiment of the present invention.

以下、下記実施の形態に基づき本発明をより具体的に説明するが、本発明はもとより下記実施の形態によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 The present invention will be described in more detail below based on the following embodiment, but the present invention is not limited to the following embodiment, and it is of course possible to implement the invention with modifications within the scope of the above and below described aims, and all such modifications are included in the technical scope of the present invention.

(実施の形態1)
図1は、本発明の実施の形態1にかかる方法に供する風況観測システムの一例を示すものである。図1に記載されているように、風況観測システム(人工飛行体以外の要素)は、光学式遠隔気流計測装置2と、経緯儀3とから構成されている。光学式遠隔気流計測装置2は、大気中に含まれるエアロゾルにレーザー光を照射した際に発生する散乱光のドップラー効果による波長変移を観測することにより観測対象の相対的な移動速度と変位を観測できる遠隔気流計測装置である。光学式遠隔気流計測装置2としては、例えば、Lumibird社製Stream Line XRや、Vaisala社製WindCube Scan 400S等を用いることができる。光学式遠隔気流計測装置2はレーザー光射出部27及び、観測対象において散乱或いは反射してくる光を検出する光検出部28が備えられている。図1では、レーザー光射出部27と光検出部28を同軸に配置した例について記載したが、レーザー光射出部27と光検出部28の配置には特段の制限はなく、光学式遠隔気流計測装置2のいずれかの場所に配置されていればよい。
(Embodiment 1)
FIG. 1 shows an example of a wind condition observation system used in the method according to the first embodiment of the present invention. As shown in FIG. 1, the wind condition observation system (elements other than the artificial aircraft) is composed of an optical remote airflow measurement device 2 and a theodolite 3. The optical remote airflow measurement device 2 is a remote airflow measurement device that can observe the relative moving speed and displacement of an observation target by observing the wavelength shift due to the Doppler effect of scattered light generated when a laser light is irradiated to aerosols contained in the atmosphere. As the optical remote airflow measurement device 2, for example, Stream Line XR manufactured by Lumibird or WindCube Scan 400S manufactured by Vaisala can be used. The optical remote airflow measurement device 2 is provided with a laser light emission unit 27 and a light detection unit 28 that detects light scattered or reflected by the observation target. FIG. 1 illustrates an example in which the laser light emitting unit 27 and the light detecting unit 28 are arranged coaxially, but there are no particular limitations on the arrangement of the laser light emitting unit 27 and the light detecting unit 28, and they may be arranged anywhere in the optical remote airflow measuring device 2.

経緯儀3は望遠レンズ系を有しており、望遠レンズ系の光軸を基準として視準した点または方角に対する角度を計測する測量器械であり、「トランシット」や「セオドライト」という名称で知られている。通常、測量の際には経緯儀3は専用の三脚の上に据え付けて用いる。本発明の実施の形態1では、経緯儀3は、三脚は用いずに光学式遠隔気流計測装置2の一部(図1に示すように例えば筐体25上)に取り付けることが好ましい。 The altazimuth 3 has a telephoto lens system and is a surveying instrument that measures angles relative to a collimated point or direction based on the optical axis of the telephoto lens system; it is also known as a "transit" or "theodolite." Normally, the altazimuth 3 is mounted on a dedicated tripod during surveying. In the first embodiment of the present invention, it is preferable to mount the altazimuth 3 on a part of the optical remote airflow measurement device 2 (for example, on the housing 25 as shown in Figure 1) without using a tripod.

図2は、本発明の実施の形態1にかかる方法に供する風況観測システムを構成する人工飛行体1と光学式遠隔気流計測装置2と経緯儀3を示す図である。図2に示すように、光学式遠隔気流計測装置2と経緯儀3は人工飛行体1に向けられている。人工飛行体1は、人が搭乗するヘリコプターであってもよく、人が搭乗しない無人飛行機、例えばドローンを用いることもできる。 Figure 2 is a diagram showing the artificial air vehicle 1, the optical remote airflow measurement device 2, and the altazimuth mount 3 that constitute the wind condition observation system used in the method according to the first embodiment of the present invention. As shown in Figure 2, the optical remote airflow measurement device 2 and the altazimuth mount 3 are directed toward the artificial air vehicle 1. The artificial air vehicle 1 may be a helicopter with a person on board, or an unmanned aircraft without a person on board, such as a drone, may also be used.

図3は、経緯儀3の視野4を示すものであり、視野4内には人工飛行体1が入れられている。 Figure 3 shows the field of view 4 of the theodolite 3, with the artificial aircraft 1 included within the field of view 4.

図4は、光学式遠隔気流計測装置2のレーザー光射出部27から出力された光が、観測対象から戻ってくる光から得られる、方位角軸と仰角軸を有する二次元像である。 Figure 4 shows a two-dimensional image with azimuth and elevation axes obtained from the light output from the laser light emitting unit 27 of the optical remote airflow measurement device 2 and returning from the object being observed.

以下、本発明の実施の形態1にかかる方法について説明する。
<第1ステップ>
人工飛行体1を風況観測の目的空域に飛行させるステップである。人工飛行体1は、観測対象である特定地点においてホバリングさせることが好ましい。
A method according to the first embodiment of the present invention will be described below.
<First step>
This is a step of flying the artificial aircraft 1 in a target airspace for wind condition observation. It is preferable that the artificial aircraft 1 is hovered at a specific point that is the observation target.

<第2ステップ>
光学式遠隔気流計測装置2から射出したレーザー光を人工飛行体1に当てるステップである。レーザー光は、人工飛行体1の全体に当ててもよいし、人工飛行体1の一部に当ててもよい。レーザー光は、連続的照射であってもよいし、パルス照射であってもよい。
<Second step>
This is a step of irradiating the artificial air vehicle 1 with the laser light emitted from the optical remote airflow measurement device 2. The laser light may be irradiated to the entire artificial air vehicle 1 or to a part of the artificial air vehicle 1. The laser light may be irradiated continuously or in a pulsed manner.

<第3ステップ>
人工飛行体1で反射した光4を光学式遠隔気流計測装置2で検出するステップである。検出の結果は、例えば、方位角軸と仰角軸を有する二次元像、例えば光の強度分布図であってもよいしキャリア対雑音比分布図(CNR)として取得してもよい。
<Third step>
This is a step in which the light 4 reflected by the artificial air vehicle 1 is detected by the optical remote airflow measurement device 2. The detection result may be, for example, a two-dimensional image having an azimuth axis and an elevation axis, such as a light intensity distribution map or a carrier-to-noise ratio distribution map (CNR).

従来、光学式遠隔気流計測装置2の使用形態として様々な手法が用いられているが、光学式遠隔気流計測装置2から射出したレーザー光3を人工飛行体1に当てるという技術はなく、もちろん、人工飛行体1で反射した光4(レーザー光3の反射光)を光学式遠隔気流計測装置2で検出するという技術もない。本発明の実施の形態1にかかる方法においては、光学式遠隔気流計測装置2から得られる人工飛行体1由来の新たな情報を、風況観測の位置的正確性の向上のために利用されることが期待される。以下、風況観測の一層好ましい付加的ステップについて説明する。 Conventionally, various methods have been used to use the optical remote airflow measurement device 2, but there is no technology to direct the laser light 3 emitted from the optical remote airflow measurement device 2 at the artificial air vehicle 1, and of course there is no technology to detect the light 4 (reflected light of the laser light 3) reflected by the artificial air vehicle 1 with the optical remote airflow measurement device 2. In the method according to the first embodiment of the present invention, it is expected that new information derived from the artificial air vehicle 1 obtained from the optical remote airflow measurement device 2 will be used to improve the positional accuracy of wind condition observation. Below, a more preferable additional step of wind condition observation will be described.

<第4ステップ>
人工飛行体1を経緯儀3の視野4内に入れるステップである。人工飛行体1の少なくとも一部が経緯儀3の視野4内に入っていればよい。図3に示すように、人工飛行体1の中心を経緯儀3の視野4の中心となるようにしてもよいし、人工飛行体1の特定部位(例えば右アームの端部)が経緯儀3の視野4の中心となるようにしてもよい。
<Fourth step>
This is a step of placing the artificial aircraft 1 within the field of view 4 of the theodolite 3. It is sufficient that at least a part of the artificial aircraft 1 is within the field of view 4 of the theodolite 3. As shown in Fig. 3, the center of the artificial aircraft 1 may be set to the center of the field of view 4 of the theodolite 3, or a specific part of the artificial aircraft 1 (for example, the end of the right arm) may be set to the center of the field of view 4 of the theodolite 3.

第4ステップの実行は、第3ステップにおける光学式遠隔気流計測装置2で検出された情報の利用例の一つであり、これにより、人工飛行体1と光学式遠隔気流計測装置2と経緯儀3の相対的関係を特定することが可能となり、正確な風況観測を提供することができるものである。光学式遠隔気流計測装置2の光検出部28の設置位置と経緯儀3の望遠レンズ系の設置位置の高低差は少ないほうが好ましく、高低差は、好ましくは100cm以内、より好ましくは60cm以内、さらに好ましくは30cm以内である。 Execution of the fourth step is one example of the use of the information detected by the optical remote air current measurement device 2 in the third step, which makes it possible to identify the relative relationship between the artificial aircraft 1, the optical remote air current measurement device 2, and the theodolite 3, and provides accurate wind observation. It is preferable that the difference in height between the installation position of the light detection unit 28 of the optical remote air current measurement device 2 and the installation position of the telephoto lens system of the theodolite 3 is small, and the difference in height is preferably within 100 cm, more preferably within 60 cm, and even more preferably within 30 cm.

<第5ステップ>
光学式遠隔気流計測装置2で検知される人工飛行体1の仰角θGDと、経緯儀3の視野4内に入った人工飛行体1の仰角θGTとの相違量(以下「仰角相違量」)を取得するステップを備えることが好ましい。第5ステップの主旨は仰角相違量を取得することにあるので、仰角θGDおよび仰角θGTの絶対的な値を取得する必要は必ずしもなく、基準となる方向からの相対値により相違量を決定してもよい。経緯儀3により特定される方位は真値として取り扱えるため、この第5ステップにより、光学式遠隔気流計測装置2で検知される人工飛行体1の仰角θGDが真値θGTからどの程度ずれているかを把握することができる。
<5th step>
It is preferable to include a step of acquiring the difference between the elevation angle θGD of the artificial aircraft 1 detected by the optical remote airflow measurement device 2 and the elevation angle θGT of the artificial aircraft 1 that is within the field of view 4 of the theodolite 3 (hereinafter referred to as the "elevation angle difference"). Since the purpose of the fifth step is to acquire the elevation angle difference, it is not necessary to acquire absolute values of the elevation angles θGD and θGT, and the difference may be determined by a relative value from a reference direction. Since the direction specified by the theodolite 3 can be treated as a true value, the fifth step makes it possible to grasp the degree to which the elevation angle θGD of the artificial aircraft 1 detected by the optical remote airflow measurement device 2 deviates from the true value θGT.

図5は、経緯儀3により観測される人工飛行体1の仰角θGTと光学式遠隔気流計測装置2により観測される人工飛行体1の仰角θGDの相違量を示すグラフであり、横軸が方位角、縦軸が仰角相違量を示すものである。なお図5中の■印は人工飛行体1の位置、●印は人工飛行体1とは異なる方位角にある基準マストの位置をそれぞれ示している。 Figure 5 is a graph showing the difference between the elevation angle θGT of the artificial aircraft 1 observed by the theodolite 3 and the elevation angle θGD of the artificial aircraft 1 observed by the optical remote airflow measurement device 2, with the horizontal axis showing the azimuth angle and the vertical axis showing the elevation angle difference. Note that in Figure 5, the ■ mark indicates the position of the artificial aircraft 1, and the ● mark indicates the position of the reference mast at a different azimuth angle from the artificial aircraft 1.

<第6ステップ>
光学式遠隔気流計測装置2で検知される人工飛行体1の方位角θHD(図示せず)と、経緯儀3の視野4内に入った人工飛行体1の方位角θHT(図示せず)との相違量(以下「方位角相違量」)を取得するステップを備えることが好ましい。第6ステップの主旨は方位角相違量を取得することにあるので、方位θHDおよび方位角θHTの絶対的な値を取得する必要は必ずしもなく、基準となる方向からの相対値により相違量を決定してもよい。経緯儀3により特定される方位は真値として取り扱えるため、この第6ステップにより、光学式遠隔気流計測装置2で検知される人工飛行体1の方位角θHDが真値θHTからどの程度ずれているかを把握することができる。
<Sixth step>
It is preferable to include a step of acquiring a difference (hereinafter, "azimuth angle difference") between the azimuth angle θHD (not shown) of the artificial aircraft 1 detected by the optical remote airflow measurement device 2 and the azimuth angle θHT (not shown) of the artificial aircraft 1 that is within the field of view 4 of the theodolite 3. Since the gist of the sixth step is to acquire the azimuth angle difference, it is not necessarily necessary to acquire absolute values of the azimuth θHD and the azimuth angle θHT, and the difference may be determined by a relative value from a reference direction. Since the azimuth specified by the theodolite 3 can be treated as a true value, this sixth step makes it possible to grasp the degree to which the azimuth angle θHD of the artificial aircraft 1 detected by the optical remote airflow measurement device 2 deviates from the true value θHT.

<第7ステップ>
光学式遠隔気流計測装置2から得られる、方位角軸と仰角軸を有する二次元像において、捉えられた人工飛行体1の位置から仰角相違量および/または方位角相違量に相当する分だけシフトした位置における風況を取得するステップである。
<Seventh step>
This is a step of acquiring wind conditions at a position shifted by an amount equivalent to the elevation angle difference and/or azimuth angle difference from the captured position of the artificial aircraft 1 in a two-dimensional image having an azimuth axis and an elevation axis obtained from the optical remote airflow measurement device 2.

図4は、光学式遠隔気流計測装置2から得られる、方位角軸と仰角軸を有する二次元像であり、ここではキャリア対雑音比分布図(CNR)を示している。図4の中央付近に、横軸方向に3つ連続している色の濃いピクセルを看取できるが、これが人工飛行体1の像である。図4中、横軸239.610°、縦軸2.920°の地点が光学式遠隔気流計測装置2側から見た人工飛行体1の右端の部分に相当しているが、ここには上記図5に示す相違量に相当する誤差が含まれる。したがって、キャリア対雑音比分布図(CNR)において人工飛行体1の位置から仰角相違量および/または方位角相違量に相当する分だけシフトした位置における風況を取得することにより真の仰角、真の方位角を特定することができるのである。より具体的には、図5で人工飛行体1の位置を示す■印は、仰角方向に約マイナス0.15度分の誤差があるため、キャリア対雑音比分布図(CNR)を仰角方向に約プラス0.15度分、補正する必要がある。 Figure 4 is a two-dimensional image having an azimuth axis and an elevation axis obtained from the optical remote airflow measurement device 2, and shows a carrier-to-noise ratio distribution map (CNR) here. Three consecutive dark pixels in the horizontal axis direction can be seen near the center of Figure 4, which is an image of the artificial aircraft 1. In Figure 4, the point at 239.610° on the horizontal axis and 2.920° on the vertical axis corresponds to the right end of the artificial aircraft 1 as seen from the optical remote airflow measurement device 2 side, but this point contains an error equivalent to the difference amount shown in Figure 5 above. Therefore, the true elevation angle and true azimuth angle can be identified by acquiring the wind conditions at a position shifted by an amount equivalent to the elevation angle difference amount and/or azimuth angle difference amount from the position of the artificial aircraft 1 in the carrier-to-noise ratio distribution map (CNR). More specifically, the ■ mark indicating the position of the artificial aircraft 1 in Figure 5 has an error of approximately minus 0.15 degrees in the elevation angle direction, so the carrier-to-noise ratio distribution map (CNR) needs to be corrected by approximately plus 0.15 degrees in the elevation angle direction.

<第71ステップ、第72ステップ>
上記第7ステップの実行により、誤差が補正された方位角および/または仰角を得ることができるのであるが、1つの観測地点に基づく風況観測値は、光学式遠隔気流計測装置2のレーザー光照射方向の1次元的な速度成分であるため、観測対象であるエアロゾルが遠ざかる速度あるいは近づいてくる速度成分のみしか取得できない。そこで、複数の観測地点において上記第7ステップを実行すれば、観測対象地点の風況をベクトルとして算出することができる。
<Step 71 and Step 72>
By executing the seventh step, it is possible to obtain an azimuth angle and/or an elevation angle with the error corrected, but since the wind condition observation value based on one observation point is a one-dimensional velocity component in the direction of the laser light irradiation of the optical remote airflow measurement device 2, only the velocity component of the aerosol being observed moving away or approaching can be obtained. Therefore, by executing the seventh step at multiple observation points, it is possible to calculate the wind conditions at the observation point as a vector.

図6は、風況観測システムの観測形態例を示す図である。図6に示すように、海岸線の陸上の異なる第1観測地点P1および第2観測地点P2に、本発明の実施の形態1における風況観測システムを設置する。観測方法としては、光学式遠隔気流計測装置2が設置されている第1観測地点P1における上記第7ステップの実行、すなわち第1の風況を取得する第71ステップと、光学式遠隔気流計測装置2が設置されている第2観測地点P2における上記第7ステップの実行、すなわち第2の風況を取得する第72ステップと、を備えることにより、風況をベクトルとして取得することができる。第1観測地点P1および第2観測地点P2の一方または両方は、海上にあってもよい。 Figure 6 is a diagram showing an example of the observation form of the wind condition observation system. As shown in Figure 6, the wind condition observation system in the first embodiment of the present invention is installed at a first observation point P1 and a second observation point P2, which are different on land along the coastline. The observation method includes performing the seventh step at the first observation point P1 where the optical remote airflow measurement device 2 is installed, i.e., step 71 of acquiring the first wind conditions, and performing the seventh step at the second observation point P2 where the optical remote airflow measurement device 2 is installed, i.e., step 72 of acquiring the second wind conditions, thereby making it possible to acquire the wind conditions as vectors. One or both of the first observation point P1 and the second observation point P2 may be located on the sea.

(実施の形態2)
図7は、本発明の実施の形態2にかかる方法に供する風況観測システムの一例を示すものであるが人工飛行体1の描画は省略している。その他実施の形態1と重複する構成或いは符号については説明を省略する。図7に示すように、光学式遠隔気流計測装置2は、第1固定部21と、第1固定部21に対して方位角方向および/または仰角方向に回転可能に固定されている第1回転部22とを有しており、第1回転部22にはレーザー光射出部27及び光検出部28が備えられている。経緯儀3は、第2固定部31と、第2固定部31に対して方位角方向および/または仰角方向に回転可能に固定されている第2回転部32とを有しており、第2回転部32には人工飛行体1を視野内に捉える望遠レンズ系が備えられている。第1固定部21と第2固定部31とは互いに固定関係にあるものである。このような構成により、経緯儀3を基準とした光学式遠隔気流計測装置2の方位角方向および/または仰角方向の誤差を補正することができる。図7は、第2固定部31が第1固定部21に直接固定されている例について示したものであるが、例えば、第2固定部31が図1に示した筐体25等、他のものを介して第1固定部21に間接的に固定されていても同様に実施可能である。
(Embodiment 2)
FIG. 7 shows an example of a wind observation system for use in a method according to a second embodiment of the present invention, but the artificial aircraft 1 is not shown. Other configurations or symbols that overlap with those of the first embodiment will not be described. As shown in FIG. 7, the optical remote airflow measurement device 2 has a first fixed part 21 and a first rotating part 22 that is fixed to be rotatable in the azimuth direction and/or elevation angle direction relative to the first fixed part 21, and the first rotating part 22 is provided with a laser light emitting part 27 and a light detecting part 28. The theodolite 3 has a second fixed part 31 and a second rotating part 32 that is fixed to be rotatable in the azimuth direction and/or elevation angle direction relative to the second fixed part 31, and the second rotating part 32 is provided with a telephoto lens system that captures the artificial aircraft 1 within its field of view. The first fixed part 21 and the second fixed part 31 are in a fixed relationship with each other. With this configuration, it is possible to correct errors in the azimuth direction and/or elevation angle direction of the optical remote airflow measurement device 2 based on the theodolite 3. FIG. 7 shows an example in which the second fixed portion 31 is directly fixed to the first fixed portion 21, but the same implementation is also possible in which the second fixed portion 31 is indirectly fixed to the first fixed portion 21 via something else, such as the housing 25 shown in FIG. 1.

1 人工飛行体
2 光学式遠隔気流計測装置
21 第1固定部
22 第1回転部
25 筐体
27 レーザー光射出部
28 光検出部
3 経緯儀
31 第2固定部
32 第2回転部
4 視野
θGD 光学式遠隔気流計測装置で検知される人工飛行体の仰角
θGT 経緯儀の視野内に入った人工飛行体の仰角
θHD 光学式遠隔気流計測装置で検知される人工飛行体の方位角
θHT 経緯儀の視野内に入った人工飛行体の方位角
P1 第1観測地点
P2 第2観測地点
REFERENCE SIGNS LIST 1 Artificial flying object 2 Optical remote airflow measurement device 21 First fixed part 22 First rotating part 25 Housing 27 Laser light emitting part 28 Light detection part 3 Theodolite 31 Second fixed part 32 Second rotating part 4 Field of view θGD Elevation angle of the artificial flying object detected by the optical remote airflow measurement device θGT Elevation angle of the artificial flying object that has entered the field of view of the theodolite θHD Azimuth angle of the artificial flying object detected by the optical remote airflow measurement device θHT Azimuth angle of the artificial flying object that has entered the field of view of the theodolite P1 First observation point P2 Second observation point

Claims (7)

人工飛行体を飛行させる第1ステップと、
光学式遠隔気流計測装置から射出したレーザー光を前記人工飛行体に当てる第2ステップと、
前記人工飛行体で反射した光を前記光学式遠隔気流計測装置で検出する第3ステップと、
を有している方法。
A first step of flying the artificial air vehicle;
A second step of directing a laser beam emitted from an optical remote airflow measurement device onto the artificial flying object;
a third step of detecting light reflected by the artificial air vehicle with the optical remote airflow measurement device;
The method according to claim 1,
更に、前記人工飛行体を経緯儀の視野内に入れる第4ステップを有している請求項1に記載の方法。 The method of claim 1, further comprising a fourth step of placing the artificial air vehicle within the field of view of the theodolite. 更に、前記光学式遠隔気流計測装置で検知される前記人工飛行体の仰角と、前記経緯儀の視野内に入った前記人工飛行体の仰角との相違量(以下「仰角相違量」)を取得する第5ステップを有している請求項2に記載の方法。 The method according to claim 2, further comprising a fifth step of acquiring the difference between the elevation angle of the artificial flying object detected by the optical remote airflow measurement device and the elevation angle of the artificial flying object that is within the field of view of the theodolite (hereinafter referred to as the "elevation angle difference"). 更に、前記光学式遠隔気流計測装置で検知される前記人工飛行体の方位角と、前記経緯儀の視野内に入った前記人工飛行体の方位角との相違量(以下「方位角相違量」)を取得する第6ステップを有している請求項2に記載の方法。 The method according to claim 2, further comprising a sixth step of acquiring the difference between the azimuth angle of the artificial flying object detected by the optical remote airflow measurement device and the azimuth angle of the artificial flying object that is within the field of view of the theodolite (hereinafter, the "azimuth angle difference"). 更に、前記光学式遠隔気流計測装置から得られる、方位角軸と仰角軸を有する二次元像において、捉えられた前記人工飛行体の位置から前記仰角相違量および/または前記方位角相違量に相当する分だけシフトした位置における風況を取得する第7ステップを有している請求項3に記載の方法。 The method according to claim 3, further comprising a seventh step of acquiring wind conditions at a position shifted by an amount equivalent to the elevation angle difference and/or the azimuth angle difference from the captured position of the artificial flying object in a two-dimensional image having an azimuth axis and an elevation angle axis obtained from the optical remote airflow measurement device. 光学式遠隔気流計測装置が設置されている第1観測地点において請求項5に記載の方法を用いて第1の風況を取得する第71ステップと、
光学式遠隔気流計測装置が設置されている第2観測地点において請求項5に記載の方法を用いて第2の風況を取得する第72ステップと、を有している方法。
A 71st step of acquiring a first wind condition using the method according to claim 5 at a first observation point where an optical remote airflow measurement device is installed;
(72) acquiring second wind conditions using the method of claim 5 at a second observation point where an optical remote airflow measurement device is installed.
光学式遠隔気流計測装置と、経緯儀と、前記光学式遠隔気流計測装置から得られる方位角軸と仰角軸を有する二次元像中に捉えられる人工飛行体とを備えた風況観測システムであって、
前記光学式遠隔気流計測装置は、第1固定部と、該第1固定部に対して方位角方向および/または仰角方向に回転可能に固定されている第1回転部とを有しており、該第1回転部にはレーザー光射出部及び光検出部が備えられており、
前記経緯儀は、第2固定部と、該第2固定部に対して方位角方向および/または仰角方向に回転可能に固定されている第2回転部とを有しており、該第2回転部には前記人工飛行体を視野内に捉える望遠レンズ系が備えられており、
前記第1固定部と前記第2固定部は直接的又は間接的に固定関係にある風況観測システム。
A wind condition observation system comprising an optical remote airflow measurement device, a theodolite, and an artificial flying object captured in a two-dimensional image having an azimuth axis and an elevation axis obtained from the optical remote airflow measurement device,
the optical remote airflow measurement device has a first fixed part and a first rotating part fixed to be rotatable in an azimuth angle direction and/or an elevation angle direction with respect to the first fixed part, the first rotating part being provided with a laser light emitting part and a light detecting part;
the theodolite has a second fixed part and a second rotating part fixed to be rotatable in an azimuth angle direction and/or an elevation angle direction with respect to the second fixed part, and the second rotating part is provided with a telephoto lens system that captures the artificial aircraft within a field of view;
A wind condition observation system in which the first fixed part and the second fixed part are directly or indirectly in a fixed relationship.
JP2023051530A 2023-03-28 2023-03-28 Method using optical remote airflow measuring device and wind condition observation system Active JP7403889B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023051530A JP7403889B1 (en) 2023-03-28 2023-03-28 Method using optical remote airflow measuring device and wind condition observation system
PCT/JP2023/017060 WO2024202076A1 (en) 2023-03-28 2023-05-01 Method in which optical remote airflow measuring device is used, and wind condition observation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023051530A JP7403889B1 (en) 2023-03-28 2023-03-28 Method using optical remote airflow measuring device and wind condition observation system

Publications (2)

Publication Number Publication Date
JP7403889B1 JP7403889B1 (en) 2023-12-25
JP2024140402A true JP2024140402A (en) 2024-10-10

Family

ID=89307944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023051530A Active JP7403889B1 (en) 2023-03-28 2023-03-28 Method using optical remote airflow measuring device and wind condition observation system

Country Status (2)

Country Link
JP (1) JP7403889B1 (en)
WO (1) WO2024202076A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2595872B1 (en) * 1986-03-11 1988-07-01 Centre Nat Etd Spatiales ASSEMBLY FOR CALIBRATING THE ANGLES OF ELEVATION AND AZIMUTES OF THE RADIOELECTRIC AXIS OF AN ANTENNA
JP2010127840A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Light wave radar apparatus
US7643135B1 (en) * 2008-12-05 2010-01-05 Leica Geosystems Ag Telescope based calibration of a three dimensional optical scanner
US10816668B2 (en) * 2016-05-31 2020-10-27 Metroweather Co., Ltd. Doppler shift analysis device

Also Published As

Publication number Publication date
JP7403889B1 (en) 2023-12-25
WO2024202076A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
US11402506B2 (en) Laser measuring method and laser measuring instrument
CN113029117B (en) Flight sensor
CN211653129U (en) Two-dimensional scanning device and laser radar device with same
CN109254286B (en) Airborne laser radar optical scanning device
CN101865996B (en) Airborne laser radar pitch angle deviation real-time compensation method and device
CN108717195B (en) Coherent Doppler wind lidar system and control method thereof
CN109983362B (en) Data processing device, laser radar device, and wind measurement system
JP2016111414A (en) Flying body position detection system and flying body
CN112711031B (en) Improved quasi-blind area-free Doppler coherent laser radar wind speed measurement system and method
JP2019053003A (en) Data processor, method for processing data, and data processing program
JP2016080572A (en) Laser measurement system
JP2019039868A (en) Information processing device, information processing method and program for information processing
Vasiljević et al. Wind sensing with drone-mounted wind lidars: proof of concept
CN109573088A (en) A kind of Shipborne UAV photoelectricity guidance carrier landing system and warship method
CN111983585A (en) Multi-mirror scanning control system of multi-emission single-receiver laser radar
CN112578398B (en) Double-focal-plane detection and identification system and detection and identification method
CN107703516B (en) Device for remotely measuring ship pollution emission and application method thereof
WO2008061307A1 (en) A method of determining characteristics of a remote surface with application to the landing of an aerial vehicle
WO2024202076A1 (en) Method in which optical remote airflow measuring device is used, and wind condition observation system
KR101283932B1 (en) Method for measuring direction error of gimbal platform and apparatus thereof
US20220244303A1 (en) Method for ascertaining and depicting potential damaged areas on components of overhead cables
CN204228153U (en) Directed laser scanning system
JP2019039867A (en) Position measurement device, position measurement method and program for position measurement
KR20160118558A (en) Lidar system
JP6470658B2 (en) Laser measurement system and laser measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230330

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230407

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20230412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20230511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231206

R150 Certificate of patent or registration of utility model

Ref document number: 7403889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150