[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2024032980A - Operational method of reverse osmosis membrane - Google Patents

Operational method of reverse osmosis membrane Download PDF

Info

Publication number
JP2024032980A
JP2024032980A JP2024015239A JP2024015239A JP2024032980A JP 2024032980 A JP2024032980 A JP 2024032980A JP 2024015239 A JP2024015239 A JP 2024015239A JP 2024015239 A JP2024015239 A JP 2024015239A JP 2024032980 A JP2024032980 A JP 2024032980A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
treated
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024015239A
Other languages
Japanese (ja)
Inventor
充 日根野谷
Mitsuru Hinenoya
光 石橋
Hikari Ishibashi
紗代 佐野
Sayo Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Mitsubishi Chemical Aqua Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Aqua Solutions Co Ltd filed Critical Mitsubishi Chemical Aqua Solutions Co Ltd
Priority to JP2024015239A priority Critical patent/JP2024032980A/en
Publication of JP2024032980A publication Critical patent/JP2024032980A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide an operational method for reverse osmosis membranes capable of inhibiting a precipitation of inorganic substances in a treated water while also inhibiting a precipitation of organic substances and preventing blockage of a reverse osmosis membrane.SOLUTION: The present invention provides an operational method for reverse osmosis membranes in which reverse osmosis membranes separate raw water into permeate water and concentrated water. A pH of the treated water supplied to reverse osmosis membrane modules 18, 18, 18 is 5.8 to 7.8, and after treating the treated water with the reverse osmosis membranes of the reverse osmosis membrane modules 18, 18, 18, the reverse osmosis membranes of the reverse osmosis membrane modules 18, 18, 18 are periodically relieved of pressure.SELECTED DRAWING: Figure 1

Description

本発明は、逆浸透膜の運転方法に関する。 The present invention relates to a method for operating a reverse osmosis membrane.

逆浸透膜で原水を透過水と濃縮水とに分離する水処理方法が知られている。図4は、従来の逆浸透膜を用いる水処理方法の一例を説明するための概略模式図である。図4に示す処理システム101を用いる方法では、まず、井戸111から井戸水が原水として流路121を流れ、被処理水槽112に供給される。被処理水槽112内には、塩素添加手段130によって塩素が、硫酸添加手段131によって硫酸がそれぞれ添加され、原水と塩素と硫酸が混合されて被処理水となる。
次いで、被処理水は流路122を流れ、ポリ塩化アルミニウムが添加手段132によって添加され、ポンプ114によって砂ろ過塔141に送液される。砂ろ過塔141では、被処理水中の有機物、鉄、マンガンの凝集物が除去される。
その後、被処理水は活性炭142に通水され、塩素添加手段130で塩素が添加された後、限外ろ過膜を備える膜ろ過装置143に供給される。ろ過装置143では被処理水中のクリプトスポリジウム等の原虫、雑菌が限外ろ過膜によって除去される。
A water treatment method is known in which raw water is separated into permeated water and concentrated water using a reverse osmosis membrane. FIG. 4 is a schematic diagram for explaining an example of a conventional water treatment method using a reverse osmosis membrane. In the method using the treatment system 101 shown in FIG. 4, first, well water from the well 111 flows through the channel 121 as raw water and is supplied to the water tank 112 to be treated. In the water tank 112 to be treated, chlorine is added by the chlorine adding means 130, and sulfuric acid is added by the sulfuric acid adding means 131, and the raw water, chlorine, and sulfuric acid are mixed to become the water to be treated.
Next, the water to be treated flows through the channel 122, polyaluminum chloride is added by the addition means 132, and the water is sent to the sand filter tower 141 by the pump 114. In the sand filter tower 141, aggregates of organic matter, iron, and manganese in the water to be treated are removed.
Thereafter, the water to be treated is passed through activated carbon 142, chlorine is added by chlorine adding means 130, and then supplied to a membrane filtration device 143 equipped with an ultrafiltration membrane. In the filtration device 143, protozoa such as Cryptosporidium and other bacteria in the water to be treated are removed by an ultrafiltration membrane.

次いで、ろ過装置143の透過水は流路127を流れ、中間処理槽144に貯留される。中間処理槽144内の透過水の一部は、ポンプ114によって送液されて流路127を流れ、処理水槽119にそのまま貯留される。一方、中間処理槽144内の透過水の残部はポンプ114によって送液されて流路128を流れ、昇圧ポンプ116で昇圧された後、逆浸透膜を備える逆浸透膜ろ過装置117に供給される。逆浸透膜ろ過装置117では、被処理水中のカルシウム、マグネシウムが逆浸透膜によって除去される。
その後、逆浸透膜ろ過装置117の透過水は流路124を流れ、処理水槽119に供給される。一方、逆浸透膜ろ過装置117の濃縮水は流路123に集められ、処理システム101の外部に排出される。
このように、処理システム101を用いる従来の方法では、全有機炭素(TOC)、鉄及びマンガン、原虫及び雑菌、硬度の各項目の水質の改善のために処理をそれぞれ行っている。そのため、装置構成、処理フローが複雑となり、水質処理のコストが高くなる、という問題がある。
Next, the permeated water from the filtration device 143 flows through the channel 127 and is stored in the intermediate treatment tank 144 . A part of the permeated water in the intermediate treatment tank 144 is sent by the pump 114, flows through the flow path 127, and is stored in the treated water tank 119 as it is. On the other hand, the remainder of the permeated water in the intermediate treatment tank 144 is sent by the pump 114 and flows through the channel 128, and after being pressurized by the boost pump 116, is supplied to the reverse osmosis membrane filtration device 117 equipped with a reverse osmosis membrane. . In the reverse osmosis membrane filtration device 117, calcium and magnesium in the water to be treated are removed by the reverse osmosis membrane.
Thereafter, the permeated water from the reverse osmosis membrane filtration device 117 flows through the flow path 124 and is supplied to the treated water tank 119. On the other hand, concentrated water from the reverse osmosis membrane filtration device 117 is collected in the flow path 123 and discharged to the outside of the treatment system 101.
As described above, in the conventional method using the treatment system 101, treatments are performed to improve water quality in terms of total organic carbon (TOC), iron and manganese, protozoa and bacteria, and hardness. Therefore, there is a problem that the equipment configuration and treatment flow become complicated, and the cost of water quality treatment increases.

そこで、図5に示す一例のように、TOC、鉄及びマンガン、原虫及び雑菌、硬度の各項目の水質の改善のための処理を全て逆浸透膜ろ過装置117で一括して行う処理方法の利用が検討されている。
図5に示す処理システム102を用いる方法では、まず、井戸111から原水が流路121を流れ、被処理水槽112に供給される。被処理水槽112内には硫酸添加手段131によって硫酸が添加され、硫酸と原水が混合されて被処理水となる。
次いで、被処理水はポンプ114によって送液されて流路122を流れ、プレフィルター115、昇圧ポンプ116に通水された後、逆浸透膜ろ過装置117に供給される。処理システム102では逆浸透膜ろ過装置117によって、被処理水中の有機物、カルシウム、シリカ、鉄及びマンガン等の無機物、原虫及び雑菌、カルシウム及びマグネシウムが一括して除去される。
その後、逆浸透膜ろ過装置117の透過水は流路124を流れ、硫酸、塩素がそれぞれ添加され、ミネライザ135で硬度が調整される。その後、透過水は処理水槽119に貯留され、必要に応じて塩素添加手段130によって塩素が添加される。
Therefore, as shown in the example shown in FIG. 5, a treatment method is used in which all of the treatments for improving the water quality of TOC, iron and manganese, protozoa and bacteria, and hardness are carried out in a reverse osmosis membrane filtration device 117. is being considered.
In the method using the treatment system 102 shown in FIG. 5, raw water first flows from the well 111 through the channel 121 and is supplied to the water tank 112 to be treated. Sulfuric acid is added into the treated water tank 112 by the sulfuric acid addition means 131, and the sulfuric acid and raw water are mixed to become treated water.
Next, the water to be treated is pumped by the pump 114 and flows through the channel 122, and after being passed through the pre-filter 115 and the booster pump 116, it is supplied to the reverse osmosis membrane filtration device 117. In the treatment system 102, a reverse osmosis membrane filtration device 117 removes organic matter, calcium, silica, inorganic matter such as iron and manganese, protozoa and various bacteria, calcium and magnesium in the water to be treated all at once.
Thereafter, the permeated water from the reverse osmosis membrane filtration device 117 flows through the channel 124, sulfuric acid and chlorine are added thereto, and the hardness is adjusted by the mineralizer 135. Thereafter, the permeated water is stored in the treated water tank 119, and chlorine is added thereto by the chlorine adding means 130 as needed.

このように、処理システム102を用いる方法によれば、ほぼ全ての項目の水質を逆浸透膜ろ過装置117によって改善できるため、装置及び処理フローが簡素化し、低コスト化、さらには処理システムの省スペース化を図ることができる。
ところが一方で、処理システム102を用いる方法のように、複数の項目の水質の改善のための処理を逆浸透膜ろ過装置117で一括して行うと、逆浸透膜の閉塞が頻発するという問題が生じる。
そこで、逆浸透膜の被処理水のpHが7.0以下となるように水処理をすることが提案されている(例えば、特許文献1)。
As described above, according to the method using the treatment system 102, water quality in almost all items can be improved by the reverse osmosis membrane filtration device 117, which simplifies the device and treatment flow, reduces costs, and further saves the treatment system. You can create more space.
However, on the other hand, when multiple items of water quality improvement treatment are performed at once using the reverse osmosis membrane filtration device 117, as in the method using the treatment system 102, there is a problem that the reverse osmosis membrane frequently becomes clogged. arise.
Therefore, it has been proposed to treat water so that the pH of the water to be treated by a reverse osmosis membrane is 7.0 or less (for example, Patent Document 1).

特開2019-107592号公報JP 2019-107592 Publication

図6は、逆浸透膜の被処理水のpHが7.0以下となるように水処理をする方法の一例を説明するための概略模式図である。図6に示す処理システム103では、逆浸透膜ろ過装置117の濃縮水が流路123に集められ、流路123の濃縮水の一部が流路125を流れ、流路122に戻されて、被処理水として逆浸透膜ろ過装置117に再供給される。 処理システム103を用いる方法では、特許文献1に開示の方法と同様に、逆浸透膜ろ過装置117の逆浸透膜の一次側に供給される処理水のpHが7.0以下となるように、被処理水のpHが硫酸添加手段131によって被処理水槽112内で調整される。そのため、被処理水中の無機物の析出を抑制し、逆浸透膜の表面での堆積を低減できる。
しかし、逆浸透膜の被処理水のpHが7.0以下となるように水処理をすると、有機物が被処理水から析出しやすく、析出した有機物によって逆浸透膜の表面が閉塞してしまう、という問題がある。
本発明は、被処理水中の無機物の析出を抑制しながら、有機物の析出も抑制でき、逆浸透膜の閉塞を防止できる、逆浸透膜の運転方法を提供する。
FIG. 6 is a schematic diagram for explaining an example of a method of treating water so that the pH of the water to be treated by the reverse osmosis membrane is 7.0 or less. In the treatment system 103 shown in FIG. 6, concentrated water from the reverse osmosis membrane filtration device 117 is collected in a channel 123, a part of the concentrated water in the channel 123 flows through a channel 125, and is returned to the channel 122. The water is re-supplied to the reverse osmosis membrane filtration device 117 as water to be treated. In the method using the treatment system 103, similarly to the method disclosed in Patent Document 1, the pH of the treated water supplied to the primary side of the reverse osmosis membrane of the reverse osmosis membrane filtration device 117 is 7.0 or less. The pH of the water to be treated is adjusted in the water tank 112 by the sulfuric acid addition means 131. Therefore, precipitation of inorganic substances in the water to be treated can be suppressed and deposition on the surface of the reverse osmosis membrane can be reduced.
However, when water is treated so that the pH of the water to be treated by the reverse osmosis membrane is 7.0 or less, organic substances tend to precipitate from the water to be treated, and the surface of the reverse osmosis membrane is clogged by the precipitated organic substances. There is a problem.
The present invention provides a method for operating a reverse osmosis membrane that can suppress the precipitation of organic substances while suppressing the precipitation of inorganic substances in water to be treated, and can prevent clogging of the reverse osmosis membrane.

本発明は下記の態様を有する。
[1] 逆浸透膜によって、原水を透過水と濃縮水とに分離する、逆浸透膜の運転方法であって、前記逆浸透膜に供給される被処理水のpHが5.8~7.8であり、前記逆浸透膜で前記被処理水を処理した後、前記逆浸透膜を定期的に圧力開放する、逆浸透膜の運転方法。
[2] 前記逆浸透膜を圧力開放した際に、フラッシングを実施することで前記逆浸透膜の表面を洗う、[1]の逆浸透膜の運転方法。
[3] フラッシングの際に、透過水又は純水を含む洗浄水を使用する、[2]の逆浸透膜の運転方法。
[4] 前記原水を直接、前記逆浸透膜で処理する、[1]~[3]のいずれかの逆浸透膜の運転方法。
[5] 前記原水が、シリカ、カルシウム、マグネシウム、鉄及びマンガンからなる群から選ばれる少なくとも1つ以上の無機物をさらに含む、[1]~[4]のいずれかの逆浸透膜の運転方法。
[6] 前記原水のMアルカリ度が、100mg/L以上である、[1]~[5]のいずれかの逆浸透膜の運転方法。
[7] 前記被処理水の全有機炭素が、3.0mg/L以上である、[1]~[6]のいずれかの逆浸透膜の運転方法。
The present invention has the following aspects.
[1] A method for operating a reverse osmosis membrane in which raw water is separated into permeated water and concentrated water by a reverse osmosis membrane, wherein the pH of the water to be treated supplied to the reverse osmosis membrane is 5.8 to 7. 8, the method for operating a reverse osmosis membrane, which comprises periodically releasing pressure on the reverse osmosis membrane after treating the water to be treated with the reverse osmosis membrane.
[2] The method for operating a reverse osmosis membrane according to [1], wherein the surface of the reverse osmosis membrane is washed by flushing when the pressure of the reverse osmosis membrane is released.
[3] The method for operating a reverse osmosis membrane according to [2], in which permeated water or washing water containing pure water is used during flushing.
[4] The method for operating a reverse osmosis membrane according to any one of [1] to [3], wherein the raw water is directly treated with the reverse osmosis membrane.
[5] The method for operating a reverse osmosis membrane according to any one of [1] to [4], wherein the raw water further contains at least one inorganic substance selected from the group consisting of silica, calcium, magnesium, iron, and manganese.
[6] The method for operating a reverse osmosis membrane according to any one of [1] to [5], wherein the M alkalinity of the raw water is 100 mg/L or more.
[7] The method for operating a reverse osmosis membrane according to any one of [1] to [6], wherein the total organic carbon of the water to be treated is 3.0 mg/L or more.

本発明の逆浸透膜の運転方法によれば、被処理水中の無機物の析出を抑制しながら、有機物の析出も抑制でき、逆浸透膜の閉塞を防止できる。 According to the method for operating a reverse osmosis membrane of the present invention, while suppressing the precipitation of inorganic substances in the water to be treated, the precipitation of organic substances can also be suppressed, and clogging of the reverse osmosis membrane can be prevented.

一実施形態に係る逆浸透膜の運転方法に用いる処理システムの概略模式図である。FIG. 1 is a schematic diagram of a treatment system used in a method of operating a reverse osmosis membrane according to an embodiment. 実施例で用いた平膜試験装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a flat membrane testing device used in Examples. 図3の平膜試験装置が有する密閉容器、平膜セルの模式断面図である。4 is a schematic cross-sectional view of a closed container and a flat membrane cell included in the flat membrane testing apparatus of FIG. 3. FIG. 従来の水処理方法に用いる処理システムの概略模式図である。1 is a schematic diagram of a treatment system used in a conventional water treatment method. 従来の水処理方法に用いる処理システムの概略模式図である。1 is a schematic diagram of a treatment system used in a conventional water treatment method. 従来の水処理方法に用いる処理システムの概略模式図である。1 is a schematic diagram of a treatment system used in a conventional water treatment method.

「全有機炭素」は、例えば、JIS K 0101 20.有機体炭素(TOC)に準拠して測定できる。
「Mアルカリ度」は、例えば、JIS K 0101 13.酸消費量に準拠して測定できる。
数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
"Total organic carbon" is defined in, for example, JIS K 0101 20. It can be measured based on organic carbon (TOC).
"M alkalinity" is defined in, for example, JIS K 0101 13. Can be measured according to acid consumption.
"~" indicating a numerical range means that the numerical values written before and after it are included as the lower limit and upper limit.

以下、本発明の逆浸透膜の運転方法について、実施形態例を示して説明する。ただし、本発明は以下の実施形態に限定されない。
図1は、本発明の一実施形態に係る逆浸透膜の運転方法に用いる処理システム1の概略模式図である。処理システム1は、井戸11と被処理水槽12と酸添加手段31と逆浸透膜ろ過装置17と処理水槽19を備える。
EMBODIMENT OF THE INVENTION Hereinafter, the operating method of the reverse osmosis membrane of this invention is demonstrated by showing the embodiment example. However, the present invention is not limited to the following embodiments.
FIG. 1 is a schematic diagram of a treatment system 1 used in a method for operating a reverse osmosis membrane according to an embodiment of the present invention. The treatment system 1 includes a well 11 , a treated water tank 12 , an acid addition means 31 , a reverse osmosis membrane filtration device 17 , and a treated water tank 19 .

被処理水槽12は、被処理水を貯留する槽である。被処理水槽12には、原水流路21と被処理水流路22と循環用流路25とが接続されている。
原水流路21は、井戸11から原水(井戸水)を被処理水槽12に供給するための流路である。被処理水流路22は、被処理水を被処理水槽12から逆浸透膜ろ過装置17に供給するための流路である。循環用流路25は、逆浸透膜ろ過装置17の濃縮水を被処理水槽12に供給するための流路である。そのため、被処理水槽12内の被処理水は、逆浸透膜ろ過装置17の濃縮水と原水(井戸水)とを含む。
The water tank 12 to be treated is a tank that stores water to be treated. A raw water flow path 21 , a water flow path 22 and a circulation flow path 25 are connected to the water tank 12 to be treated.
The raw water flow path 21 is a flow path for supplying raw water (well water) from the well 11 to the water tank 12 to be treated. The water to be treated channel 22 is a channel for supplying the water to be treated from the water tank 12 to the reverse osmosis membrane filtration device 17 . The circulation channel 25 is a channel for supplying concentrated water from the reverse osmosis membrane filtration device 17 to the water tank 12 to be treated. Therefore, the water to be treated in the water tank 12 includes concentrated water from the reverse osmosis membrane filtration device 17 and raw water (well water).

酸添加手段31は、被処理水槽12内の被処理水に酸成分を添加する。酸成分は特に限定されない。例えば、塩酸、硫酸等が挙げられる。
酸添加手段31は、被処理水槽12内の液相部分の被処理水に直接酸成分を添加する形態でもよく、被処理水槽12内の気相部分を介して酸成分を添加する形態でもよい。
The acid addition means 31 adds an acid component to the water to be treated in the water tank 12 to be treated. The acid component is not particularly limited. Examples include hydrochloric acid and sulfuric acid.
The acid addition means 31 may be in the form of adding the acid component directly to the water to be treated in the liquid phase portion in the water tank 12 to be treated, or may be in the form of adding the acid component through the gas phase portion in the water tank 12 to be treated. .

被処理水流路22には、ポンプ14とプレフィルター15と昇圧ポンプ16が被処理水槽12側からこの順に設けられている。
ポンプ14は、被処理水を逆浸透膜ろ過装置17に送液して供給するためのものである。
プレフィルター15は、砂、シルト、粘土等のサイズの大きな不純物を除去し、逆浸透膜ろ過装置17の逆浸透膜の閉塞や擦過等から保護している。
昇圧ポンプ16は、被処理水を逆浸透膜ろ過装置17でろ過するために必要な圧力を付与している。
A pump 14, a pre-filter 15, and a boost pump 16 are provided in the treated water flow path 22 in this order from the treated water tank 12 side.
The pump 14 is for sending and supplying the water to be treated to the reverse osmosis membrane filtration device 17 .
The pre-filter 15 removes large-sized impurities such as sand, silt, and clay, and protects the reverse osmosis membrane of the reverse osmosis membrane filtration device 17 from clogging, abrasion, and the like.
The boost pump 16 applies the pressure necessary for filtering the water to be treated with the reverse osmosis membrane filtration device 17 .

逆浸透膜ろ過装置17は、逆浸透膜モジュール18、18、18を備える。逆浸透膜モジュール18、18、18は、逆浸透膜をそれぞれ内部に有する。逆浸透膜ろ過装置17は、逆浸透膜モジュール18、18、18内の逆浸透膜に被処理水を逆浸透させて、被処理水を透過水と濃縮水とに分離する装置である。
各逆浸透膜モジュール18には、分岐した被処理水流路22のそれぞれの端部が接続されている。そのため、各逆浸透膜モジュール18の逆浸透膜の一次側には被処理水流路22の被処理水が供給される。
The reverse osmosis membrane filtration device 17 includes reverse osmosis membrane modules 18 , 18 , 18 . The reverse osmosis membrane modules 18, 18, 18 each have a reverse osmosis membrane therein. The reverse osmosis membrane filtration device 17 is a device that reverse osmoses the water to be treated through the reverse osmosis membranes in the reverse osmosis membrane modules 18, 18, 18, and separates the water to be treated into permeated water and concentrated water.
Each reverse osmosis membrane module 18 is connected to each end of a branched water flow path 22 to be treated. Therefore, the water to be treated in the water to be treated channel 22 is supplied to the primary side of the reverse osmosis membrane of each reverse osmosis membrane module 18 .

さらに、各逆浸透膜モジュール18には、濃縮水流路23と透過水流路24の分岐したそれぞれの端部がそれぞれ接続されている。
濃縮水流路23は、逆浸透膜モジュール18、18、18内の逆浸透膜で分離された濃縮水を集めるための流路である。濃縮水流路23は、接続点Dで循環用流路25及び排水用流路26と接続されている。循環用流路25は、濃縮水の一部を濃縮水流路23から被処理水槽12に供給するための流路である。排水用流路26は、濃縮水の残部を処理システム1の外部に排出するための流路である。
透過水流路24は、処理水槽19と接続されている。透過水流路24は、逆浸透膜ろ過装置17で分離された透過水を処理水槽19に供給するための流路である。
処理水槽19は、逆浸透膜ろ過装置17で分離された透過水を処理水として貯留する槽である。
Furthermore, each reverse osmosis membrane module 18 is connected to each branched end of the concentrated water flow path 23 and the permeated water flow path 24.
The concentrated water channel 23 is a channel for collecting concentrated water separated by the reverse osmosis membranes in the reverse osmosis membrane modules 18, 18, 18. The concentrated water flow path 23 is connected to a circulation flow path 25 and a drainage flow path 26 at a connection point D. The circulation channel 25 is a channel for supplying a portion of the concentrated water from the concentrated water channel 23 to the water tank 12 to be treated. The drainage channel 26 is a channel for discharging the remainder of the concentrated water to the outside of the treatment system 1.
The permeated water channel 24 is connected to the treated water tank 19. The permeated water flow path 24 is a flow path for supplying the permeated water separated by the reverse osmosis membrane filtration device 17 to the treated water tank 19.
The treated water tank 19 is a tank that stores permeated water separated by the reverse osmosis membrane filtration device 17 as treated water.

次に、本発明の一実施形態に係る逆浸透膜の運転方法について説明する。
本実施形態に係る逆浸透膜の運転方法は、原水を逆浸透膜で透過水と濃縮水とに分離して処理する方法である。
原水としては、例えば、井戸水、伏流水等の地下水;河川水;湖沼水が挙げられる。ただし、原水は、これらの例示に限定されない。
Next, a method of operating a reverse osmosis membrane according to an embodiment of the present invention will be described.
The method of operating a reverse osmosis membrane according to this embodiment is a method of separating raw water into permeated water and concentrated water using a reverse osmosis membrane and treating the raw water.
Examples of raw water include groundwater such as well water and underground water; river water; and lake water. However, raw water is not limited to these examples.

本実施形態においては、原水は溶解性の有機物を含む。原水中の有機物は特に限定されないが、例えば、フミン質が挙げられる。原水中のフミン質としては、例えば、フミン酸、フルボ酸が挙げられる。
原水中の全有機炭素は、酸成分の使用量の抑制、逆浸透膜の膜閉塞の抑制等の観点から、3.0mg/L以上が好ましく、4.0mg/L以上がより好ましく、5.0mg/L以上が特に好ましい。本実施形態では、後述のように被処理水のpHの下限値を所定の数値以上に調整するため、全有機炭素が前記下限値以上の原水でも、逆浸透膜の閉塞を防止できる。その結果、原水中の全有機炭素が高い場合であっても、逆浸透膜の目詰まりによる透過能の低下が起きにくく、処理効率を維持したまま透過水を得ることができる。
原水中の全有機炭素の上限値は特に制限されない。例えば、原水中の全有機炭素は、処理効率の観点から、100mg/L以下が好ましく、50mg/L以下がより好ましい。
In this embodiment, the raw water contains soluble organic matter. The organic matter in the raw water is not particularly limited, but examples include humic substances. Examples of humic substances in raw water include humic acid and fulvic acid.
The total organic carbon in the raw water is preferably 3.0 mg/L or more, more preferably 4.0 mg/L or more, from the viewpoint of suppressing the amount of acid components used and suppressing membrane clogging of the reverse osmosis membrane.5. Particularly preferred is 0 mg/L or more. In this embodiment, as will be described later, the lower limit of pH of the water to be treated is adjusted to a predetermined value or higher, so even if the raw water has total organic carbon equal to or higher than the lower limit, clogging of the reverse osmosis membrane can be prevented. As a result, even if the total organic carbon content in the raw water is high, the permeation capacity is less likely to decrease due to clogging of the reverse osmosis membrane, and permeated water can be obtained while maintaining treatment efficiency.
The upper limit of total organic carbon in raw water is not particularly limited. For example, from the viewpoint of treatment efficiency, the total organic carbon in raw water is preferably 100 mg/L or less, more preferably 50 mg/L or less.

分子量が10000以上である有機化合物の原水中の含有量は、0.001~1mg/Lでもよく、0.005~0.5mg/Lでもよく、0.01~0.1mg/Lでもよい。分子量が10000以上である有機化合物の原水中の含有量が前記上限値以下であると、有機物の析出が起きにくく、析出した有機物による逆浸透膜の閉塞をさらに抑制できる。分子量が10000以上である有機化合物の原水中の含有量が前記下限値以上であっても、本実施形態では、後述のように被処理水のpHの下限値を所定の数値以上に調整するため、有機物が析出しにくく、逆浸透膜の閉塞を防止でき、処理効率を維持したまま透過水を得ることができると考えられる。 The content of the organic compound having a molecular weight of 10,000 or more in the raw water may be 0.001 to 1 mg/L, 0.005 to 0.5 mg/L, or 0.01 to 0.1 mg/L. When the content of organic compounds having a molecular weight of 10,000 or more in the raw water is below the upper limit, precipitation of organic substances is less likely to occur, and clogging of the reverse osmosis membrane by the precipitated organic substances can be further suppressed. Even if the content of organic compounds with a molecular weight of 10,000 or more in the raw water is equal to or higher than the lower limit, in this embodiment, as described below, the lower limit of the pH of the water to be treated is adjusted to a predetermined value or higher. It is thought that organic matter is less likely to precipitate, it is possible to prevent blockage of the reverse osmosis membrane, and it is possible to obtain permeated water while maintaining treatment efficiency.

原水は、有機物に加えて、シリカ、カルシウム、マグネシウム、鉄及びマンガンからなる群から選ばれる少なくとも1つ以上のイオン状の無機物をさらに含んでもよい。原水がこれらの無機物をさらに含む場合、本実施形態では、後述のように被処理水のpHの上限値を所定の数値以下に調整するため、無機物が析出しにくく、逆浸透膜の閉塞を防止でき、処理効率を維持したまま透過水を得ることができると考えられる。 In addition to organic substances, the raw water may further contain at least one ionic inorganic substance selected from the group consisting of silica, calcium, magnesium, iron, and manganese. If the raw water further contains these inorganic substances, in this embodiment, the upper limit of the pH of the water to be treated is adjusted to a predetermined value or less as described later, so that the inorganic substances are less likely to precipitate and blockage of the reverse osmosis membrane is prevented. It is thought that it is possible to obtain permeated water while maintaining treatment efficiency.

原水のMアルカリ度は、酸成分の使用量の抑制、逆浸透膜の膜閉塞の抑制等の観点から、100mg/L以上が好ましく、200mg/L以上がより好ましく、300mg/L以上が特に好ましい。原水のMアルカリ度が前記下限値以上であっても、本実施形態では被処理水のpHの下限値を所定の数値以上に調整するため、酸成分の使用量が増大しにくく、水処理の低コスト化を図ることができる。
原水のMアルカリ度の上限値は特に制限されない。例えば、処理効率の観点から、原水のMアルカリ度は、1000mg/L以下が好ましく、700mg/L以下がより好ましい。
The M alkalinity of the raw water is preferably 100 mg/L or more, more preferably 200 mg/L or more, particularly preferably 300 mg/L or more, from the viewpoint of suppressing the amount of acid components used and suppressing membrane clogging of the reverse osmosis membrane. . Even if the M alkalinity of the raw water is equal to or higher than the lower limit, in this embodiment, the lower limit of the pH of the water to be treated is adjusted to a predetermined value or higher, so the amount of acid components used is difficult to increase, and water treatment is improved. Cost reduction can be achieved.
The upper limit of the M alkalinity of raw water is not particularly limited. For example, from the viewpoint of treatment efficiency, the M alkalinity of raw water is preferably 1000 mg/L or less, more preferably 700 mg/L or less.

本実施形態に係る逆浸透膜の運転方法では、原水を逆浸透膜で透過水と濃縮水とに分離する。図1に示すように、まず、原水は井戸11から原水流路21を流れ、被処理水槽12に供給される。被処理水槽12内では酸添加手段31によって酸成分が添加され、酸成分と原水とが混合される。その他、有機物を原水中に分散させる目的で原水に分散剤をさらに添加してもよい。分散剤の添加により、後述のフラッシングの際の逆浸透膜の表面の洗浄効果の向上を期待できる。
次いで、被処理水はポンプ14によって送液されて被処理水流路22を流れる。その後、被処理水は、プレフィルター15、昇圧ポンプ16をこの順に経由して逆浸透膜ろ過装置17における逆浸透膜モジュール18の逆浸透膜に供給され、逆浸透膜で処理される。
In the method for operating a reverse osmosis membrane according to the present embodiment, raw water is separated into permeated water and concentrated water by the reverse osmosis membrane. As shown in FIG. 1, raw water first flows from the well 11 through the raw water channel 21 and is supplied to the water tank 12 to be treated. In the water tank 12 to be treated, an acid component is added by the acid addition means 31, and the acid component and raw water are mixed. In addition, a dispersant may be further added to the raw water for the purpose of dispersing organic substances in the raw water. By adding a dispersant, it can be expected that the cleaning effect on the surface of the reverse osmosis membrane during flushing, which will be described later, will be improved.
Next, the water to be treated is pumped by the pump 14 and flows through the water to be treated channel 22 . Thereafter, the water to be treated is supplied to the reverse osmosis membrane of the reverse osmosis membrane module 18 in the reverse osmosis membrane filtration device 17 via the pre-filter 15 and the boost pump 16 in this order, and is treated by the reverse osmosis membrane.

このように、本実施形態に係る逆浸透膜の運転方法では、原水(井戸水)を直接、逆浸透膜モジュール18の逆浸透膜で処理することが好ましい。原水を「直接、逆浸透膜で処理する」とは、地下水、井戸水等の原水に対して前処理を施さずに、原水を逆浸透膜に供給することを意味する。ここで、前処理とは、例えば、全有機炭素の低減、鉄及びマンガンの除去、原虫及び雑菌の除去等を目的として行われる処理が挙げられる。
従来の逆浸透膜を用いる水処理方法では、逆浸透膜に供給する被処理水中の不純物等の総量を一定量以下とした後に、逆浸透膜に供給することが推奨されていた。逆浸透膜の目詰まりによる透過能の低下、透過能の維持のために圧力差を大きくすることに起因する逆浸透膜の破損を防止するためである。
これに対して、本実施形態に係る逆浸透膜の運転方法では、後述のように逆浸透膜の被処理水のpHを所定の範囲内に制御するため、被処理水からの析出物の発生が抑制される。したがって、井戸水等の地下水(原水)を被処理水として直接、逆浸透膜に供給しても、逆浸透膜で連続的に透過水を得ることができる。原水を直接、逆浸透膜モジュール18の逆浸透膜で一括して処理することで、全有機炭素(TOC)、鉄及びマンガン、原虫及び雑菌、硬度の各項目の水質を逆浸透膜によって改善できる。そのため、装置及び処理フローが簡素化し、水処理の低コスト化を図ることができ、さらには処理システム1の省スペース化を図ることができる。
As described above, in the reverse osmosis membrane operating method according to the present embodiment, it is preferable that raw water (well water) be directly treated with the reverse osmosis membrane of the reverse osmosis membrane module 18. "Directly treating raw water with a reverse osmosis membrane" means supplying raw water to the reverse osmosis membrane without pre-treating the raw water, such as groundwater or well water. Here, pretreatment includes, for example, treatment performed for the purpose of reducing total organic carbon, removing iron and manganese, removing protozoa and various bacteria, and the like.
In conventional water treatment methods using reverse osmosis membranes, it is recommended that the water to be treated be supplied to the reverse osmosis membrane after the total amount of impurities and the like in the water is reduced to a certain amount or less. This is to prevent a decrease in permeability due to clogging of the reverse osmosis membrane and damage to the reverse osmosis membrane caused by increasing the pressure difference to maintain permeability.
On the other hand, in the reverse osmosis membrane operating method according to the present embodiment, since the pH of the water to be treated by the reverse osmosis membrane is controlled within a predetermined range as described later, precipitates are generated from the water to be treated. is suppressed. Therefore, even if underground water (raw water) such as well water is directly supplied to the reverse osmosis membrane as water to be treated, permeated water can be continuously obtained through the reverse osmosis membrane. By directly and collectively treating raw water with the reverse osmosis membrane of the reverse osmosis membrane module 18, the water quality of each item such as total organic carbon (TOC), iron and manganese, protozoa and bacteria, and hardness can be improved by the reverse osmosis membrane. . Therefore, the apparatus and treatment flow can be simplified, the cost of water treatment can be reduced, and the space of the treatment system 1 can be saved.

次いで、各逆浸透膜モジュール18に供給された被処理水は、各逆浸透膜モジュール18の逆浸透膜によって透過水と濃縮水とにそれぞれ分離される。その後、各逆浸透膜モジュール18の各透過水は、透過水流路24を流れ、処理水槽19に処理水として貯留される。
一方、各逆浸透膜モジュール18の各濃縮水は、濃縮水流路23に集められる。濃縮水流路23の濃縮水の一部は、その後循環用流路25を流れ、被処理水槽12に再度供給される。そのため、濃縮水の一部は被処理水槽12内で井戸11からの原水と混合され、被処理水として逆浸透膜ろ過装置17に再供給される。また、濃縮水流路23の濃縮水の残部は、排水用流路26を流れ、処理システム1の外部に排出される。
Next, the water to be treated supplied to each reverse osmosis membrane module 18 is separated into permeated water and concentrated water by the reverse osmosis membrane of each reverse osmosis membrane module 18, respectively. Thereafter, each permeated water of each reverse osmosis membrane module 18 flows through the permeated water channel 24 and is stored in the treated water tank 19 as treated water.
On the other hand, each concentrated water of each reverse osmosis membrane module 18 is collected in the concentrated water channel 23. A portion of the concentrated water in the concentrated water channel 23 then flows through the circulation channel 25 and is again supplied to the water tank 12 to be treated. Therefore, a part of the concentrated water is mixed with the raw water from the well 11 in the water tank 12 to be treated, and is re-supplied to the reverse osmosis membrane filtration device 17 as water to be treated. Further, the remainder of the concentrated water in the concentrated water flow path 23 flows through the drainage flow path 26 and is discharged to the outside of the treatment system 1.

本実施形態に係る逆浸透膜の運転方法では、各逆浸透膜モジュール18が有する各逆浸透膜に供給される被処理水のpHが5.8~7.8となるよう調整する。
各逆浸透膜モジュール18の被処理水のpHは、5.8~7.8の範囲内であり、6.3~7.5の範囲内が好ましく、6.5~7.3の範囲内がより好ましく、6.7~7.2の範囲内が特に好ましい。
被処理水のpHが前記下限値以上であることにより、各逆浸透膜モジュール18の逆浸透膜の一次側の表面で有機物が析出しにくくなり、逆浸透膜の閉塞を防止できる。加えて、被処理水のpHの下限値に特に制限を設けない従来の運転方法と比較して、pHを低下させるための酸成分の使用量が少なくなり、低コスト化を図ることができる。また、被処理水のpHが前記上限値以下であることにより、各逆浸透膜モジュール18の逆浸透膜の一次側の表面で鉄、マンガン等の金属の酸化物が析出しにくくなり、逆浸透膜の閉塞を防止できる。
被処理水のpHの調整は、例えば、酸添加手段31による酸成分の添加によって行うことができる。
In the method for operating a reverse osmosis membrane according to the present embodiment, the pH of the water to be treated that is supplied to each reverse osmosis membrane included in each reverse osmosis membrane module 18 is adjusted to 5.8 to 7.8.
The pH of the water to be treated in each reverse osmosis membrane module 18 is within the range of 5.8 to 7.8, preferably within the range of 6.3 to 7.5, and within the range of 6.5 to 7.3. is more preferable, and a range of 6.7 to 7.2 is particularly preferable.
When the pH of the water to be treated is equal to or higher than the lower limit value, organic matter becomes difficult to precipitate on the primary side surface of the reverse osmosis membrane of each reverse osmosis membrane module 18, and blockage of the reverse osmosis membrane can be prevented. In addition, compared to the conventional operating method in which there is no particular restriction on the lower limit of the pH of the water to be treated, the amount of acid component used to lower the pH is reduced, making it possible to reduce costs. In addition, since the pH of the water to be treated is below the above-mentioned upper limit, oxides of metals such as iron and manganese are difficult to precipitate on the primary side surface of the reverse osmosis membrane of each reverse osmosis membrane module 18, and reverse osmosis Membrane blockage can be prevented.
The pH of the water to be treated can be adjusted, for example, by adding an acid component using the acid addition means 31.

各逆浸透膜モジュール18に供給される被処理水中の全有機炭素は、3.0mg/L以上でもよく、5.0mg/L以上でもよく、10.0mg/L以上でもよい。本実施形態では、被処理水のpHの下限値が所定の数値以上となるように調整するため、被処理水中の全有機炭素が前記下限値以上であっても、逆浸透膜の閉塞を防止でき、逆浸透膜の目詰まりによる透過能の低下が起きにくく、処理効率を維持したまま透過水を得ることができる。
被処理水中の全有機炭素の上限値は特に制限されない。例えば、被処理水中の全有機炭素は、100mg/L以下でもよく、500mg/L以下でもよい。
The total organic carbon in the water to be treated supplied to each reverse osmosis membrane module 18 may be 3.0 mg/L or more, 5.0 mg/L or more, or 10.0 mg/L or more. In this embodiment, since the lower limit of the pH of the water to be treated is adjusted to be equal to or higher than a predetermined value, clogging of the reverse osmosis membrane is prevented even if the total organic carbon in the water to be treated is equal to or higher than the lower limit. This makes it possible to obtain permeated water while maintaining treatment efficiency, making it difficult for the permeation capacity to decrease due to clogging of the reverse osmosis membrane.
The upper limit of total organic carbon in the water to be treated is not particularly limited. For example, the total organic carbon in the water to be treated may be 100 mg/L or less, or 500 mg/L or less.

本実施形態に係る逆浸透膜の運転方法では、各逆浸透膜モジュール18の逆浸透膜で所定の時間、被処理水をろ過して処理する。
逆浸透膜で被処理水をろ過する際には、各逆浸透膜モジュール18内が被処理水で満たされ、各逆浸透膜モジュール18内の水圧が高くなり、逆浸透膜に圧力が加えられていく。その後、各逆浸透膜に加わる水圧が浸透圧より高くなると、逆浸透膜において逆浸透現象が起き、被処理水中の溶質濃度が各逆浸透膜の一次側で局所的に高くなり、透過水が得られる。これにより、各逆浸透膜の一次側で濃縮水がそれぞれ生成し、各濃縮水は、各逆浸透膜の二次側の各透過水とそれぞれ分離される。このようにして、被処理水をろ過して処理できる。
In the method for operating a reverse osmosis membrane according to the present embodiment, the water to be treated is filtered and treated by the reverse osmosis membrane of each reverse osmosis membrane module 18 for a predetermined period of time.
When filtering water to be treated with a reverse osmosis membrane, each reverse osmosis membrane module 18 is filled with the water to be treated, the water pressure inside each reverse osmosis membrane module 18 increases, and pressure is applied to the reverse osmosis membrane. To go. After that, when the water pressure applied to each reverse osmosis membrane becomes higher than the osmotic pressure, a reverse osmosis phenomenon occurs in the reverse osmosis membrane, and the solute concentration in the water to be treated locally increases on the primary side of each reverse osmosis membrane, and the permeate water increases. can get. As a result, concentrated water is generated on the primary side of each reverse osmosis membrane, and each concentrated water is separated from each permeated water on the secondary side of each reverse osmosis membrane. In this way, the water to be treated can be filtered and treated.

逆浸透膜による被処理水のろ過を行う時間は、特に限定されず、例えば、処理効率を考慮して適宜設定できる。逆浸透膜による被処理水のろ過を行う時間は、例えば、5~1500分としてもよく、15~180分としてもよい。被処理水のろ過を行う時間が前記下限値以上であると、得られる透過水の量が多くなり、処理効率を実用上充分に高く維持できる傾向がある。被処理水のろ過を行う時間が前記上限値以下であると、逆浸透膜の閉塞をさらに防止しやすくなる。 The time period for filtering the water to be treated using the reverse osmosis membrane is not particularly limited, and can be set as appropriate, for example, taking treatment efficiency into consideration. The time for filtering the water to be treated using the reverse osmosis membrane may be, for example, 5 to 1500 minutes, or 15 to 180 minutes. When the time for filtering the water to be treated is equal to or longer than the lower limit, the amount of permeated water obtained increases, and the treatment efficiency tends to be maintained sufficiently high for practical purposes. When the time for filtering the water to be treated is equal to or less than the upper limit value, clogging of the reverse osmosis membrane can be further prevented.

本実施形態に係る逆浸透膜の運転方法では、逆浸透膜で所定の時間、被処理水をろ過して処理した後に、逆浸透膜の閉塞のリスクが高くなる。
そこで、本実施形態に係る逆浸透膜の運転方法では、所定の時間、被処理水を処理した後、各逆浸透膜モジュール18の逆浸透膜を定期的に圧力開放する。定期的に逆浸透膜を圧力開放することで、逆浸透膜の表面の溶質が拡散することにより濃度分極の状態が解消される。そのため、逆浸透膜の一次側の濃度分極を定期的に解消でき、逆浸透膜の一次側の表面での無機物、有機物の析出を未然に防ぐことができる。
ここで、「逆浸透膜を定期的に圧力開放する」とは、所定の期間、被処理水をろ過した後、各逆浸透膜モジュール18内の被処理水の水圧から逆浸透膜を解放することを意味する。ここでいう「所定の期間」とは、原則として、一定の期間を意味する。ただし、「所定の期間」は、必ずしも常に厳密に一定の期間である必要はなく、本発明の効果が得られる範囲内であれば、多少の期間(例えば、1~10分程度の差)の長短が許容される。
In the method for operating a reverse osmosis membrane according to the present embodiment, the risk of clogging of the reverse osmosis membrane increases after the water to be treated is filtered and treated by the reverse osmosis membrane for a predetermined period of time.
Therefore, in the method for operating a reverse osmosis membrane according to the present embodiment, after treating the water to be treated for a predetermined period of time, the pressure of the reverse osmosis membrane of each reverse osmosis membrane module 18 is periodically released. By periodically releasing pressure from the reverse osmosis membrane, the solute on the surface of the reverse osmosis membrane diffuses, thereby eliminating the concentration polarization state. Therefore, concentration polarization on the primary side of the reverse osmosis membrane can be periodically eliminated, and precipitation of inorganic substances and organic substances on the primary side surface of the reverse osmosis membrane can be prevented.
Here, "regularly releasing the pressure of the reverse osmosis membrane" means to release the reverse osmosis membrane from the water pressure of the water to be treated in each reverse osmosis membrane module 18 after filtering the water to be treated for a predetermined period. It means that. The term "predetermined period" as used herein basically means a certain period of time. However, the "predetermined period" does not necessarily have to be a strictly constant period, but may be a certain period of time (for example, a difference of about 1 to 10 minutes) as long as the effect of the present invention can be obtained. Long and short are acceptable.

逆浸透膜の圧力開放に際しては、逆浸透膜の二次側(透過水側)を圧力開放してもよい。逆浸透膜の二次側(透過水側)を圧力開放することにより、逆浸透膜の二次側の水分が正浸透によって逆浸透膜の一次側(被処理水側)に移動する。その結果、逆浸透膜の一次側の溶質濃度も定期的に低減でき、逆浸透膜の一次側の表面での無機物、有機物の析出を確実かつ未然に防ぐことができる。 When releasing the pressure of the reverse osmosis membrane, the pressure may be released on the secondary side (permeated water side) of the reverse osmosis membrane. By releasing pressure on the secondary side (permeated water side) of the reverse osmosis membrane, water on the secondary side of the reverse osmosis membrane moves to the primary side (to-be-treated water side) of the reverse osmosis membrane by forward osmosis. As a result, the solute concentration on the primary side of the reverse osmosis membrane can also be periodically reduced, and precipitation of inorganic and organic substances on the primary side surface of the reverse osmosis membrane can be reliably prevented.

逆浸透膜を圧力開放する時間は、特に限定されず、例えば、処理効率を考慮して適宜設定できる。逆浸透膜を圧力開放する時間は、例えば、10~600秒としてもよく、30~120秒としてもよい。逆浸透膜を圧力開放する時間が前記下限値以上であると、逆浸透膜の一次側の表面での無機物、有機物の析出を防ぎやすい。逆浸透膜を圧力開放する時間が前記上限値以下であると、透過水の処理効率を実用上充分に高く維持できる傾向がある。 The time for releasing the pressure of the reverse osmosis membrane is not particularly limited, and can be set as appropriate, for example, taking treatment efficiency into consideration. The time for releasing pressure from the reverse osmosis membrane may be, for example, 10 to 600 seconds, or 30 to 120 seconds. When the time for releasing pressure on the reverse osmosis membrane is equal to or longer than the lower limit, precipitation of inorganic substances and organic substances on the primary surface of the reverse osmosis membrane can be easily prevented. When the time for releasing the pressure of the reverse osmosis membrane is equal to or less than the above upper limit, there is a tendency that the treatment efficiency of permeated water can be maintained sufficiently high for practical purposes.

逆浸透膜を圧力開放するための具体的手法は、逆浸透膜を各逆浸透膜モジュール18内の被処理水の水圧から解放して、逆浸透膜の表面の濃度分極を解消できる方法であれば、特に限定されない。例えば、以下の手法が挙げられるが、圧力開放の具体的態様は以下の例示に限定されない。
例えば、逆浸透膜ろ過装置17が逆浸透膜モジュール18内に供給された被処理水を抜き出すための図示略の抜出管と、抜出管に設けられた図示略の抜出バルブとを有する場合には、抜出バルブを緩め、逆浸透膜の一次側の圧力を低下させることで、逆浸透膜を圧力開放できる。
他にも、昇圧ポンプ16を停止して、逆浸透膜の一次側の圧力を低下させることで、逆浸透膜を圧力開放してもよい。
A specific method for releasing pressure from the reverse osmosis membrane is a method that can release the reverse osmosis membrane from the water pressure of the water to be treated in each reverse osmosis membrane module 18 and eliminate concentration polarization on the surface of the reverse osmosis membrane. However, there are no particular limitations. For example, the following methods may be mentioned, but the specific mode of pressure release is not limited to the following examples.
For example, the reverse osmosis membrane filtration device 17 includes an unillustrated extraction pipe for extracting the water to be treated supplied into the reverse osmosis membrane module 18, and an unillustrated extraction valve provided in the extraction pipe. In this case, the pressure on the reverse osmosis membrane can be released by loosening the extraction valve and lowering the pressure on the primary side of the reverse osmosis membrane.
Alternatively, the pressure of the reverse osmosis membrane may be released by stopping the boost pump 16 and reducing the pressure on the primary side of the reverse osmosis membrane.

本実施形態に係る逆浸透膜の運転方法では、仮に被処理水から有機物等の成分が析出したとしても、またはその析出物が逆浸透膜の一次側の表面で堆積したとしても、圧力開放した際に、フラッシングをさらに実施することで、逆浸透膜の表面の堆積物を洗い流すことができる。そのため、逆浸透膜の閉塞をさらに効果的に防止できる。 In the method of operating a reverse osmosis membrane according to the present embodiment, even if components such as organic matter are precipitated from the water to be treated, or even if the precipitates are deposited on the primary side surface of the reverse osmosis membrane, the pressure is not released. At this time, by further performing flushing, deposits on the surface of the reverse osmosis membrane can be washed away. Therefore, blockage of the reverse osmosis membrane can be more effectively prevented.

フラッシングを実施するための具体的な手法は特に限定されない。例えば、以下の手法が挙げられるが、フラッシングの具体的態様は以下の例示に限定されない。
例えば、ポンプ14及び昇圧ポンプ16によって、被処理水流路22を介して各逆浸透膜モジュール18内に送液される被処理水の流量を、被処理水をろ過する際の流量より多くすることでフラッシングを実施できる。これにより、被処理水をろ過する際の流量より多くの被処理水が、洗浄水として逆浸透膜の表面を流れ、逆浸透膜の表面に堆積した析出物を洗い流すことができ、逆浸透膜の閉塞を防止する効果がさらに高くなる。
他にも、濃縮水流路23に背圧弁を設置し、その背圧弁の開度を大きくして、被処理水をろ過する際の流量より多くの被処理水を逆浸透膜の表面に流すことで、フラッシングを実施してもよい。
A specific method for performing flushing is not particularly limited. For example, the following methods may be mentioned, but the specific aspects of flushing are not limited to the following examples.
For example, the flow rate of the water to be treated that is sent into each reverse osmosis membrane module 18 via the water flow path 22 by the pump 14 and the booster pump 16 may be made larger than the flow rate when filtering the water to be treated. Flushing can be performed with As a result, more water to be treated than the flow rate when filtering the water to be treated flows over the surface of the reverse osmosis membrane as washing water, and the precipitates accumulated on the surface of the membrane can be washed away. The effect of preventing blockage becomes even higher.
In addition, a back pressure valve may be installed in the concentrated water flow path 23, and the degree of opening of the back pressure valve may be increased to allow more water to be treated to flow onto the surface of the reverse osmosis membrane than the flow rate when filtering the water to be treated. You may also perform flushing.

フラッシングの際には、原水、濃縮水に加えて、被処理水中に透過水又は純水をさらに含む洗浄水を使用してもよい。透過水又は純水を含む洗浄水を使用すると、よりきれいな洗浄水で逆浸透膜を洗浄でき、逆浸透膜の表面の析出した有機物等を含む堆積物をさらに効果的に除去でき、逆浸透膜の閉塞を防止する効果がさらに高くなる。 During flushing, in addition to raw water and concentrated water, cleaning water that further contains permeated water or pure water in the water to be treated may be used. By using cleaning water containing permeated water or pure water, the reverse osmosis membrane can be cleaned with cleaner cleaning water, and deposits including organic matter deposited on the surface of the reverse osmosis membrane can be more effectively removed. The effect of preventing blockage becomes even higher.

フラッシングの際の被処理水の流速は、0.05m/s以上が好ましく、0.2m/s以上がより好ましく、0.5m/s以上がさらに好ましい。フラッシングの際の被処理水の流速が前記下限値以上であると、フラッシングによる洗浄効果のさらなる向上を期待できる。ここで、フラッシングの際の被処理水の流速は、逆浸透膜モジュール18の逆浸透膜の表面における被処理水の流速として測定される。 The flow rate of the water to be treated during flushing is preferably 0.05 m/s or more, more preferably 0.2 m/s or more, and even more preferably 0.5 m/s or more. If the flow rate of the water to be treated during flushing is equal to or higher than the lower limit value, further improvement of the cleaning effect by flushing can be expected. Here, the flow rate of the water to be treated during flushing is measured as the flow rate of the water to be treated on the surface of the reverse osmosis membrane of the reverse osmosis membrane module 18.

フラッシングは逆浸透膜を定期的に圧力開放した際に行われるが、フラッシング自体は、逆浸透膜を圧力開放する度に一定の期間をおいて定期的に行ってもよく、一定の期間をおかずに、不規則的に行ってもよい。ただし、フラッシングによる逆浸透膜の洗浄効果、分離能の回復効果を考慮すると、フラッシングも圧力開放と同様に定期的に行うことが好ましいと考えられる。 Flushing is performed when the pressure of the reverse osmosis membrane is periodically released, but flushing itself may be performed periodically after a certain period of time each time the pressure of the reverse osmosis membrane is released; It may be done irregularly. However, in consideration of the cleaning effect of the reverse osmosis membrane and the recovery effect of the separation ability due to flushing, it is considered preferable to perform the flushing periodically as well as the pressure release.

(作用効果)
以上説明した本実施形態に係る逆浸透膜の運転方法では、逆浸透膜モジュール18に供給される被処理水のpHが5.8以上となるように調整するため、逆浸透膜の一次側の表面で有機物が析出しにくくなり、有機物による逆浸透膜の閉塞を抑制できる。
また、本実施形態に係る逆浸透膜の運転方法では、逆浸透膜モジュール18に供給される被処理水のpHが7.8以下となるよう調整するため、逆浸透膜モジュール18の逆浸透膜の一次側の表面で無機物が析出しにくくなり、金属酸化物による逆浸透膜の閉塞も抑制できる。
加えて、本実施形態に係る逆浸透膜の運転方法では、逆浸透膜で被処理水を処理した後、逆浸透膜を定期的に圧力開放する。そのため被処理水をろ過した後の逆浸透膜の表面の濃度分極の状態を定期的に解消できる。その結果、逆浸透膜の一次側の表面での無機物、有機物の析出を抑制し、無機物、有機物による逆浸透膜の閉塞を未然に防止できる。
したがって、本実施形態に係る逆浸透膜の運転方法によれば、被処理水中の無機物の析出を抑制しながら、有機物の析出も抑制でき、逆浸透膜の閉塞を防止できる。
さらに、逆浸透膜の二次側を圧力開放する場合には、二次側(透過水側)から一次側(被処理水側)に透過水が正浸透によって定期的に移動することも可能である。よって、この場合には、逆浸透膜の一次側の有機物の溶質濃度を定期的に低減できる。その結果、逆浸透膜の一次側の表面での無機物、有機物による逆浸透膜の閉塞を確実に防止できる。
(effect)
In the method of operating a reverse osmosis membrane according to the present embodiment described above, in order to adjust the pH of the water to be treated supplied to the reverse osmosis membrane module 18 to be 5.8 or higher, the primary side of the reverse osmosis membrane is Organic substances are less likely to precipitate on the surface, and clogging of the reverse osmosis membrane by organic substances can be suppressed.
In addition, in the reverse osmosis membrane operating method according to the present embodiment, in order to adjust the pH of the water to be treated supplied to the reverse osmosis membrane module 18 to be 7.8 or less, the reverse osmosis membrane of the reverse osmosis membrane module 18 is It is difficult for inorganic substances to precipitate on the primary side surface of the membrane, and it is also possible to suppress clogging of the reverse osmosis membrane by metal oxides.
In addition, in the method for operating a reverse osmosis membrane according to the present embodiment, after the water to be treated is treated with the reverse osmosis membrane, the pressure of the reverse osmosis membrane is periodically released. Therefore, the state of concentration polarization on the surface of the reverse osmosis membrane after filtering the water to be treated can be periodically eliminated. As a result, precipitation of inorganic and organic substances on the primary surface of the reverse osmosis membrane can be suppressed, and clogging of the reverse osmosis membrane by inorganic and organic substances can be prevented.
Therefore, according to the method for operating a reverse osmosis membrane according to the present embodiment, while suppressing the precipitation of inorganic substances in the water to be treated, the precipitation of organic substances can also be suppressed, and clogging of the reverse osmosis membrane can be prevented.
Furthermore, when releasing pressure on the secondary side of a reverse osmosis membrane, it is also possible for permeate to periodically move from the secondary side (permeated water side) to the primary side (to-be-treated water side) by forward osmosis. be. Therefore, in this case, the solute concentration of organic matter on the primary side of the reverse osmosis membrane can be periodically reduced. As a result, it is possible to reliably prevent the reverse osmosis membrane from being blocked by inorganic and organic substances on the primary surface of the reverse osmosis membrane.

さらに本実施形態に係る逆浸透膜の運転方法では、逆浸透膜モジュール18に供給される被処理水のpHが5.8以上となるように調整する。そのため、pHを5.8未満に低下させる場合と比較して酸成分の使用量が少なくなり、水処理の低コスト化を図ることができるという効果も得られる。 Further, in the reverse osmosis membrane operating method according to the present embodiment, the pH of the water to be treated supplied to the reverse osmosis membrane module 18 is adjusted to be 5.8 or higher. Therefore, compared to the case where the pH is lowered to less than 5.8, the amount of acid component used is reduced, and the effect of reducing the cost of water treatment is also obtained.

フラッシングのみによって逆浸透膜の洗浄を行うような従来の運転方法では、フラッシング後の洗浄水に多量の堆積物が含まれていることがある。このように多量の堆積物を含むフラッシング後の洗浄水は、被処理水として逆浸透膜のろ過に再利用できず、そのまま廃棄せざるを得ない場合がある。このように、フラッシングに被処理水を使用してその後廃棄すると、被処理水から処理水を回収する水処理システム全体の回収効率の低下の原因となり得る。
これに対して、本実施形態に係る逆浸透膜の運転方法では、逆浸透膜の定期的な圧力開放により逆浸透膜の閉塞を未然に防ぐことができるため、フラッシングを実施する回数及び頻度を低減できる。加えて、逆浸透膜の表面の堆積物の量が少なくなり、フラッシングを実施したとしても、フラッシング後の洗浄水に混入する堆積物の量も相対的に少なくなると考えられる。そのためフラッシング後の洗浄水を被処理水として逆浸透膜のろ過に再利用することが充分に可能となり、フラッシングの際に被処理水を使用した場合でも、処理水の回収効率が低下せず、水処理システムの処理効率がよくなる。
このように本実施形態に係る逆浸透膜の運転方法によれば、同一量の被処理水から回収可能な処理水の量、回収効率の向上を期待でき、水処理の低コスト化を図ることができる。
In conventional operating methods in which reverse osmosis membranes are cleaned by flushing alone, the cleaning water after flushing may contain a large amount of deposits. Washing water after flushing that contains such a large amount of sediment cannot be reused as water to be treated for filtration with a reverse osmosis membrane, and may have to be disposed of as is. As described above, using treated water for flushing and then discarding it may cause a decrease in the recovery efficiency of the entire water treatment system that recovers treated water from treated water.
On the other hand, in the reverse osmosis membrane operating method according to the present embodiment, the number and frequency of flushing can be reduced because the reverse osmosis membrane can be prevented from clogging by periodically releasing the pressure of the reverse osmosis membrane. Can be reduced. In addition, the amount of deposits on the surface of the reverse osmosis membrane is reduced, and even if flushing is performed, it is thought that the amount of deposits mixed into the wash water after flushing will be relatively reduced. Therefore, it is fully possible to reuse the wash water after flushing as treated water for reverse osmosis membrane filtration, and even if treated water is used during flushing, the recovery efficiency of treated water will not decrease. Water treatment systems become more efficient.
As described above, according to the operating method of the reverse osmosis membrane according to the present embodiment, it is expected that the amount of treated water that can be recovered from the same amount of water to be treated and the recovery efficiency will be improved, and the cost of water treatment can be reduced. Can be done.

以下、本発明を実施例によってより具体的に説明する。ただし、本発明は実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to the examples, and various changes can be made without departing from the spirit of the present invention.

本実施例及び比較例では共通して井戸水を原水として使用した。濃縮前の井戸水の各水質項目の測定値を以下に記載する。
pH:8.3
全有機炭素:2.0mg/L
鉄:0.03mg/L
マンガン:0.005mg/L未満
カルシウム:16mg/L
マグネシウム:5mg/L
シリカ:52mg/L
Mアルカリ度:233mg/L
In both the present example and the comparative example, well water was used as raw water. The measured values of each water quality item of well water before concentration are listed below.
pH: 8.3
Total organic carbon: 2.0mg/L
Iron: 0.03mg/L
Manganese: less than 0.005mg/L Calcium: 16mg/L
Magnesium: 5mg/L
Silica: 52mg/L
M alkalinity: 233mg/L

本実施例及び比較例では図2に示す平膜試験装置40を使用した。平膜試験装置40は、容器41と平膜セル42と供給配管43と透過水配管44と濃縮水配管45とポンプ46と圧力計47と背圧弁48とスターラー49と攪拌子50を有する。
図3は、図2の平膜試験装置40の容器41と平膜セル42を示す断面模式図である。容器41には平膜セル42が固定されており、容器41は、平膜セル42の下側の第1のケース41aと、平膜セル42の上側の第2のケース41bとを有する。第1のケース41aと第2のケース41bとの間には、平膜セル42がOリング51を介して固定されている。平膜セル42の下側にある第1のケース41aで囲まれた空間は、原水室Aとなる。また、平膜セル42の上側にある第2のケース41bで囲まれた空間は、透過水室Bとなる。平膜セル42は、逆浸透膜52と、逆浸透膜52の透過水室B側(透過水側)の面を支持する多孔質支持板53を有する。
In the present example and comparative example, a flat membrane testing device 40 shown in FIG. 2 was used. The flat membrane test device 40 includes a container 41, a flat membrane cell 42, a supply pipe 43, a permeated water pipe 44, a concentrated water pipe 45, a pump 46, a pressure gauge 47, a back pressure valve 48, a stirrer 49, and a stirrer 50.
FIG. 3 is a schematic cross-sectional view showing the container 41 and flat membrane cell 42 of the flat membrane testing apparatus 40 of FIG. A flat membrane cell 42 is fixed to the container 41, and the container 41 has a first case 41a below the flat membrane cell 42 and a second case 41b above the flat membrane cell 42. A flat membrane cell 42 is fixed via an O-ring 51 between the first case 41a and the second case 41b. A space surrounded by the first case 41a below the flat membrane cell 42 becomes a raw water chamber A. Further, a space surrounded by the second case 41b above the flat membrane cell 42 becomes a permeated water chamber B. The flat membrane cell 42 includes a reverse osmosis membrane 52 and a porous support plate 53 that supports the surface of the reverse osmosis membrane 52 on the permeated water chamber B side (permeated water side).

平膜試験装置40においては、図2、3に示すように、被処理水は供給配管43を流れ、ポンプ46で昇圧され、密閉容器41内の下側の原水室Aに供給される。原水室A内に供給された被処理水は、スターラー49で回転させた攪拌子50により攪拌され、原水室A内に充満されて加圧され、逆浸透膜52によって処理される。逆浸透膜52の透過水は、平膜セル42の上側の透過水室Bを経て透過水配管44を流れる。逆浸透膜52の濃縮水は、濃縮水配管43を流れる。逆浸透膜52による被処理水の処理に際して、原水室A内の圧力は、濃縮水配管45に設けられた背圧弁48により調整可能であり、圧力計47によって測定する。実施例及び比較例において逆浸透膜52としては、日東電工製「ESPA2(膜面積:8cm)」を使用した。 In the flat membrane test device 40, as shown in FIGS. 2 and 3, the water to be treated flows through the supply pipe 43, is pressurized by the pump 46, and is supplied to the lower raw water chamber A in the closed container 41. The water to be treated supplied into the raw water chamber A is stirred by a stirrer 50 rotated by a stirrer 49, filled into the raw water chamber A, pressurized, and treated by the reverse osmosis membrane 52. The permeated water of the reverse osmosis membrane 52 flows through the permeated water pipe 44 through the permeated water chamber B above the flat membrane cell 42 . Concentrated water from the reverse osmosis membrane 52 flows through concentrated water piping 43 . When the water to be treated is treated by the reverse osmosis membrane 52, the pressure in the raw water chamber A can be adjusted by a back pressure valve 48 provided in the concentrated water pipe 45, and is measured by a pressure gauge 47. In the examples and comparative examples, "ESPA2 (membrane area: 8 cm 2 )" manufactured by Nitto Denko was used as the reverse osmosis membrane 52.

<実施例1>
まず、硫酸を添加して井戸水のpHを7.0に調整した。次いで、pHを7.0に調整した井戸水:5Lを平膜試験装置40で3.3倍に濃縮した。濃縮に際しては、背圧弁48の開度を調整して、井戸水の供給圧力を0.5MPaとし、逆浸透膜52の濃縮水を供給配管43に再度供給して循環させる一方で、逆浸透膜52の透過水を系外に排出することで、井戸水を濃縮した。その後、濃縮後の井戸水に硫酸を添加して再度pHを7.0に調整して被処理水とした。
次いで、被処理水を59分間、逆浸透膜で処理して透過水と濃縮水とに分離した。被処理水の処理に際しては、水圧が0.5MPaになるように背圧弁48の開度を調整し、透過水及び濃縮水のそれぞれを供給配管44に再度供給して、透過水及び濃縮水を混合しながら循環させ、逆浸透膜52の透過流量の経時変化を観察した。
その後、1分間、背圧弁48を開放して逆浸透膜を圧力開放した。この被処理水の分離を59分間行い、その後、逆浸透膜の圧力開放を1分間行う合計60分間の工程を1サイクルとし、この工程を合計100サイクル行った。
被処理水の分離開始後0分のときの透過水の流量に対する、100サイクル経過後の透過水の流量の比を相対フラックスとして算出した。その結果を表1に示す。また、pHを7.0に調整した被処理水のランゲリア指数(LSI)、被処理水のpHを調整するために使用した硫酸の使用量を表1にあわせて示す。
<Example 1>
First, sulfuric acid was added to adjust the pH of the well water to 7.0. Next, 5 L of well water whose pH was adjusted to 7.0 was concentrated 3.3 times using a flat membrane test device 40. During concentration, the opening degree of the back pressure valve 48 is adjusted to set the well water supply pressure to 0.5 MPa, and while the concentrated water of the reverse osmosis membrane 52 is supplied again to the supply pipe 43 and circulated, the reverse osmosis membrane 52 The well water was concentrated by discharging the permeated water out of the system. Thereafter, sulfuric acid was added to the concentrated well water to adjust the pH to 7.0 again, and the water was used as water to be treated.
Next, the water to be treated was treated with a reverse osmosis membrane for 59 minutes to separate it into permeated water and concentrated water. When treating the water to be treated, the opening degree of the back pressure valve 48 is adjusted so that the water pressure becomes 0.5 MPa, and each of the permeated water and concentrated water is supplied to the supply piping 44 again. The mixture was circulated while being mixed, and changes in the permeation flow rate of the reverse osmosis membrane 52 over time were observed.
Thereafter, the back pressure valve 48 was opened for 1 minute to release pressure from the reverse osmosis membrane. This process of separating the water to be treated for 59 minutes and then releasing the pressure of the reverse osmosis membrane for 1 minute was defined as one cycle for a total of 60 minutes, and this process was performed for a total of 100 cycles.
The ratio of the flow rate of permeated water after 100 cycles to the flow rate of permeated water at 0 minutes after the start of separation of the water to be treated was calculated as a relative flux. The results are shown in Table 1. Table 1 also shows the Langelier index (LSI) of the water to be treated whose pH was adjusted to 7.0 and the amount of sulfuric acid used to adjust the pH of the water to be treated.

<実施例2>
まず、硫酸を添加して井戸水のpHを6.0に調整した。次いで、pHを6.0に調整した井戸水:5Lを平膜試験装置40で、実施例1と同様にして3.3倍に濃縮した。その後、濃縮後の井戸水に硫酸を添加して再度pHを6.0に調整して被処理水とした。
次いで、被処理水を60分間、逆浸透膜で処理して透過水と濃縮水とに分離した。被処理水の処理に際しては、水圧が0.5MPaになるように背圧弁48の開度を調整し、透過水及び濃縮水のそれぞれを供給配管44に再度供給して、透過水及び濃縮水を混合しながら循環させ、逆浸透膜52の透過流量の経時変化を観察した。
その後、0.5分(30秒)間、背圧弁48を開放して逆浸透膜を圧力開放した。この被処理水の分離を60分間行い、その後、逆浸透膜の圧力開放を0.5分(30秒)間行う合計60.5分間の工程を1サイクルとし、この工程を合計100サイクル行った。
被処理水の分離開始後0分のときの透過水の流量に対する100サイクル経過後の透過水の流量の比を相対フラックスとして算出した。その結果を表1に示す。また、pHを6.0に調整した被処理水のランゲリア指数(LSI)、被処理水のpHを調整するために使用した硫酸の使用量を表1にあわせて示す。
<Example 2>
First, sulfuric acid was added to adjust the pH of the well water to 6.0. Next, 5 L of well water whose pH was adjusted to 6.0 was concentrated 3.3 times using the flat membrane test device 40 in the same manner as in Example 1. Thereafter, sulfuric acid was added to the concentrated well water to adjust the pH to 6.0 again, and the water was used as water to be treated.
Next, the water to be treated was treated with a reverse osmosis membrane for 60 minutes to separate it into permeated water and concentrated water. When treating the water to be treated, the opening degree of the back pressure valve 48 is adjusted so that the water pressure becomes 0.5 MPa, and each of the permeated water and concentrated water is supplied to the supply piping 44 again. The mixture was circulated while being mixed, and changes in the permeation flow rate of the reverse osmosis membrane 52 over time were observed.
Thereafter, the back pressure valve 48 was opened for 0.5 minutes (30 seconds) to release pressure from the reverse osmosis membrane. Separation of this water to be treated was performed for 60 minutes, and then the pressure of the reverse osmosis membrane was released for 0.5 minutes (30 seconds), a process for a total of 60.5 minutes, which was one cycle, and this process was repeated for a total of 100 cycles. .
The ratio of the flow rate of permeated water after 100 cycles to the flow rate of permeated water at 0 minutes after the start of separation of the water to be treated was calculated as a relative flux. The results are shown in Table 1. Table 1 also shows the Langelier index (LSI) of the water to be treated whose pH was adjusted to 6.0 and the amount of sulfuric acid used to adjust the pH of the water to be treated.

<比較例1>
被処理水のpHを6.0に調整し、逆浸透膜で被処理水を処理し、かつ、定期的な圧力開放及びフラッシングを実施せずに100時間、被処理水を逆浸透膜で透過水と濃縮水とに分離した以外は、実施例1と同様にして処理水を得た。
<Comparative example 1>
Adjust the pH of the water to be treated to 6.0, treat the water with a reverse osmosis membrane, and allow the water to pass through the reverse osmosis membrane for 100 hours without periodic pressure release or flushing. Treated water was obtained in the same manner as in Example 1 except that it was separated into water and concentrated water.

<比較例2>
被処理水槽12内の被処理水に酸成分として硫酸を添加せずに被処理水のpHを8.3のまま、逆浸透膜で原水を処理した以外は、実施例1と同様にして処理水を得た。
<Comparative example 2>
The treatment was carried out in the same manner as in Example 1, except that the raw water was treated with a reverse osmosis membrane without adding sulfuric acid as an acid component to the water to be treated in the water tank 12 to be treated, and the pH of the water to be treated remained at 8.3. Got water.

<比較例3>
被処理水のpHを5.5に調整し、逆浸透膜で被処理水を処理した以外は、実施例1と同様にして処理水を得た。
<Comparative example 3>
Treated water was obtained in the same manner as in Example 1, except that the pH of the water to be treated was adjusted to 5.5 and the water to be treated was treated with a reverse osmosis membrane.

Figure 2024032980000002
Figure 2024032980000002

表1に示すように実施例1、2でpHの調整に要した硫酸の使用量は、それぞれ57mg/L、171mg/Lであった。また、100時間後の相対フラックスは、それぞれ0.92、0.97であった。 As shown in Table 1, the amounts of sulfuric acid required for pH adjustment in Examples 1 and 2 were 57 mg/L and 171 mg/L, respectively. Moreover, the relative fluxes after 100 hours were 0.92 and 0.97, respectively.

これに対し、定期的な圧力開放及びフラッシングを実施しなかった比較例1では、100時間後の相対フラックスが0.87に低下していた。比較例1で相対フラックスが低下した原因としては、逆浸透膜の表面に析出した有機物が堆積していたことであると考えられた。 On the other hand, in Comparative Example 1 in which periodic pressure release and flushing were not performed, the relative flux after 100 hours had decreased to 0.87. The reason for the decrease in relative flux in Comparative Example 1 was thought to be that organic matter was deposited on the surface of the reverse osmosis membrane.

被処理水に酸成分として硫酸を添加せずに被処理水のpHを8.3のまま、逆浸透膜で被処理水を処理した比較例2では、100時間後の相対フラックスが0.49に低下していた。比較例2で相対フラックスが低下した原因としては、被処理水のpHが本発明で規定する上限値超であることから、被処理水中の鉄、マンガン等の金属の酸化物が析出し、析出した無機物によって逆浸透膜の表面で堆積したためであると考えられた。 In Comparative Example 2, in which the water to be treated was treated with a reverse osmosis membrane while the pH of the water to be treated remained at 8.3 without adding sulfuric acid as an acid component to the water to be treated, the relative flux after 100 hours was 0.49. It had declined to . The reason why the relative flux decreased in Comparative Example 2 is that the pH of the water to be treated exceeds the upper limit specified by the present invention, so oxides of metals such as iron and manganese in the water to be treated precipitate. This was thought to be due to inorganic substances deposited on the surface of the reverse osmosis membrane.

以上説明した実施例及び比較例の結果から、本実施形態に係る逆浸透膜の運転方法によれば、被処理水中の無機物の析出を抑制しながら、有機物の析出も抑制でき、逆浸透膜の閉塞を防止できると考えられた。
加えて、比較例3では、被処理水のpHを5.5に調整するための硫酸の使用量が220mg/Lとなり、実施例1、2の硫酸の使用量と比較して増加した。このように、実施例1、2では、より少ない酸成分の使用量で逆浸透膜の閉塞を抑制できる範囲内に被処理水のpHを調整できた。そのため本実施形態に係る逆浸透膜の運転方法によれば、水処理の低コスト化を図ることができると考えられた。
From the results of the Examples and Comparative Examples explained above, according to the operating method of the reverse osmosis membrane according to the present embodiment, it is possible to suppress the precipitation of organic substances while suppressing the precipitation of inorganic substances in the water to be treated. It was thought that blockage could be prevented.
In addition, in Comparative Example 3, the amount of sulfuric acid used to adjust the pH of the water to be treated to 5.5 was 220 mg/L, which was increased compared to the amount of sulfuric acid used in Examples 1 and 2. As described above, in Examples 1 and 2, the pH of the water to be treated could be adjusted within a range that could suppress clogging of the reverse osmosis membrane with a smaller amount of the acid component used. Therefore, it was considered that the method of operating a reverse osmosis membrane according to the present embodiment could reduce the cost of water treatment.

1 水処理システム
11 井戸
12 被処理水槽
14 ポンプ
15 プレフィルター
16 昇圧ポンプ
17 逆浸透膜ろ過装置
18 逆浸透膜モジュール
19 処理水槽
21 原水流路
22 被処理水流路
23 濃縮水流路
24 透過水流路
25 循環用流路
26 排水用流路
31 酸添加手段
1 Water treatment system 11 Well 12 Water tank to be treated 14 Pump 15 Pre-filter 16 Boosting pump 17 Reverse osmosis membrane filtration device 18 Reverse osmosis membrane module 19 Treated water tank 21 Raw water channel 22 Water channel to be treated 23 Concentrated water channel 24 Permeated water channel 25 Circulation channel 26 Drainage channel 31 Acid addition means

Claims (7)

逆浸透膜によって、原水を透過水と濃縮水とに分離する、逆浸透膜の運転方法であって、
前記逆浸透膜に昇圧ポンプを経由して供給される被処理水のpHが6.0~7.8であり、
前記逆浸透膜で前記被処理水を処理した後、前記昇圧ポンプを停止して前記逆浸透膜を定期的に圧力開放し、
前記逆浸透膜を圧力開放した際に、フラッシングを実施することで前記逆浸透膜の表面を洗う、逆浸透膜の運転方法。
A method for operating a reverse osmosis membrane, which separates raw water into permeated water and concentrated water using a reverse osmosis membrane,
The pH of the water to be treated that is supplied to the reverse osmosis membrane via a booster pump is 6.0 to 7.8,
After treating the water to be treated with the reverse osmosis membrane, stop the boost pump and periodically release the pressure of the reverse osmosis membrane,
A method for operating a reverse osmosis membrane, comprising washing the surface of the reverse osmosis membrane by performing flushing when pressure is released from the reverse osmosis membrane.
前記逆浸透膜を圧力開放した際に、前記逆浸透膜の二次側も圧力開放する、請求項1に記載の逆浸透膜の運転方法。 2. The method for operating a reverse osmosis membrane according to claim 1, wherein when the pressure of the reverse osmosis membrane is released, pressure is also released on the secondary side of the reverse osmosis membrane. フラッシングの際に、透過水又は純水を含む洗浄水を使用する、請求項2に記載の逆浸透膜の運転方法。 3. The method for operating a reverse osmosis membrane according to claim 2, wherein during flushing, cleaning water containing permeated water or pure water is used. 前記原水を直接、前記逆浸透膜で処理する、請求項1~3のいずれか一項に記載の逆浸透膜の運転方法。 The method for operating a reverse osmosis membrane according to any one of claims 1 to 3, wherein the raw water is directly treated with the reverse osmosis membrane. 前記原水が、シリカ、カルシウム、マグネシウム、鉄及びマンガンからなる群から選ばれる少なくとも1つ以上の無機物をさらに含む、請求項1~4のいずれか一項に記載の逆浸透膜の運転方法。 The method for operating a reverse osmosis membrane according to any one of claims 1 to 4, wherein the raw water further contains at least one inorganic substance selected from the group consisting of silica, calcium, magnesium, iron, and manganese. 前記原水のMアルカリ度が、100mg/L以上である、請求項1~5のいずれか一項に記載の逆浸透膜の運転方法。 The method for operating a reverse osmosis membrane according to any one of claims 1 to 5, wherein the raw water has an M alkalinity of 100 mg/L or more. 前記被処理水の全有機炭素が、3.0mg/L以上である、請求項1~6のいずれか一項に記載の逆浸透膜の運転方法。 The method for operating a reverse osmosis membrane according to any one of claims 1 to 6, wherein the total organic carbon of the water to be treated is 3.0 mg/L or more.
JP2024015239A 2020-01-16 2024-02-02 Operational method of reverse osmosis membrane Pending JP2024032980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024015239A JP2024032980A (en) 2020-01-16 2024-02-02 Operational method of reverse osmosis membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020005308A JP2021112689A (en) 2020-01-16 2020-01-16 Operational method of reverse osmosis membrane
JP2024015239A JP2024032980A (en) 2020-01-16 2024-02-02 Operational method of reverse osmosis membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020005308A Division JP2021112689A (en) 2020-01-16 2020-01-16 Operational method of reverse osmosis membrane

Publications (1)

Publication Number Publication Date
JP2024032980A true JP2024032980A (en) 2024-03-12

Family

ID=77076387

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020005308A Pending JP2021112689A (en) 2020-01-16 2020-01-16 Operational method of reverse osmosis membrane
JP2024015239A Pending JP2024032980A (en) 2020-01-16 2024-02-02 Operational method of reverse osmosis membrane

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020005308A Pending JP2021112689A (en) 2020-01-16 2020-01-16 Operational method of reverse osmosis membrane

Country Status (1)

Country Link
JP (2) JP2021112689A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024086897A1 (en) * 2022-10-27 2024-05-02 C2 Water (SPV) Pty Ltd A method for reducing accumulation of foulants on reverse osmosis membranes and a groundwater desalination system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163707A (en) * 1986-01-13 1987-07-20 Sasakura Eng Co Ltd Method for preventing contamination of membrane module
KR20050033547A (en) * 2002-08-29 2005-04-12 오르가노 가부시키가이샤 Separation membrane module and method of operating separation membrane module
JP2018144015A (en) * 2017-03-09 2018-09-20 株式会社ウェルシィ Reverse osmosis membrane filtration method
JP6968682B2 (en) * 2017-12-15 2021-11-17 三菱ケミカルアクア・ソリューションズ株式会社 Manufacturing method of permeated water, water treatment device and operation method of the water treatment device

Also Published As

Publication number Publication date
JP2021112689A (en) 2021-08-05

Similar Documents

Publication Publication Date Title
AU2011233096B2 (en) Method for cleaning separation membrane module, and method for fresh water generation
JP4903113B2 (en) Water treatment system and operation method thereof
CN103619451B (en) The cleaning method of separating film module
JP2011083727A (en) Water treatment system
Dialynas et al. Integration of immersed membrane ultrafiltration with coagulation and activated carbon adsorption for advanced treatment of municipal wastewater
AU2009341904A1 (en) Water desalination equipment and cleaning method for water desalination equipment
JP2015077530A (en) Water production method and water production device
JP2024032980A (en) Operational method of reverse osmosis membrane
WO2014139969A1 (en) System for cleaning a membrane
JP2003245666A (en) Seawater treatment method
KR101279695B1 (en) A process and an apparatus for treating waters containing a biologically treated water
JP6689435B2 (en) Wastewater treatment system and wastewater treatment method
WO2009107332A1 (en) Wastewater treatment apparatus and method of wastewater treatment
KR102094704B1 (en) Water supply management system
WO2014007262A1 (en) Fresh-water manufacturing device and fresh-water manufacturing method
EP2141127A1 (en) An effluent treatment process
JP2007268359A (en) Membrane separation method
JP4576760B2 (en) Circulating cooling water treatment method
KR100550976B1 (en) Treatment system and method for water discharged from a sewage treatment works
WO2012057176A1 (en) Water-treatment method and desalinization method
JP4052419B2 (en) Filtration membrane cleaning method and seawater filtration apparatus using the same
JP2006136753A (en) High pressure type fine sand filter and filtering method using it
JP2002370089A (en) Washing wastewater cleaning system
JP2005046801A (en) Water treatment method and apparatus therefor
JP2021016851A (en) Water treatment method and water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20241030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241105