[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2024023453A - Fluororesin - Google Patents

Fluororesin Download PDF

Info

Publication number
JP2024023453A
JP2024023453A JP2023202064A JP2023202064A JP2024023453A JP 2024023453 A JP2024023453 A JP 2024023453A JP 2023202064 A JP2023202064 A JP 2023202064A JP 2023202064 A JP2023202064 A JP 2023202064A JP 2024023453 A JP2024023453 A JP 2024023453A
Authority
JP
Japan
Prior art keywords
fluororesin
formula
ppm
resin
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023202064A
Other languages
Japanese (ja)
Other versions
JP2024023453A5 (en
Inventor
孝太 坂口
Kota Sakaguchi
和也 岩永
Kazuya Iwanaga
智弥 下野
Tomoya Shimono
智成 長井
Tomonari NAGAI
浩 山川
Hiroshi Yamakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2024023453A publication Critical patent/JP2024023453A/en
Publication of JP2024023453A5 publication Critical patent/JP2024023453A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)

Abstract

To provide a fluororesin having an oxolane ring, which is suppressed in yellowing after heating and melting and which is reduced in coloring especially in the molding of a thick wall product, and a method for producing the same.SOLUTION: Provided is a fluororesin which contains a residue unit represented by the following formula (1) and a terminal group represented by the following formula (2). (In formula (1), Rf1, Rf2, Rf3, and Rf4 each independently represent one selected from the group consisting of a fluorine atom, C1-7 linear perfluoroalkyl groups, C3-7 branched perfluoroalkyl groups, and C3-7 cyclic perfluoroalkyl groups. Rf1, Rf2, Rf3, and Rf4 may be linked to each other to form a ring).SELECTED DRAWING: None

Description

本発明は、フッ素樹脂およびその製造方法に関する。 The present invention relates to a fluororesin and a method for producing the same.

フッ素樹脂は、耐熱性、電気特性、耐薬品性、防水性、撥液發油性、光学特性に優れるため半導体をはじめとする電子部品の保護膜、インクジェットプリンタヘッドの撥水膜、フィルタの防水防油コート、光学部材などに用いられている。 Fluororesin has excellent heat resistance, electrical properties, chemical resistance, waterproofness, oil repellency, and optical properties, so it is used as a protective film for semiconductors and other electronic components, a water-repellent film for inkjet printer heads, and a water-repellent film for filters. Used in oil coatings, optical components, etc.

なかでもオキソラン環を含むフッ素樹脂は嵩高い環構造を有するため非晶質で高い透明性および高い耐熱性を有する。また炭素、フッ素、酸素からのみ構成されることで高い電気特性、耐薬品性、防水性、撥液發油性を有する。さらに非晶性であることから溶融成形加工が可能である。 Among them, fluororesins containing an oxolane ring have a bulky ring structure and therefore are amorphous and have high transparency and high heat resistance. Also, because it is composed only of carbon, fluorine, and oxygen, it has high electrical properties, chemical resistance, waterproofness, and oil and liquid repellency. Furthermore, since it is amorphous, it can be melt-molded.

非特許文献1には、オキソラン環を含むフッ素樹脂の1種であるパーフルオロ-2-メチレン-4-メチル-1,3-ジオキソラン(PFMMD)を、ラジカル重合開始剤としてパーフルオロベンゾイルパーオキサイドを用いて重合して得られたポリマー(ポリPFMMD)の合成および特性に関する記載がある。ポリPFMMDは耐熱性に優れる。本発明者らの検討によれば、非特許文献1に記載のポリPFMMDは加熱溶融成形後の黄変が著しく、特に厚みのある成形品で黄変が著しいものであった。そのため、ポリPFMMDの厚みのある成形体であっても、より着色の少ない、高い透明性を発現できる技術が切望されている。 Non-Patent Document 1 describes perfluoro-2-methylene-4-methyl-1,3-dioxolane (PFMMD), which is a type of fluororesin containing an oxolane ring, and perfluorobenzoyl peroxide as a radical polymerization initiator. There are descriptions regarding the synthesis and properties of the polymer (polyPFMMD) obtained by polymerization using the method. Poly PFMMD has excellent heat resistance. According to the studies conducted by the present inventors, the poly PFMMD described in Non-Patent Document 1 showed significant yellowing after hot melt molding, and yellowing was particularly significant in thick molded products. Therefore, there is a strong need for a technology that can exhibit high transparency with less coloration even in the case of thick molded products of poly PFMMD.

フッ素樹脂の加熱時の着色を低減する方法として脂肪族全フッ素開始剤を用いて、脂肪族パーフルオロアルキル基末端を有するフッ素樹脂を得る方法が知られている。例えば、非特許文献2には、(CFCFCFCOO)を用いてペルフルオロ(ブテニルビニルエーテル)を塊状重合で環化重合した例が報告されている。しかし、本発明者らの検討によれば、非特許文献2に記載の技術をポリPFMMDの合成に用いても加熱溶融成形後のポリPFMMDの黄変は十分低減されているとは言えないものであった。また、収率が著しく悪く生産性に劣り、分子量分布Mw/Mnが大きいものであった。 As a method for reducing coloring of a fluororesin during heating, a method is known in which a fluororesin having an aliphatic perfluoroalkyl group terminal is obtained using an aliphatic perfluorinated initiator. For example, Non-Patent Document 2 reports an example of cyclization polymerization of perfluoro(butenyl vinyl ether) using (CF 3 CF 2 CF 2 COO) 2 by bulk polymerization. However, according to the studies of the present inventors, even if the technique described in Non-Patent Document 2 is used for the synthesis of polyPFMMD, it cannot be said that the yellowing of polyPFMMMD after heat melt molding is sufficiently reduced. Met. Furthermore, the yield was extremely poor, the productivity was poor, and the molecular weight distribution Mw/Mn was large.

Macromolecules 2005,38,4237-4245Macromolecules 2005, 38, 4237-4245 日本化学会誌 2001、No.12、659-668Journal of the Chemical Society of Japan 2001, No. 12, 659-668

本発明はオキソラン環を含むフッ素樹脂における課題を解決することを目的としてなされたものである。具体的には、加熱溶融後の黄変が抑制される、特に厚肉品の成形においても着色が低減されたオキソラン環を含むフッ素樹脂およびその製造方法を提供することを目的とする。 The present invention was made with the aim of solving the problems associated with fluororesins containing oxolane rings. Specifically, the object of the present invention is to provide a fluororesin containing an oxolane ring that suppresses yellowing after heating and melting, and in particular reduces coloring even when molding thick-walled products, and a method for producing the same.

本発明者らは鋭意検討した結果、特定の構造の末端基を有するオキソラン環を含むフッ素樹脂が上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of extensive studies, the present inventors have found that a fluororesin containing an oxolane ring having a terminal group with a specific structure can solve the above problems, and have completed the present invention.

すなわち、本発明は下記式(1)で表される残基単位と、下記式(2)で表される末端基を含むフッ素樹脂である。 That is, the present invention is a fluororesin containing a residue unit represented by the following formula (1) and a terminal group represented by the following formula (2).

(式(1)中、Rf、Rf、Rf、Rfは、それぞれ独立して、フッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示し、前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよく、また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。) (In formula (1), Rf 1 , Rf 2 , Rf 3 , and Rf 4 are each independently a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, and a branched chain having 3 to 7 carbon atoms. Rf 1 , Rf 2 , Rf 3 , and Rf 4 may be linked to each other to form a ring having 4 to 8 carbon atoms, and the ring may contain an etheric oxygen atom.)

(式(2)中、iは3~20の整数である) (In formula (2), i is an integer from 3 to 20)

本発明によれば、厚みのある成形品の溶融成形を行う際の黄変が抑制されたオキソラン環を含むフッ素樹脂およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a fluororesin containing an oxolane ring in which yellowing during melt molding of a thick molded product is suppressed, and a method for producing the same.

以下に本発明の一態様であるフッ素樹脂について詳細に説明する。 The fluororesin that is one embodiment of the present invention will be described in detail below.

本発明のフッ素樹脂は、下記式(1)で表される残基単位と、下記式(2)で表される末端基を含む。 The fluororesin of the present invention includes a residue unit represented by the following formula (1) and a terminal group represented by the following formula (2).

(式(1)中、Rf、Rf、Rf、Rfはそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または、炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示し、前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよく、また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。) (In formula (1), Rf 1 , Rf 2 , Rf 3 , and Rf 4 are each independently a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, and a branched perfluoroalkyl group having 3 to 7 carbon atoms. Represents one of the group consisting of a perfluoroalkyl group or a cyclic perfluoroalkyl group having 3 to 7 carbon atoms, the perfluoroalkyl group may have an ether oxygen atom, and Rf 1 , Rf 2 , Rf 3 , and Rf 4 may be linked to each other to form a ring having 4 or more and 8 or less carbon atoms, and the ring may contain an ether oxygen atom.)

(式(2)中、iは3~20の整数である)
本発明のフッ素樹脂は特定の式(1)に含まれる嵩高い環構造を有するため非晶質で高い透明性および高い耐熱性を有する。また炭素原子、フッ素原子、酸素原子からのみ構成されることで高い電気特性、耐薬品性、防水性、撥液發油性を有する。
(In formula (2), i is an integer from 3 to 20)
Since the fluororesin of the present invention has a bulky ring structure included in the specific formula (1), it is amorphous and has high transparency and high heat resistance. Furthermore, since it is composed only of carbon atoms, fluorine atoms, and oxygen atoms, it has high electrical properties, chemical resistance, waterproofness, and oil and liquid repellency.

式(1)中、Rf、Rf、Rf、Rf基は、それぞれ独立して、フッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基、または炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示す。前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよい。また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。 In formula (1), Rf 1 , Rf 2 , Rf 3 , and Rf 4 groups each independently represent a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, or a branched chain having 3 to 7 carbon atoms. This refers to one of the group consisting of a perfluoroalkyl group having a cyclic shape or a cyclic perfluoroalkyl group having 3 to 7 carbon atoms. The perfluoroalkyl group may have an ether oxygen atom. Furthermore, Rf 1 , Rf 2 , Rf 3 , and Rf 4 may be linked to each other to form a ring having 4 or more and 8 or less carbon atoms, and the ring may contain an etheric oxygen atom.

炭素数1~7の直鎖状パーフルオロアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ウンデカフルオロペンチル基、トリデカフルオロヘキシル基、ペンタデカフルオロヘプチル基等が挙げられる。 Examples of the linear perfluoroalkyl group having 1 to 7 carbon atoms include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, undecafluoropentyl group, tridecafluorohexyl group, Examples include pentadecafluoroheptyl group.

炭素数3~7の分岐状パーフルオロアルキル基としては、例えば、ヘプタフルオロイソプロピル基、ノナフルオロイソブチル基、ノナフルオロsec-ブチル基、ノナフルオロtert-ブチル基等が挙げられる。 Examples of the branched perfluoroalkyl group having 3 to 7 carbon atoms include heptafluoroisopropyl group, nonafluoroisobutyl group, nonafluoro sec-butyl group, nonafluoro tert-butyl group, and the like.

炭素数3~7の環状パーフルオロアルキル基としては、例えば、ヘプタフルオロシクロプロピル基、ノナフルオロシクロブチル基、トリデカフルオロシクロヘキシル基等が挙げられる。 Examples of the cyclic perfluoroalkyl group having 3 to 7 carbon atoms include heptafluorocyclopropyl group, nonafluorocyclobutyl group, and tridecafluorocyclohexyl group.

炭素数1~7のエーテル性酸素原子を有していてもよい直鎖状パーフルオロアルキル基としては、例えば、-CFOCF基、-(CFOCF基、-(CFOCFCF基等が挙げられる。 Examples of the linear perfluoroalkyl group which may have an etheric oxygen atom having 1 to 7 carbon atoms include -CF 2 OCF 3 group, -(CF 2 ) 2 OCF 3 group, -(CF 2 ) 2 OCF 2 CF 3 groups and the like.

炭素数3~7のエーテル性酸素原子を有していてもよい環状パーフルオロアルキル基としては、例えば、2-(2,3,3,4,4,5,5,6,6-デカフルオロ)-ピリニル基、4-(2,3,3,4,4,5,5,6,6-デカフルオロ)-ピリニル基、2-(2,3,3,4,4,5,5-ヘプタフルオロ)-フラニル基等が挙げられる。 Examples of the cyclic perfluoroalkyl group which may have an etheric oxygen atom having 3 to 7 carbon atoms include 2-(2,3,3,4,4,5,5,6,6-decafluoro )-pyrinyl group, 4-(2,3,3,4,4,5,5,6,6-decafluoro)-pyrinyl group, 2-(2,3,3,4,4,5,5- Heptafluoro)-furanyl group and the like.

Rf、Rf、Rf、Rfの少なくともいずれか一つは、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または炭素数3~7環状のパーフルオロアルキル基からなる群の1種であるフッ素樹脂であることが好ましい。これにより、本発明のフッ素樹脂がより優れた耐熱性を示す。 At least one of Rf 1 , Rf 2 , Rf 3 , and Rf 4 is a linear perfluoroalkyl group having 1 to 7 carbon atoms, a branched perfluoroalkyl group having 3 to 7 carbon atoms, or a carbon number A fluororesin that is one of the group consisting of 3- to 7-cyclic perfluoroalkyl groups is preferred. As a result, the fluororesin of the present invention exhibits better heat resistance.

式(1)で表される残基単位の具体例としては、例えば下記式(3)で表される残基単位が挙げられる。 Specific examples of the residue unit represented by formula (1) include, for example, the residue unit represented by formula (3) below.

このなかでも、耐熱性、成型加工性に優れるため、下記式(4)で表される残基単位を含むフッ素樹脂が好ましく、パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位を含むフッ素樹脂がより好ましい。 Among these, a fluororesin containing a residue unit represented by the following formula (4) is preferable because it has excellent heat resistance and moldability, and perfluoro(4-methyl-2-methylene-1,3-dioxolane) More preferred are fluororesins containing residue units.

本発明のフッ素樹脂は、下記式(2)で表される末端基を含む。これにより、厚みのある成形品の溶融成形を行う際の黄変が抑制されたものとなる。 The fluororesin of the present invention includes a terminal group represented by the following formula (2). As a result, yellowing during melt molding of a thick molded product is suppressed.

ここで、「末端基」とは、重合体の主鎖の末端部に存在する基を意味する。 Here, the term "terminal group" means a group present at the end of the main chain of the polymer.

式(2)で表される末端基は下記式(5)で表される構造であることが好ましい。 The terminal group represented by formula (2) preferably has a structure represented by formula (5) below.

本発明のフッ素樹脂が式(5)で表される末端基単位を含むことは、例えば次の方法で確認することができる。 It can be confirmed, for example, by the following method that the fluororesin of the present invention contains the terminal group unit represented by formula (5).

すなわち、フッ素樹脂に対する固体19F-NMRスペクトル解析において、-140ppm以上142ppm以下、及び、-143ppm以上145ppm以下の範囲それぞれに極大を示すピークを示すことが確認できた場合、本発明のフッ素樹脂が式(5)で表される末端基を有していると判断できる。-140ppm以上142ppm以下、及び、-143ppm以上145ppm以下の範囲それぞれに極大を示すピークは、式(5)の3位、4位、5位の-CF-基に帰属される。 That is, in the solid 19F -NMR spectrum analysis of the fluororesin, if it is confirmed that peaks exhibiting maxima in the ranges of -140 ppm to 142 ppm and -143 ppm to 145 ppm are confirmed to be the fluororesin of the present invention. It can be determined that it has a terminal group represented by formula (5). The peaks showing maxima in the ranges of -140 ppm to 142 ppm and -143 ppm to 145 ppm are assigned to the -CF 2 - group at the 3rd, 4th, and 5th positions of formula (5).

なお、フッ素樹脂の固体19F-NMR測定は、一般的な19F-NMR測定装置を用いればよい。例えば、Varian製VNMRS-400を用い、磁場強度376.18MHz(19F)で、1.6mmFASTMASプローブを用い、hahn-echo法にて、パルス幅1.3μs、スペクトル幅250kHz(664.6ppm)、スペクトル中心:-120ppm、待ち時間:10秒、MAS回転数:39kHz、積算回数2048回で、PTFE(-122.0ppm)を基準として、フッ素樹脂約10mgを用いて固体19F-NMR測定を実施する方法を例示できる。 Note that a general 19 F-NMR measuring device may be used for solid 19 F-NMR measurement of the fluororesin. For example, using a VNMRS-400 manufactured by Varian, a magnetic field strength of 376.18 MHz (19F), a 1.6 mm FASTMAS probe, a pulse width of 1.3 μs, a spectral width of 250 kHz (664.6 ppm), and a spectrum using the hahn-echo method. Center: -120 ppm, waiting time: 10 seconds, MAS rotation speed: 39 kHz, integration number of 2048 times, solid 19 F-NMR measurement is performed using PTFE (-122.0 ppm) as a reference and approximately 10 mg of fluororesin. Can give examples of methods.

本発明のフッ素樹脂に対する固体19F-NMRスペクトル解析において、-140ppm以上142ppm以下、及び、-143ppm以上145ppm以下の範囲に極大を示す末端基に起因する末端ピーク(6F)の面積の積分値は、-81ppmの位置に極大を示す主鎖ピーク(5F)の面積の積分値500に対し、合計で0.001~10であることが好ましく、0.01~5であることが更に好ましく、0.05~5であることが更に好ましい。これにより、フッ素樹脂の黄変がさらに抑制される。ここで、-81ppmの位置に極大を示す主鎖ピーク(5F)は-CFO-基、-CF基に帰属される。 In the solid 19F -NMR spectrum analysis of the fluororesin of the present invention, the integrated value of the area of the terminal peak (6F) due to the terminal group showing maximum in the range of -140 ppm to 142 ppm and -143 ppm to 145 ppm is , the integral value of the area of the main chain peak (5F) showing the maximum at the position of -81 ppm is 500, the total is preferably 0.001 to 10, more preferably 0.01 to 5, and 0. More preferably, it is between .05 and .05. This further suppresses yellowing of the fluororesin. Here, the main chain peak (5F) showing a maximum at the position of -81 ppm is assigned to the -CF 2 O- group and the -CF 3 group.

本発明のフッ素樹脂が式(2)又は式(5)で表される残基単位を含むことは、例えば、フッ素樹脂のオリゴマーを固体13C-NMR測定することでも確認することができる。例えば、製造工程でゼオローラH等の溶媒に溶解したオリゴマー等を単離し、得られたオリゴマーに対して固体13C-NMR測定を行う。この際、式(1)で表さられる残基単位に直接結合したパーフルオロシクロアルキル基の1位のF原子に由来する、90~92ppmの範囲に極大を示すピークが観察されれば、フッ素樹脂が式(2)又は式(5)で表される末端基を含んでいると確認できる。 The fact that the fluororesin of the present invention contains the residue unit represented by formula (2) or formula (5) can also be confirmed, for example, by solid-state 13 C-NMR measurement of the oligomer of the fluororesin. For example, an oligomer or the like dissolved in a solvent such as Zeorola H during the production process is isolated, and the obtained oligomer is subjected to solid 13 C-NMR measurement. At this time, if a peak with a maximum in the range of 90 to 92 ppm is observed, which originates from the F atom at position 1 of the perfluorocycloalkyl group directly bonded to the residue unit represented by formula (1), then fluorine It can be confirmed that the resin contains the terminal group represented by formula (2) or formula (5).

式(2)又は式(5)で表される末端基は他の官能基を介さずに一般式(1)で表さられる残基単位に直接結合していることが好ましい。また、本発明のフッ素樹脂はカルボニル基を含まないことが好ましい。 It is preferable that the terminal group represented by formula (2) or formula (5) is directly bonded to the residue unit represented by general formula (1) without intervening another functional group. Moreover, it is preferable that the fluororesin of the present invention does not contain a carbonyl group.

本発明のフッ素樹脂は、重量平均分子量Mwが5×10~3×10の範囲であることが好ましい。重量平均分子量Mwがこの範囲にあることで、溶融成形加工性、溶融時の脱泡性に優れる。また、重量平均分子量Mwがこの範囲にあることで、加熱冷却時のクラック発生の少ないものとなる。本発明のフッ素樹脂は、溶融成形加工性に優れ、溶融時の脱泡性に優れる観点から、更に好ましくは重量平均分子量Mwが5×10~2×10の範囲であることが好ましい。 The fluororesin of the present invention preferably has a weight average molecular weight Mw in the range of 5×10 4 to 3×10 5 . When the weight average molecular weight Mw is within this range, melt molding processability and defoaming property during melting are excellent. Furthermore, when the weight average molecular weight Mw is within this range, cracks are less likely to occur during heating and cooling. The fluororesin of the present invention preferably has a weight average molecular weight Mw of 5×10 4 to 2×10 5 from the viewpoint of excellent melt molding processability and excellent defoaming properties during melting.

本発明のフッ素樹脂の重量平均分子量Mwは、ゲルパーミッションクロマトグラフィー(GPC)を用いて、例えば標準試料として分子量既知の標準ポリメタクリル酸メチル、溶離液として標準試料とフッ素樹脂の両方を溶解可能な溶媒を用い、試料と標準試料の溶出時間、標準試料の分子量から算出することができる。前記溶液液としては、アサヒクリンAK-225(旭硝子株式会社製)に、AK-225に対して10wt%の1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(和光純薬工業製)を添加したものを挙げることができる。 The weight average molecular weight Mw of the fluororesin of the present invention can be determined using gel permeation chromatography (GPC), for example, by using a standard polymethyl methacrylate with a known molecular weight as a standard sample, and using an eluent that can dissolve both the standard sample and the fluororesin. It can be calculated from the elution time of the sample and standard sample and the molecular weight of the standard sample using a solvent. The solution includes Asahiklin AK-225 (manufactured by Asahi Glass Co., Ltd.) and 10 wt% of 1,1,1,3,3,3-hexafluoro-2-propanol (Wako Pure Chemical Industries, Ltd.) based on AK-225. (Industrial products) can be added.

本発明のフッ素樹脂の重量平均分子量Mwと数平均分子量Mnの比である分子量分布Mw/Mnには特に限定はないが、加熱溶融後の黄変が抑制され、溶融成形加工性に優れ、溶融時の脱泡性に優れ、加熱冷却時のクラック発生の少ないものとなる観点から、分子量分布Mw/Mnは1.2~8であることが好ましく、1.2~5であることが更に好ましく、1.5~3であることが更に好ましく、2.0~3であることが更に好ましい。数平均分子量Mnは前述した重量平均分子量Mwの測定方法と同様の方法で測定でき、分子量分布Mw/Mnは重量平均分子量Mwを数平均分子量Mnで割ることにより算出することができる。 The molecular weight distribution Mw/Mn, which is the ratio of the weight average molecular weight Mw to the number average molecular weight Mn, of the fluororesin of the present invention is not particularly limited, but it suppresses yellowing after heating and melting, has excellent melt moldability, and The molecular weight distribution Mw/Mn is preferably 1.2 to 8, more preferably 1.2 to 5, from the viewpoint of excellent defoaming properties during heating and less cracking during heating and cooling. , more preferably from 1.5 to 3, and even more preferably from 2.0 to 3. The number average molecular weight Mn can be measured in the same manner as the method for measuring the weight average molecular weight Mw described above, and the molecular weight distribution Mw/Mn can be calculated by dividing the weight average molecular weight Mw by the number average molecular weight Mn.

本発明のフッ素樹脂は肉厚溶融成形品(直径10mm×高さ約17mmの円柱状成形体、試験管内で280℃24h加熱溶融して成形)を直径方向に測定した黄色度(YI)が10以下であることが好ましく、4以下が更に好ましく、3以下が更に好ましい。本発明者らによれば、開放された環境での加熱に比べ、閉じられた状況で厚みのある成形品の溶融成形を行うとフッ素樹脂の加熱溶融成形後の黄変が著しくなる。厚みのある成形品の溶融成形品の黄色度・着色を評価する方法として、例えば、本発明のフッ素樹脂3gを外径13mmの試験管内で280℃24h加熱品して溶融・成形して得られた円柱形状体(直径10mm×高さ約17mm)を直径方向に測定した黄色度(YI)を評価する方法を挙げることができる。ここで直径方向は、試験管を机等の上に横に倒して置いた際の上下方向である。黄色度は得られた樹脂成型品を試験管に入ったまま、白色の紙の上に試験管を横に倒して置き、上からデジタル写真を撮影し、得られた画像からソフトウェアで成形品のRGB値を読み取り、読み取ったRGB値を次式
X=0.4124R+0.3576G+0.1805B
Y=0.2126R+0.7152G+0.0722B
Z=0.0193R+0.1192G+0.9505B
によりXYZ表色系の三刺激値X、Y、Zを求め、X、Y、ZからJIS K7373の方法にのっとり、C光源(補助イルミナントC)における黄色度(YI)を計算することで測定することができる。
The fluororesin of the present invention has a yellowness index (YI) of 10 when measured in the diameter direction of a thick melt-molded product (cylindrical molded product with a diameter of 10 mm and a height of about 17 mm, heated and melted in a test tube at 280°C for 24 hours). It is preferably at most 4, more preferably at most 4, even more preferably at most 3. According to the present inventors, when a thick molded product is melt-molded in a closed environment, yellowing of the fluororesin after heating and melt-molding becomes more significant than when heating in an open environment. As a method for evaluating the yellowness and coloring of a thick melt-molded product, for example, 3 g of the fluororesin of the present invention is heated at 280°C for 24 hours in a test tube with an outer diameter of 13 mm, and then melted and molded. A method for evaluating the yellowness index (YI) of a cylindrical body (diameter 10 mm x height approximately 17 mm) measured in the diameter direction can be mentioned. Here, the diametrical direction is the vertical direction when the test tube is placed horizontally on a desk or the like. To determine the degree of yellowness, place the resin molded product in the test tube sideways on a piece of white paper, take a digital photograph from above, and use software to determine the degree of yellowness of the molded product. Read the RGB values and calculate the read RGB values using the following formula: X=0.4124R+0.3576G+0.1805B
Y=0.2126R+0.7152G+0.0722B
Z=0.0193R+0.1192G+0.9505B
Calculate the tristimulus values X, Y, and Z of the XYZ color system using be able to.

本発明のフッ素樹脂は薄片溶融成形品(3mm厚、シャーレ内で280℃24h加熱溶融して成形)の黄色度(YI)が1以下であることが好ましい。成型方法、評価方法は実施例に記載の方法を挙げることができる。 The fluororesin of the present invention preferably has a yellowness index (YI) of 1 or less in a flaky melt-molded product (3 mm thick, molded by heating and melting in a petri dish at 280° C. for 24 hours). As the molding method and evaluation method, the methods described in Examples can be mentioned.

本発明のフッ素樹脂には他の単量体残基単位が含まれていても良く、他の単量体残基単位としては、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、ヘキサフルオロイソブチレン、パーフルオロアルキルエチレン、フルオロビニルエーテル、フッ化ビニル(VF)、フッ化ビニリデン(VDF)、パーフルオロ-2,2-ジメチル-1,3-ジオキソール(PDD)、パーフルオロ(アリルビニルエーテル)およびペルフルオロ(ブテニルビニルエーテル)などが挙げられる。 The fluororesin of the present invention may contain other monomer residue units, and other monomer residue units include tetrafluoroethylene (TFE), hexafluoropropylene (HFP), chlorotrifluoropropylene, Fluoroethylene (CTFE), trifluoroethylene, hexafluoroisobutylene, perfluoroalkyl ethylene, fluorovinylether, vinyl fluoride (VF), vinylidene fluoride (VDF), perfluoro-2,2-dimethyl-1,3-dioxole (PDD), perfluoro(allyl vinyl ether), perfluoro(butenyl vinyl ether), and the like.

本発明のフッ素樹脂の粒径には特に限定は無いが、樹脂粉末の流動性が高く、成型加工機等に対する連続した供給が可能となり、樹脂への溶剤の残留が抑制でき、嵩密度が大きく充填性が増加し、成形加工時の取扱い性に優れたものとなることから、体積平均粒径は1~1000μmであることが好ましく、1~500μmであることが好ましく、1~300μmが更に好ましい。 Although there is no particular limitation on the particle size of the fluororesin of the present invention, the resin powder has high fluidity, enables continuous supply to molding machines, etc., suppresses residual solvent in the resin, and has a large bulk density. The volume average particle size is preferably from 1 to 1000 μm, preferably from 1 to 500 μm, and more preferably from 1 to 300 μm, since the filling properties are increased and the handling properties during molding are excellent. .

本発明のフッ素樹脂の体積平均粒子径は、レーザー回折散乱法による粒子径分布測定(体積分布)で評価することができる。レーザー回折散乱法による粒子径分布は、樹脂粒子を水中又はメタノール等の有機溶媒中に分散させて測定することで測定することができる。レーザー散乱計として、マイクロトラック・ベル株式会社製のマイクロトラックを例示することができる。 The volume average particle size of the fluororesin of the present invention can be evaluated by particle size distribution measurement (volume distribution) using a laser diffraction scattering method. The particle size distribution by laser diffraction scattering can be measured by dispersing resin particles in water or an organic solvent such as methanol. As a laser scatterometer, Microtrac manufactured by Microtrac Bell Co., Ltd. can be exemplified.

体積平均粒子径とは、Mean Volume Diameterとも言われ、体積基準で表した平均粒子径であり、粒子径分布を各粒径チャンネルごとに区切り、各粒径チャンネルの代表粒径値をd、各粒径チャンネルごとの体積基準のパーセントをvとした時に、Σ(vd)/Σ(v)で表される。 The volume average particle diameter, also called Mean Volume Diameter, is the average particle diameter expressed on a volume basis.The particle diameter distribution is divided into each particle diameter channel, and the representative particle diameter value of each particle diameter channel is d, and each It is expressed as Σ(vd)/Σ(v), where v is the volume-based percentage for each particle size channel.

本発明のフッ素樹脂は粉末状であり、体積平均粒子径が1~1000μmであることが好ましい。 The fluororesin of the present invention is preferably in powder form and has a volume average particle diameter of 1 to 1000 μm.

以下に本発明の一態様であるフッ素樹脂の製造方法について詳細に説明する。 A method for producing a fluororesin, which is one embodiment of the present invention, will be described in detail below.

本発明のフッ素樹脂は、下記式(6)で表されるラジカル重合開始剤と、下記式(7)で表される単量体を含む混合物を重合させることで製造することができる。 The fluororesin of the present invention can be produced by polymerizing a mixture containing a radical polymerization initiator represented by the following formula (6) and a monomer represented by the following formula (7).

(式(6)中、jは3~20の整数である) (In formula (6), j is an integer from 3 to 20)

(式(7)中、Rf、Rf、Rf、Rfは、それぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または、炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示し、前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよく、また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
式(7)中のRf、Rf、Rf、Rfは、式(1)中のRf、Rf、Rf、Rfとそれぞれ同義である。
(In formula (7), Rf 5 , Rf 6 , Rf 7 , and Rf 8 are each independently a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, and a branched perfluoroalkyl group having 3 to 7 carbon atoms. or a cyclic perfluoroalkyl group having 3 to 7 carbon atoms, the perfluoroalkyl group may have an ether oxygen atom, and Rf 5 , Rf 6 , Rf 7 , and Rf 8 may be linked to each other to form a ring having 4 to 8 carbon atoms, and the ring may contain an etheric oxygen atom.)
Rf 5 , Rf 6 , Rf 7 , and Rf 8 in formula (7) have the same meanings as Rf 1 , Rf 2 , Rf 3 , and Rf 4 in formula (1), respectively.

本発明のフッ素樹脂の製造方法においては、式(6)で表されるラジカル重合開始剤を用いることで、厚みのある成形品の溶融成形を行う際の黄変が抑制されたフッ素樹脂を得ることができる。さらに、分子量分布Mw/Mnが狭いフッ素樹脂を得ることができる。分子量分布Mw/Mnが狭くなることで、加熱溶融成形性が向上する。更に、フッ素樹脂を優れた収率、生産性で得ることができる。また、式(6)で表されるラジカル重合開始剤を用いることで、ラジカル重合開始剤が脱炭酸してからポリマーに付加することで、得られるポリマーはカルボニル基を殆ど含まないものとなり、式(2)で表される末端基が直接ポリマーに付加した構造となり、厚みのある成形品の溶融成形を行う際の黄変が抑制されたフッ素樹脂を得るうえで有利である。 In the method for producing a fluororesin of the present invention, by using a radical polymerization initiator represented by formula (6), a fluororesin with suppressed yellowing during melt molding of a thick molded product is obtained. be able to. Furthermore, a fluororesin having a narrow molecular weight distribution Mw/Mn can be obtained. By narrowing the molecular weight distribution Mw/Mn, heat melt moldability is improved. Furthermore, fluororesin can be obtained with excellent yield and productivity. In addition, by using a radical polymerization initiator represented by formula (6), the radical polymerization initiator is decarboxylated and then added to the polymer, so that the resulting polymer contains almost no carbonyl groups, and the radical polymerization initiator is decarboxylated and then added to the polymer. It has a structure in which the terminal group represented by (2) is directly added to the polymer, which is advantageous in obtaining a fluororesin in which yellowing is suppressed during melt molding of thick molded products.

本発明のフッ素樹脂の製造方法においては、下記式(8)で表されるラジカル重合開始剤を用いることが更に好ましい。下記式(8)で表されるラジカル重合開始剤を用いることで、厚みのある成形品の溶融成形を行う際の黄変が更に抑制されたフッ素樹脂を得ることができる。さらに、分子量分布Mw/Mnが狭いフッ素樹脂を得ることができる。分子量分布Mw/Mnが狭くなることで、加熱溶融成形性が向上する。更に、フッ素樹脂を優れた収率、生産性で得ることができる。本明細書において、下記式(8)で表されるラジカル重合開始剤はビス(パーフルオロシクロヘキシルカルボニル)パーオキサイドと呼ぶこともある。 In the method for producing a fluororesin of the present invention, it is more preferable to use a radical polymerization initiator represented by the following formula (8). By using the radical polymerization initiator represented by the following formula (8), it is possible to obtain a fluororesin in which yellowing during melt molding of a thick molded product is further suppressed. Furthermore, a fluororesin having a narrow molecular weight distribution Mw/Mn can be obtained. By narrowing the molecular weight distribution Mw/Mn, heat melt moldability is improved. Furthermore, fluororesin can be obtained with excellent yield and productivity. In this specification, the radical polymerization initiator represented by the following formula (8) is sometimes referred to as bis(perfluorocyclohexylcarbonyl) peroxide.

ビス(パーフルオロシクロヘキシルカルボニル)パーオキサイドは特開平11-49749やJ.App.Polym.Sci,1999,72,1101-1108に記載の方法などで得ることができる。その際、溶媒として、AK-225に代えて、パーフルオロヘキサン(FC-72、スリーエムジャパン社製)等を用いることもできる。本発明のビス(パーフルオロシクロヘキシルカルボニル)パーオキサイドは上述の文献に記載の方法以外の方法で合成したものであっても良く、例えば、Chem.Rev,1996,96,1779-1808にフッ素化パーオキサイドの合成方法が記載されているが、酸フルオライドと過酸化水素を反応させる方法のほか、酸クロライドと過酸化水素を反応させる方法、酸無水物と過酸化水素を反応させる方法などを例示することができる。その際、水酸化ナトリウムなどの塩基が系中に存在することで反応が進行する。 Bis(perfluorocyclohexylcarbonyl) peroxide is disclosed in JP-A No. 11-49749 and J. App. Polym. Sci, 1999, 72, 1101-1108. At this time, perfluorohexane (FC-72, manufactured by 3M Japan) or the like may be used instead of AK-225 as a solvent. The bis(perfluorocyclohexylcarbonyl) peroxide of the present invention may be synthesized by a method other than the method described in the above-mentioned literature, for example, Chem. Rev, 1996, 96, 1779-1808 describes a method for synthesizing fluorinated peroxides, in addition to the method of reacting acid fluoride with hydrogen peroxide, the method of reacting acid chloride with hydrogen peroxide, and the method of reacting acid anhydride. Examples include a method of reacting a substance with hydrogen peroxide. At this time, the reaction proceeds due to the presence of a base such as sodium hydroxide in the system.

本発明のフッ素樹脂の製造方法においては、分子量を調節する目的で、連鎖移動剤を用いても良い。連鎖移動剤としては水素原子および塩素原子からなる群から選ばれる少なくとも1つの原子を含有する炭素数1~20の有機化合物を挙げることができる。連鎖移動剤の具体例としては、トルエン、アセトン、酢酸エチル、テトラヒドロフラン、メチルエチルケトン、メタノール、エタノール、イソプロパノール等の水素原子を含有する炭素数1~20の有機化合物;クロロホルム、ジクロロメタン、テトラクロロメタン、クロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、ベンジルクロリド、ペンタフルオロベンジルクロリド、ペンタフルオロベンゾイルクロリド等の塩素原子を含有する炭素数1~20の有機化合物等が挙げられる。なかでも、加熱溶融後の黄変を抑制する観点から塩素原子を含有する炭素数1~20の有機化合物であることが好ましく、水素原子と塩素原子を含有する炭素数1~20の有機化合物が更に好ましい。連鎖移動剤の量としては、例えば、前記単量体と連鎖移動剤の合計に対し、0.01~50重量%が挙げられる。 In the method for producing a fluororesin of the present invention, a chain transfer agent may be used for the purpose of controlling the molecular weight. Examples of the chain transfer agent include organic compounds having 1 to 20 carbon atoms and containing at least one atom selected from the group consisting of hydrogen atoms and chlorine atoms. Specific examples of chain transfer agents include organic compounds having 1 to 20 carbon atoms containing hydrogen atoms such as toluene, acetone, ethyl acetate, tetrahydrofuran, methyl ethyl ketone, methanol, ethanol, and isopropanol; chloroform, dichloromethane, tetrachloromethane, and chloroform. Examples include organic compounds containing chlorine atoms and having 1 to 20 carbon atoms, such as methane, dichloroethane, trichloroethane, tetrachloroethane, pentachloroethane, hexachloroethane, benzyl chloride, pentafluorobenzyl chloride, and pentafluorobenzoyl chloride. Among these, organic compounds containing chlorine atoms and having 1 to 20 carbon atoms are preferable from the viewpoint of suppressing yellowing after heating and melting, and organic compounds containing 1 to 20 carbon atoms containing hydrogen atoms and chlorine atoms are preferable. More preferred. The amount of the chain transfer agent is, for example, 0.01 to 50% by weight based on the total of the monomer and chain transfer agent.

本発明の樹脂の製造方法においては、重合方法に制限はないが、例えば、溶液重合、沈殿重合、塊状重合、乳化重合、懸濁重合などの方法を挙げることができる。 In the method for producing the resin of the present invention, there are no limitations on the polymerization method, but examples include methods such as solution polymerization, precipitation polymerization, bulk polymerization, emulsion polymerization, and suspension polymerization.

本発明の製造方法は、重合させる工程において、混合物にさらに有機溶媒を混合することが好ましい。 In the production method of the present invention, it is preferable that an organic solvent is further mixed into the mixture in the polymerization step.

本発明の樹脂の製造方法においては、樹脂粉末の流動性が高く、成型加工機等に対する連続した供給が可能となり、樹脂への溶剤の残留が抑制でき、嵩密度が大きく充填性が増加し、成形加工時の取扱い性に優れた紛体が得られることから、有機溶媒として少なくとも式(7)で表される単量体は溶解し、かつ重合により生じた樹脂の少なくとも一部は溶解せず、樹脂の沈殿を生じる有機溶媒であり、前記重合により生じた樹脂は粒子として有機溶媒中に沈殿する有機溶媒を用いることが好ましい。本発明の樹脂の製造方法において、前記有機溶媒を「沈殿重合溶媒」と記載することがある。前記沈殿重合溶媒を用いることにより、重合反応によって生成した樹脂を、特定の体積平均粒子径を有する粒子として析出させることができ、結果として成形性および充填性に優れる樹脂粒子を製造することができる。また、乳化剤および分散剤などの重合助剤を用いることがないため、透明性や耐熱性を損なう原因となる乳化剤および分散剤を含まない樹脂粒子を製造することができる。 In the resin manufacturing method of the present invention, the resin powder has high fluidity and can be continuously supplied to a molding machine, etc., the residual solvent in the resin can be suppressed, the bulk density is large, the filling property is increased, Since a powder with excellent handling properties during molding processing is obtained, at least the monomer represented by formula (7) is dissolved as an organic solvent, and at least a part of the resin produced by polymerization is not dissolved. It is preferable to use an organic solvent that causes precipitation of the resin, and in which the resin produced by the polymerization precipitates in the form of particles in the organic solvent. In the method for producing a resin of the present invention, the organic solvent may be referred to as a "precipitation polymerization solvent." By using the precipitation polymerization solvent, the resin produced by the polymerization reaction can be precipitated as particles having a specific volume average particle diameter, and as a result, resin particles with excellent moldability and fillability can be produced. . Furthermore, since polymerization aids such as emulsifiers and dispersants are not used, resin particles can be produced that do not contain emulsifiers and dispersants that cause deterioration of transparency and heat resistance.

ここで、沈殿重合溶媒とは、式(1)で表される残基単位を含む樹脂粒子を当該有機溶媒に長時間浸漬した後に樹脂粒子が残存する溶媒を意味する。具体的には一般式(1で表される残基単位を含む重量平均分子量Mwが5×10~70×10の樹脂粒子をこの樹脂粒子に対して10倍量(w/w)の有機溶媒に50℃で5時間以上浸漬した後に、有機溶媒中に肉眼で樹脂粒子の残存が確認できる場合に、当該有機溶媒を沈殿重合溶媒Aとして見なすことができる。沈殿重合溶媒Aは、50℃で5時間以上浸漬した後に前記溶液を25℃に冷却後に、固体状態として残存する樹脂試料を回収し、樹脂試料の重量減少率が20重量%未満である有機溶媒であることが好ましい。樹脂試料の重量減少率は、より好ましくは12重量%未満、さらに好ましくは10重量%未満である。 Here, the precipitation polymerization solvent means a solvent in which resin particles remain after immersing resin particles containing the residue unit represented by formula (1) in the organic solvent for a long time. Specifically, resin particles containing residue units represented by the general formula (1) and having a weight average molecular weight Mw of 5×10 4 to 70×10 4 were added in an amount 10 times (w/w) to the resin particles. If residual resin particles can be seen with the naked eye in the organic solvent after being immersed in the organic solvent at 50°C for 5 hours or more, the organic solvent can be regarded as precipitation polymerization solvent A. Precipitation polymerization solvent A is After cooling the solution to 25 °C after immersion at 5 hours or more at °C, the resin sample remaining in a solid state is recovered, and the organic solvent is preferably an organic solvent in which the weight loss rate of the resin sample is less than 20% by weight.Resin The weight loss rate of the sample is more preferably less than 12% by weight, even more preferably less than 10% by weight.

樹脂重量の減少率は以下の方法により計測できる。上記の冷却後の溶液をフィルターろ過後、フィルター上の固体を該溶媒でリンス洗浄し、アセトンで複数回洗浄後に乾燥し、フィルター上の樹脂試料を回収する。回収した樹脂の重量を計測し、当該有機溶媒に浸漬させた樹脂量から回収樹脂重量を引いた値を、当該有機溶媒に浸漬させた樹脂量で除した値の100分率を樹脂減少率とする。 The rate of decrease in resin weight can be measured by the following method. After the cooled solution is filtered, the solid on the filter is rinsed with the solvent, washed multiple times with acetone and dried, and the resin sample on the filter is collected. Measure the weight of the recovered resin, and calculate the resin reduction rate by dividing the value obtained by subtracting the recovered resin weight from the amount of resin immersed in the organic solvent by the amount of resin immersed in the organic solvent. do.

沈殿重合溶媒としては、アセトン、メチルエチルケトン、ヘキサン、酢酸ブチル等の非ハロゲン系有機溶媒、ジクロロメタン、クロロホルム等の塩素系有機溶媒のほか、分子内にフッ素原子を含む有機溶媒が挙げられる。 Examples of the precipitation polymerization solvent include non-halogen organic solvents such as acetone, methyl ethyl ketone, hexane, and butyl acetate, chlorine organic solvents such as dichloromethane and chloroform, and organic solvents containing fluorine atoms in the molecule.

さらに、沈殿重合溶媒としてはラジカル重合において連鎖移動反応が生じにくく、重合収率に優れ、高分子量体を得やすいことから分子内にフッ素原子と水素原子を含む有機溶媒が好ましい。具体的な、分子内にフッ素原子と水素原子を含む沈殿重合溶媒としては、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタン、1H,1H-ペンタフルオロプロパノール、1H,1H-ヘプタフルオロブタノール、2-パーフルオロブチルエタノール、4,4,4-トリフルオロブタノール、1H,1H,3H-テトラフルオロプロパノール、1H,1H,5H-オクタフルオロプロパノール、1H,1H,7H-ドデカフルオロヘプタノール、1H,1H,3H-ヘキサフルオロブタノール、2,2,3,3,3-ペンタフルオロプロピルジフルオロメチルエーテル、2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチルエチルエーテル、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、ヘキサフルオロイソプロピルメチルエーテル、1,1,3,3,3-ペンタフルオロ-2-トリフルオロメチルプロピルメチルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピルメチルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピルエチルエーテル、2,2,3,4,4,4-ヘキサフルオロブチルジフルオロメチルエーテルなどが挙げられる。 Further, as the precipitation polymerization solvent, an organic solvent containing a fluorine atom and a hydrogen atom in the molecule is preferable because a chain transfer reaction is difficult to occur in radical polymerization, the polymerization yield is excellent, and a high molecular weight product is easily obtained. Specific examples of precipitation polymerization solvents containing fluorine atoms and hydrogen atoms in the molecule include 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 2,2,2-trifluoroethyl ether, and 2,2,2-trifluoroethyl ether. Fluoroethanol, 1,1,1,3,3,3-hexafluoroisopropanol, 1,2,2,3,3,4,4-heptafluorocyclopentane, 1H,1H-pentafluoropropanol, 1H,1H- Heptafluorobutanol, 2-perfluorobutylethanol, 4,4,4-trifluorobutanol, 1H,1H,3H-tetrafluoropropanol, 1H,1H,5H-octafluoropropanol, 1H,1H,7H-dodecafluorohepta alcohol, 1H,1H,3H-hexafluorobutanol, 2,2,3,3,3-pentafluoropropyl difluoromethyl ether, 2,2,3,3,3-pentafluoropropyl-1,1,2,2 -tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl ethyl ether, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, hexafluoroisopropyl methyl ether , 1,1,3,3,3-pentafluoro-2-trifluoromethylpropyl methyl ether, 1,1,2,3,3,3-hexafluoropropyl methyl ether, 1,1,2,3,3 , 3-hexafluoropropylethyl ether, 2,2,3,4,4,4-hexafluorobutyl difluoromethyl ether, and the like.

なかでも、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタンが好ましく、重合収率に優れ、高分子量体を得やすいことから、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタンが好ましい。沈殿重合溶媒の分子内のフッ素原子と水素原子の比率としては、重合収率に優れることから原子の個数比でフッ素原子:水素原子=1:9~9:1であることが好ましく、1:9~7:3であることが更に好ましく、4:6~7:3であることが更に好ましい。沈殿重合溶媒としては、重合収率に優れることから分子内にフッ素原子と水素原子を含み、該溶媒中の水素原子の含有量が該溶媒分子の重量に対し1重量%以上が好ましく、1.5重量%以上が更に好ましい。また、重合収率に優れ、高分子量体を得やすいことから1重量%以上5重量%以下が好ましく、1.5重量%以上4重量%以下が好ましい。また、沈殿重合溶媒としては、重合収率に優れ、高分子量体を得やすいことから分子内に塩素原子を含まないものが好ましい。 Among them, 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro Isopropanol, 1,2,2,3,3,4,4-heptafluorocyclopentane are preferred, and 1,2,2,3,3,4, 4-Heptafluorocyclopentane is preferred. The ratio of fluorine atoms to hydrogen atoms in the molecule of the precipitation polymerization solvent is preferably fluorine atoms:hydrogen atoms=1:9 to 9:1 in terms of the number ratio of atoms, since the polymerization yield is excellent. The ratio is more preferably 9 to 7:3, and even more preferably 4:6 to 7:3. The precipitation polymerization solvent preferably contains a fluorine atom and a hydrogen atom in its molecule, and the content of hydrogen atoms in the solvent is preferably 1% by weight or more based on the weight of the solvent molecule, since it has an excellent polymerization yield.1. More preferably, the amount is 5% by weight or more. Further, since the polymerization yield is excellent and it is easy to obtain a high molecular weight product, the amount is preferably 1% by weight or more and 5% by weight or less, and preferably 1.5% by weight or more and 4% by weight or less. Further, as the precipitation polymerization solvent, one that does not contain a chlorine atom in the molecule is preferable because it has an excellent polymerization yield and is easy to obtain a high molecular weight product.

式(7)で表される単量体と沈殿重合溶媒の比率としては、生産性に優れ、流動特性に優れる粒子が得られることから、重量比で単量体:沈殿重合溶媒=1:99~50:50であることが好ましく、5:95~40:60であることが更に好ましく、5:95~30:70であることが更に好ましい。 The ratio of the monomer represented by formula (7) to the precipitation polymerization solvent is 1:99 by weight (monomer:precipitation polymerization solvent) since particles with excellent productivity and excellent fluidity can be obtained. The ratio is preferably 5:95 to 40:60, even more preferably 5:95 to 30:70.

本発明の製造方法は、式(7)で表される単量体が下記式(9)で表されるパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)であり、式(1)で表される残基単位が式(4)で表されるパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位であることが好ましい。 In the production method of the present invention, the monomer represented by the formula (7) is perfluoro(4-methyl-2-methylene-1,3-dioxolane) represented by the following formula (9), and the monomer represented by the formula ( The residue unit represented by 1) is preferably a perfluoro(4-methyl-2-methylene-1,3-dioxolane) residue unit represented by formula (4).

本発明の方法により製造することで、厚みのある成形品の溶融成形を行う際の黄変が抑制されたフッ素樹脂を得ることができる。さらに、上記特性を発現しながら、分子量分布Mw/Mnが狭いフッ素樹脂を得ることができる。更に、上記特性を発現しながら、フッ素樹脂を優れた収率、生産性で得ることができる。 By manufacturing according to the method of the present invention, it is possible to obtain a fluororesin in which yellowing during melt molding of a thick molded product is suppressed. Furthermore, a fluororesin having a narrow molecular weight distribution Mw/Mn can be obtained while exhibiting the above characteristics. Furthermore, the fluororesin can be obtained with excellent yield and productivity while exhibiting the above characteristics.

以下、本発明を実施例及び比較例によってより具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

[重量平均分子量Mw、分子量分布Mw/Mnの測定]
東ソー(株)製のカラムTSKgel SuperHZM-M、RI検出器を備えたゲルパーミッションクロマトグラフィーを用いて測定を行った。溶離液としてアサヒクリンAK-225(旭硝子株式会社製)に、AK-225に対して10wt%の1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(和光純薬工業製)を添加したものを用いた。標準試料としてAgilent製の標準ポリメタクリル酸メチルを用い、試料と標準試料の溶出時間からポリメタクリル酸メチル換算の重量平均分子量Mw、分子量分布Mw/Mnを算出した。
[Measurement of weight average molecular weight Mw and molecular weight distribution Mw/Mn]
The measurement was performed using a gel permeation chromatography equipped with a column TSKgel SuperHZM-M manufactured by Tosoh Corporation and an RI detector. As an eluent, Asahiklin AK-225 (manufactured by Asahi Glass Co., Ltd.) was added with 10 wt% of 1,1,1,3,3,3-hexafluoro-2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) relative to AK-225. was used. Using standard polymethyl methacrylate manufactured by Agilent as a standard sample, the weight average molecular weight Mw and molecular weight distribution Mw/Mn in terms of polymethyl methacrylate were calculated from the elution times of the sample and the standard sample.

[固体19F-NMRの測定]
Varian製VNMRS-400を用い、磁場強度376.18MHz(19F)で、1.6mmFASTMASプローブを用い、hahn-echo法にて、パルス幅1.3μs、スペクトル幅250kHz(664.6ppm)、スペクトル中心:-120ppm、待ち時間:10秒、MAS回転数:39kHz、積算回数2048回で、PTFE(-122.0ppm)を基準として、フッ素樹脂約10mgを用いて固体19F-NMR測定を実施した。
[Solid 19F -NMR measurement]
Using a VNMRS-400 manufactured by Varian, a magnetic field strength of 376.18 MHz (19F), a 1.6 mm FASTMAS probe, a Hahn-echo method, a pulse width of 1.3 μs, a spectral width of 250 kHz (664.6 ppm), a spectral center: -120 ppm, waiting time: 10 seconds, MAS rotation speed: 39 kHz, and the number of integrations was 2048 times. Solid 19 F-NMR measurements were performed using about 10 mg of fluororesin with PTFE (-122.0 ppm) as a reference.

[固体13C-NMRの測定]
Varian製VNMRS-400を用い、磁場強度100.55MHz(13C)で、4.0mmMASプローブを用い、CP/MAS法にて、スペクトル幅30.5kz、スペクトル中心:77.5ppm、待ち時間:3秒、MAS回転数:10kHz、積算回数4096回で、TMS(0ppm)を基準として、フッ素樹脂約50mgを用いて固体13C-NMR測定を実施した。
[Solid 13C -NMR measurement]
Using VNMRS-400 manufactured by Varian, magnetic field strength 100.55 MHz (13C), 4.0 mm MAS probe, CP/MAS method, spectral width 30.5 kHz, spectral center: 77.5 ppm, waiting time: 3 seconds , MAS rotation speed: 10 kHz, integration number of 4096 times, solid 13 C-NMR measurement was performed using TMS (0 ppm) as a reference using about 50 mg of fluororesin.

[肉厚溶融成形品(φ10mm×H17mm、試験管内280℃24h)の黄色度(YI)の測定]
外径φ13mm、全長100mmのガラス製試験管(日電理化ガラス製、ST-13M)にフッ素樹脂3.0gを入れ、アルミ箔及びアルミキャップ(マルエム、M-1)で試験管の口を覆い、試験管立てに立て、オーブンに入れ、280℃で24h加熱し、その後、放冷することで試験管内に円柱状の樹脂成型品を得た(直径:10mm、高さ:約17mm)。得られた樹脂成型品を試験管に入ったまま、白色の紙の上に試験管を横に倒して置き、PowerShotSX620HS(キヤノン社製)を用いて白色蛍光灯下で上からデジタル写真を撮影し、得られた画像からペイント(マイクロソフト社製画像処理ソフトウェア)を用いて成形品のRGB値を読み取った。読み取ったRGB値を次式
X=0.4124R+0.3576G+0.1805B
Y=0.2126R+0.7152G+0.0722B
Z=0.0193R+0.1192G+0.9505B
によりXYZ表色系の三刺激値X、Y、Zを求めた。X、Y、ZからJIS K7373の方法にのっとり、C光源(補助イルミナントC)における黄色度(YI)を計算し、肉厚溶融成形品(φ10mm×H17mm、試験管内280℃24h)の黄色度(YI)を求めた。
[Measurement of yellowness index (YI) of thick melt-molded product (φ10 mm x H17 mm, in test tube at 280°C for 24 hours)]
Put 3.0 g of fluororesin into a glass test tube (Nichiden Rika Glass, ST-13M) with an outer diameter of 13 mm and a total length of 100 mm, and cover the mouth of the test tube with aluminum foil and an aluminum cap (Maruem, M-1). It was placed in a test tube stand, placed in an oven, heated at 280° C. for 24 hours, and then allowed to cool to obtain a cylindrical resin molded product inside the test tube (diameter: 10 mm, height: approximately 17 mm). With the resulting resin molded product still in the test tube, place the test tube sideways on a piece of white paper, and take a digital photo from above under white fluorescent light using PowerShotSX620HS (manufactured by Canon Inc.). The RGB values of the molded article were read from the obtained image using Paint (image processing software manufactured by Microsoft). The read RGB values are calculated using the following formula: X=0.4124R+0.3576G+0.1805B
Y=0.2126R+0.7152G+0.0722B
Z=0.0193R+0.1192G+0.9505B
The tristimulus values X, Y, and Z of the XYZ color system were determined. Calculate the yellowness (YI) at light source C (auxiliary illuminant C) from X, Y, and Z according to the method of JIS K7373, and calculate the yellowness (YI) of the thick melt-molded product (φ10mm x H17mm, 280°C in a test tube for 24 hours). YI) was calculated.

[薄片溶融成形品(3mm厚、シャーレ内280℃24h)の黄色度(YI)]
内径26.4mmのシャーレ(株式会社フラット製フラットシャーレのフタと受器のセットのうち受器のみ、受器の底部のガラス厚み1mm)にフッ素樹脂2.0gを秤量し、イナートオーブン(ヤマト科学製DN411I)に入れ、エアー気流下(20L/min)で、室温で30分静置した後、30分かけて280℃まで昇温後、280℃で24h加熱した。その後、エアー気流下(20L/min)を維持しながら、オーブンの扉を閉めたままにして、イナートオーブンの電源を切り、12h放冷後、サンプルを取出すことで、シャーレ上に厚さ3mm、直径26.4mmのフッ素樹脂加熱溶融成型品を得た。この時、エアーとしては、コンプレッサーで圧縮した空気を除湿機に通したもの(露点温度-20℃以下)を用いた。得られたフッ素樹脂加熱溶融成形品をシャーレごと、分光光度計(日立ハイテクサイエンス社製U-4100)を用いて、波長200nm~1500nmにおいて、1nm間隔で各波長における透過率を測定した。測定した透過率のデータから波長380nm~780nmにおける5nm間隔のデータを抽出し、JIS Z8701の方法にのっとり、XYZ表色系の三刺激値X、Y、Zを計算した。さらにJIS K7373の方法にのっとり、C光源(補助イルミナントC)における黄色度(YI)を計算し、フッ素樹脂加熱溶融成型品のシャーレ込みの黄色度(YI)を求めた。シャーレ単体(受器のみ)の黄色度(YI)を測定し、フッ素樹脂成型品のシャーレ込みの黄色度(YI)からシャーレ単体(受器のみ)の黄色度(YI)を引くことで、厚さ3mmのフッ素樹脂加熱溶融成型品の黄色度(YI)を求めた。なお、シャーレ単体(受器のみ)の黄色度(YI)は0.21であった。
[Yellowness index (YI) of thin flake melt-molded product (3 mm thickness, 280°C in Petri dish for 24 hours)]
Weighed 2.0 g of fluororesin into a Petri dish with an inner diameter of 26.4 mm (of the flat petri dish lid and receiver set manufactured by Flat Co., Ltd., the glass thickness at the bottom of the receiver is 1 mm), and placed it in an inert oven (Yamato Scientific Co., Ltd.). DN411I) and left to stand at room temperature for 30 minutes under an air stream (20 L/min), then heated to 280°C over 30 minutes, and then heated at 280°C for 24 hours. After that, while maintaining the air flow (20 L/min), keep the oven door closed, turn off the power to the inert oven, let it cool for 12 hours, then take out the sample and place it on a Petri dish with a thickness of 3 mm. A fluororesin heat-melted molded product with a diameter of 26.4 mm was obtained. At this time, the air used was air compressed by a compressor and passed through a dehumidifier (dew point temperature -20°C or lower). Using a spectrophotometer (U-4100, manufactured by Hitachi High-Tech Science Co., Ltd.), the transmittance at each wavelength of the obtained fluororesin heat-melted molded product was measured at 1 nm intervals in a wavelength range of 200 nm to 1500 nm, using a petri dish. Data at 5 nm intervals at a wavelength of 380 nm to 780 nm was extracted from the measured transmittance data, and tristimulus values X, Y, and Z of the XYZ color system were calculated according to the method of JIS Z8701. Further, according to the method of JIS K7373, the yellowness index (YI) in the C light source (auxiliary illuminant C) was calculated, and the yellowness index (YI) of the fluororesin heat-melt molded product including the petri dish was determined. By measuring the yellowness (YI) of the Petri dish alone (receiver only) and subtracting the yellowness (YI) of the Petri dish alone (receiver only) from the yellowness (YI) of the fluororesin molded product including the Petri dish, the thickness can be determined. The yellowness index (YI) of a 3 mm thick fluororesin heat-melted molded product was determined. The yellowness index (YI) of the petri dish alone (receiver only) was 0.21.

[体積平均粒子径の測定]
マイクロトラック・ベル株式会社製マイクロトラックMT3000を用い、分散媒としてメタノ-ルを使用して体積平均粒子径(単位:μm)を測定した。
[Measurement of volume average particle diameter]
The volume average particle diameter (unit: μm) was measured using Microtrac MT3000 manufactured by Microtrac Bell Co., Ltd. and methanol as a dispersion medium.

[実施例1]
パドル型攪拌翼、窒素導入管および温度計を備えた3LのSUS316製オートクレーブの内部を窒素置換した。開始剤であるビス(パーフルオロシクロヘキシルカルボニル)パーオキサイド:2.33g(0.0036モル)をFC-72(スリーエムジャパン社製、パーフルオロヘキサン):230gに溶解した溶液、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン):175g(0.72モル)、重合溶媒としてFC-72:470gを、溶存酸素を除去してオートクレーブに入れ、攪拌下55℃で24時間保持することで溶液重合を行い、樹脂が溶解した粘稠な液を得た。室温まで冷却後アンプルを開封し、粘度調整のため得られた樹脂溶液をFC-72:875gに投入、希釈して樹脂希釈溶液を作製した。撹拌翼を備えたプラカップ内に、ゼオローラH(日本ゼオン社製、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタン、溶媒分子中の水素原子の含有量:1.55重量%、溶媒分子中のフッ素原子:水素原子=7:3(個数比)) 5250gを入れ、攪拌下、前記の樹脂希釈溶液をプラカップに加えることで樹脂を析出させた。析出させた樹脂をろ過により回収して、アセトン洗浄を2回行い、真空乾燥することにより、粉末状のパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂を得た(収率:93%)。
[Example 1]
The inside of a 3L SUS316 autoclave equipped with a paddle-type stirring blade, a nitrogen introduction tube, and a thermometer was purged with nitrogen. A solution in which 2.33 g (0.0036 mol) of bis(perfluorocyclohexyl carbonyl) peroxide as an initiator was dissolved in 230 g of FC-72 (manufactured by 3M Japan Co., Ltd., perfluorohexane), with perfluoro as a monomer. (4-Methyl-2-methylene-1,3-dioxolane): 175 g (0.72 mol) and FC-72: 470 g as a polymerization solvent were placed in an autoclave after removing dissolved oxygen, and heated at 55°C for 24 hours with stirring. Solution polymerization was carried out by holding for a certain period of time, and a viscous liquid in which the resin was dissolved was obtained. After cooling to room temperature, the ampoule was opened, and the resulting resin solution was poured into 875 g of FC-72 to adjust the viscosity and diluted to prepare a diluted resin solution. In a plastic cup equipped with stirring blades, Zeorola H (manufactured by Nippon Zeon Co., Ltd., 1,2,2,3,3,4,4-heptafluorocyclopentane, hydrogen atom content in solvent molecules: 1.55 weight) %, fluorine atoms:hydrogen atoms in solvent molecules = 7:3 (number ratio)), and the resin was precipitated by adding the above diluted resin solution to the plastic cup while stirring. The precipitated resin was collected by filtration, washed twice with acetone, and vacuum-dried to obtain a powdered perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin. rate: 93%).

得られたフッ素樹脂の重量平均分子量は9.5×10、分子量分布Mw/Mnは3.74であった。フッ素樹脂の評価結果を表1に示す。 The weight average molecular weight of the obtained fluororesin was 9.5×10 4 , and the molecular weight distribution Mw/Mn was 3.74. Table 1 shows the evaluation results for the fluororesin.

得られたフッ素樹脂に対して固体19F-NMR測定を行った結果、-140.7ppm、-143.9ppmに、末端のパーフルオロシクロヘキシル基に由来するピークが確認された。-81.3ppmの主鎖ピーク(5F)の積分値500に対し、前記末端基由来のピーク(6F)の積分値は、合計で1.46であった。 As a result of performing solid 19 F-NMR measurement on the obtained fluororesin, peaks derived from the terminal perfluorocyclohexyl group were confirmed at -140.7 ppm and -143.9 ppm. While the integral value of the main chain peak (5F) at -81.3 ppm was 500, the integral value of the peak derived from the terminal group (6F) was 1.46 in total.

また、上記操作中にゼオローラHで樹脂を析出させた際のろ液を乾固させ、固体をアセトン洗浄、真空乾燥することによりオリゴマーを得た。 Moreover, the filtrate obtained when the resin was precipitated with Zeorola H during the above operation was dried to solidity, and the solid was washed with acetone and vacuum-dried to obtain an oligomer.

得られたオリゴマーに対して固体13C-NMR測定を行った結果、91ppmに、ポリマーの末端に直接結合したパーフルオロシクロヘキシル基の1位のF原子に由来するピークが確認された。一方、130~150ppmにおけるカルボニル基の領域にはピークが見られなかった。 As a result of performing solid 13 C-NMR measurement on the obtained oligomer, a peak originating from the F atom at the 1st position of the perfluorocyclohexyl group directly bonded to the end of the polymer was confirmed at 91 ppm. On the other hand, no peak was observed in the carbonyl group region between 130 and 150 ppm.

[実施例2]
パドル型攪拌翼、窒素導入管および温度計を備えた3LのSUS316製オートクレーブの内部を窒素置換した。
[Example 2]
The inside of a 3L SUS316 autoclave equipped with a paddle-type stirring blade, a nitrogen introduction tube, and a thermometer was purged with nitrogen.

開始剤であるビス(パーフルオロシクロヘキシルカルボニル)パーオキサイド0.80g(0.0012モル)をFC-72:80gに溶解した溶液、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン):300g(1.23モル)、重合溶媒としてゼオローラ-H:1120g、連鎖移動剤としてクロロホルム(和光純薬製):33.33g(0.279モル、連鎖移動剤の量:単量体と連鎖移動剤の合計に対し10重量%)を、溶存酸素を除去してオートクレーブに入れ、攪拌下40℃で24時間保持することで沈殿重合を行い、白濁状の、樹脂が重合溶媒に析出したスラリーを得た。スラリーを室温まで冷却し、生成した樹脂粒子を濾別により回収し、アセトンで洗浄し、真空乾燥することより粉末状のパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂を得た(収率:90%)。 A solution of 0.80 g (0.0012 mol) of bis(perfluorocyclohexylcarbonyl) peroxide as an initiator dissolved in 80 g of FC-72, perfluoro(4-methyl-2-methylene-1, 3-dioxolane): 300 g (1.23 mol), Zeolola-H as a polymerization solvent: 1120 g, chloroform (manufactured by Wako Pure Chemical Industries, Ltd.) as a chain transfer agent: 33.33 g (0.279 mol), amount of chain transfer agent: (10% by weight based on the total of polymer and chain transfer agent) was placed in an autoclave after removing dissolved oxygen, and maintained at 40°C for 24 hours with stirring to perform precipitation polymerization, and the resin became a cloudy polymerization solvent. A slurry was obtained. The slurry is cooled to room temperature, the generated resin particles are collected by filtration, washed with acetone, and vacuum dried to obtain powdered perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin. (yield: 90%).

得られたフッ素樹脂の重量平均分子量は8.8×10、分子量分布Mw/Mnは2.48であった。また、得られたフッ素樹脂の体積平均粒子径は26μmであり、粉末の流動性に優れるものであり、実施例1よりも粉末の流動性に優れるものであった。 The weight average molecular weight of the obtained fluororesin was 8.8×10 4 , and the molecular weight distribution Mw/Mn was 2.48. Further, the volume average particle diameter of the obtained fluororesin was 26 μm, and the powder had excellent fluidity, which was better than that of Example 1.

[実施例3]
実施例2により得られたフッ素樹脂の固体19F-NMR測定を行った結果、-140.2ppm、-144.4ppmに、末端のパーフルオロシクロヘキシル基に由来するピークが確認された。-81.3ppmの主鎖ピーク(5F)の積分値500に対し、前記末端基由来のピーク(6F)の積分値は、合計で0.23であった。
[Example 3]
As a result of solid 19 F-NMR measurement of the fluororesin obtained in Example 2, peaks derived from the terminal perfluorocyclohexyl groups were confirmed at -140.2 ppm and -144.4 ppm. While the integral value of the main chain peak (5F) at -81.3 ppm was 500, the integral value of the peak derived from the end group (6F) was 0.23 in total.

[比較例1]
容量75mLのガラスアンプルに開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド:0.173g(0.000410モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン):10.0g(0.0410モル)、重合溶媒としてFC-72:40.0gを入れ、凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した(単量体/溶剤=20/80(wt/wt))。このアンプルを55℃の恒温槽に入れ、24時間保持することによりラジカル溶液重合を行い、樹脂が溶解した粘稠な液を得た。室温まで冷却後アンプルを開封し、得られた樹脂溶液を粘度調整のためFC-72:50gに投入、希釈して樹脂希釈溶液を作製した。撹拌子を備えたビーカーにゼオローラH:240gを入れ、攪拌下、前記の樹脂希釈溶液をビーカーに加えることで樹脂を析出させた。析出させた樹脂をろ過により回収して、アセトン洗浄を2回行い、真空乾燥することにより、塊状のパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂を得た(収率94%)。
[Comparative example 1]
A glass ampoule with a capacity of 75 mL contained 0.173 g (0.000410 mol) of bis(2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator and perfluoro(4-methyl-2 as a monomer). - Methylene-1,3-dioxolane): 10.0 g (0.0410 mol) and FC-72: 40.0 g as a polymerization solvent were added, and after repeated nitrogen substitution and depressurization by freeze degassing, melting was carried out under reduced pressure. It was sealed (monomer/solvent = 20/80 (wt/wt)). This ampoule was placed in a constant temperature bath at 55° C. and maintained for 24 hours to perform radical solution polymerization to obtain a viscous liquid in which the resin was dissolved. After cooling to room temperature, the ampoule was opened, and the resulting resin solution was poured into 50 g of FC-72 to adjust the viscosity and diluted to prepare a diluted resin solution. Zeorola H: 240 g was placed in a beaker equipped with a stirrer, and the resin was precipitated by adding the diluted resin solution to the beaker while stirring. The precipitated resin was collected by filtration, washed twice with acetone, and dried in vacuum to obtain a block of perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin (yield: 94%).

得られたフッ素樹脂の重量平均分子量は21×10、分子量分布Mw/Mnは2.8あった。また、得られたフッ素樹脂は塊状であり、粉末の流動性に劣るものであった。フッ素樹脂の評価結果を表1に示す。 The weight average molecular weight of the obtained fluororesin was 21×10 4 and the molecular weight distribution Mw/Mn was 2.8. Furthermore, the obtained fluororesin was in the form of lumps and had poor powder fluidity. Table 1 shows the evaluation results for the fluororesin.

フッ素樹脂の固体19F-NMR測定を行ったところ、-140~142ppm、-143~145ppmに極大を示すピークは検出されなかった。上記操作でゼオローラHに樹脂を析出させたろ液を乾固させ、固体をアセトン洗浄、真空乾燥後、得られたオリゴマーを固体13C-NMR測定したところ、80~100ppmの領域にはピークが確認されなかった。また、139ppmおよび143ppmにカルボニル基のピークが検出された。 When the solid 19 F-NMR measurement of the fluororesin was performed, no peaks showing maxima at -140 to 142 ppm and -143 to 145 ppm were detected. The filtrate in which the resin was precipitated on Zeorola H by the above procedure was dried, the solid was washed with acetone, and after vacuum drying, the obtained oligomer was subjected to solid 13C -NMR measurement, and a peak was confirmed in the 80 to 100 ppm region. It wasn't done. Furthermore, peaks of carbonyl groups were detected at 139 ppm and 143 ppm.

[比較例2]
磁気撹拌子を備えた直径30mmのガラスアンプルに開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド:0.0865g(0.000205モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン):10.0g(0.0205モル)、重合溶媒としてゼオローラ-H(日本ゼオン製、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタン):40.0g、連鎖移動剤としてクロロホルム(和光純薬製):1.111g(0.00931モル)を入れ、凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した(連鎖移動剤の量:単量体と連鎖移動剤の合計に対し10重量%)。このアンプルが直立した状態で磁気撹拌子をスターラーにより撹拌しながら、55℃で24時間保持することにより沈殿重合を行ったところ、白濁し、樹脂が重合溶媒に析出したスラリーが得られた。室温まで冷却後アンプルを開封し、生成した樹脂粒子を含む液を濾別し、アセトンで洗浄し、真空乾燥することより粒子状のパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂を得た(収率:82%)。
[Comparative example 2]
Bis(2,3,4,5,6-pentafluorobenzoyl) peroxide: 0.0865 g (0.000205 mol) as initiator, perfluoromonomer as monomer in a glass ampoule with a diameter of 30 mm equipped with a magnetic stirrer. (4-methyl-2-methylene-1,3-dioxolane): 10.0 g (0.0205 mol), Zeorola-H (Nippon Zeon, 1,2,2,3,3,4,4 - Heptafluorocyclopentane): 40.0 g, chloroform (Wako Pure Chemical Industries, Ltd.): 1.111 g (0.00931 mol) as a chain transfer agent, and after repeated nitrogen substitution and depressurization by freeze degassing, the pressure was reduced. (Amount of chain transfer agent: 10% by weight based on the total of monomer and chain transfer agent). Precipitation polymerization was carried out by holding the ampoule upright at 55° C. for 24 hours while stirring with a magnetic stirrer, resulting in a slurry that became cloudy and the resin precipitated in the polymerization solvent. After cooling to room temperature, the ampoule is opened, the liquid containing the generated resin particles is filtered, washed with acetone, and vacuum dried to obtain particulate perfluoro(4-methyl-2-methylene-1,3-dioxolane). ) Resin was obtained (yield: 82%).

得られたフッ素樹脂の重量平均分子量は9.6×10、分子量分布Mw/Mnは2.6であった。 The weight average molecular weight of the obtained fluororesin was 9.6×10 4 , and the molecular weight distribution Mw/Mn was 2.6.

[比較例3]
容量75mLのガラスアンプルに開始剤として(CFCFCFCOO):0.52g(0.0012モル)をFC-72:52gで希釈した溶液、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン):30.0g(0.12モル)を入れ、凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した。このアンプルを25℃で24時間保持することによりラジカル重合を行った。アンプルを開封し、内容物を撹拌下、ヘキサン600gの入ったビーカーに入れ、ろ過で固体を回収後、アセトンで2回洗浄し、真空乾燥することにより、塊状のパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂を得た(収率18%)。フッ素樹脂の評価結果を表1に示す。得られたフッ素樹脂の重量平均分子量は86×10、分子量分布Mw/Mnは26.2であった。収率が非常に低く、また、分子量分布が非常に大きいものであった。
[Comparative example 3]
A solution of 0.52 g (0.0012 mol) of (CF 3 CF 2 CF 2 COO) 2 diluted with 52 g of FC-72 as an initiator in a glass ampoule with a volume of 75 mL, and perfluoro(4-methyl) as a monomer. -2-methylene-1,3-dioxolane): 30.0 g (0.12 mol) was added, and after repeated nitrogen substitution and depressurization by freeze degassing, the mixture was sealed under reduced pressure. Radical polymerization was carried out by holding this ampoule at 25° C. for 24 hours. The ampoule was opened, the contents were poured into a beaker containing 600 g of hexane under stirring, and the solid was collected by filtration, washed twice with acetone, and vacuum dried to form a lump of perfluoro(4-methyl-2 -methylene-1,3-dioxolane) resin was obtained (yield 18%). Table 1 shows the evaluation results for the fluororesin. The weight average molecular weight of the obtained fluororesin was 86×10 4 , and the molecular weight distribution Mw/Mn was 26.2. The yield was very low and the molecular weight distribution was very wide.

[比較例4]
撹拌子を備えた重合用ガラス管に単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン):4.8g(0.020モル)、溶媒としてジクロロペンタフルオロプロパン(AGC社製、AK-225):3mL、乳化剤としてパーフルオロオクタン酸アンモニウム:0.21g、pH調整剤としてNaHPO・7HO:0.24g、開始剤として(NH:0.15g、そして、溶媒としてNで脱気した蒸留水:50mLを仕込んだ。この溶液の上に存在するヘッドスペースをNでパージした後、N微加圧状態とした。次に、この管の内容物を撹拌子で撹拌しながら75℃で5時間加熱した。その結果として生じた反応混合物をHCl水溶液(6.3M):80mLで処理することでポリマーを沈殿させた。このポリマーを蒸留水200mLで3回洗浄後、アセトン200mLで3回洗浄した。次に、このポリマーを真空オーブンに入れて真空(150mmHg)下150℃で24時間乾燥させ、白色粉末状のポリマーを得た(収率:3%)。上記の重合から乾燥までの操作を別途、更に2回行い、得られたポリマーを混合することで評価用のポリマーを得た。得られたポリマーの評価結果を表2に示す。得られたフッ素樹脂の重量平均分子量は34×10、分子量分布Mw/Mnは25であった。収率が非常に低く、また、分子量分布が非常に大きいものであった。フッ素樹脂の固体19F-NMR測定を行ったところ、-140~142ppm、-143~145ppmに極大を示すピークは検出されなかった。
[Comparative example 4]
In a polymerization glass tube equipped with a stirring bar, 4.8 g (0.020 mol) of perfluoro(4-methyl-2-methylene-1,3-dioxolane) was added as a monomer, and dichloropentafluoropropane (AGC) was added as a solvent. AK-225): 3 mL, ammonium perfluorooctanoate: 0.21 g as an emulsifier, Na 2 HPO 4.7H 2 O: 0.24 g as a pH adjuster, (NH 4 ) 2 S 2 O as an initiator. 8 : 0.15 g, and 50 mL of distilled water degassed with N 2 as a solvent were charged. The headspace above this solution was purged with N 2 and then subjected to slight N 2 pressurization. The contents of this tube were then heated at 75° C. for 5 hours while stirring with a stir bar. The polymer was precipitated by treating the resulting reaction mixture with 80 mL of aqueous HCl (6.3 M). This polymer was washed three times with 200 mL of distilled water and then three times with 200 mL of acetone. Next, this polymer was placed in a vacuum oven and dried at 150° C. under vacuum (150 mmHg) for 24 hours to obtain a white powdery polymer (yield: 3%). The above operations from polymerization to drying were separately performed twice more, and the resulting polymers were mixed to obtain a polymer for evaluation. Table 2 shows the evaluation results of the obtained polymer. The weight average molecular weight of the obtained fluororesin was 34×10 4 and the molecular weight distribution Mw/Mn was 25. The yield was very low and the molecular weight distribution was very wide. When the solid 19 F-NMR measurement of the fluororesin was performed, no peaks showing maxima at -140 to 142 ppm and -143 to 145 ppm were detected.

[比較例5]
容量75mLのガラスアンプルに単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン):10.0g(0.041モル)、溶媒としてAK-225:35g、開始剤として4,4-ビス(t-ブチルシクロヘキシル)パーオキシジカーボネート(日油製、パーロイルTCP):0.02gを仕込んだ。凍結脱気による窒素置換と抜圧を繰り返したのち減圧状態で熔封した。このアンプルを恒温振盪機で振とう下60℃で3時間加熱した。このアンプルから取り出したポリマーを真空(150mmHg)下100℃で24時間乾燥させることによりポリマーを得た(収率:76%)。上記の重合から乾燥までの操作を別途、更に2回行い、得られたポリマーを混合することで評価用のポリマーを得た。得られたポリマーの評価結果を表2に示す。得られたフッ素樹脂の重量平均分子量は12×10、分子量分布Mw/Mnは1.8であった。フッ素樹脂の固体19F-NMR測定を行ったところ、-140~142ppm、-143~145ppmに極大を示すピークは検出されなかった。
[Comparative example 5]
In a glass ampoule with a capacity of 75 mL, perfluoro(4-methyl-2-methylene-1,3-dioxolane): 10.0 g (0.041 mol) as a monomer, AK-225: 35 g as a solvent, and 4 as an initiator. , 0.02 g of 4-bis(t-butylcyclohexyl) peroxydicarbonate (Perloyl TCP, manufactured by NOF Corporation) was charged. After repeating nitrogen substitution and depressurization by freezing and degassing, it was melted under reduced pressure. This ampoule was heated at 60° C. for 3 hours while shaking in a thermostatic shaker. The polymer taken out from this ampoule was dried at 100° C. under vacuum (150 mmHg) for 24 hours to obtain a polymer (yield: 76%). The above operations from polymerization to drying were separately performed twice more, and the resulting polymers were mixed to obtain a polymer for evaluation. Table 2 shows the evaluation results of the obtained polymer. The weight average molecular weight of the obtained fluororesin was 12×10 4 , and the molecular weight distribution Mw/Mn was 1.8. When the solid 19 F-NMR measurement of the fluororesin was performed, no peaks showing maxima at -140 to 142 ppm and -143 to 145 ppm were detected.

[比較例6]
比較例2により得られたフッ素樹脂の固体19F-NMR測定を行ったところ、-140~142ppm、-143~145ppmに極大を示すピークは検出されなかった。
[Comparative example 6]
When the fluororesin obtained in Comparative Example 2 was subjected to solid 19F -NMR measurement, no peaks having maxima at -140 to 142 ppm and -143 to 145 ppm were detected.

[比較例7]
比較例3により得られたフッ素樹脂の固体19F-NMR測定を行ったところ、-140~142ppm、-143~145ppmに極大を示すピークは検出されなかった。
[Comparative Example 7]
When the fluororesin obtained in Comparative Example 3 was subjected to solid 19F -NMR measurement, no peaks having maxima at -140 to 142 ppm and -143 to 145 ppm were detected.

[参考例1]
実施例2で得られた樹脂粒子を10倍量の各種溶媒に50℃で5時間浸漬し、樹脂粒子が残存するかを肉眼で観察した。
[Reference example 1]
The resin particles obtained in Example 2 were immersed in 10 times the amount of various solvents at 50° C. for 5 hours, and whether the resin particles remained was visually observed.

・樹脂粒子の残存が肉眼で確認された有機溶媒は以下の通りである:
1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタン、クロロホルム。
・The organic solvents in which residual resin particles were visually confirmed are as follows:
1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoroisopropanol, 1 , 2,2,3,3,4,4-heptafluorocyclopentane, chloroform.

その後、25℃に冷却し、フィルターろ過後、該溶媒によりリンス洗浄することにより樹脂粒子を取出した後、樹脂粒子を10倍量のアセトンで2回洗浄し、真空乾燥し、乾燥重量から回収率を求めたところ、いずれも回収率は90%以上であった。また、上記で得られたろ液を留去し、ろ液中の固形分量を求めたところ、用いた樹脂粒子に対しろ液中の固形分量は10%未満であった。上記の結果より、樹脂重量の重量減少率は10重量%未満であることが確認された。 Thereafter, the resin particles were cooled to 25°C, filtered through a filter, and rinsed with the solvent to remove the resin particles. The resin particles were washed twice with 10 times the amount of acetone, vacuum dried, and the recovery rate was determined from the dry weight. The recovery rate was over 90% in all cases. Further, when the filtrate obtained above was distilled off and the solid content in the filtrate was determined, the solid content in the filtrate was less than 10% based on the resin particles used. From the above results, it was confirmed that the weight reduction rate of the resin weight was less than 10% by weight.

本発明のフッ素樹脂は実施例1~2に示すように、比較例1~3に比べ、肉厚溶融成形品(φ10mm×H17mm、試験管内280℃24h)の黄色度が小さく、厚みのある成形体であっても黄変が抑制されている。 As shown in Examples 1 and 2, the fluororesin of the present invention has a lower degree of yellowness in thick-walled melt-molded products (φ10 mm x H17 mm, 24 hours at 280°C in a test tube) compared to Comparative Examples 1 and 3, and thick molded products. Yellowing of the body is also suppressed.

本発明のフッ素樹脂の製造方法は、比較例3の方法に比べて収率が高く、実施例1~2に示すように、80%以上の収率でフッ素樹脂を製造することができ、条件によっては85%以上、更には90%以上の収率でフッ素樹脂を製造することができる。 The method for producing a fluororesin of the present invention has a higher yield than the method of Comparative Example 3, and as shown in Examples 1 and 2, it is possible to produce a fluororesin at a yield of 80% or more. Depending on the method, fluororesin can be produced with a yield of 85% or more, or even 90% or more.

本発明のフッ素樹脂の製造方法で得られるフッ素樹脂は、試験管内280℃24h加熱品の黄色度が改善されているとともに、比較例3の方法に比べて分子量分布が狭く、分子量分布Mw/Mnが5以下、条件によっては4以下、更には3以下のフッ素樹脂を製造することができる。 The fluororesin obtained by the fluororesin manufacturing method of the present invention has improved yellowness when heated in a test tube at 280°C for 24 hours, and has a narrower molecular weight distribution compared to the method of Comparative Example 3, and the molecular weight distribution Mw/Mn It is possible to produce a fluororesin in which the number is 5 or less, 4 or less depending on the conditions, or even 3 or less.

本発明のフッ素樹脂は、フッ素樹脂に関連する分野において有用である。 The fluororesin of the present invention is useful in fields related to fluororesins.

Claims (4)

下記式(1)で表される残基単位と、下記式(2)で表される末端基を含む、フッ素樹脂。
(式(1)中、Rf、Rf、Rf、Rfは、それぞれ独立して、フッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示し、前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよく、また、Rf、Rf、Rf、Rfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
(式(2)中、iは3~20の整数である)
A fluororesin containing a residue unit represented by the following formula (1) and a terminal group represented by the following formula (2).
(In formula (1), Rf 1 , Rf 2 , Rf 3 , and Rf 4 are each independently a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, and a branched chain having 3 to 7 carbon atoms. Rf 1 , Rf 2 , Rf 3 , and Rf 4 may be linked to each other to form a ring having 4 to 8 carbon atoms, and the ring may contain an etheric oxygen atom.)
(In formula (2), i is an integer from 3 to 20)
式(2)で表される末端基が下記式(3)で表される構造である、請求項1に記載のフッ素樹脂。
The fluororesin according to claim 1, wherein the terminal group represented by formula (2) has a structure represented by formula (3) below.
固体19F-NMRスペクトル解析において、-140ppm以上142ppm以下、及び、-143以上145ppm以下の範囲それぞれに極大を示すピークを示す、請求項1または2に記載のフッ素樹脂。 The fluororesin according to claim 1 or 2, which exhibits maximum peaks in the ranges of -140 to 142 ppm and -143 to 145 ppm in solid 19F -NMR spectrum analysis. 前記フッ素樹脂が粉末状であり、体積平均粒子径が1~1000μmである、請求項1乃至3いずれか一項に記載のフッ素樹脂。 The fluororesin according to any one of claims 1 to 3, wherein the fluororesin is in powder form and has a volume average particle diameter of 1 to 1000 μm.
JP2023202064A 2020-03-26 2023-11-29 Fluororesin Pending JP2024023453A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020055770 2020-03-26
JP2020055770 2020-03-26
JP2021049844A JP2021155735A (en) 2020-03-26 2021-03-24 Fluororesin and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021049844A Division JP2021155735A (en) 2020-03-26 2021-03-24 Fluororesin and method for producing the same

Publications (2)

Publication Number Publication Date
JP2024023453A true JP2024023453A (en) 2024-02-21
JP2024023453A5 JP2024023453A5 (en) 2024-08-09

Family

ID=77917336

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021049844A Pending JP2021155735A (en) 2020-03-26 2021-03-24 Fluororesin and method for producing the same
JP2023202064A Pending JP2024023453A (en) 2020-03-26 2023-11-29 Fluororesin

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021049844A Pending JP2021155735A (en) 2020-03-26 2021-03-24 Fluororesin and method for producing the same

Country Status (1)

Country Link
JP (2) JP2021155735A (en)

Also Published As

Publication number Publication date
JP2021155735A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US20240076426A1 (en) Fluororesin, fluororesin particles, and methods for producing these
JPH08501821A (en) Iodine-containing chain transfer agent for fluoromonomer polymerization
JP2024086844A (en) Fluororesin and method for producing the same
JP7339830B2 (en) Fluororesin particles and method for producing the same
US20240158551A1 (en) Fluororesin
US20240141081A1 (en) Fluororesin, and method for producing same
CN112771086B (en) Fluororesin, fluororesin particle, and method for producing same
JP2024023453A (en) Fluororesin
JP2024023454A (en) Fluororesin
JP7566085B2 (en) Fluorine resin and its manufacturing method
JP2024009301A (en) Manufacturing method of optical resin composition
JP2023159307A (en) Fluororesin particle and method for producing the same
JP7338169B2 (en) Method for producing fluororesin
JP7583521B2 (en) Manufacturing method of fluororesin
WO2015046569A1 (en) Fluorine-containing copolymer
JP2024138550A (en) Fluorine resin
JP2020164781A (en) Fluororesin and method for producing the same
CN112805308A (en) Fluororesin, method for producing same, and method for producing fluororesin particles
JP2022045902A (en) Fluorine resin and method for manufacturing the same
CN118496406A (en) Amorphous fluorine polymer and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240801