[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2024090353A - Hot-worked cast products of Al-Mg-Si aluminum alloys and their manufacturing method - Google Patents

Hot-worked cast products of Al-Mg-Si aluminum alloys and their manufacturing method Download PDF

Info

Publication number
JP2024090353A
JP2024090353A JP2022206214A JP2022206214A JP2024090353A JP 2024090353 A JP2024090353 A JP 2024090353A JP 2022206214 A JP2022206214 A JP 2022206214A JP 2022206214 A JP2022206214 A JP 2022206214A JP 2024090353 A JP2024090353 A JP 2024090353A
Authority
JP
Japan
Prior art keywords
hot
aluminum alloy
cast
mass
worked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022206214A
Other languages
Japanese (ja)
Inventor
崇 逢坂
Takashi Aisaka
仁 谷野
Hitoshi Yano
吾朗 伊藤
Goro Ito
繁 倉本
Shigeru Kuramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Ibaraki University NUC
Original Assignee
Toyota Motor Corp
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Ibaraki University NUC filed Critical Toyota Motor Corp
Priority to JP2022206214A priority Critical patent/JP2024090353A/en
Priority to DE102023134780.2A priority patent/DE102023134780A1/en
Priority to KR1020230179345A priority patent/KR20240101383A/en
Priority to CN202311750514.4A priority patent/CN118241087A/en
Priority to US18/390,021 priority patent/US20240209487A1/en
Publication of JP2024090353A publication Critical patent/JP2024090353A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/003Selecting material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K29/00Arrangements for heating or cooling during processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

【課題】高湿度中にて一定荷重で引張負荷をかけた際のき裂進展を抑制することができるAl-Mg-Si系のアルミニウム合金の鋳造熱間加工品及びその製造方法を提供する。【解決手段】Al-Mg-Si系のアルミニウム合金の鋳造熱間加工品であって、前記アルミニウム合金は、Si及びCuを含み、前記Cuの質量%に対する前記Siの質量%の比率であるSi/Cu比が、3.3未満である、鋳造熱間加工品。【選択図】図1[Problem] To provide a hot-worked cast product of an Al-Mg-Si aluminum alloy capable of suppressing crack growth when a constant tensile load is applied in high humidity, and a manufacturing method thereof. [Solution] A hot-worked cast product of an Al-Mg-Si aluminum alloy, the aluminum alloy containing Si and Cu, and having a Si/Cu ratio, which is the ratio of the mass % of Si to the mass % of Cu, of less than 3.3. [Selected Figure] Figure 1

Description

本開示は、Al-Mg-Si系のアルミニウム合金の鋳造熱間加工品及びその製造方法に関する。 This disclosure relates to cast hot-worked products of Al-Mg-Si-based aluminum alloys and their manufacturing methods.

特許文献1には、応力腐食割れ(SCC:Stress Corrosion Cracking)に対して耐性を持つAl-Zn-Mg(7000系)の鋳造材の製造方法が開示されている。 Patent Document 1 discloses a method for producing Al-Zn-Mg (7000 series) casting material that is resistant to stress corrosion cracking (SCC).

特開2002-348631号公報JP 2002-348631 A

従来のアルミニウム合金では、高湿度中にて一定荷重で引張負荷をかけた際のき裂進展を抑制することができない場合がある。従来技術においては、アルミニウム合金について、SCC試験は検討されているが、アルミニウム合金について、HG-SCC(Humid Gas Stress Corrosion Cracking)試験は、検討されていない。 Conventional aluminum alloys may not be able to suppress crack growth when a constant tensile load is applied in high humidity. In conventional technology, SCC tests have been considered for aluminum alloys, but HG-SCC (humid gas stress corrosion cracking) tests have not been considered for aluminum alloys.

本開示は、上記実情に鑑みてなされたものであり、高湿度中にて一定荷重で引張負荷をかけた際のき裂進展を抑制することができるAl-Mg-Si系のアルミニウム合金の鋳造熱間加工品及びその製造方法を提供することを主目的とする。 This disclosure was made in consideration of the above-mentioned circumstances, and its main objective is to provide a hot-worked cast product of an Al-Mg-Si aluminum alloy that can suppress crack propagation when a constant tensile load is applied in high humidity, and a method for manufacturing the same.

本開示の鋳造熱間加工品は、Al-Mg-Si系のアルミニウム合金の鋳造熱間加工品であって、前記アルミニウム合金は、Si及びCuを含み、前記Cuの質量%に対する前記Siの質量%の比率であるSi/Cu比が、3.3未満である。 The hot-worked cast product of the present disclosure is a hot-worked cast product of an Al-Mg-Si-based aluminum alloy, the aluminum alloy containing Si and Cu, and the Si/Cu ratio, which is the ratio of the mass % of Si to the mass % of Cu, is less than 3.3.

本開示においては、Al-Mg-Si系のアルミニウム合金の鋳造熱間加工品の製造方法であって、前記Al-Mg-Si系のアルミニウム合金を鋳造し、鋳塊を得ること、前記鋳塊を熱間加工し、前記鋳造熱間加工品を得ること、を有し、前記熱間加工における、前記鋳造熱間加工品の圧下率が10%以上であってもよい。 In the present disclosure, there is provided a method for producing a cast hot-worked product of an Al-Mg-Si-based aluminum alloy, the method comprising: casting the Al-Mg-Si-based aluminum alloy to obtain an ingot; and hot working the ingot to obtain the cast hot-worked product, and the reduction ratio of the cast hot-worked product during the hot working may be 10% or more.

本開示においては、前記熱間加工が熱間鍛造であってもよい。 In the present disclosure, the hot working may be hot forging.

本開示は、高湿度中にて一定荷重で引張負荷をかけた際のき裂進展を抑制することができるAl-Mg-Si系のアルミニウム合金の鋳造熱間加工品及びその製造方法を提供することができる。 This disclosure provides a hot-worked cast product of an Al-Mg-Si aluminum alloy that can suppress crack propagation when a constant tensile load is applied in high humidity, and a method for manufacturing the same.

Si/Cu比と、初期き裂長さとの関係を示すグラフである。1 is a graph showing the relationship between the Si/Cu ratio and the initial crack length. 圧下率と、初期き裂長さとの関係を示すグラフである。1 is a graph showing the relationship between the rolling reduction and the initial crack length.

1.鋳造熱間加工品
本開示の鋳造熱間加工品は、Al-Mg-Si系のアルミニウム合金の鋳造熱間加工品であって、前記アルミニウム合金は、Si及びCuを含み、前記Cuの質量%に対する前記Siの質量%の比率であるSi/Cu比が、3.3未満である。
1. Cast hot-worked product The cast hot-worked product of the present disclosure is a cast hot-worked product of an Al-Mg-Si-based aluminum alloy, the aluminum alloy containing Si and Cu, and a Si/Cu ratio, which is the ratio of the mass% of Si to the mass% of Cu, is less than 3.3.

次世代の燃料電池車(FCEV)用の高圧水素タンクの口金、及び、バルブ部品の小型化のため、高強度のアルミニウム合金の開発がされている。近年、高圧水素環境でも使用可能な材料に関する制定予定の国際法規規定において、A6061材以外のアルミニウム合金を使用する場合、規定する4項目の水素脆化調査試験を合格する必要がある。アルミニウム合金について、大気中引張り試験、水素中引張り試験である低歪速度引張遅れ破壊試験(SSRT:Slow Strain Rate Technique)、水素中疲労試験の3項目の試験では既に合格を確認しているが、残るHG-SCC試験では合格が確認できていない。既存調査では、6061成分の範囲外のアルミニウム合金であってもSi及びCuの成分を所定の範囲内に調整すれば、試験の合格条件を満たすと報告されているが、当該所定の範囲内で作製したアルミニウム合金でも不合格となる場合があることを知見した。 High-strength aluminum alloys are being developed to miniaturize the nozzles and valve parts of high-pressure hydrogen tanks for next-generation fuel cell vehicles (FCEVs). In recent years, international regulations regarding materials that can be used in high-pressure hydrogen environments are scheduled to be enacted, and when using aluminum alloys other than A6061 materials, they must pass four hydrogen embrittlement investigation tests. Aluminum alloys have already been confirmed to pass three tests: tensile tests in air, slow strain rate tensile delayed fracture tests (SSRT: Slow Strain Rate Technique), which are tensile tests in hydrogen, and fatigue tests in hydrogen, but the remaining HG-SCC test has not been confirmed to pass. Existing research has reported that even aluminum alloys outside the range of 6061 components can meet the test passing conditions if the Si and Cu components are adjusted to within the specified range, but it has been found that even aluminum alloys manufactured within the specified range may fail.

HG-SCC試験は、高湿中で一定負荷がかかった際に起きる、アルミニウム合金特有の応力腐食割れ(SCC)が発生するかの調査試験となっている。一方、不合格となったアルミニウム合金には、三日月状の破面が確認されている。三日月状の破面は靭性が低い材料において形成されやすい破面形状である。なお、靭性が高い材料であれば破面は平行に伸びる。そのため、HG-SCC試験では応力腐食割れ現象だけでなく、アルミニウム合金の靭性の影響を大きく受けると考えられる。また、既存調査ではアルミニウム合金にSiが多量に添加されていても、Cuを0.3%以上添加すれば試験の合格条件を満たすとの報告もあるが、実際のSi/Cu比の不合格となる範囲を調査した知見はなく、確認されたき裂が全てアルミニウム合金の靭性不足に起因しているかは不明であり、応力腐食割れ現象によって生じた割れである可能性もある。 The HG-SCC test is an investigation test to determine whether or not stress corrosion cracking (SCC), which is specific to aluminum alloys, occurs when a certain load is applied in high humidity. On the other hand, crescent-shaped fractures were confirmed in aluminum alloys that failed the test. Crescent-shaped fractures are a fracture shape that is likely to form in materials with low toughness. In materials with high toughness, the fractures extend parallel to one another. Therefore, it is believed that the HG-SCC test is greatly affected not only by the stress corrosion cracking phenomenon, but also by the toughness of the aluminum alloy. In addition, existing investigations have reported that even if a large amount of Si is added to an aluminum alloy, the test passing conditions are met if 0.3% or more Cu is added, but there is no knowledge that has investigated the range of the actual Si/Cu ratio that results in failure, and it is unclear whether all of the confirmed cracks are due to insufficient toughness of the aluminum alloy, and they may have been caused by the stress corrosion cracking phenomenon.

本開示ではHG-SCC試験の結果がアルミニウム合金の靭性の影響を大きく受けていると予想し、アルミニウム合金の靭性に影響を与える熱間加工の圧下率とSi及びCuの成分を振った水準品を作製し、高湿度中にて一定荷重で引張負荷をかけた際のき裂進展を抑制することができる条件を見出した。
本開示では、高湿度中で試験片(TP)に一定の引張荷重を90日間かけ、進展するき裂長さが所定の長さ以下であるアルミニウム合金の製法を見出した。
アルミニウム合金の靭性を向上させるためには製造工法中において熱間加工を施すことが有効であり、本開示では、熱間加工によってアルミニウム合金の靭性の向上を試みた。
In this disclosure, it is predicted that the results of the HG-SCC test are significantly affected by the toughness of the aluminum alloy, and standard products are produced by varying the hot working reduction rate and the Si and Cu components, which affect the toughness of the aluminum alloy, and conditions are found that can suppress crack propagation when a constant tensile load is applied in high humidity.
In the present disclosure, a method for producing an aluminum alloy has been discovered in which a constant tensile load is applied to a test piece (TP) in high humidity for 90 days, and the length of the crack that grows is equal to or less than a predetermined length.
In order to improve the toughness of an aluminum alloy, it is effective to perform hot working during the manufacturing process, and in this disclosure, an attempt is made to improve the toughness of an aluminum alloy by hot working.

本開示の鋳造熱間加工品は、Al-Mg-Si系のアルミニウム合金の鋳造熱間加工品である。
Al-Mg-Si系のアルミニウム合金は、Si及びCuを含み、前記Cuの質量%に対する前記Siの質量%の比率であるSi/Cu比が、3.3未満である。Si/Cu比は、1.6以上であってもよい。
本開示で用いるAl-Mg-Si系のアルミニウム合金は、6000系のアルミニウム合金である。
本開示で用いるAl-Mg-Si系のアルミニウム合金の化学成分(質量%)は、Mgが0.80-3.00質量%、Siが0.40-1.26質量%、Cuが0.15-0.52質量%、Feが0.70質量%以下、Crが0.04-0.35質量%、Mnが0.15質量%以下、Znが0.25質量%以下、Tiが0.15質量%以下、残部がアルミニウム及び不可避不純物からなるものであってもよい。
The cast, hot-worked product of the present disclosure is a cast, hot-worked product of an Al-Mg-Si based aluminum alloy.
The Al-Mg-Si-based aluminum alloy contains Si and Cu, and has a Si/Cu ratio, which is a ratio of the mass% of Si to the mass% of Cu, of less than 3.3. The Si/Cu ratio may be 1.6 or more.
The Al-Mg-Si based aluminum alloy used in this disclosure is a 6000 series aluminum alloy.
The chemical components (mass %) of the Al-Mg-Si-based aluminum alloy used in the present disclosure may be 0.80-3.00 mass % Mg, 0.40-1.26 mass % Si, 0.15-0.52 mass % Cu, 0.70 mass % or less Fe, 0.04-0.35 mass % Cr, 0.15 mass % or less Mn, 0.25 mass % or less Zn, 0.15 mass % or less Ti, with the balance being aluminum and unavoidable impurities.

Mg:0.80-3.00質量%
Mgは機械的性質の向上に有効である。Mgが不足の場合には機械的性質が不足する。Mgが過剰の場合には鋳造性、鍛造性、耐応力腐食割れ性、伸びが低下する。Mgは1.20質量%以下であってもよい。
Mg: 0.80-3.00% by mass
Mg is effective in improving mechanical properties. If Mg is insufficient, the mechanical properties are insufficient. If Mg is excessive, castability, forgeability, stress corrosion cracking resistance, and elongation are reduced. The Mg content may be 1.20 mass% or less.

Si:0.40-1.26質量%
Siは0.79質量%以上であってもよい。Siの含有量が多くなりすぎると機械的性質を劣化させる。
Si: 0.40-1.26% by mass
The Si content may be 0.79 mass % or more. If the Si content is too high, the mechanical properties are deteriorated.

Cu:0.15-0.52質量%
Cuは機械的性質の向上、耐応力腐食割れ性の改善に有効である。Cuが不足の場合には機械的性質が不足し、耐応力腐食割れ性の改善が不足する。Cuが過剰の場合には耐食性、伸びが低下する。Cuは0.30質量%以上であってもよい。
Cu: 0.15-0.52% by mass
Cu is effective in improving mechanical properties and stress corrosion cracking resistance. If Cu is insufficient, the mechanical properties are insufficient and the improvement of stress corrosion cracking resistance is insufficient. If Cu is excessive, the corrosion resistance and elongation are reduced. Cu may be 0.30 mass% or more.

Fe:0.70質量%以下
Feはアルミニウムの精錬及び鋳造の過程で混入し易い不純物であり、含有量が多くなると機械的性質を劣化させる。Feは0.35質量%以下であってもよく、0.25質量%以下であってもよい。
Fe: 0.70% by mass or less Fe is an impurity that is easily mixed in during the process of refining and casting aluminum, and if the content is high, it deteriorates the mechanical properties. The Fe content may be 0.35% by mass or less, or may be 0.25% by mass or less.

Cr:0.04-0.35質量%、Mn:0.15質量%以下、Zn:0.25質量%以下、Ti:0.15質量%以下
Cr、Mn、Zn、及び、Tiは本開示のアルミニウム合金において任意成分である。
Cr、及び、Mnは、熱処理等の加熱時における再結晶化の防止に有効であり、更に耐応力腐食割れ性、機械的性質の向上に有効である。Cr、及び、Mnが過剰の場合にはその効果が頭打ちになり、さらに不溶性化合物が増加して機械的性質が劣化することがある。
Znは機械的性質の向上に有効である。Znが不足の場合には機械的性質が不足する。Znが過剰の場合には、鋳造割れ等が発生し易くなり、鋳造性、鍛造性、耐応力腐食割れ性、伸びが低下する。
Tiは凝固組織の結晶粒の微細化に有効である。Tiが不足の場合には結晶粒が粗大となって、鋳造時の割れ、鍛造時の肌荒れが生じる。Tiが過剰の場合は、その効果が頭打ちになり、さらに不溶性化合物が増加して機械的性質が劣化する。
Cr: 0.04-0.35% by mass, Mn: up to 0.15% by mass, Zn: up to 0.25% by mass, Ti: up to 0.15% by mass Cr, Mn, Zn, and Ti are optional components in the aluminum alloy of the present disclosure.
Cr and Mn are effective in preventing recrystallization during heating such as heat treatment, and are also effective in improving stress corrosion cracking resistance and mechanical properties. If Cr and Mn are excessive, the effect reaches a plateau, and insoluble compounds increase, which can deteriorate mechanical properties.
Zn is effective in improving mechanical properties. If the amount of Zn is insufficient, the mechanical properties will be insufficient. If the amount of Zn is excessive, casting cracks will easily occur, and castability, forgeability, stress corrosion cracking resistance, and elongation will decrease.
Ti is effective in making the crystal grains of the solidification structure finer. If there is insufficient Ti, the crystal grains become coarse, causing cracks during casting and rough surfaces during forging. If there is too much Ti, the effect reaches a plateau and insoluble compounds increase, deteriorating mechanical properties.

本開示においては、湿潤ガス応力腐食割れ(HG-SCC)試験により測定される鋳造熱間加工品のき裂長さ(HG-SCCき裂長さ)が1.57mm未満であってもよく、1.27mm以下であってもよく、0.92mm以下であってもよく、0.50mm以下であってもよく、0.16mm以下であってもよい。 In the present disclosure, the crack length (HG-SCC crack length) of a cast hot-worked product measured by a wet gas stress corrosion cracking (HG-SCC) test may be less than 1.57 mm, may be 1.27 mm or less, may be 0.92 mm or less, may be 0.50 mm or less, or may be 0.16 mm or less.

2.鋳造熱間加工品の製造方法
本開示においては、Al-Mg-Si系のアルミニウム合金の鋳造熱間加工品の製造方法であって、前記Al-Mg-Si系のアルミニウム合金を鋳造し、鋳塊を得ること、前記鋳塊を熱間加工し、前記鋳造熱間加工品を得ること、を有し、前記熱間加工における、前記鋳造熱間加工品の圧下率が10%以上であってもよい。
2. Manufacturing Method of Cast Hot Worked Product The present disclosure relates to a manufacturing method of a cast hot worked product of an Al-Mg-Si based aluminum alloy, the method comprising: casting the Al-Mg-Si based aluminum alloy to obtain an ingot; and hot working the ingot to obtain the cast hot worked product, wherein a rolling reduction rate of the cast hot worked product in the hot working may be 10% or more.

本開示の製造方法は、鋳造工程、熱間加工工程の順に実施する。
本開示の製造方法は、鋳造工程、均質化処理工程、熱間加工工程、T6熱処理工程の順に実施してもよい。
The manufacturing method of the present disclosure is carried out in the order of a casting step and a hot working step.
The manufacturing method of the present disclosure may be carried out in the following order: casting, homogenization, hot working, and T6 heat treatment.

鋳造工程は、Al-Mg-Si系のアルミニウム合金を鋳造し、鋳塊を得る工程である。
Al-Mg-Si系のアルミニウム合金は、Si及びCuを含み、前記Cuの質量%に対する前記Siの質量%の比率であるSi/Cu比が、3.3未満であり、Si/Cu比は、1.6以上であってもよい。
鋳塊は、連続鋳造棒(連鋳棒)であってもよい。
鋳造においては、アルミニウム合金を溶解温度750℃で溶製し、その溶湯を鋳型温度150℃の金型鋳型に鋳造し、凝固させ、鋳造材を得てもよい。
アルミニウム合金の溶解温度は、アルミニウム合金が溶解する温度であれば特に限定されない。
The casting step is a step of casting an Al-Mg-Si based aluminum alloy to obtain an ingot.
The Al-Mg-Si-based aluminum alloy contains Si and Cu, and a Si/Cu ratio, which is a ratio of the mass% of Si to the mass% of Cu, may be less than 3.3 and may be 1.6 or more.
The ingot may be a continuously cast rod.
In casting, the aluminum alloy may be melted at a melting temperature of 750° C., the molten metal may be cast into a metal mold having a mold temperature of 150° C., and solidified to obtain a cast material.
The melting temperature of the aluminum alloy is not particularly limited as long as it is a temperature at which the aluminum alloy can be melted.

均質化処理工程は、鋳塊を均質化処理する工程である。
均質化処理は、鋳塊を例えば、5~10時間、430~470℃の熱間状態に加熱してもよい。
The homogenization treatment step is a step of homogenizing the ingot.
The homogenization treatment may involve heating the ingot to a hot state at 430 to 470° C. for 5 to 10 hours, for example.

熱間加工工程は、前記鋳塊を熱間加工し、前記鋳造熱間加工品を得る工程である。
熱間加工は、熱間での鋳塊の押出、圧延加工であってもよく、熱間鍛造であってもよく、これらの両方を行ってもよい。熱間鍛造の場合は、得られた鋳造材から、所定の圧下率の鍛練を加えるため、所定の幅、所定の厚みの矩形断面で所定の長さの試験片を切出し、切出材を得てもよい。当該切出材について、所定の形状の鍛造用金型にて強圧して熱間鍛造し、鋳造熱間鍛造品を得てもよい。切出材の鍛造温度は例えば300~470℃としてもよく、鍛造用金型の型温は例えば200℃としてもよい。熱間鍛造する場合の熱間鍛造温度は、再結晶温度以上であってもよく、300~480℃であってもよい。
熱間加工における、鋳造熱間加工品の圧下率(圧延率とも言う)が10%以上であってもよく、35%以上であってもよく、60%以下であってもよい。
圧下率(%)とは、金属素材を塑性加工する際に金属素材の厚みの減少量と、もともとの金属素材の厚みとの比率のことを意味する。
具体的には、厚みAの鋳塊に熱間加工を施し、熱間加工後の鋳造熱間加工品の厚みをBとした場合、圧下率は、以下のように算出する。
圧下率(%)={(A-B)/A}*100
The hot working step is a step of hot working the ingot to obtain the hot-worked cast product.
The hot working may be hot extrusion or rolling of the ingot, hot forging, or both. In the case of hot forging, a test piece of a predetermined length with a rectangular cross section of a predetermined width and thickness may be cut out from the obtained cast material to apply forging with a predetermined rolling reduction rate, and a cut-out material may be obtained. The cut-out material may be hot forged by strong pressure in a forging die of a predetermined shape to obtain a cast hot forged product. The forging temperature of the cut-out material may be, for example, 300 to 470°C, and the die temperature of the forging die may be, for example, 200°C. The hot forging temperature in the case of hot forging may be equal to or higher than the recrystallization temperature, and may be 300 to 480°C.
In the hot working, the reduction ratio (also referred to as the rolling ratio) of the cast hot worked product may be 10% or more, 35% or more, or 60% or less.
The rolling reduction rate (%) refers to the ratio of the amount of reduction in the thickness of a metal material when the metal material is plastically processed to the original thickness of the metal material.
Specifically, when hot working is performed on an ingot having a thickness A, and the thickness of the cast hot-worked product after hot working is B, the rolling reduction is calculated as follows.
Reduction rate (%) = {(A-B)/A} * 100

T6熱処理工程は、前記鋳造熱間加工品をT6熱処理する工程である。
T6熱処理は、鋳造熱間加工品を溶体化処理、焼入れ、人工時効処理の順に行うものである。T6熱処理によって鋳造熱間加工品の強度を高めることができる。
溶体化処理とは、鋳造熱間加工品中の添加元素を均一に溶け込ませる処理である。溶体化処理においては、鋳造熱間加工品を大気雰囲気で、440℃以上かつ部分的に溶けない温度で3~6時間程度加熱保持してもよい。溶体化処理において温度が低すぎると固溶状態が作れず、温度が高すぎると部分的に溶けてしまう。
焼入れにおいては、溶体化処理後、鋳造熱間加工品を25~80℃の水で急冷してもよい。
人工時効処理は鋳造熱間加工品を所定の温度に加熱することによって二次相を析出させる処理のことを言う。人工時効処理においては、焼入れ後、鋳造熱間加工品を140~240℃で0.3~48時間加熱保持してもよい。
The T6 heat treatment step is a step of subjecting the cast hot-worked product to T6 heat treatment.
The T6 heat treatment is a process in which a cast hot-worked product is subjected to solution treatment, quenching, and artificial aging in that order. The T6 heat treatment can increase the strength of the cast hot-worked product.
Solution treatment is a process for uniformly dissolving the additive elements in the cast hot-worked product. In solution treatment, the cast hot-worked product may be heated and held in an air atmosphere at 440°C or higher and at a temperature at which the product does not partially melt for about 3 to 6 hours. If the temperature in solution treatment is too low, a solid solution state cannot be created, and if the temperature is too high, the product will partially melt.
In the quenching, the cast hot-worked product may be quenched in water at 25 to 80° C. after the solution treatment.
Artificial aging is a process in which a cast hot-worked product is heated to a predetermined temperature to precipitate a secondary phase. In the artificial aging process, the cast hot-worked product may be heated and held at 140 to 240°C for 0.3 to 48 hours after quenching.

(実施例1)
[初期き裂長さ評価]
アルミニウム合金の成分範囲はA6061合金と異なる成分系で実施した。
表1に示すSi/Cu比を有するAl-Mg-Si系のアルミニウム合金を準備した。アルミニウム合金を鋳造割れが発生しない条件で鋳造し、470℃で7時間均質化処理し、300~470℃で熱間鍛造し、T6熱処理として、555℃で3時間の溶体化処理、水への焼入れ、及び、180℃で6時間の人工時効処理を行い、鋳造熱間加工品のT6材を得た。熱間鍛造の際の圧下率は、表1に示す。
鋳造熱間加工品を所定の大きさに切り出して試験片を作製した。作製した試験片において簡易的なHG-SCC試験として、湿度制御をせず、大気環境の状態で1日実施した。試験後、試験片を取り出し、き裂破面を観察し、初期き裂長さ(1日で進展するき裂長さ)を評価した。当該評価結果を表2に示す。
[HG-SCC試験]
作製した試験片についてHG-SCC試験を実施し、き裂長さを評価した。当該評価結果をHG-SCCき裂長さとして表2に示す。
HG-SCC(湿潤ガス応力腐食割れ)試験法の規格は、一般社団法人日本高圧力技術協会が規格作成した基準である、HPIS E 103:2018”圧縮水素容器用アルミニウム合金の湿潤ガス応力腐食割れについての標準試験法”である。
[その他の試験]
また作製した試験片の大気環境での引張強さ、耐力、負荷応力、及び、破壊靱性値を測定した。これらの結果を表2に示す。
Example 1
[Evaluation of initial crack length]
The range of components of the aluminum alloy was different from that of the A6061 alloy.
An Al-Mg-Si aluminum alloy having the Si/Cu ratio shown in Table 1 was prepared. The aluminum alloy was cast under conditions where no casting cracks would occur, homogenized at 470°C for 7 hours, hot forged at 300 to 470°C, and subjected to T6 heat treatment, which included solution treatment at 555°C for 3 hours, quenching in water, and artificial aging at 180°C for 6 hours, to obtain a T6 material of a cast hot-worked product. The reduction ratio during hot forging is shown in Table 1.
The cast hot-worked product was cut to a predetermined size to prepare a test specimen. A simple HG-SCC test was performed on the prepared test specimen for one day in an atmospheric environment without humidity control. After the test, the test specimen was removed, the cracked surface was observed, and the initial crack length (the crack length that grew in one day) was evaluated. The evaluation results are shown in Table 2.
[HG-SCC test]
The test pieces thus prepared were subjected to an HG-SCC test to evaluate the crack length. The evaluation results are shown in Table 2 as HG-SCC crack length.
The standard for the HG-SCC (wet gas stress corrosion cracking) test method is HPIS E 103:2018 "Standard test method for wet gas stress corrosion cracking of aluminum alloys for compressed hydrogen containers," a standard created by the High Pressure Engineering Society of Japan.
[Other tests]
The tensile strength, yield strength, applied stress, and fracture toughness of the prepared test pieces in an atmospheric environment were measured. The results are shown in Table 2.

(実施例2~6、比較例2~4)
表1に示すSi/Cu比を有するAl-Mg-Si系のアルミニウム合金を準備し、鋳造熱間加工品の圧下率が表1に示す値となるように熱間鍛造を行ったこと以外は実施例1と同様の条件で鋳造熱間加工品を得た。得られた鋳造熱間加工品について実施例1と同様の方法で試験片を作製し、初期き裂長さ、HG-SCCき裂長さ、引張強さ、耐力、負荷応力、及び、破壊靱性値を測定した。これらの結果を表2に示す。
(Examples 2 to 6, Comparative Examples 2 to 4)
An Al-Mg-Si aluminum alloy having a Si/Cu ratio shown in Table 1 was prepared, and a cast hot-worked product was obtained under the same conditions as in Example 1, except that hot forging was performed so that the rolling reduction of the cast hot-worked product was the value shown in Table 1. Test pieces were prepared from the obtained cast hot-worked product in the same manner as in Example 1, and the initial crack length, HG-SCC crack length, tensile strength, proof stress, load stress, and fracture toughness value were measured. These results are shown in Table 2.

(比較例1)
表1に示すSi/Cu比を有するAl-Mg-Si系のアルミニウム合金を準備し、熱間鍛造を行わなかったこと以外は実施例1と同様の条件で鋳造品を得た。得られた鋳造品について実施例1と同様の方法で試験片を作製し、初期き裂長さ、HG-SCCき裂長さ、引張強さ、耐力、負荷応力、及び、破壊靱性値を測定した。これらの結果を表2に示す。
(Comparative Example 1)
An Al-Mg-Si aluminum alloy having the Si/Cu ratio shown in Table 1 was prepared, and a casting was obtained under the same conditions as in Example 1, except that hot forging was not performed. Test pieces were prepared from the obtained casting in the same manner as in Example 1, and the initial crack length, HG-SCC crack length, tensile strength, proof stress, load stress, and fracture toughness value were measured. These results are shown in Table 2.

Figure 2024090353000002
Figure 2024090353000002

Figure 2024090353000003
Figure 2024090353000003

[評価結果]
図1は、Si/Cu比と、初期き裂長さとの関係を示すグラフである。
図2は、圧下率と、初期き裂長さとの関係を示すグラフである。
図1~2、表1~2に示すように、圧下率0%の比較例1ではSi/Cu比の影響に依らず、初期き裂長さが大きく、HG-SCCき裂長さも0.16mmを超えていることがわかる。圧下率が10%の比較例2ではSi/Cu比が4.0と高いため初期き裂長さが大きいことがわかる。圧下率が60%の比較例3ではSi/Cu比が4.0と高いため初期き裂長さが大きいことがわかる。
また、実施例2、3、5では、初期き裂長さ及びHG-SCCき裂長さが0mmであり、HG-SCC試験の合格基準を満たすことがわかる。
したがって、アルミニウム合金において、高湿度中にて一定荷重で引張負荷をかけた際のき裂進展を抑制するためには、少なくともSi/Cu比が3.3未満、熱間加工の圧下率が10%以上の条件で鋳造熱間加工品を成形する必要があることがわかる。
[Evaluation results]
FIG. 1 is a graph showing the relationship between the Si/Cu ratio and the initial crack length.
FIG. 2 is a graph showing the relationship between the rolling reduction and the initial crack length.
1 and 2 and Tables 1 and 2, in Comparative Example 1 with a rolling reduction of 0%, the initial crack length is large regardless of the influence of the Si/Cu ratio, and the HG-SCC crack length also exceeds 0.16 mm. In Comparative Example 2 with a rolling reduction of 10%, the initial crack length is large because the Si/Cu ratio is high at 4.0. In Comparative Example 3 with a rolling reduction of 60%, the initial crack length is large because the Si/Cu ratio is high at 4.0.
Moreover, in Examples 2, 3, and 5, the initial crack length and the HG-SCC crack length were 0 mm, and it was found that these satisfied the pass criteria for the HG-SCC test.
Therefore, in order to suppress crack propagation in an aluminum alloy when a constant tensile load is applied in high humidity, it is necessary to form a cast hot-worked product under conditions in which the Si/Cu ratio is at least less than 3.3 and the hot working reduction is 10% or more.

Claims (3)

Al-Mg-Si系のアルミニウム合金の鋳造熱間加工品であって、前記アルミニウム合金は、Si及びCuを含み、前記Cuの質量%に対する前記Siの質量%の比率であるSi/Cu比が、3.3未満である、鋳造熱間加工品。 A hot-worked cast product of an Al-Mg-Si-based aluminum alloy, the aluminum alloy containing Si and Cu, and having a Si/Cu ratio, which is the ratio of the mass % of Si to the mass % of Cu, of less than 3.3. 請求項1に記載のAl-Mg-Si系のアルミニウム合金の鋳造熱間加工品の製造方法であって、前記Al-Mg-Si系のアルミニウム合金を鋳造し、鋳塊を得ること、前記鋳塊を熱間加工し、前記鋳造熱間加工品を得ること、を有し、前記熱間加工における、前記鋳造熱間加工品の圧下率が10%以上である、鋳造熱間加工品の製造方法。 A method for producing a hot-worked cast product of the Al-Mg-Si aluminum alloy according to claim 1, comprising the steps of: casting the Al-Mg-Si aluminum alloy to obtain an ingot; and hot working the ingot to obtain the hot-worked cast product, wherein the reduction ratio of the hot-worked cast product is 10% or more. 前記熱間加工が熱間鍛造である、請求項2に記載の鋳造熱間加工品の製造方法。 The method for producing a cast hot-worked product according to claim 2, wherein the hot working is hot forging.
JP2022206214A 2022-12-23 2022-12-23 Hot-worked cast products of Al-Mg-Si aluminum alloys and their manufacturing method Pending JP2024090353A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022206214A JP2024090353A (en) 2022-12-23 2022-12-23 Hot-worked cast products of Al-Mg-Si aluminum alloys and their manufacturing method
DE102023134780.2A DE102023134780A1 (en) 2022-12-23 2023-12-12 HOT-FORMED CAST PRODUCT MADE FROM Al-Mg-Si ALUMINUM ALLOY AND METHOD FOR THE PRODUCTION THEREOF
KR1020230179345A KR20240101383A (en) 2022-12-23 2023-12-12 Casting hot worked products of Al-Mg-Si aluminum alloy and manufacturing method thereof
CN202311750514.4A CN118241087A (en) 2022-12-23 2023-12-19 Al-Mg-Si series aluminum alloy cast hot-worked product and its manufacturing method
US18/390,021 US20240209487A1 (en) 2022-12-23 2023-12-20 Cast, hot-worked product of al-mg-si aluminum alloy and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022206214A JP2024090353A (en) 2022-12-23 2022-12-23 Hot-worked cast products of Al-Mg-Si aluminum alloys and their manufacturing method

Publications (1)

Publication Number Publication Date
JP2024090353A true JP2024090353A (en) 2024-07-04

Family

ID=91471956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022206214A Pending JP2024090353A (en) 2022-12-23 2022-12-23 Hot-worked cast products of Al-Mg-Si aluminum alloys and their manufacturing method

Country Status (5)

Country Link
US (1) US20240209487A1 (en)
JP (1) JP2024090353A (en)
KR (1) KR20240101383A (en)
CN (1) CN118241087A (en)
DE (1) DE102023134780A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348631A (en) 2001-05-22 2002-12-04 Aisin Seiki Co Ltd Aluminum-zinc-magnesium cast forging aluminum alloy, aluminum-zinc-magnesium cast forged product, and method of manufacturing the same

Also Published As

Publication number Publication date
US20240209487A1 (en) 2024-06-27
KR20240101383A (en) 2024-07-02
DE102023134780A1 (en) 2024-07-04
CN118241087A (en) 2024-06-25

Similar Documents

Publication Publication Date Title
RU2443797C2 (en) Products from aluminium alloy of aa7000 series and their manufacturing method
CA2418079C (en) High strength aluminium-based alloy and the article made thereof
CA2700250C (en) Al-cu-li alloy product suitable for aerospace application
JP7223121B2 (en) High-strength fastener material by forged titanium alloy and its manufacturing method
KR102003569B1 (en) 2xxx series aluminum lithium alloys
KR102437942B1 (en) 6xxx aluminum alloys
EP3202931B1 (en) Ni BASED SUPERHEAT-RESISTANT ALLOY
EP1920077A2 (en) 2000 series alloys with enhanced damage tolerance performance for aerospace applications
CN112996935A (en) 7XXX series aluminum alloy products
CN113302327A (en) 7xxx series aluminum alloy products
JP4185247B2 (en) Aluminum-based alloy and heat treatment method thereof
EP3414352A1 (en) Al-Cu-Li-Mg-Mn-Zn ALLOY WROUGHT PRODUCT
TWI434939B (en) Aluminium alloy and process of preparation thereof
JP4498180B2 (en) Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same
KR20230106180A (en) Methods of making 2XXX-series aluminum alloy products
JP2004002987A (en) Aluminum alloy material for forging superior in high-temperature property
US12194529B2 (en) 2XXX aluminum lithium alloys
JP2024090353A (en) Hot-worked cast products of Al-Mg-Si aluminum alloys and their manufacturing method
US20210262065A1 (en) 2xxx aluminum alloys
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
EP4392591A1 (en) Methods of producing 2xxx aluminum alloys
JP6345016B2 (en) Aluminum alloy plate for hot forming and manufacturing method thereof