[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2024092476A - Beam-column joint part and method for designing the same - Google Patents

Beam-column joint part and method for designing the same Download PDF

Info

Publication number
JP2024092476A
JP2024092476A JP2022208427A JP2022208427A JP2024092476A JP 2024092476 A JP2024092476 A JP 2024092476A JP 2022208427 A JP2022208427 A JP 2022208427A JP 2022208427 A JP2022208427 A JP 2022208427A JP 2024092476 A JP2024092476 A JP 2024092476A
Authority
JP
Japan
Prior art keywords
column
joint
weld
corner
box section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022208427A
Other languages
Japanese (ja)
Inventor
椋太 荒木田
Ryota ARAKIDA
敏弘 梅田
Toshihiro Umeda
智裕 木下
Tomohiro Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2022208427A priority Critical patent/JP2024092476A/en
Publication of JP2024092476A publication Critical patent/JP2024092476A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

To make a collapse form of the whole building into a whole collapse having a large energy absorbing amount by making the collapse form of a column-beam joint part not into a column collapse form but into a column-beam joint part collapse form in the column-beam joint part of a welded assembly box-shaped cross-section column and a steel beam.SOLUTION: A column beam joint part of a welded assembly box-shaped cross-section column and a steel beam is constituted by mutually joining four skin plates by corner welding, wherein the corner welding is one or both of under-match welding and partial penetration welding, a total value Σb Mp* of bending moments of material ends when the steel beam attached to a joint part panel of the beam-column joint part is in a fully plastic state, a total value Σc Mp* of fully plastic moments of material ends of the welded assembly box-shaped cross-section column attached to the joint part panel, a total plastic momentpMp1* of the joined part panel and a total plastic moment pMp2* of the joint part panel when it is assumed that the corner welding is overmatch welding and complete penetration welding are made to satisfy a prescribed relation.SELECTED DRAWING: Figure 1

Description

本発明は、4枚のスキンプレートが角溶接により相互に接合されて構成される溶接組立箱形断面部材と鉄骨梁との柱梁接合部およびその設計方法に関するものである。 The present invention relates to a column-beam joint between a welded box section member consisting of four skin plates joined together by corner welding and a steel beam, and a design method for the joint.

建築物の柱部材には、冷間ロール成形角形鋼管、冷間プレス成形角形鋼管、溶接組立箱形断面部材などの角形鋼管が用いられることが多い。中低層建築物および高層建築物の柱部材には、比較的安価な冷間ロール成形角形鋼管や冷間プレス成形角形鋼管が用いられることが多い。これに対し、超高層建築物の柱部材には、要求される剛性および耐力が非常に大きいため、大断面化、厚肉化、高強度化が可能な溶接組立箱形断面部材が用いられることが多い。 Square steel pipes such as cold roll-formed square steel pipes, cold press-formed square steel pipes, and welded assembled box section members are often used for column members in buildings. Relatively inexpensive cold roll-formed square steel pipes and cold press-formed square steel pipes are often used for column members in low- to mid-rise buildings and high-rise buildings. In contrast, for column members in super-high-rise buildings, because the required rigidity and strength are very high, welded assembled box section members that can be made larger in cross section, thicker, and stronger are often used.

ここで、溶接組立箱形断面部材は、冷間ロール成形角形鋼管や冷間プレス成形角形鋼管に比べて製作コストが高い。その要因としては、部材の高強度化に伴って、溶接組立箱形断面部材のスキンプレートを構成する鋼板のコスト自体が高いことに加えて、溶接組立箱形断面部材の製作時の溶接施工管理等に多くの工数および製作期間を要することが挙げられる。 The manufacturing cost of welded box sections is higher than that of cold roll-formed square steel pipes and cold press-formed square steel pipes. This is due to the fact that the steel plates that make up the skin plates of welded box sections are expensive as the strength of the components increases, and that welding construction management during the manufacturing of welded box sections requires a lot of labor and time.

特に、溶接組立箱形断面部材の肉厚が極厚である場合は、溶接組立箱形断面部材のスキンプレートを角溶接により相互に接合するときの溶接深さが大きくなる。溶接組立箱形断面部材の角溶接は、CO溶接またはサブマージアーク溶接で行われることが多いが、いずれも、角溶接の溶接深さが大きくなると、角溶接を1パスで行うことができず溶接パス数が増える。よって、角溶接が多層化して、溶接組立箱形断面部材の製作コストが上昇し、製作期間が長期化する。 In particular, when the wall thickness of the welded box section member is very thick, the welding depth is large when the skin plates of the welded box section member are joined to each other by corner welding. Corner welding of the welded box section member is often performed by CO2 welding or submerged arc welding, but in either case, when the welding depth of the corner welding is large, the corner welding cannot be performed in one pass and the number of welding passes increases. Therefore, the corner welding becomes multi-layered, which increases the manufacturing cost of the welded box section member and extends the manufacturing period.

また、多層サブマージアーク溶接の場合には、例えば非特許文献1および非特許文献2に開示されるように、溶接金属が早期に低位破断して母材規格強度を下回ることを防ぐべく、パス間温度およびその保持時間、ならびに後熱温度およびその保持時間等の熱管理を行う必要がある。 In addition, in the case of multi-layer submerged arc welding, as disclosed in, for example, Non-Patent Documents 1 and 2, thermal management of the interpass temperature and its holding time, as well as the post-heat temperature and its holding time, is required to prevent the weld metal from prematurely breaking at a low level and falling below the base metal specification strength.

サブマージアーク溶接では、1パスで施工可能な溶接深さは、最大60mm程度である。よって、肉厚が60mm以上の溶接組立箱形断面部材をサブマージアーク溶接で製作する場合には、角溶接が多層サブマージアーク溶接となる。そして、上述のような熱管理が必要となり、溶接組立箱形断面部材の製作期間が急激に長期化する。 In submerged arc welding, the maximum weld depth that can be achieved in one pass is about 60 mm. Therefore, when manufacturing welded box section components with a wall thickness of 60 mm or more using submerged arc welding, the corner welds become multi-layer submerged arc welding. This requires heat management as described above, which drastically lengthens the manufacturing period for welded box section components.

このような問題に対応して、溶接組立箱形断面部材を構成するスキンプレートの板厚を小さくし、この板厚減少に起因する溶接組立箱形断面部材全体の耐力低下を補うように、スキンプレートの強度を高める方法も考えられる。このようにすると、溶接組立箱形断面部材の角溶接を、1パスのCO溶接またはサブマージアーク溶接で行うことができる。しかし、溶接組立箱形断面部材を構成するスキンプレートの高強度化に合わせて、角溶接の溶接材料も高強度化する必要があるため、角溶接の施工性が低下しうる。 In response to such problems, a method can be considered in which the thickness of the skin plate constituting the welded box section member is reduced, and the strength of the skin plate is increased to compensate for the reduction in the strength of the entire welded box section member caused by the reduction in the thickness. In this way, corner welding of the welded box section member can be performed by one pass of CO2 welding or submerged arc welding. However, since the welding material for corner welding needs to be made stronger in accordance with the increase in strength of the skin plate constituting the welded box section member, the workability of corner welding may be reduced.

また、例えば特許文献1では、溶接組立箱形断面部材の隅角部を内側から隅肉溶接するボックス柱の製造方法が提案されている。しかし、溶接組立箱形断面部材の内側での溶接作業は、溶接者への作業負荷が高く、危険な作業となる恐れもある。そこで、例えば非特許文献3に開示されるように、溶接組立箱形断面部材の角溶接を部分溶込み溶接とすることが検討されてきた。 For example, Patent Document 1 proposes a method for manufacturing a box column in which the corners of a welded box section member are fillet welded from the inside. However, welding work on the inside of a welded box section member places a high workload on the welder and may be dangerous work. Therefore, as disclosed in Non-Patent Document 3, for example, it has been considered to use partial penetration welding for corner welding of welded box section members.

さらに、近年の高層ビルの大型化や柱スパンの長大化に伴い、鉄骨梁の部材断面のサイズアップやの高強度化が必要とされている。すなわち、建築物の種類により、柱スパンの長大化に伴って、梁のたわみがたわみ制限より大きくならないようにすることを主な要因として梁の断面が決定されることとなり、鉄骨梁を大断面化かつ高強度化する必要が生じることがある。このように、大断面および高強度の鉄骨梁が柱梁接合部に取り付く場合には、柱梁接合部パネルの周囲に取り付く一または複数の梁部材の材端の全塑性耐力の合計値が大きくなりやすい。そして、梁部材の材端の全塑性耐力の合計値が、柱梁接合部パネルの上下に取り付く柱部材の材端の全塑性耐力の合計値を上回ると、柱梁接合部に大きな曲げモーメントが作用するときに、柱部材の材端に損傷が集中して、柱梁接合部の崩壊形が柱崩壊形となる恐れがある。 Furthermore, in recent years, with the increase in the size of high-rise buildings and the lengthening of column spans, it is necessary to increase the size and strength of the cross-section of steel beams. That is, depending on the type of building, the cross-section of the beam is determined mainly to prevent the deflection of the beam from exceeding the deflection limit as the column span increases, and it may be necessary to make the steel beam larger in cross-section and stronger. In this way, when a large cross-section and high-strength steel beam is attached to a column-beam joint, the total value of the full plastic strength of the ends of one or more beam members attached around the column-beam joint panel tends to be large. And if the total value of the full plastic strength of the ends of the beam members exceeds the total value of the full plastic strength of the ends of the column members attached above and below the column-beam joint panel, when a large bending moment acts on the column-beam joint, damage may be concentrated at the ends of the column members, and the collapse type of the column-beam joint may become a column collapse type.

柱梁接合部の崩壊形が柱崩壊形となると、建築物全体の崩壊形も、エネルギー吸収量の大きい全体崩壊形ではなくエネルギー吸収量の小さい部分崩壊形となる恐れが高まり、比較的小さな地震の入力エネルギーで、建築物の層崩壊が発生する恐れがある。 If the collapse pattern of the column-beam joint is a column collapse pattern, there is a high risk that the collapse pattern of the entire building will be a partial collapse pattern, which absorbs less energy, rather than a total collapse pattern, which absorbs more energy. This means that a story of the building may collapse with a relatively small input energy of the earthquake.

特許第5157556号公報Japanese Patent No. 5157556

湯田 誠、外3名、「極厚ボックス角継手(SA440)への多層盛サブマージアーク溶接の検討 その1 試験概要及び事前試験結果」、日本建築学会大会学術講演梗概集(近畿)、一般社団法人日本建築学会、2014年9月、pp.1045-1046Makoto Yuda and 3 others, "Study on multi-layer submerged arc welding for extra-thick box corner joints (SA440) Part 1 Test overview and preliminary test results", Proceedings of the Architectural Institute of Japan Annual Meeting (Kinki), Architectural Institute of Japan, September 2014, pp. 1045-1046 福元 孝男、外3名、「極厚ボックス角継手(SA440)への多層盛サブマージアーク溶接の検討 その2 事前試験の考察と本試験結果」、日本建築学会大会学術講演梗概集(近畿)、一般社団法人日本建築学会、2014年9月、pp.1047-1048Takao Fukumoto and 3 others, "Study on multi-layer submerged arc welding for extra-thick box corner joints (SA440) Part 2: Consideration of pre-test and actual test results", Proceedings of the Architectural Institute of Japan Annual Meeting (Kinki), Architectural Institute of Japan, September 2014, pp. 1047-1048 井上 末冨、外2名、「部分溶込み溶接で組み立てられたボックス柱の耐荷力の研究(その1.実験計画および部分溶込み溶接せん断実験)」、日本建築学会大会学術講演梗概集(九州)、一般社団法人日本建築学会、1989年10月、pp.1253-1254Suetomi Inoue and two others, "Study on the load-bearing capacity of box columns assembled by partial penetration welding (Part 1. Experimental plan and partial penetration welding shear experiment)", Proceedings of the Architectural Institute of Japan Annual Meeting (Kyushu), Architectural Institute of Japan, October 1989, pp. 1253-1254 日本建築学会編、「鋼構造塑性設計指針 第3版」、一般社団法人日本建築学会、2017年2月、pp.150-155Architectural Institute of Japan, "Guidelines for Plastic Design of Steel Structures, 3rd Edition," Architectural Institute of Japan, February 2017, pp. 150-155 日本建築学会編、「鋼構造接合部設計指針 第3版」、一般社団法人日本建築学会、2012年3月、pp.225-226Architectural Institute of Japan, "Guidelines for Design of Steel Structure Joints, Third Edition," Architectural Institute of Japan, March 2012, pp. 225-226 栗田 舞人、外3名、「アンダーマッチング溶接により組み立てられた超高強度鋼CFT部材の構造性能に関する研究 その14 幅厚比16.7のCFT接合部パネルの履歴挙動および耐力評価」、日本建築学会大会学術講演梗概集(東北)、一般社団法人日本建築学会、2018年9月、pp.1425-1426Maito Kurita and 3 others, "Study on the structural performance of ultra-high strength steel CFT members assembled by undermatching welding, Part 14: Hysteretic behavior and strength evaluation of CFT joint panel with width-thickness ratio of 16.7", Proceedings of the Architectural Institute of Japan Annual Meeting (Tohoku), Architectural Institute of Japan, September 2018, pp. 1425-1426

梁部材の断面が決定している条件下で、柱梁接合部の崩壊形が柱崩壊形となることを回避するには、柱梁接合部パネルの全塑性耐力を柱部材の材端の全塑性耐力の合計値よりも小さくして、柱梁接合部パネル崩壊形とする必要がある。しかし、溶接組立箱形断面柱と鉄骨梁との柱梁接合部では内ダイアフラム形式が採用されることが多いため、柱梁接合部パネル部分での柱の肉厚を他の部分での柱の肉厚よりも小さくする等の方法により柱梁接合部パネルの全塑性耐力を小さくすることは難しい。このように、溶接組立箱形断面柱と鉄骨梁との柱梁接合部では、柱梁接合部パネルの全塑性耐力を柱の全塑性耐力の合計値より小さくすることが難しい。 In order to prevent the collapse type of a column-beam joint from becoming the column collapse type under conditions where the cross section of the beam member has been determined, it is necessary to make the full plastic strength of the column-beam joint panel smaller than the total value of the full plastic strength of the column member ends to make the column-beam joint panel collapse type. However, because an internal diaphragm type is often used for column-beam joints between welded box section columns and steel beams, it is difficult to reduce the full plastic strength of the column-beam joint panel by making the column thickness smaller at the column-beam joint panel than at other parts. Thus, in column-beam joints between welded box section columns and steel beams, it is difficult to make the full plastic strength of the column-beam joint panel smaller than the total value of the column's full plastic strength.

上記課題に鑑み、本発明は、溶接組立箱形断面柱と鉄骨梁との柱梁接合部において、柱梁接合部の崩壊形を柱崩壊形ではなく柱梁接合部パネル崩壊形とすることにより、建築物全体の崩壊形をエネルギー吸収量の大きい全体崩壊形とすることを目的としている。 In view of the above problems, the present invention aims to change the collapse pattern of a column-beam joint between a welded box section column and a steel beam from a column-beam joint to a column-beam joint panel collapse pattern rather than a column collapse pattern, thereby enabling the collapse pattern of the entire building to be an overall collapse pattern with a large amount of energy absorption.

上記課題を解決するため、本発明は以下の特徴を有する。 To solve the above problems, the present invention has the following features:

[1] 4枚のスキンプレートが角溶接により相互に接合されて構成される溶接組立箱形断面柱と鉄骨梁との柱梁接合部であって、前記角溶接がアンダーマッチ溶接と部分溶け込み溶接との一方または両方であり、前記柱梁接合部の接合部パネルに取り付く前記鉄骨梁が全塑性状態となるときの材端の曲げモーメントの合計値Σ 、前記接合部パネルに取り付く前記溶接組立箱形断面柱の材端の全塑性モーメントの合計値Σ 、前記接合部パネルの全塑性モーメントp1 、前記角溶接がオーバーマッチ溶接かつ完全溶け込み溶接であると仮定したときの前記接合部パネルの全塑性モーメントp2 が、下記(1)式および(2)式の関係を満たす、柱梁接合部。 [1] A column-beam joint between a welded box section column formed by four skin plates joined together by corner welds and a steel beam, wherein the corner welds are one or both of undermatch welds and partial penetration welds, and the total bending moment ΣbMp * of the material ends when the steel beams attached to the joint panel of the column-beam joint are in a fully plastic state, the total plastic moment ΣcMp * of the material ends of the welded box section columns attached to the joint panel, the total plastic moment pMp1 * of the joint panel, and the total plastic moment pMp2 * of the joint panel when it is assumed that the corner welds are overmatch welds and full penetration welds satisfy the relationships in the following equations (1) and (2).

Σ p2 ・・・(1)
p1 <Σ <Σ ・・・(2)
ここで、鉄骨梁の材端にハンチ等の拡幅部や補強材が設けられず、鉄骨梁が材軸方向に一様の断面を有する場合には、鉄骨梁は材端位置で全塑性状態となる。よって、この場合には、鉄骨梁が全塑性状態となるときの材端の曲げモーメントは、鉄骨梁の全塑性モーメントに等しくなる。また、鉄骨梁の材端にハンチ等の拡幅部や補強材が設けられる場合には、拡幅部や補強材が設けられる部分と設けられない部分との境界位置等で、鉄骨梁が全塑性状態となることがある。このとき、鉄骨梁が全塑性状態となるときの材端の曲げモーメントは、鉄骨梁の材軸方向の曲げモーメント分布に応じて、上記境界位置等における鉄骨梁の全塑性モーメントよりも大きくなる。そこで、鉄骨梁の材端にハンチ等の拡幅部や補強材が設けられる場合には、拡幅部や補強材が設けられることにより鉄骨梁の曲げ耐力が材軸方向に変化すること等も考慮して、鉄骨梁が全塑性状態となるときの材端の曲げモーメントを計算するものとする。
Σ c M p * < p M p 2 * ... (1)
p M p1 * < Σ c M p * < Σ b M p * ... (2)
Here, when the steel beam has a uniform cross section in the axial direction and no widening portion such as a haunch or reinforcing material is provided at the end of the steel beam, the steel beam is in a fully plastic state at the end. In this case, the bending moment at the end of the steel beam when the steel beam is in a fully plastic state is equal to the fully plastic moment of the steel beam. In addition, when the steel beam has a widening portion such as a haunch or reinforcing material at the end, the steel beam may be in a fully plastic state at the boundary between the portion where the widening portion or reinforcing material is provided and the portion where it is not provided. In this case, the bending moment at the end of the steel beam when the steel beam is in a fully plastic state is larger than the fully plastic moment of the steel beam at the boundary, etc., depending on the bending moment distribution in the axial direction of the steel beam. Therefore, when an enlarged portion or reinforcing material such as a haunch is provided at the end of a steel beam, the bending moment at the end of the steel beam when it is in a fully plastic state is calculated, taking into account that the bending strength of the steel beam changes in the axial direction due to the provision of the enlarged portion or reinforcing material.

[2] 前記スキンプレートの引張強度が780N/mm以上である、[1]に記載の柱梁接合部。 [2] The column-beam joint according to [1], wherein the skin plate has a tensile strength of 780 N/ mm2 or more.

[3] 前記角溶接の開先深さが60mm以下である、[1]または[2]に記載の柱梁接合部。 [3] A column-beam joint as described in [1] or [2], in which the groove depth of the corner weld is 60 mm or less.

[4] 前記溶接組立箱形断面部材の内部にコンクリートが充填されている、[1]または[2]に記載の柱梁接合部。 [4] A beam-column joint as described in [1] or [2], in which the interior of the welded box section member is filled with concrete.

[5] 前記溶接組立箱形断面部材の内部にコンクリートが充填されている、[3]に記載の柱梁接合部。 [5] The column-beam joint described in [3], in which the interior of the welded box section member is filled with concrete.

[6] 前記角溶接がアンダーマッチ溶接と部分溶け込み溶接との一方または両方であり、前記スキンプレートの板厚および基準強度、前記鉄骨梁の断面形状および基準強度、ならびに前記角溶接の溶接深さおよび溶接金属の基準強度から算出される、前記柱梁接合部の接合部パネルに取り付く前記鉄骨梁が全塑性状態となるときの材端の曲げモーメントの合計値Σ 、前記接合部パネルに取り付く前記溶接組立箱形断面柱の材端の全塑性モーメントの合計値Σ 、前記接合部パネルの全塑性モーメントp1 、前記角溶接がオーバーマッチ溶接かつ完全溶け込み溶接であると仮定したときの前記接合部パネルの全塑性モーメントp2 が、下記(1)式および(2)式の関係を満たすように、前記スキンプレートの板厚および基準強度、前記鉄骨梁の断面形状および基準強度、ならびに前記角溶接の溶接深さおよび溶接金属の基準強度を設定する、柱梁接合部の設計方法。 [6] A method for designing a column-beam joint, in which the corner welds are one or both of undermatch welds and partial penetration welds, and the thickness and standard strength of the skin plate, the cross-sectional shape and standard strength of the steel beam, and the weld depth and standard strength of the weld metal of the corner welds are set so that the following values calculated from the thickness and standard strength of the skin plate, the cross-sectional shape and standard strength of the steel beam, and the weld depth and standard strength of the corner welds satisfy the relationships in the following equations ( 1) and ( 2 ) : the sum of the bending moments ΣbMp * of the material ends of the welded-assembled box section columns attached to the joint panel when the steel beams are attached to the joint panel of the column-beam joint are in a fully plastic state, the sum of the full plastic moments ΣcMp * of the material ends of the welded-assembled box section columns attached to the joint panel, the full plastic moment pMp1* of the joint panel, and the full plastic moment pMp2 * of the joint panel when it is assumed that the corner welds are overmatch welds and full penetration welds.

Σ p2 ・・・(1)
p1 <Σ <Σ ・・・(2)
ここで、鉄骨梁の材端にハンチ等の拡幅部や補強材が設けられず、鉄骨梁が材軸方向に一様の断面を有する場合には、鉄骨梁は材端位置で全塑性状態となる。よって、この場合には、鉄骨梁が全塑性状態となるときの材端の曲げモーメントは、鉄骨梁の全塑性モーメントに等しくなる。また、鉄骨梁の材端にハンチ等の拡幅部や補強材が設けられる場合には、拡幅部や補強材が設けられる部分と設けられない部分との境界位置等で、鉄骨梁が全塑性状態となることがある。このとき、鉄骨梁が全塑性状態となるときの材端の曲げモーメントは、鉄骨梁の材軸方向の曲げモーメント分布に応じて、上記境界位置等における鉄骨梁の全塑性モーメントよりも大きくなる。そこで、鉄骨梁の材端にハンチ等の拡幅部や補強材が設けられる場合には、拡幅部や補強材が設けられることにより鉄骨梁の曲げ耐力が材軸方向に変化すること等も考慮して、鉄骨梁が全塑性状態となるときの材端の曲げモーメントを計算するものとする。
Σ c M p * < p M p 2 * ... (1)
p M p1 * < Σ c M p * < Σ b M p * ... (2)
Here, when the steel beam has a uniform cross section in the axial direction and no widening portion such as a haunch or reinforcing material is provided at the end of the steel beam, the steel beam is in a fully plastic state at the end. In this case, the bending moment at the end of the steel beam when the steel beam is in a fully plastic state is equal to the fully plastic moment of the steel beam. In addition, when the steel beam has a widening portion such as a haunch or reinforcing material at the end, the steel beam may be in a fully plastic state at the boundary between the portion where the widening portion or reinforcing material is provided and the portion where it is not provided. In this case, the bending moment at the end of the steel beam when the steel beam is in a fully plastic state is larger than the fully plastic moment of the steel beam at the boundary, etc., depending on the bending moment distribution in the axial direction of the steel beam. Therefore, when an enlarged portion or reinforcing material such as a haunch is provided at the end of a steel beam, the bending moment at the end of the steel beam when it is in a fully plastic state is calculated, taking into account that the bending strength of the steel beam changes in the axial direction due to the provision of the enlarged portion or reinforcing material.

[7] 前記スキンプレートの引張強度が780N/mm以上である、[6]に記載の柱梁接合部の設計方法。 [7] The method for designing a beam-column joint according to [6], wherein the tensile strength of the skin plate is 780 N/ mm2 or more.

[8] 前記角溶接の開先深さが60mm以下である、[6]または[7]に記載の柱梁接合部の設計方法。 [8] A method for designing a beam-column joint as described in [6] or [7], in which the groove depth of the corner weld is 60 mm or less.

[9] 前記溶接組立箱形断面部材の内部にコンクリートが充填されている、[6]または[7]に記載の柱梁接合部の設計方法。 [9] A method for designing a beam-column joint as described in [6] or [7], in which the interior of the welded box section member is filled with concrete.

[10] 前記溶接組立箱形断面部材の内部にコンクリートが充填されている、[8]に記載の柱梁接合部の設計方法。 [10] A method for designing a beam-column joint as described in [8], in which the interior of the welded box section member is filled with concrete.

本発明の柱梁接合部およびその設計方法によれば、溶接組立箱形断面柱の角溶接がアンダーマッチ溶接と部分溶け込み溶接との一方または両方であるので、柱梁接合部の接合部パネルの全塑性耐力を、接合部パネルに取り付く鉄骨梁の材端の全塑性耐力の合計値よりも小さくすることができる。そして、柱梁接合部の接合部パネルの全塑性耐力が、柱梁接合部パネルの上下に取り付く柱部材の材端の全塑性耐力の合計値よりも小さくすることにより、柱梁接合部の崩壊形を柱梁接合部パネル崩壊形とすることができる。これにより、鉄骨梁が大断面や高強度で、柱梁接合部パネルに取り付く梁部材の材端の全塑性耐力の合計値が大きい場合にも、柱梁接合部の崩壊形を柱崩壊形ではなく柱梁接合部パネル崩壊形とし、建築物全体の崩壊形をエネルギー吸収量の大きい全体崩壊形にできる。 According to the beam-column joint and its design method of the present invention, the corner welds of the welded box section column are either or both of undermatch welding and partial penetration welding, so that the full plastic strength of the joint panel of the beam-column joint can be made smaller than the total full plastic strength of the ends of the steel beams attached to the joint panel. And by making the full plastic strength of the joint panel of the beam-column joint smaller than the total full plastic strength of the ends of the column members attached above and below the beam-column joint panel, the collapse type of the beam-column joint can be the beam-column joint panel collapse type. As a result, even if the steel beam has a large cross section or high strength and the total value of the full plastic strength of the ends of the beam members attached to the beam-column joint panel is large, the collapse type of the beam-column joint can be the beam-column joint panel collapse type instead of the column collapse type, and the collapse type of the entire building can be the overall collapse type with a large energy absorption capacity.

また、溶接組立箱形断面柱の角溶接がアンダーマッチ溶接と部分溶け込み溶接との一方または両方であるので、溶接組立箱形断面柱の角溶接の施工性を大幅に向上させることができ、製作コストおよび製作期間を大幅に削減できる。 In addition, since the corner welds of welded box section columns are either or both of undermatch welding and partial penetration welding, the workability of corner welding of welded box section columns can be significantly improved, and the manufacturing costs and manufacturing time can be significantly reduced.

図1(a)は、本発明の柱梁接合部の一例を示す斜視図である。図1(b)は、溶接組立箱形断面部材の断面図である。Fig. 1(a) is a perspective view showing an example of a beam-column joint of the present invention, and Fig. 1(b) is a cross-sectional view of a welded box section member. 図2(a)および図2(b)は、溶接組立箱形断面部材の断面図および側面図である。図2(c)および図2(d)は、溶接組立箱形断面部材を力学モデル化した断面図および側面図である。図2(e)および図2(f)は、溶接組立箱形断面部材に0°方向からせん断力が作用するときの力学モデルを示す断面図および側面図である。Figures 2(a) and 2(b) are a cross-sectional view and a side view of a welded box section member, Figures 2(c) and 2(d) are a cross-sectional view and a side view of a mechanical model of the welded box section member, and Figures 2(e) and 2(f) are a cross-sectional view and a side view of a mechanical model when a shear force acts on the welded box section member from the 0° direction. 図3(a)~図3(c)は、溶接組立箱形断面部材に0°方向からせん断力が作用するときに発生するせん断変形領域および曲げ変形領域を示す側面図である。3(a) to 3(c) are side views showing the shear deformation region and the bending deformation region that occur when a shear force acts on a welded box section member from the 0° direction. 図4は、溶接組立箱形断面部材に0°方向からせん断力が作用するときの柱梁接合部パネル部の耐力を示すグラフである。FIG. 4 is a graph showing the strength of a panel portion of a beam-to-column joint when a shear force acts on a welded box section member from the 0° direction. 図5(a)および図5(b)は、本発明の柱梁接合部およびその設計方法の効果を検証するために実施した加力試験における試験体を示す図である。5(a) and 5(b) are diagrams showing test specimens in a load test carried out to verify the effects of the beam-column joint and its design method of the present invention.

以下、図面を参照して、本発明の柱梁接合部およびその設計方法の実施形態について、詳細に説明する。 Below, we will explain in detail the embodiment of the column-beam joint and its design method of the present invention with reference to the drawings.

図1(a)に、本実施形態の柱梁接合部1を示す。また、図1(b)に、柱梁接合部1の柱梁接合部パネル部分を構成する溶接組立箱形断面柱10の断面図を示す。 Figure 1(a) shows a column-beam joint 1 of this embodiment. Figure 1(b) shows a cross-sectional view of a welded box section column 10 that constitutes the column-beam joint panel portion of the column-beam joint 1.

図1(a)および図1(b)に示すように、本実施形態の柱梁接合部1は、4枚のスキンプレート11、12が角溶接13により相互に接合されて構成される溶接組立箱形断面柱10と鉄骨梁20との柱梁接合部である。本実施形態では、鉄骨梁20はH形鋼から構成されているが、本発明における鉄骨梁は、これに限定されるものではない。 As shown in Figures 1(a) and 1(b), the column-beam joint 1 of this embodiment is a column-beam joint between a welded box section column 10, which is constructed by joining four skin plates 11, 12 together with corner welds 13, and a steel beam 20. In this embodiment, the steel beam 20 is constructed from an H-shaped steel, but the steel beam in the present invention is not limited to this.

また、図1(a)では、本発明の柱梁接合部の一例として、柱梁接合部パネルの上下に溶接組立箱形断面柱10が取り付き、柱梁接合部パネルの左右に鉄骨梁20が取り付く例を示している。本発明は、これに限定されるものでなく、柱梁接合部パネルの下のみに溶接組立箱形断面柱10が取り付く場合や、柱梁接合部パネルの周囲に取り付く鉄骨梁20の本数が1本または3本以上である場合にも適用可能である。 In addition, FIG. 1(a) shows an example of a column-beam joint of the present invention in which welded box section columns 10 are attached to the top and bottom of the column-beam joint panel, and steel beams 20 are attached to the left and right of the column-beam joint panel. The present invention is not limited to this, and can also be applied to cases in which a welded box section column 10 is attached only to the bottom of the column-beam joint panel, or to cases in which one or three or more steel beams 20 are attached around the column-beam joint panel.

図1(b)に示すように、本実施形態の柱梁接合部1では、4枚のスキンプレート11、12を接合する角溶接13は、部分溶け込み溶接である。本発明における角溶接は、これに限定されるものではなく、角溶接を完全溶け込みのアンダーマッチ溶接としてもよく、部分溶け込み溶接かつアンダーマッチ溶接としてもよい。 As shown in FIG. 1(b), in the column-beam joint 1 of this embodiment, the corner welds 13 that join the four skin plates 11, 12 are partial penetration welds. The corner welds in the present invention are not limited to this, and the corner welds may be full penetration undermatch welds or partial penetration and undermatch welds.

さらに、本実施形態の柱梁接合部1を構成する溶接組立箱形断面柱10のスキンプレート11、12および角溶接13、ならびに鉄骨梁20の形状および材料強度は、下記(1)式および(2)式の関係を満たすように設定されている。すなわち、溶接組立箱形断面柱10のスキンプレート11、12の板厚tおよび降伏強度σ、角溶接13の溶接深さtおよび溶接金属の強度σyw、ならびに鉄骨梁20の断面サイズおよび降伏強度が、上記(1)式および(2)式の関係を満たすように設定されている。 Furthermore, the skin plates 11, 12 and corner welds 13 of the welded box section column 10 constituting the beam-column joint 1 of this embodiment, and the shape and material strength of the steel beam 20 are set to satisfy the relationship of the following formulas (1) and (2). That is, the plate thickness t and yield strength σ y of the skin plates 11, 12 of the welded box section column 10, the weld depth t w and weld metal strength σ yw of the corner weld 13, and the cross-sectional size and yield strength of the steel beam 20 are set to satisfy the relationship of the above formulas (1) and (2).

Σ p2 ・・・(1)
p1 <Σ <Σ ・・・(2)
また、本実施形態の柱梁接合部の設計方法は、上記(1)式および(2)式の関係を満たすように、スキンプレート11、12の板厚tおよび基準強度σ、角溶接13の溶接深さtおよび溶接金属の強度σyw、ならびに鉄骨梁20の断面サイズおよび基準強度を設定するものである。
Σ c M p * < p M p 2 * ... (1)
p M p1 * < Σ c M p * < Σ b M p * ... (2)
In addition, the design method for a column-beam joint in this embodiment sets the plate thickness t and standard strength σ y of the skin plates 11, 12, the weld depth t w and weld metal strength σ yw of the corner weld 13, and the cross-sectional size and standard strength of the steel beam 20 so as to satisfy the relationship between the above equations (1) and (2).

ここで、上記(1)式および(2)式において、Σ は、柱梁接合部1の接合部パネルに取り付く鉄骨梁20が全塑性状態となるときの材端の曲げモーメントの合計値であり、Σ は、接合部パネルに取り付く溶接組立箱形断面柱10の材端の全塑性モーメントの合計値である。また、p1 は、接合部パネルの全塑性モーメントであり、p2 は、角溶接13がオーバーマッチ溶接かつ完全溶け込み溶接であると仮定したときの接合部パネルの全塑性モーメントである。 In the above formulas ( 1 ) and (2), ΣbMp * is the total bending moment of the ends of the steel beams 20 attached to the joint panel of the beam-to-column joint 1 when they are in a fully plastic state, and ΣcMp * is the total plastic moment of the ends of the welded box section columns 10 attached to the joint panel. Also, pMp1 * is the total plastic moment of the joint panel, and pMp2 * is the total plastic moment of the joint panel when it is assumed that the corner welds 13 are overmatch welds and full penetration welds.

鉄骨梁20が全塑性状態となるときの材端の曲げモーメント 、溶接組立箱形断面柱10の材端の全塑性モーメント 、および角溶接13がオーバーマッチ溶接かつ完全溶け込み溶接であると仮定したときの接合部パネルの全塑性モーメントp2 は、例えば非特許文献4に記載される方法により計算できる。 The bending moment bMp * at the end of the steel beam 20 when it is in a fully plastic state, the fully plastic moment cMp * at the end of the welded box section column 10, and the fully plastic moment pMp2 * of the joint panel when the corner weld 13 is assumed to be an overmatch weld and full penetration weld can be calculated, for example, by the method described in non-patent document 4.

また、角溶接13がアンダーマッチ溶接と部分溶け込み溶接との一方または両方であることによる耐力減少を考慮した接合部パネルの全塑性モーメントp1 については、下記のとおり検討を行った。 In addition, the total plastic moment p M p1 * of the joint panel taking into consideration the reduction in yield strength due to the corner welds 13 being either or both of an undermatch weld and a partial penetration weld was examined as follows.

まず、図2(a)~図2(d)に示すように、溶接組立箱形断面柱10において、スキンプレートの板厚tおよび角溶接の溶接深さtが、スキンプレート11、12の板幅に対して十分に小さく、スキンプレート11、12が板厚中心に集中すると仮定して、スキンプレート11、12の板厚方向に生じるせん断応力を無視した力学モデルを設定した。 First, as shown in Figures 2(a) to 2(d), in a welded box section column 10, it was assumed that the plate thickness t of the skin plate and the weld depth t w of the corner welds are sufficiently small compared to the plate widths of the skin plates 11, 12, and that the skin plates 11, 12 are concentrated at the center of the plate thickness, and a mechanical model was set up that ignores the shear stress generated in the plate thickness direction of the skin plates 11, 12.

そして、溶接組立箱形断面柱10にせん断力が作用するとき、溶接組立箱形断面柱10の各部位には、せん断変形および曲げ変形が、次のように生じるものと仮定した。 It was assumed that when a shear force acts on the welded box column 10, shear deformation and bending deformation occur at each part of the welded box column 10 as follows:

まず、図2(e)および図2(f)に示すように、溶接組立箱形断面柱10に作用するせん断力の方向が、対向する一対のスキンプレート11と、対向するもう一対のスキンプレート12のうち、一方の幅方向と平行であるとき(以下、「0°方向加力時」という)について、次のとおり仮定した。すなわち、せん断力と平行な一対のスキンプレート11には、幅方向中央部の幅(d-X)mmの領域でせん断変形が生じ、幅方向両端部の幅(X/2)mmの領域のうち柱梁接合部パネル部の上下端部で曲げ変形が生じるものと仮定した。ただし、dは溶接組立箱形断面柱10のスキンプレート11、12の板厚中心間距離であって、溶接組立箱形断面柱10の幅Dに対してd=D-tの関係にあり、Xの範囲は0≦X≦d/2である。さらに、全ての角溶接13には、せん断変形が生じるものと仮定した。 First, as shown in Fig. 2(e) and Fig. 2(f), when the direction of the shear force acting on the welded box column 10 is parallel to the width direction of one of the pair of opposing skin plates 11 and the other pair of opposing skin plates 12 (hereinafter referred to as "when a force is applied in the 0° direction"), the following assumptions were made. That is, it was assumed that the pair of skin plates 11 parallel to the shear force undergo shear deformation in an area of width ( dc -X) mm at the center in the width direction, and bending deformation occurs at the upper and lower ends of the panel part of the column-beam joint part in an area of width (X/2) mm at both ends in the width direction. Here, dc is the distance between the plate thickness centers of the skin plates 11 and 12 of the welded box column 10, and has a relationship of dc = D-t with respect to the width D of the welded box column 10, and X is in the range of 0≦X≦ dc /2. Furthermore, it was assumed that shear deformation occurs in all corner welds 13.

上述のような力学モデルにおいて、Xの値を0≦X≦d/2の範囲内で変化させながら、溶接組立箱形断面柱10の柱梁接合部パネル部のせん断耐力をそれぞれ計算した。そして、これらのせん断耐力のうち最小値となるものを、溶接組立箱形断面柱10の柱梁接合部パネル部のせん断耐力とした。具体的には、非特許文献4および非特許文献5に記載される計算方法を参考にして、上記計算を行った。このようにして、溶接組立箱形断面柱10の柱梁接合部パネル部のせん断耐力paを求めたところ、下記(3)式~(5)式のとおりとなった。 In the mechanical model described above, the shear strength of the beam-column joint panel of the welded box column 10 was calculated while changing the value of X within the range of 0≦X≦d c /2. The minimum value among these shear strengths was determined as the shear strength of the beam-column joint panel of the welded box column 10. Specifically, the calculation was performed with reference to the calculation methods described in Non-Patent Documents 4 and 5. The shear strength p M pa of the beam-column joint panel of the welded box column 10 was calculated in this manner, and the results were as shown in the following formulas (3) to (5).

0°方向加力時は、
(1)1≦(t・σyw)/(t・σ)のとき(図3(a)参照)、
When applying force in the 0° direction,
(1) When 1≦(t w ·σ yw )/(t ·σ y ) (see FIG. 3A ),

Figure 2024092476000002
Figure 2024092476000002

(2)1-√3(d/d)≦(t・σyw)/(t・σ)≦1のとき(図3(b)参照)、 (2) When 1-√3( dc / db )≦( tw · σyw )/(t· σy )≦1 (see FIG. 3B),

Figure 2024092476000003
Figure 2024092476000003

(3)(t・σyw)/(t・σ)≦1-√3(d/d)のとき(図3(c)参照)、 (3) When (t w σ yw )/(t σ y )≦1−√3(d c /d b ) (see FIG. 3(c)),

Figure 2024092476000004
Figure 2024092476000004

ただし、上記(4)式~(5)式中のdは、柱梁接合部パネル部の高さである。また、上記(3)式~(5)式中の「p0指針」は、それぞれ下記(6)式のとおり算出される値である。 In the above formulas (4) to (5), d b is the height of the panel part of the column-beam joint. Also, the " p M p0 guideline" in the above formulas (3) to (5) is a value calculated according to the following formula (6).

Figure 2024092476000005
Figure 2024092476000005

ここで、上記(6)式に示す「p0指針」は、非特許文献5に記載されている柱梁接合部パネル部の耐力評価式であって、柱梁接合部パネル部の全体がせん断変形して全塑性耐力に達する時に柱梁接合部パネル部に作用する曲げモーメントの値である。「p0指針」は、角溶接13が完全溶込み溶接かつ角溶接の溶接金属の強度が母材強度を上回るオーバーマッチ溶接となるように施工された溶接組立箱形断面部材の柱梁接合部パネル部の耐力評価式として、現在最も広く用いられているものである。 Here, the " pMp0 guideline" shown in the above formula (6) is a formula for evaluating the strength of a column-beam joint panel portion described in Non-Patent Document 5, and is the value of the bending moment acting on the column-beam joint panel portion when the entire column-beam joint panel portion shears and reaches its full plastic strength. The "pMp0 guideline " is currently the most widely used formula for evaluating the strength of a column-beam joint panel portion of a welded box section member constructed so that the corner welds 13 are full penetration welds and overmatch welds in which the strength of the weld metal of the corner welds exceeds the strength of the base material.

上記(3)式~(5)式により求められる溶接組立箱形断面柱10の柱梁接合部パネル部のせん断耐力paは、角溶接の溶接金属の耐力(t・σyw)と母材耐力(t・σ)との比(t・σyw)/(t・σ)および柱梁接合部パネル部のアスペクト比db/dcに依存して変化する。これについて以下に説明する。 The shear strength p Mpa of the beam-column joint panel of the welded box section column 10 obtained by the above formulas (3) to (5) varies depending on the ratio (t w · σ yw )/(t · σ y ) of the yield strength of the weld metal of the corner weld (t w · σ yw ) to the base metal yield strength (t · σ y ) and the aspect ratio d b / d c of the beam-column joint panel, as will be explained below.

図4に、角溶接13の耐力の母材耐力に対する比(t・σyw)/(t・σ)を0.0~1.2の範囲で変化させたとき、上記(3)式~(5)式により計算される0°方向加力時の柱梁接合部パネル部のせん断耐力paの値の「p0指針」に対する比pa/(p0指針)の変化を、柱梁接合部パネル部のアスペクト比d/dが1.0、1.5、2.0の場合について、グラフで示す。 Figure 4 shows a graph showing the change in the ratio pMpa /(pMp0 guideline ) of the shear strength pMpa of the column-beam joint panel part when a force is applied in the 0° direction, calculated using the above equations (3) to (5), to the " pMp0 guideline" when the ratio of the strength of the corner weld 13 to the base metal strength ( tw · σyw )/( t · σy) is changed in the range of 0.0 to 1.2, for aspect ratios db / dc of the column-beam joint panel part of 1.0, 1.5, and 2.0.

図4に示すとおり、角溶接13の溶接金属の耐力(t・σyw)と母材耐力(t・σ)との比(t・σyw)/(t・σ)が小さくなるほど、柱梁接合部パネル部の耐力が減少し、また柱梁接合部パネル部のアスペクト比d/dが大きくなるほど、柱梁接合部パネル部の耐力の低下量が大きくなっている。すなわち、柱梁接合部1の少なくとも接合部パネル部分において、角溶接13をアンダーマッチ溶接と部分溶込み溶接との一方または両方とすることで、柱梁接合部1の接合部パネルの全塑性耐力p1 を小さくすることができる。そして、角溶接13がアンダーマッチ溶接と部分溶け込み溶接との一方または両方であることによる耐力減少を考慮した接合部パネルの全塑性耐力p1 は、図4に示すように、角溶接13の溶接金属の耐力(t・σyw)と母材耐力(t・σ)との比(t・σyw)/(t・σ)に基づいて把握できる。 4, the smaller the ratio (t w · σ yw )/(t · σ y ) of the yield strength of the weld metal (t w · σ yw ) of the corner weld 13 to the base metal yield strength (t · σ y ), the smaller the yield strength of the beam-column joint panel portion, and the larger the aspect ratio d b /d c of the beam-column joint panel portion, the greater the decrease in yield strength of the beam-column joint panel portion. In other words, by using either or both of undermatch welding and partial penetration welding for the corner welds 13 in at least the joint panel portion of the beam-column joint 1, the full plastic yield strength p M p1 * of the joint panel of the beam-column joint 1 can be reduced. The full plastic yield strength p M p1 * of the joint panel, taking into account the reduction in yield strength due to the corner weld 13 being one or both of an undermatch weld and a partial penetration weld, can be understood based on the ratio (t w · σ yw ) / (t · σ y ) of the yield strength of the weld metal of the corner weld 13 (t w · σ yw ) to the base metal yield strength (t · σ y ), as shown in Figure 4.

また、本実施形態の柱梁接合部1およびその設計方法では、溶接組立箱形断面柱10を構成するスキンプレート11、12の引張強度を780N/mm以上とすることができる。現在、溶接組立箱形断面柱のスキンプレートとして一般的に用いられている鋼板の強度は、最大で780N/mm級程度である。780N/mm級またはそれ以上の鋼板は、これよりも低強度の鋼材に比べて破断伸びが小さくなりやすく、これを溶接組立箱形断面柱のスキンプレートに用いる場合には、スキンプレートには変形能力を期待せず、弾性範囲内で用いるように設計されるのが一般的である。しかし、非特許文献6に記載されているように、780N/mm級の鋼材であっても、柱梁接合部のパネル内では大きな変形能力を発揮することが報告されている。これより、780N/mm級の鋼板をスキンプレート11、12に用いても、溶接組立箱形断面柱10と鉄骨梁20との柱梁接合部1の崩壊形を柱接合部パネル部崩壊形とし、柱梁接合部1の変形能力を十分に確保できる。 In addition, in the beam-column joint 1 and the design method thereof according to the present embodiment, the tensile strength of the skin plates 11, 12 constituting the welded box section column 10 can be 780 N/ mm2 or more. Currently, the strength of steel plates generally used as skin plates of welded box section columns is about 780 N/ mm2 at maximum. Steel plates of 780 N/mm2 or more tend to have smaller fracture elongation than steel materials with lower strength than this, and when used as skin plates of welded box section columns, it is common to design the skin plates to be used within their elastic range without expecting any deformation capacity. However, as described in Non-Patent Document 6, it has been reported that even steel materials of 780 N/ mm2 class exhibit large deformation capacity within the panel of the beam-column joint. As a result, even if 780 N/mm class 2 steel plates are used for the skin plates 11, 12, the collapse type of the column-beam joint 1 between the welded-assembled box section column 10 and the steel beam 20 is a column joint panel collapse type, and the deformation capacity of the column-beam joint 1 can be sufficiently secured.

また、本実施形態の柱梁接合部1およびその設計方法では、角溶接13の開先深さを60mm以下とすることが好ましい。上述のとおり、サブマージアーク溶接では、1パスで施工可能な最大溶接深さは60mm程度である。よって、肉厚が60mm以上の溶接組立箱形断面部材をオーバーマッチ溶接かつ完全溶込み溶接のサブマージアーク溶接で製作する場合には、角溶接13が多層サブマージアーク溶接となり、後熱管理が必要となるため、溶接組立箱形断面部材の製作工期が急激に長期化する。 In addition, in the beam-column joint 1 and its design method of this embodiment, it is preferable to set the groove depth of the corner weld 13 to 60 mm or less. As described above, in submerged arc welding, the maximum welding depth that can be performed in one pass is about 60 mm. Therefore, when manufacturing a welded box section member with a thickness of 60 mm or more using submerged arc welding with overmatch welding and full penetration welding, the corner weld 13 becomes a multi-layer submerged arc weld, which requires post-heat management, and the manufacturing period of the welded box section member is significantly extended.

これに対し、本実施形態の柱梁接合部1では、溶接組立箱形断面柱10の角溶接13の溶接深さtを小さくして部分溶込み溶接とし、さらに角溶接13の開先深さを60mm以下とすることにより、溶接組立箱形断面柱10のスキンプレート11、12の板厚tが大きい場合にも角溶接13を1パスで溶接することが可能となる。よって、肉厚が60mm以上の溶接組立箱形断面部材を完全溶込みの多層サブマージアーク溶接により施工する場合のような後熱管理が不要なため、角溶接13の溶接施工性が大幅に高められ、溶接組立箱形断面柱10の製作コストや製作期間を大幅に削減できる。溶接組立箱形断面柱10のスキンプレート11、12の板厚tが65mm程度またはそれ以下である場合には、角溶接13の開先深さを60mm以下としなくても、角溶接13を部分溶込み溶接とすることにより、上述の効果を得ることができる。 In contrast, in the beam-column joint 1 of the present embodiment, the weld depth t w of the corner weld 13 of the welded box column 10 is reduced to a partial penetration weld, and the groove depth of the corner weld 13 is set to 60 mm or less, so that the corner weld 13 can be welded in one pass even when the plate thickness t of the skin plates 11, 12 of the welded box column 10 is large. Therefore, since there is no need for post-heat management as in the case of performing full penetration multi-layer submerged arc welding on a welded box member having a wall thickness of 60 mm or more, the weldability of the corner weld 13 is significantly improved, and the manufacturing cost and manufacturing period of the welded box column 10 can be significantly reduced. When the plate thickness t of the skin plates 11, 12 of the welded box column 10 is about 65 mm or less, the above-mentioned effect can be obtained by performing the corner weld 13 as a partial penetration weld, even if the groove depth of the corner weld 13 is not set to 60 mm or less.

なお、角溶接13をアンダーマッチ溶接または部分溶込み溶接とすることにより、溶接組立箱形断面柱10の部材耐力が大きく影響を受けるのは、接合部パネル部分が主である。ただし、接合部パネル部分以外の部位においても、溶接組立箱形断面柱10が確実にせん断力を伝達できるようにするには、溶接組立箱形断面柱10の角溶接13の溶接金属の耐力の母材耐力に対する比(t・σyw)/(t・σ)を0.3以上とすることが好ましい。 By forming the corner welds 13 as undermatch welds or partial penetration welds, the component strength of the welded box column 10 is significantly affected mainly by the joint panel portion. However, in order to ensure that the welded box column 10 can transmit shear force even in portions other than the joint panel portion, it is preferable that the ratio of the strength of the weld metal of the corner welds 13 of the welded box column 10 to the base metal strength (t w ·σ yw )/(t·σ y ) is 0.3 or more.

また、本実施形態の柱梁接合部1およびその設計方法は、溶接組立箱形断面柱10の内部にコンクリート(図示せず)が充填されているにも適用可能である。 The beam-column joint 1 of this embodiment and its design method can also be applied to a welded box section column 10 in which the inside is filled with concrete (not shown).

本発明の柱梁接合部およびその設計方法の効果を検証すべく、数値解析により柱梁接合部の崩壊形を確認したので、これについて以下に説明する。 To verify the effectiveness of the beam-column joint and its design method of the present invention, the collapse shape of the beam-column joint was confirmed through numerical analysis, which is explained below.

本数値解析では、図5に示す平面十字骨組の解析モデルに対し、溶接組立箱形断面柱10に軸方向力を付与しつつ鉄骨梁20の両端に逆対称にせん断力を付与する条件で数値解析を行い、柱梁接合部1の崩壊形を確認した。 In this numerical analysis, a planar cross frame analysis model shown in Figure 5 was used to perform a numerical analysis under conditions in which an axial force was applied to the welded box section column 10 while shear forces were applied in an anti-symmetrical manner to both ends of the steel beam 20, and the collapse mode of the beam-column joint 1 was confirmed.

具体的には、平面十字骨組の溶接組立箱形断面柱10を構成するスキンプレート11、12の降伏強度σを630N/mmとし、柱幅を800mm、板厚tを80mm、柱高さを12000mmとした。また、角溶接13として、角溶接A(本発明例)と角溶接B(比較例)の2種類を設定した。角溶接Aについては、溶接金属の降伏強度σywを630N/mm、開先深さtを80mmとして、多パスのサブマージアーク溶接によりイーブンマッチ溶接となるように施工されているものとして、解析モデルを設定した。また、角溶接Bについては、溶接金属の降伏強度σywを325N/mm、開先深さtを50mmとして、1パスのサブマージアーク溶接によりアンダーマッチ溶接となるように施工されているものとして、解析モデルを設定した。 Specifically, the yield strength σy of the skin plates 11 and 12 constituting the welded box section column 10 of the planar cross frame was set to 630 N/ mm2 , the column width was 800 mm, the plate thickness t was 80 mm, and the column height was 12000 mm. In addition, two types of corner welds 13 were set, namely, corner weld A (invention example) and corner weld B (comparison example). For the corner weld A, the analysis model was set assuming that the weld metal yield strength σyw was 630 N/ mm2 , the groove depth tw was 80 mm, and the weld was constructed so as to be an even-match weld by multi-pass submerged arc welding. For the corner weld B, the analysis model was set assuming that the weld metal yield strength σyw was 325 N/ mm2 , the groove depth tw was 50 mm, and the weld was constructed so as to be an undermatch weld by one pass submerged arc welding.

また、鉄骨梁20については、鉄骨梁20が全塑性状態となるときの材端の曲げモーメントが大きい場合を再現すべく、降伏強度を440N/mm、梁幅を600mm、梁せいを1600mm、梁フランジの板厚を80mm、梁ウェブの板厚を40mm、梁長さを24000mmとした。 In addition, for the steel beam 20, in order to reproduce the case where the bending moment at the end of the steel beam 20 is large when the steel beam 20 reaches a fully plastic state, the yield strength was set to 440 N/ mm2 , the beam width to 600 mm, the beam depth to 1,600 mm, the beam flange thickness to 80 mm, the beam web thickness to 40 mm, and the beam length to 24,000 mm.

溶接組立箱形断面柱10の材軸方向上端をピンローラー支持、材軸方向下端をピン支持とし、軸力比0.4の軸方向力(溶接組立箱形断面柱10の降伏軸力をNとすると、0.4N)が作用するものとした。そして、図5に示すように、鉄骨梁20の材軸方向端部に上下逆方向にせん断力Qが作用するときの、接合部パネルに取り付く鉄骨梁20が全塑性状態となるときの材端の曲げモーメントの合計値Σ 、接合部パネルに取り付く溶接組立箱形断面柱10の材端の全塑性モーメントの合計値Σ 、接合部パネルの全塑性モーメントp1 またはp2 を計算した。表1に、本数値解析の結果を示す。 The upper end of the welded box column 10 in the axial direction was supported by pin rollers, and the lower end of the welded box column 10 was supported by pins, and an axial force with an axial force ratio of 0.4 (0.4N y , where N y is the yield axial force of the welded box column 10) was applied. As shown in Fig. 5, when a shear force Q acts on the end of the steel beam 20 in the axial direction in the opposite directions, the total bending moment Σ b M p * of the end of the steel beam 20 attached to the joint panel when the steel beam 20 is in a fully plastic state, the total plastic moment Σ c M p * of the end of the welded box column 10 attached to the joint panel, and the full plastic moment p M p1 * or p M p2 * of the joint panel were calculated. Table 1 shows the results of this numerical analysis.

Figure 2024092476000006
Figure 2024092476000006

表1に示すとおり、角溶接13が角溶接Bの比較例では、鉄骨梁20が全塑性状態となるときの材端の曲げモーメントの合計値Σ 、溶接組立箱形断面柱10の材端の全塑性モーメントの合計値Σ 、接合部パネルの全塑性モーメントp2 のうち、Σ が最も小さくなっている。つまり、柱梁接合部1の接合部パネルに隣接する溶接組立箱形断面柱10の材端に損傷が集中して、柱梁接合部1の崩壊形が柱崩壊形となる可能性が高いことがわかる。 As shown in Table 1, in the comparative example where the corner weld 13 is corner weld B, among the total bending moment ΣbMp * of the material end when the steel beam 20 is in a fully plastic state, the total plastic moment ΣcMp * of the material end of the welded box section column 10, and the total plastic moment pMp2 * of the joint panel, ΣcMp * is the smallest. In other words, it can be seen that damage is concentrated at the material end of the welded box section column 10 adjacent to the joint panel of the column-beam joint 1, and there is a high possibility that the collapse type of the column-beam joint 1 will be the column collapse type.

これに対し、角溶接13が角溶接Aの本発明例では、鉄骨梁20が全塑性状態となるときの材端の曲げモーメントの合計値Σ 、溶接組立箱形断面柱10の材端の全塑性モーメントの合計値Σ 、接合部パネルの全塑性モーメントp1 のうち、p1 が最も小さくなっている。つまり、柱梁接合部1の崩壊形を接合部パネル崩壊形とすることができている。また、接合部パネルの全塑性モーメントp1 と溶接組立箱形断面柱10の材端の全塑性モーメントの合計値Σ との比 /Σ は0.77であり、接合部パネル崩壊時に、溶接組立箱形断面柱10の材端の耐力は、2~3割ほど余力を残している。 In contrast, in the example of the present invention in which the corner weld 13 is corner weld A, among the total value ΣbMp * of the bending moment at the end of the steel beam 20 when the steel beam 20 is in a fully plastic state, the total value ΣcMp * of the full plastic moment at the end of the welded box section column 10, and the total plastic moment pMp1* of the joint panel, pMp1* is the smallest . In other words, the collapse mode of the beam-column joint 1 can be the collapse mode of the joint panel. In addition, the ratio pMp * / ΣcMp * of the total plastic moment pMp1 * of the joint panel to the total plastic moment ΣcMp* of the end of the welded box section column 10 is 0.77, and when the joint panel collapses, the strength of the end of the welded box section column 10 has a reserve strength of about 20 to 30 percent.

以上より、本発明の柱梁接合部およびその設計方法により、鉄骨梁が大断面や高強度で、柱梁接合部パネルに取り付く梁部材の材端の全塑性耐力の合計値が大きい場合にも、柱梁接合部の崩壊形を柱崩壊形ではなく柱梁接合部パネル崩壊形にできることが確認された。 From the above, it has been confirmed that the column-beam joint and its design method of the present invention can make the collapse type of the column-beam joint a column-beam joint panel collapse type rather than a column collapse type, even when the steel beam has a large cross section and high strength, and the total value of the full plastic strength of the ends of the beam members attached to the column-beam joint panel is large.

1 柱梁接合部
10 溶接組立箱形断面柱
11、12 スキンプレート
13 角溶接
20 鉄骨梁
t スキンプレートの板厚
角溶接の溶接深さ
σ スキンプレートの降伏強度
σyw 角溶接の溶接金属の降伏強度
1 Beam-to-column joint 10 Welded box section column 11, 12 Skin plate 13 Corner weld 20 Steel beam t Skin plate thickness t w Weld depth of corner weld σ y Yield strength of skin plate σ yw Yield strength of weld metal of corner weld

Claims (10)

4枚のスキンプレートが角溶接により相互に接合されて構成される溶接組立箱形断面柱と鉄骨梁との柱梁接合部であって、
前記角溶接がアンダーマッチ溶接と部分溶け込み溶接との一方または両方であり、
前記柱梁接合部の接合部パネルに取り付く前記鉄骨梁が全塑性状態となるときの材端の曲げモーメントの合計値Σ 、前記接合部パネルに取り付く前記溶接組立箱形断面柱の材端の全塑性モーメントの合計値Σ 、前記接合部パネルの全塑性モーメントp1 、前記角溶接がオーバーマッチ溶接かつ完全溶け込み溶接であると仮定したときの前記接合部パネルの全塑性モーメントp2 が、下記(1)式および(2)式の関係を満たす、柱梁接合部。
Σ p2 ・・・(1)
p1 <Σ <Σ ・・・(2)
A column-beam joint between a welded box section column and a steel beam, the column-beam joint being constituted by four skin plates joined together by corner welding,
The corner weld is one or both of an undermatch weld and a partial penetration weld;
A column-beam joint in which the total bending moment ΣbMp * of the ends of the steel beams attached to the joint panel of the column-beam joint when they are in a fully plastic state, the total plastic moment ΣcMp * of the ends of the welded box section columns attached to the joint panel, the total plastic moment pMp1 * of the joint panel, and the total plastic moment pMp2 * of the joint panel when it is assumed that the corner welds are overmatch welds and full penetration welds satisfy the relationships in the following equations (1) and (2).
Σ c M p * < p M p 2 * ... (1)
p M p1 * < Σ c M p * < Σ b M p * ... (2)
前記スキンプレートの引張強度が780N/mm以上である、請求項1に記載の柱梁接合部。 The beam-column joint according to claim 1 , wherein the skin plate has a tensile strength of 780 N/mm 2 or more. 前記角溶接の開先深さが60mm以下である、請求項1または2に記載の柱梁接合部。 The beam-column joint according to claim 1 or 2, in which the groove depth of the corner weld is 60 mm or less. 前記溶接組立箱形断面部材の内部にコンクリートが充填されている、請求項1または2に記載の柱梁接合部。 The beam-column joint according to claim 1 or 2, in which the inside of the welded box section member is filled with concrete. 前記溶接組立箱形断面部材の内部にコンクリートが充填されている、請求項3に記載の柱梁接合部。 The beam-column joint according to claim 3, wherein the interior of the welded box section member is filled with concrete. 4枚のスキンプレートが角溶接により相互に接合されて構成される溶接組立箱形断面柱と鉄骨梁との柱梁接合部の設計方法であって、
前記角溶接がアンダーマッチ溶接と部分溶け込み溶接との一方または両方であり、
前記スキンプレートの板厚および基準強度、前記鉄骨梁の断面形状および基準強度、ならびに前記角溶接の溶接深さおよび溶接金属の基準強度から算出される、前記柱梁接合部の接合部パネルに取り付く前記鉄骨梁が全塑性状態となるときの材端の曲げモーメントの合計値Σ 、前記接合部パネルに取り付く前記溶接組立箱形断面柱の材端の全塑性モーメントの合計値Σ 、前記接合部パネルの全塑性モーメントp1 、前記角溶接がオーバーマッチ溶接かつ完全溶け込み溶接であると仮定したときの前記接合部パネルの全塑性モーメントp2 が、下記(1)式および(2)式の関係を満たすように、前記スキンプレートの板厚および基準強度、前記鉄骨梁の断面形状および基準強度、ならびに前記角溶接の溶接深さおよび溶接金属の基準強度を設定する、柱梁接合部の設計方法。
Σ p2 ・・・(1)
p1 <Σ <Σ ・・・(2)
A method for designing a column-beam joint between a welded box section column formed by joining four skin plates together by corner welding and a steel beam, comprising:
The corner weld is one or both of an undermatch weld and a partial penetration weld;
A design method for a column-beam joint, in which the thickness and standard strength of the skin plate, the cross-sectional shape and standard strength of the steel beam, and the weld depth and standard strength of the weld metal of the corner weld are set so that the total bending moment ΣbMp * of the material end when the steel beam attached to the joint panel of the column - beam joint is in a fully plastic state, the total plastic moment ΣcMp * of the material end of the welded assembled box section column attached to the joint panel, the total plastic moment pMp1 * of the joint panel, and the total plastic moment pMp2 * of the joint panel when the corner weld is assumed to be an overmatch weld and full penetration weld, satisfy the relationships in the following equations (1) and (2).
Σ c M p * < p M p 2 * ... (1)
p M p1 * < Σ c M p * < Σ b M p * ... (2)
前記スキンプレートの引張強度が780N/mm以上である、請求項6に記載の柱梁接合部の設計方法。 The method for designing a beam-column joint according to claim 6, wherein the tensile strength of the skin plate is 780 N/ mm2 or more. 前記角溶接の開先深さが60mm以下である、請求項6または7に記載の柱梁接合部の設計方法。 The method for designing a beam-column joint according to claim 6 or 7, in which the groove depth of the corner weld is 60 mm or less. 前記溶接組立箱形断面部材の内部にコンクリートが充填されている、請求項6または7に記載の柱梁接合部の設計方法。 The method for designing a beam-column joint according to claim 6 or 7, in which the interior of the welded box section member is filled with concrete. 前記溶接組立箱形断面部材の内部にコンクリートが充填されている、請求項8に記載の柱梁接合部の設計方法。 The method for designing a beam-column joint according to claim 8, wherein the interior of the welded box section member is filled with concrete.
JP2022208427A 2022-12-26 2022-12-26 Beam-column joint part and method for designing the same Pending JP2024092476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022208427A JP2024092476A (en) 2022-12-26 2022-12-26 Beam-column joint part and method for designing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022208427A JP2024092476A (en) 2022-12-26 2022-12-26 Beam-column joint part and method for designing the same

Publications (1)

Publication Number Publication Date
JP2024092476A true JP2024092476A (en) 2024-07-08

Family

ID=91802105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022208427A Pending JP2024092476A (en) 2022-12-26 2022-12-26 Beam-column joint part and method for designing the same

Country Status (1)

Country Link
JP (1) JP2024092476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024262532A1 (en) * 2023-06-19 2024-12-26 日本製鉄株式会社 Column-beam joining structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024262532A1 (en) * 2023-06-19 2024-12-26 日本製鉄株式会社 Column-beam joining structure

Similar Documents

Publication Publication Date Title
JP2024092476A (en) Beam-column joint part and method for designing the same
JP6956466B2 (en) Steel beam and column beam joint structure
JP2018178466A (en) Damper and method for manufacturing damper
JP2012057419A (en) Steel beam joint structure
JP5973968B2 (en) Column beam welded joint and manufacturing method thereof
JP2001288823A (en) Beam-column joint reinforcement structure
JP6973984B2 (en) Reinforcing structure of steel pipe columns
JP6105878B2 (en) Steel beam and column beam connection structure
JPH10159379A (en) Damping structure and damper of building
JP4151693B2 (en) Installation structure of studs in existing building
JP6022435B2 (en) Bearing wall with brace and brace
JP7226590B2 (en) Steel beams, beam-to-column joint structures and structures having them
JP7594978B2 (en) building
JP2023146182A (en) Welded assembly box-shaped cross-sectional member and method for designing same
JP6293207B2 (en) Installation structure of studs in existing building
KR102175363B1 (en) Connecting core for column-beam joint
JP7542019B2 (en) Steel beam-column joint structure
JP7609090B2 (en) Steel beam and steel column joint structure and H-shaped steel used for this
JP2015117534A (en) Bearing wall of combinedly using face bar and brace
JP2020159136A (en) Method of designing joint structure
JP7252249B2 (en) Square steel pipe and welding method for square steel pipe
JP7605066B2 (en) Building structure
JP7262518B2 (en) Stud type steel damper
JP2018172859A (en) Box section column and column-beam connection structure
JP7393861B2 (en) frame structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240730