JP2024021808A - Catalytic body and method for manufacturing the same - Google Patents
Catalytic body and method for manufacturing the same Download PDFInfo
- Publication number
- JP2024021808A JP2024021808A JP2022124906A JP2022124906A JP2024021808A JP 2024021808 A JP2024021808 A JP 2024021808A JP 2022124906 A JP2022124906 A JP 2022124906A JP 2022124906 A JP2022124906 A JP 2022124906A JP 2024021808 A JP2024021808 A JP 2024021808A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- substance
- segregated
- catalyst layer
- catalytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 title claims description 11
- 230000003197 catalytic effect Effects 0.000 title abstract description 24
- 239000003054 catalyst Substances 0.000 claims abstract description 143
- 239000000126 substance Substances 0.000 claims abstract description 52
- 239000000463 material Substances 0.000 claims description 136
- 239000000725 suspension Substances 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 9
- 229910010272 inorganic material Inorganic materials 0.000 claims description 8
- 150000002484 inorganic compounds Chemical class 0.000 claims description 6
- 238000006555 catalytic reaction Methods 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract 1
- 239000000376 reactant Substances 0.000 abstract 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 39
- 239000010410 layer Substances 0.000 description 37
- 229910052697 platinum Inorganic materials 0.000 description 28
- 229910052741 iridium Inorganic materials 0.000 description 24
- 229910052715 tantalum Inorganic materials 0.000 description 23
- 229910052750 molybdenum Inorganic materials 0.000 description 22
- 229910052707 ruthenium Inorganic materials 0.000 description 22
- 229910052721 tungsten Inorganic materials 0.000 description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 20
- 229910052720 vanadium Inorganic materials 0.000 description 20
- 239000010949 copper Substances 0.000 description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 19
- 239000000758 substrate Substances 0.000 description 19
- 239000011651 chromium Substances 0.000 description 18
- 229910052802 copper Inorganic materials 0.000 description 18
- 229910052742 iron Inorganic materials 0.000 description 18
- 229910052726 zirconium Inorganic materials 0.000 description 18
- 229910052804 chromium Inorganic materials 0.000 description 17
- 229910052759 nickel Inorganic materials 0.000 description 16
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 16
- 229910052763 palladium Inorganic materials 0.000 description 13
- 238000003887 surface segregation Methods 0.000 description 13
- 239000011572 manganese Substances 0.000 description 10
- 229910052748 manganese Inorganic materials 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 239000010948 rhodium Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 229910052746 lanthanum Inorganic materials 0.000 description 6
- 229910052703 rhodium Inorganic materials 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- -1 etc. Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 229910052712 strontium Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- UNJPQTDTZAKTFK-UHFFFAOYSA-K cerium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ce+3] UNJPQTDTZAKTFK-UHFFFAOYSA-K 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- VZDYWEUILIUIDF-UHFFFAOYSA-J cerium(4+);disulfate Chemical compound [Ce+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VZDYWEUILIUIDF-UHFFFAOYSA-J 0.000 description 1
- 229910000355 cerium(IV) sulfate Inorganic materials 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 238000005324 grain boundary diffusion Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、触媒物質の使用量と反応効率が最適とされた触媒体及びその製造方法に関するものである。 The present invention relates to a catalyst body in which the amount of catalyst material used and reaction efficiency are optimized, and a method for manufacturing the same.
基材上に触媒物質と担持物質とからなる触媒層が形成された触媒体は、例えば、特許文献1(特開2012-240002号公報)では、白金または白金合金からなる白金粒子の表面、または、白金粒子を担持した導電性担体の白金粒子の表面に銅層を被覆した触媒を、外部電源を用いることなく、容易に量産することを目的として、銅イオンを含む酸水溶液を、白金粒子または導電性担体で懸濁した懸濁液に銅材を浸漬し、白金粒子の表面に銅層を析出させる析出工程と、該析出工程に合わせて、析出工程における白金粒子の表面の銅層の析出状態を評価する評価工程と、参照極と、白金または白金合金からなる作用極とを懸濁液に浸漬する浸漬工程と、懸濁液を攪拌して、作用極の表面に銅層を析出させながら、参照極に対する作用極の電位が一定電位となるまでの時間を測定する測定工程と、該測定工程後の前記作用極に析出した銅層を除去する除去工程とからなる一連の工程を、繰り返し行って測定工程における測定時間毎の変化量に基づいて、析出工程を終了して得ることが開示されている。 For example, in Patent Document 1 (Japanese Unexamined Patent Publication No. 2012-240002), a catalyst body in which a catalyst layer consisting of a catalyst substance and a supporting substance is formed on a base material is a catalyst layer formed on the surface of platinum particles made of platinum or a platinum alloy, or In order to easily mass-produce a catalyst in which the surface of the platinum particles of a conductive carrier supporting platinum particles is coated with a copper layer without using an external power source, an acid aqueous solution containing copper ions is applied to the platinum particles or A precipitation step in which a copper material is immersed in a suspension suspended in a conductive carrier to deposit a copper layer on the surface of the platinum particles, and in conjunction with the precipitation step, a copper layer is deposited on the surface of the platinum particles in the precipitation step. An evaluation step for evaluating the condition, an immersion step for immersing the reference electrode and a working electrode made of platinum or a platinum alloy in a suspension, and stirring the suspension to deposit a copper layer on the surface of the working electrode. However, a series of steps consisting of a measuring step of measuring the time until the potential of the working electrode with respect to the reference electrode becomes a constant potential, and a removing step of removing the copper layer deposited on the working electrode after the measuring step, It is disclosed that the precipitation process is completed and obtained based on the amount of change at each measurement time in the measurement process by repeating the measurement process.
また、例えば、特許文献2(特開平5-220394号公報)では、酸素吸蔵能が大きく、担体へ分散性よく酸化セリウムを担持可能とすることを目的として、硫酸第二セリウムとアルミナ粉末との懸濁液にアルカリを加えて加水分解により水酸化セリウムをアルミナ粉末表面に析出させる際、反応液のpHが12.0以下で水酸化セリウムをアルミナ粉末表面に析出せしめる反応を終了させ、表面に析出した水酸化セリウムを有するアルミナ粉末を洗浄、乾燥、焼成することが開示されている。 For example, in Patent Document 2 (Japanese Unexamined Patent Publication No. 5-220394), ceric sulfate and alumina powder are combined to have a large oxygen storage capacity and to be able to support cerium oxide with good dispersibility on a carrier. When an alkali is added to the suspension and cerium hydroxide is precipitated on the surface of the alumina powder by hydrolysis, the reaction to precipitate cerium hydroxide on the alumina powder surface is completed when the pH of the reaction solution is 12.0 or less, and the surface It is disclosed that alumina powder having precipitated cerium hydroxide is washed, dried and calcined.
上記のとおり、従来、触媒体を得るために、触媒物質と担持物質などによる懸濁液を用いたり、担持物質に触媒物質を析出させたりすることは公知技術となっている。 As mentioned above, conventionally, in order to obtain a catalytic body, it is a known technique to use a suspension of a catalytic material and a supporting material, or to precipitate a catalytic material on a supporting material.
しかしながら、従来の手法においては、次の問題があった。従来の手法では、一口に析出と言っても、その析出物がどこに現れるのか、また、どういう性状(状態)で現れるのか、によって触媒効率が左右される点が考慮されていないという問題がある。 However, the conventional method has the following problems. Conventional methods have the problem of not taking into account that catalytic efficiency is influenced by where the precipitates appear and what kind of properties (states) they appear in.
例えば気相中の触媒反応において、析出物すなわち触媒物質が触媒層の下層部に現れる場合は、触媒反応させるべき被触媒物質との接触が不十分になるし、触媒物質が担持物質の内部に分散して現れる場合は、接触面以外の内部位置に析出している触媒物質は触媒反応に寄与せず、無駄となる。 For example, in a catalytic reaction in the gas phase, if a precipitate, that is, a catalytic substance appears in the lower layer of the catalyst layer, contact with the catalyzed substance to be catalyzed will be insufficient, and the catalytic substance will not be absorbed into the interior of the supported material. If the catalyst material appears dispersed, the catalyst material deposited at internal locations other than the contact surface does not contribute to the catalytic reaction and is wasted.
特に昨今注目されている触媒反応の多くに用いられている触媒物質は、いわゆる貴金属やレアメタルに属する希少非金属であることから、触媒物質の最小限の使用で最大限の触媒反応を得ることは重大な関心事とされているが、従来では容易に量産するために、触媒層に触媒物質を均等に分散させたりするにとどまっていた。 In particular, the catalytic materials used in many of the catalytic reactions that are attracting attention these days are rare non-metals that belong to the so-called noble metals and rare metals, so it is difficult to obtain the maximum catalytic reaction with the minimum use of catalytic materials. Although this is considered to be a serious concern, in the past, the only way to facilitate mass production was to uniformly disperse the catalyst material in the catalyst layer.
解決しようとする問題は、従来の触媒及び製造方法では、触媒物質量の最小限の使用で最大限の触媒反応性を得るには至っていなかった点である。 The problem sought to be solved is that conventional catalysts and manufacturing methods do not provide maximum catalytic reactivity with the minimum amount of catalytic material used.
上記課題を解決するため、本発明の触媒体は、触媒物質と担持物質とからなる触媒層が形成された触媒体において、前記触媒物質が前記触媒層の表面に偏析した構成とした。 In order to solve the above problems, the catalyst body of the present invention has a structure in which the catalyst substance is segregated on the surface of the catalyst layer in the catalyst body in which a catalyst layer consisting of a catalyst substance and a supporting substance is formed.
また、上記課題を解決するため、本発明の触媒体の製造方法は、基材の表面に、触媒物質と担持物質とからなる触媒層が形成された触媒体の製造方法であって、触媒物質と担持物質の懸濁液を作成し、この懸濁液により基材の表面に、触媒物質が表面偏析させた触媒層を形成することとした。 Further, in order to solve the above problems, the method for manufacturing a catalyst body of the present invention is a method for manufacturing a catalyst body in which a catalyst layer consisting of a catalyst material and a supporting material is formed on the surface of a base material, the method comprising: A suspension of the supported material was prepared, and a catalyst layer in which the catalyst material was segregated on the surface was formed using this suspension on the surface of the substrate.
本発明によれば、触媒層において、触媒物質が被触媒物質と接触する表面に偏析しているので、該触媒層の内部に触媒反応に寄与しない無駄な触媒物質が存在せず、よって必要最低限の触媒物質を有効かつ最大に使用することができる。 According to the present invention, in the catalyst layer, the catalyst substance is segregated on the surface that contacts the catalyzed substance, so there is no wasteful catalyst substance that does not contribute to the catalytic reaction inside the catalyst layer, and therefore the necessary minimum catalytic material can be used effectively and maximally.
本発明は、必要最低限の触媒物質を有効かつ最大の性能で使用するという目的を、基材の表面に、触媒物質と担持物質とからなる触媒層が形成された触媒体において、前記触媒物質が前記触媒層の表面に偏析した状態とすることで達成した。 The present invention aims to use the minimum necessary amount of catalytic material effectively and with maximum performance in a catalytic body in which a catalytic layer consisting of a catalytic material and a supporting material is formed on the surface of a base material. This was achieved by making it segregated on the surface of the catalyst layer.
また、本発明は、上記触媒体を得るために、基材の表面に、触媒物質と担持物質とからなる触媒層が形成された触媒体の製造方法であって、触媒物質と担持物質の懸濁液を作成し、この懸濁液により基材の表面に、触媒物質が表面偏析させた触媒層を形成することとした。 The present invention also provides a method for producing a catalyst body in which a catalyst layer consisting of a catalyst substance and a supported substance is formed on the surface of a base material in order to obtain the above-mentioned catalyst body, wherein the catalyst substance and the supported substance are suspended. A suspension was prepared, and a catalyst layer in which the catalyst substance was segregated on the surface was formed using this suspension on the surface of the substrate.
本発明の原理と機序について説明する。
表面偏析とは、学術用語としては「析出」のうち、表面に偏って析出した状態を意味する。本願発明においては、触媒物質と担持物質(及び無機物質:請求項2,4)でなる触媒層において、担持物質中の該触媒物質が基材と反対の面(以下、これを「表面」という)に偏って析出することを意味する。析出状態と表面偏析のイメージを図1(a)(b)に各々示す。
The principle and mechanism of the present invention will be explained.
Surface segregation, as an academic term, means a state in which precipitation is concentrated on the surface. In the present invention, in the catalyst layer consisting of a catalyst material and a supporting material (and an inorganic material: claims 2 and 4), the catalyst material in the supporting material is on the surface opposite to the base material (hereinafter referred to as "surface"). ) means that the precipitation is concentrated. Images of the precipitation state and surface segregation are shown in FIGS. 1(a) and 1(b), respectively.
まず、表面偏析を生じた触媒体は、それ自体で、内部への析出状態よりも触媒物質が単位面積当たりにおいて多く表面に現れるにつれて触媒反応の効率は良くなる傾向にあるが、ある一定量を超えて、極端には、表面一面に触媒物質が偏析すると、図1(b)に示すように、表面の触媒物質同士により原子レベルで安定した状態となって活性な原子の数が減り、被触媒物質との触媒反応効率が低下する。また、図1(b)の状態であると、触媒層の内部(表面の層に対して下層)に残留した被触媒物質と接触しない触媒物質が無駄となる。 First, in a catalyst body that has surface segregation, the efficiency of the catalytic reaction tends to improve as more catalytic material appears on the surface per unit area than in the state where it is precipitated inside. In extreme cases, when catalyst substances segregate over the entire surface, as shown in Figure 1(b), the catalyst substances on the surface become stable at the atomic level, reducing the number of active atoms and increasing the number of exposed atoms. The efficiency of the catalytic reaction with the catalytic material decreases. Further, in the state shown in FIG. 1(b), the catalyst material that does not come into contact with the catalytic material remaining inside the catalyst layer (the layer below the surface layer) is wasted.
本発明は、図2に示すように、触媒層の内部に触媒物質が若干は残留するとしても、表面において分散させることができる程度の量の触媒物質を使用して、そのほとんどを被触媒物質との触媒反応に寄与させることができるように構成した。この結果、使用する触媒物質の量を(従来に比べて)少なくして必要十分な触媒反応が得られること、つまりは、触媒物質の使用量に対して最大効率の触媒反応が得られる。 As shown in FIG. 2, in the present invention, even if some catalyst material remains inside the catalyst layer, an amount of the catalyst material that can be dispersed on the surface is used, and most of the catalyst material is transferred to the catalyzed material. It was constructed so that it could contribute to the catalytic reaction with. As a result, a necessary and sufficient catalytic reaction can be obtained with a reduced amount of catalyst material used (compared to conventional methods), that is, a catalytic reaction with maximum efficiency can be obtained for the amount of catalyst material used.
すなわち、本発明は、触媒物質と担持物質とからなる触媒層が形成された触媒体において、触媒層の表面に触媒物質が表面偏析した状態となったものである。 That is, the present invention is a catalyst body in which a catalyst layer consisting of a catalyst material and a supporting material is formed, in which the catalyst material is segregated on the surface of the catalyst layer.
本発明は、吉武道子、「表面偏析予測のシミュレーション-SurfSeg:真空および酸素雰囲気下」(表面科学 Vol. 34、No. 7、pp. 340-345、2013)を参照した(以下、「参考文献」という)。すなわち、本発明は、参考文献やSurfSeg を参照し、ここから確実かつ容易に表面偏析が生じる物質の組み合わせが把握できる条件を見出した。 The present invention referred to Michiko Yoshibu, "Simulation of surface segregation prediction - SurfSeg: under vacuum and oxygen atmosphere" (Surface Science Vol. 34, No. 7, pp. 340-345, 2013) (hereinafter referred to as "References ). That is, the present invention referred to reference documents and SurfSeg and found conditions under which it is possible to reliably and easily grasp the combination of substances that cause surface segregation.
参考文献では、積層構造をもつ金属膜を、粒界拡散が起こる程度の温度で加熱したとき、さらに体拡散が起こるほど加熱したときに基板元素Aと膜金属Bとにおいて起こる拡散現象としては、(ア)膜金属B上に基板元素Aが表面偏析する、(イ)基板元素Aと膜金属Bとの界面で相互拡散する、のいずれになるかを真空中アニール時と、酸素雰囲気下アニール時とにおいて、SurfSeg によりシミュレーション(予測)し、検証して予測に対する精度などを検証したと述べられている。 In the reference literature, the diffusion phenomenon that occurs between substrate element A and film metal B when a metal film with a laminated structure is heated to a temperature that causes grain boundary diffusion, and further heats to such a degree that body diffusion occurs, is as follows. Whether (a) the substrate element A segregates on the surface of the film metal B, or (b) interdiffuses at the interface between the substrate element A and the film metal B, is determined by annealing in vacuum or in an oxygen atmosphere. At the same time, it is stated that simulations (predictions) were performed using SurfSeg, and the accuracy of the predictions was verified.
上記条件において、真空中アニール時の(ア)表面偏析、(イ)相互拡散が生じる原理に関しては、参考文献を引用すると『基板の原子は熱励起されてある確率で必ず膜粒界に吸着する。このときに膜粒界に吸着した状態のほうが安定なら、この原子は基板に戻らずに(濃度勾配に従って)膜表面へと輸送され、膜表面に偏析する。一方、膜粒界に吸着するよりも基板に戻ったほうが安定ならば、原子は基板側に戻り、基板元素は膜表面へ輸送されず、偏析は観測されない』(引用ここまで)と説明されている。 Regarding the principle of (a) surface segregation and (b) interdiffusion during vacuum annealing under the above conditions, quoting the reference literature, ``The atoms of the substrate are thermally excited and are always adsorbed to the film grain boundaries with a certain probability. . At this time, if the state of atoms adsorbed to the film grain boundaries is more stable, these atoms do not return to the substrate, but are transported to the film surface (following the concentration gradient) and segregated on the film surface. On the other hand, if it is more stable to return to the substrate than to be adsorbed to the film grain boundaries, the atoms will return to the substrate side, the substrate elements will not be transported to the film surface, and no segregation will be observed.'' There is.
つまり、真空中アニール時において、基板元素Aが膜材料か基板材料のどちらに吸着すればエネルギー的に安定するかによって表面偏析の有無が決定される。このことから、上記引用中の前者が(ア)に相当し、基板元素Aの膜金属B上へ吸着(A on B)されるエネルギーと、上記引用中の後者が(イ)に相当し、基板元素Aの基板金属A上へ吸着(A on A)されるエネルギーとの、両吸着エネルギーにおいて(ア)のエネルギーが(イ)に比べて小さい、つまり(ア)が(イ)に比べて不安定のときに表面偏析が生じる。 That is, during vacuum annealing, the presence or absence of surface segregation is determined depending on whether the substrate element A is adsorbed to the film material or the substrate material for energetic stability. From this, the former in the above quotation corresponds to (a), the energy of substrate element A adsorbed onto film metal B (A on B), and the latter in the above quotation correspond to (b), The energy of adsorption (A on A) of the substrate element A onto the substrate metal A, and the energy of (A) is smaller than that of (B), that is, (A) is smaller than (B). Surface segregation occurs during instability.
本発明は、触媒物質が触媒層の表面に偏析した状態のものであり、この状態とするために、触媒物質と担持物質の懸濁液を作成し、この懸濁液により基材の表面に、触媒物質が表面偏析した触媒層を形成する(後述)。 In the present invention, the catalyst material is segregated on the surface of the catalyst layer, and in order to achieve this state, a suspension of the catalyst material and the supporting material is created, and this suspension is applied to the surface of the base material. , forming a catalyst layer in which the catalyst substance is segregated on the surface (described later).
触媒物質が触媒層の表面に偏析とは、(触媒物質と担持物質とからなる)触媒層全体における基板に担持される側と反対側の面に触媒物質が偏析させること、つまり基板上の関係で言うと担持物質中の表面に触媒物質が偏析することを意味する。したがって、触媒物質と担持物質とにおいて、上記の(A on B)<(A on A)のエネルギー差となる組み合わせが必須となる。 Segregation of the catalyst material on the surface of the catalyst layer means that the catalyst material is segregated on the surface of the entire catalyst layer (consisting of the catalyst material and the supporting material) opposite to the side supported on the substrate, that is, the relationship on the substrate. This means that the catalyst substance is segregated on the surface of the supported material. Therefore, a combination that provides the above energy difference (A on B) < (A on A) is essential between the catalyst material and the supporting material.
ここで、上記参考文献中の、基板元素(基板材料)Aを本発明の「触媒物質」と、膜金属(膜材料)Bを本発明の「担持物質」と、それぞれ置き換えて、以下、図3~図5を説明する。図3~図5は金属を混ぜ込んだときの生成熱、いわゆる Miedemaの式(省略)によって得た値(kJ/mol)であり、上側が(A on B)=Eaで、下側が(A on A)=Ebである。 Here, the substrate element (substrate material) A in the above-mentioned reference document is replaced with the "catalyst material" of the present invention, and the membrane metal (film material) B is replaced with the "support material" of the present invention, and the following figures are shown below. 3 to 5 will be explained. Figures 3 to 5 show the heat of formation when metals are mixed, values (kJ/mol) obtained by the so-called Miedema equation (omitted); the upper side is (A on B) = Ea, and the lower side is (A on B) = Ea. on A)=Eb.
参考文献中にあるSurfSeg シミュレーターでは、単純に(A on B)<(A on A)が判別できるだけであるが、本発明では、ここから、Eb-Ea≧6kJ/molとなる組み合わせ、望ましくはEb-Ea≧10kJ/molとなる組み合わせとすれば確実に担持物質に触媒物質を表面偏析させることができることを見出した。 The SurfSeg simulator in the reference can only simply determine (A on B) < (A on A), but in the present invention, from this, a combination such as Eb-Ea≧6kJ/mol, preferably Eb It has been found that if the combination is such that -Ea≧10 kJ/mol, the catalyst substance can be reliably segregated on the surface of the supporting material.
図3~図5に示すように、一般的に触媒物質として使用され得る鉱物を例にすると、次の組み合わせとすれば表面偏析を生じる。図3~図5において、グレーで塗られている箇所は上記のEb-Eaが6kJ/mol未満の組み合わせ、つまり触媒物質が表面偏析しない組み合わせ例である。 As shown in FIGS. 3 to 5, using minerals that can be generally used as catalyst materials as examples, the following combinations cause surface segregation. In FIGS. 3 to 5, the areas colored in gray are combinations where the Eb-Ea is less than 6 kJ/mol, that is, examples of combinations in which the catalyst substance does not segregate on the surface.
触媒物質を「ケイ素(Si)」とした場合は、担持物質をAg、Al、La、Au、Mn、Cu、Pd、Fe、Ni、Cr、Co、Pt、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることでケイ素を表面偏析させることができる。 When the catalyst material is "silicon (Si)", the supported material can be Ag, Al, La, Au, Mn, Cu, Pd, Fe, Ni, Cr, Co, Pt, Zr, Ti, Rh, V, Mo. , Ru, Ir, Ta, W, etc., silicon can be segregated on the surface.
触媒物質を「銀(Ag)」とした場合は、担持物質をAl、Sr、La、Au、Mn、Cu、Pd、Fe、Ni、Cr、Co、Pt、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることで銀を表面偏析させることができる。 When the catalyst material is "silver (Ag)", the supporting material is Al, Sr, La, Au, Mn, Cu, Pd, Fe, Ni, Cr, Co, Pt, Zr, Ti, Rh, V, Mo. , Ru, Ir, Ta, W, etc., silver can be segregated on the surface.
触媒物質を「アルミ(Al)」とした場合は、担持物質をSi、Ag、La、Au、Mn、Cu、Pd、Fe、Ni、Cr、Co、Pt、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることでアルミを表面偏析させることができる。 When the catalyst material is "aluminum (Al)", the supported material is Si, Ag, La, Au, Mn, Cu, Pd, Fe, Ni, Cr, Co, Pt, Zr, Ti, Rh, V, Mo. , Ru, Ir, Ta, W, etc., aluminum can be segregated on the surface.
触媒物質を「ストロンチウム(Sr)」とした場合は、担持物質をSi、Ag、Al、La、Au、Mn、Cu、Pd、Fe、Ni、Cr、Co、Pt、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることでストロンチウムを表面偏析させることができる。 When the catalyst material is "strontium (Sr)", the supporting material is Si, Ag, Al, La, Au, Mn, Cu, Pd, Fe, Ni, Cr, Co, Pt, Zr, Ti, Rh, V , Mo, Ru, Ir, Ta, W, etc., strontium can be segregated on the surface.
触媒物質を「ランタン(La)」とした場合は、担持物質をSi、Ag、Al、Au、Mn、Cu、Pd、Fe、Ni、Cr、Co、Pt、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることでランタンを表面偏析させることができる。 When the catalyst material is "lanthanum (La)", the supported material is Si, Ag, Al, Au, Mn, Cu, Pd, Fe, Ni, Cr, Co, Pt, Zr, Ti, Rh, V, Mo. , Ru, Ir, Ta, W, etc., lanthanum can be segregated on the surface.
触媒物質を「金(Au)」とした場合は、担持物質をAl、Sr、La、Mn、Cu、Pd、Fe、Ni、Cr、Co、Pt、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることで金を表面偏析させることができる。 When the catalyst material is "gold (Au)", the supported material is Al, Sr, La, Mn, Cu, Pd, Fe, Ni, Cr, Co, Pt, Zr, Ti, Rh, V, Mo, Ru. , Ir, Ta, W, etc., it is possible to segregate gold on the surface.
触媒物質を「マンガン(Mn)」とした場合は、担持物質をAu、Cu、Pd、Fe、Ni、Cr、Co、Pt、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることでマンガンを表面偏析させることができる。 When the catalyst material is "manganese (Mn)", the supported material is Au, Cu, Pd, Fe, Ni, Cr, Co, Pt, Zr, Ti, Rh, V, Mo, Ru, Ir, Ta, W. , etc., it is possible to segregate manganese on the surface.
触媒物質を「銅(Cu)」とした場合は、担持物質をPd、Fe、Ni、Cr、Co、Pt、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることで銅を表面偏析させることができる。 When the catalyst material is "copper (Cu)", the supporting material is Pd, Fe, Ni, Cr, Co, Pt, Zr, Ti, Rh, V, Mo, Ru, Ir, Ta, W, etc. This allows copper to be segregated on the surface.
触媒物質を「パラジウム(Pd)」とした場合は、担持物質をSr、La、Mn、Cu、Fe、Ni、Cr、Co、Pt、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることでパラジウムを表面偏析させることができる。 When the catalyst material is "palladium (Pd)", the supported material is Sr, La, Mn, Cu, Fe, Ni, Cr, Co, Pt, Zr, Ti, Rh, V, Mo, Ru, Ir, Ta. , W, etc., palladium can be segregated on the surface.
触媒物質を「鉄(Fe)」とした場合は、担持物質をPt、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることで鉄を表面偏析させることができる。 When the catalyst material is "iron (Fe)", iron can be segregated on the surface by using Pt, Zr, Ti, Rh, V, Mo, Ru, Ir, Ta, W, etc. as the supporting material. .
触媒物質を「ニッケル(Ni)」とした場合は、担持物質をFe、Cr、Co、Pt、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることでニッケルを表面偏析させることができる。 When the catalyst material is nickel (Ni), nickel can be removed by using Fe, Cr, Co, Pt, Zr, Ti, Rh, V, Mo, Ru, Ir, Ta, W, etc. as the supporting material. It can be surface segregated.
触媒物質を「クロム(Cr)」とした場合は、担持物質をFe、Ni、Co、Pt、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることでクロムを表面偏析させることができる。 When the catalyst material is "chromium (Cr)", chromium can be removed by using Fe, Ni, Co, Pt, Zr, Ti, Rh, V, Mo, Ru, Ir, Ta, W, etc. as the supporting material. It can be surface segregated.
触媒物質を「コバルト(Co)」とした場合は、担持物質をFe、Cr、Pt、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることでコバルトを表面偏析させることができる。 When the catalyst material is "cobalt (Co)", the cobalt can be segregated on the surface by using Fe, Cr, Pt, Zr, Ti, Rh, V, Mo, Ru, Ir, Ta, W, etc. as the supporting material. can be done.
触媒物質を「白金(Pt)」とした場合は、担持物質をLa、Mn、Fe、Ni、Cr、Co、Zr、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることで白金を表面偏析させることができる。 When the catalyst material is "platinum (Pt)", the supporting material is La, Mn, Fe, Ni, Cr, Co, Zr, Ti, Rh, V, Mo, Ru, Ir, Ta, W, etc. This allows platinum to be segregated on the surface.
触媒物質を「ジルコニウム(Zr)」とした場合は、担持物質をAu、Cu、Pd、Fe、Ni、Cr、Co、Pt、Ti、Rh、V、Mo、Ru、Ir、Ta、W、などとすることでジルコニウムを表面偏析させることができる。 When the catalyst material is "zirconium (Zr)", the supporting material can be Au, Cu, Pd, Fe, Ni, Cr, Co, Pt, Ti, Rh, V, Mo, Ru, Ir, Ta, W, etc. By doing so, zirconium can be segregated on the surface.
触媒物質を「チタン(Ti)」とした場合は、担持物質をAu、Cu、Pd、Fe、Ni、Cr、Co、Pt、Rh、V、Mo、Ru、Ir、Ta、W、などとすることでチタンを表面偏析させることができる。 When the catalyst material is "titanium (Ti)", the supporting material is Au, Cu, Pd, Fe, Ni, Cr, Co, Pt, Rh, V, Mo, Ru, Ir, Ta, W, etc. This allows titanium to be segregated on the surface.
触媒物質を「ロジウム(Rh)」とした場合は、担持物質をFe、Cr、Zr、Ti、V、Mo、Ru、Ir、Ta、W、などとすることでロジウムを表面偏析させることができる。 When the catalyst material is "rhodium (Rh)", rhodium can be segregated on the surface by using Fe, Cr, Zr, Ti, V, Mo, Ru, Ir, Ta, W, etc. as the supporting material. .
触媒物質を「バナジウム(V)」とした場合は、担持物質をPd、Fe、Ni、Co、Pt、Rh、Mo、Ru、Ir、Ta、W、などとすることでバナジウムを表面偏析させることができる。 When the catalyst material is "vanadium (V)", the vanadium can be segregated on the surface by using Pd, Fe, Ni, Co, Pt, Rh, Mo, Ru, Ir, Ta, W, etc. as the supporting material. Can be done.
触媒物質を「モリブデン(Mo)」とした場合は、担持物質をPt、Rh、Ru、Ir、Ta、W、などとすることでモリブデンを表面偏析させることができる。 When the catalyst material is "molybdenum (Mo)", molybdenum can be segregated on the surface by using Pt, Rh, Ru, Ir, Ta, W, etc. as the supporting material.
触媒物質を「ルテニウム(Ru)」とした場合は、担持物質をZr、Ti、V、Mo、Ir、Ta、W、などとすることでルテニウムを表面偏析させることができる。 When "ruthenium (Ru)" is used as the catalyst material, ruthenium can be segregated on the surface by using Zr, Ti, V, Mo, Ir, Ta, W, etc. as the supporting material.
触媒物質を「イリジウム(Ir)」とした場合は、担持物質をZr、Ti、V、Mo、Ta、W、などとすることでイリジウムを表面偏析させることができる。 When "iridium (Ir)" is used as the catalyst material, iridium can be segregated on the surface by using Zr, Ti, V, Mo, Ta, W, etc. as the supporting material.
触媒物質を「タンタル(Ta)」とした場合は、担持物質をPt、Rh、Ru、Ir、W、などとすることでタンタルを表面偏析させることができる。 When the catalyst material is "tantalum (Ta)", tantalum can be segregated on the surface by using Pt, Rh, Ru, Ir, W, etc. as the supporting material.
触媒物質を「タングステン(W)」とした場合は、担持物質をIr、Ta、などとすることでタングステンを表面偏析させることができる。 When "tungsten (W)" is used as the catalyst material, tungsten can be segregated on the surface by using Ir, Ta, etc. as the supporting material.
このように、本発明は、粒界拡散が起こる程度の温度で加熱したとき、さらに体拡散が起こるほど加熱したときにおける、触媒物質が、担持物質に吸着する場合の物質量あたりのエネルギー(Eb)と、触媒物質自身に吸着する場合の物質量あたりのエネルギー(Ea)との差、Eb-Ea≧6kJ/molとなる組み合わせとすることで、触媒物質を自在に表面偏析させることとなり、触媒層の内部に触媒反応に寄与しない触媒物質の残留を抑制でき、使用する触媒物質の量を少量化できる。 As described above, the present invention calculates the energy per amount of material (Eb ) and the energy (Ea) per amount of substance when adsorbed on the catalyst substance itself, which is a combination such that Eb - Ea ≧6 kJ/mol, allows the catalyst substance to freely segregate on the surface. It is possible to suppress residual catalytic material that does not contribute to the catalytic reaction inside the layer, and it is possible to reduce the amount of catalytic material used.
さらに、本発明は、触媒層を触媒物質と担持物質のみならず、無機物質が添加されたものであってもよい。無機物質を添加することで、表面偏析した触媒物質を適度に分散化することができ、また、気相反応においてガス吸着性が向上し、触媒反応がさらに良好となる。 Furthermore, in the present invention, the catalyst layer may include not only a catalyst material and a supporting material, but also an inorganic material added thereto. By adding an inorganic substance, the catalytic material segregated on the surface can be appropriately dispersed, and gas adsorption properties are improved in the gas phase reaction, making the catalytic reaction even better.
なお、無機化合物質を添加する場合、つまり触媒層を、触媒物質以外の担持物質や無機化合物質によって形成する場合においても、上記のEb-Ea≧6kJ/molとなる組み合わせに加えて無機化合物Cとして(C on B)つまり無機化合物元素の担持物質上へ吸着されるエネルギーと、(C on C)つまり無機化合物元素の無機化合物材料へ吸着されるエネルギー、とにおける(C on C)-(C on B)≧6kj/molを勘案することで、触媒物質だけでなく無機化合物も表面偏析させることができる。 Note that even when adding an inorganic compound substance, that is, when the catalyst layer is formed using a supporting substance other than the catalyst substance or an inorganic compound substance, in addition to the above combination of Eb-Ea≧6 kJ/mol, the inorganic compound C (C on C) - (C By considering B)≧6kj/mol, not only the catalyst substance but also the inorganic compound can be segregated on the surface.
また、本発明は、触媒層を基材の表面に形成するにあたっては、触媒物質と担持物質の懸濁液を作成し、この懸濁液を基材上に蒸着、溶射、などの手段によって行えばよい。なお、この懸濁液に無機化合物質を含ませてもよい。 Further, in forming the catalyst layer on the surface of the base material, the present invention prepares a suspension of the catalyst material and the supporting material, and performs this suspension on the base material by means such as vapor deposition, thermal spraying, etc. That's fine. Note that this suspension may contain an inorganic compound.
触媒層を形成する各物質による懸濁液は、所定量の水に該核物質が分散されたものであればよく、すぐに沈殿してしまうような場合には、水に粘度を加えるようにしてもよい。こうすることで、基材上に均一的に触媒物質が分散された触媒層が形成され、基材上で確実に表面偏析が生じる。 The suspension of each substance that forms the catalyst layer may be one in which the nuclear substance is dispersed in a predetermined amount of water; if it precipitates quickly, add viscosity to the water. You can. By doing so, a catalyst layer in which the catalyst substance is uniformly dispersed is formed on the base material, and surface segregation occurs reliably on the base material.
さらに、本発明は、懸濁液を作成する際に、各物質の粒寸法を1μm未満もしくは各物質を含む分子や分子集合体を1μm未満とすればよい。このように微細粒化することで、触媒物質の表面偏析が確実かつ速やかに生じることとなり、また、触媒物質の表面における分散も確実となり、よって、触媒物質の使用量を抑えることができると共に最大の反応効率を得ることができる。 Furthermore, in the present invention, when creating a suspension, the particle size of each substance may be less than 1 μm, or the molecules or molecular aggregates containing each substance may be less than 1 μm. By making the particles finer in this way, the surface segregation of the catalyst material occurs reliably and quickly, and the dispersion of the catalyst material on the surface is also ensured.Therefore, the amount of catalyst material used can be suppressed and the maximum reaction efficiency can be obtained.
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022124906A JP2024021808A (en) | 2022-08-04 | 2022-08-04 | Catalytic body and method for manufacturing the same |
PCT/JP2023/024897 WO2024029262A1 (en) | 2022-08-04 | 2023-07-05 | Catalyst body and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022124906A JP2024021808A (en) | 2022-08-04 | 2022-08-04 | Catalytic body and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024021808A true JP2024021808A (en) | 2024-02-16 |
Family
ID=89849193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022124906A Pending JP2024021808A (en) | 2022-08-04 | 2022-08-04 | Catalytic body and method for manufacturing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024021808A (en) |
WO (1) | WO2024029262A1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006192365A (en) * | 2005-01-13 | 2006-07-27 | Hitachi Ltd | Catalyst for cleaning exhaust gas from internal-combustion engine, method for manufacturing the catalyst, and exhaust gas-cleaning apparatus |
JP4523911B2 (en) * | 2005-12-14 | 2010-08-11 | 本田技研工業株式会社 | Exhaust gas purification device |
US9321044B2 (en) * | 2011-02-02 | 2016-04-26 | Sharp Kabushiki Kaisha | Catalyst-supporting porous membrane, catalyst member, air cleaning device, and method for producing catalyst-supporting porous membrane |
GB201303396D0 (en) * | 2013-02-26 | 2013-04-10 | Johnson Matthey Plc | Oxidation catalyst for a combustion engine |
US9878309B2 (en) * | 2013-12-06 | 2018-01-30 | Danmarks Tekniske Universitet | Catalyst for ammonia oxidation |
JP7093971B2 (en) * | 2017-02-17 | 2022-07-01 | 学校法人早稲田大学 | Method for manufacturing supported catalyst and carbon nanostructures |
-
2022
- 2022-08-04 JP JP2022124906A patent/JP2024021808A/en active Pending
-
2023
- 2023-07-05 WO PCT/JP2023/024897 patent/WO2024029262A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024029262A1 (en) | 2024-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chang et al. | The tunable and highly selective reduction products on Ag@ Cu bimetallic catalysts toward CO2 electrochemical reduction reaction | |
Kang et al. | Selective etching induced synthesis of hollow Rh nanospheres electrocatalyst for alcohol oxidation reactions | |
Kim et al. | Shape-and composition-sensitive activity of Pt and PtAu catalysts for formic acid electrooxidation | |
Hunt et al. | Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts | |
Leong et al. | Shape‐directed platinum nanoparticle synthesis: nanoscale design of novel catalysts | |
Miura et al. | Synthesis of intermetallic PtZn nanoparticles by reaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts | |
JP3842177B2 (en) | Noble metal nanotube and method for producing the same | |
Chen et al. | Platinum-based nanostructured materials: synthesis, properties, and applications | |
TWI237064B (en) | Supported metal catalyst for synthesizing carbon nanotubes by low-temperature thermal chemical vapor deposition and method of synthesizing nanotubes using the same | |
US20130177838A1 (en) | Hollow nanoparticles as active and durable catalysts and methods for manufacturing the same | |
JPH0917435A (en) | Platinum - aluminum alloy catalyst for fuel cell, its manufacturing process and use | |
JPH07310107A (en) | Electrochemical reduction of metal salt as method for preparing highly dispersible metal colloid and metal clusterimmobilized on substrate by electrochemical deduction of metal salt | |
Li et al. | Controlled dealloying of alloy nanoparticles toward optimization of electrocatalysis on spongy metallic nanoframes | |
JP5030267B2 (en) | Method for producing metal colloid pigment, conductive paste material or conductive ink material | |
JP6116000B2 (en) | Method for producing platinum core-shell catalyst and fuel cell using the same | |
Wongkaew et al. | Characterization and evaluation of Pt-Pd electrocatalysts prepared by electroless deposition | |
US6162278A (en) | Photobiomolecular deposition of metallic particles and films | |
Geng et al. | Integrating Pt16Te Nanotroughs and Nanopillars into a 3D “Self‐Supported” Hierarchical Nanostructure for Boosting Methanol Electrooxidation | |
JP5569396B2 (en) | Catalyst production method | |
EP2747887B1 (en) | Plate-shaped catalyst product and method for manufacturing same | |
JP2004332028A (en) | Ternary metallic colloid having three layer core/shell structure and method for producing ternary metallic colloid | |
JP2013027869A (en) | Method for manufacturing metal particle carrying catalyst | |
JP2010089031A (en) | Metal-particle supporting catalyst, and method of producing the same | |
Lutz et al. | Heterostructured Au/Pd–M (M= Au, Pd, Pt) nanoparticles with compartmentalized composition, morphology, and electrocatalytic activity | |
CN112221502A (en) | Hollow spherical shell carrier loaded nickel-based alloy catalyst and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240809 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20241003 |