[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2024077017A - Polyurethane resin composition - Google Patents

Polyurethane resin composition Download PDF

Info

Publication number
JP2024077017A
JP2024077017A JP2024040902A JP2024040902A JP2024077017A JP 2024077017 A JP2024077017 A JP 2024077017A JP 2024040902 A JP2024040902 A JP 2024040902A JP 2024040902 A JP2024040902 A JP 2024040902A JP 2024077017 A JP2024077017 A JP 2024077017A
Authority
JP
Japan
Prior art keywords
polyurethane
resin composition
polyurethane resin
mass
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024040902A
Other languages
Japanese (ja)
Inventor
利宏 田中
Toshihiro Tanaka
昇 渡邉
Noboru Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Opelontex Co Ltd
Original Assignee
Toray Opelontex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Opelontex Co Ltd filed Critical Toray Opelontex Co Ltd
Priority to JP2024040902A priority Critical patent/JP2024077017A/en
Publication of JP2024077017A publication Critical patent/JP2024077017A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4858Polyethers containing oxyalkylene groups having more than four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0847Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers
    • C08G18/0852Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3275Hydroxyamines containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Artificial Filaments (AREA)
  • Polyethers (AREA)

Abstract

To provide a polyurethane resin composition that may form highly durable polyurethane elastic fiber having high stress during shrinkage, that is, recovery stress, as well as excellent antioxidative properties.SOLUTION: The polyurethane resin composition comprises a polyurethane having a polyether structure in its backbone, and a nitrogen-containing aromatic compound. The polyether structure is represented by the general formula (1) in the figure. The content of the nitrogen-containing aromatic compound in the polyurethane resin composition is from 0.05 mass% to 2.0 mass% inclusive. (R1 is an alkylene group having 2 to 6 carbon atoms; R2 is an alkyl group having 1 to 2 carbon atoms; and l, m and n satisfy 4≤n/(l+m+n)×100≤50.)SELECTED DRAWING: None

Description

本発明はポリウレタン樹脂組成物に関し、とくに、収縮時の応力、すなわち回復応力が高く、抗酸化性に優れた高耐久性のポリウレタン弾性繊維を与え得るポリウレタン樹脂組成物に関する。 The present invention relates to a polyurethane resin composition, and in particular to a polyurethane resin composition that can provide polyurethane elastic fibers that have high stress during shrinkage, i.e., high recovery stress, and excellent oxidation resistance and are highly durable.

ポリウレタン樹脂は、優れた伸縮特性を有することから、塗料、コーティング剤、シーリング材、接着剤、粘着剤、繊維加工剤、人工皮革・合成皮革、ロール等のエラストマー用原料及び繊維製品等に幅広く展開されている。それぞれの用途において、ポリウレタン樹脂を原料として最終製品を生産したり、加工したりする際の熱履歴による劣化の防止や最終製品の耐久性向上のため、ポリウレタン樹脂の伸縮特性(高弾性回復及び高伸度)を維持しつつその耐熱性を向上させることが求められている。 Polyurethane resins have excellent elastic properties and are therefore widely used in paints, coatings, sealants, adhesives, pressure sensitive adhesives, textile processing agents, artificial and synthetic leathers, elastomer raw materials such as rolls, and textile products. In each application, there is a demand to improve the heat resistance of polyurethane resins while maintaining their elastic properties (high elastic recovery and high elongation) in order to prevent deterioration due to heat history when producing or processing final products using polyurethane resins as raw materials and to improve the durability of the final products.

ポリウレタン弾性繊維は、その優れた伸縮特性からレッグウエア、インナーウエア、スポーツウエアなどの伸縮性衣料用途や産業資材用途に幅広く使用されている。 Due to its excellent elasticity, polyurethane elastic fibers are widely used in elastic clothing applications such as leg wear, innerwear, and sportswear, as well as industrial material applications.

ポリウレタン弾性繊維にも、同様に高弾性回復、高強伸度、高耐熱性、熱セット性を有することが求められている。なかでも、弾性回復性能については、回復応力の向上を常に追求してきた。 Polyurethane elastic fibers are also required to have high elastic recovery, high strength and elongation, high heat resistance, and heat setting properties. In particular, we have been constantly striving to improve elastic recovery performance by improving the recovery stress.

また、耐熱性についても高融点化させると耐熱脆化性能は向上するが、特に繊維とした場合に求められる熱セット性が低下してしまうため、表面積の大きい繊維においては高酸化力のある組成が求められてきた。 In terms of heat resistance, increasing the melting point improves resistance to heat embrittlement, but the heat setting properties required, particularly when made into fibers, decrease. Therefore, for fibers with a large surface area, a composition with high oxidizing power has been required.

テトラヒドロフランと3-アルキルテトラヒドロフランとのコポリエーテルジオールとジイソシアネートからなるポリウレタン構造では、前者に比べ収縮時の応力、すなわち回復応力がより高いソフトセグメントとなり得ることが知られている(特許文献1および2)。 It is known that a polyurethane structure consisting of a copolyether diol of tetrahydrofuran and 3-alkyltetrahydrofuran and a diisocyanate can result in a soft segment with a higher stress during shrinkage, i.e., a higher recovery stress, compared to the former (Patent Documents 1 and 2).

また、ポリウレタン弾性繊維の耐熱性、耐熱老化性には窒素含有芳香族化合物を適正量含有する場合特異的に抗酸化作用を発揮する例が開示されている(特許文献3および4)。 In addition, examples have been disclosed in which polyurethane elastic fibers exhibit a specific antioxidant effect when they contain an appropriate amount of nitrogen-containing aromatic compounds in terms of heat resistance and heat aging resistance (Patent Documents 3 and 4).

さらには、近年、環境問題の諸課題への関心の高まりから、持続可能な社会への転換に向けた取り組みが有機素材全般に求められているが、伸縮部材中の含有率が比較的低いポリウレタン弾性繊維も例外ではない。伸縮性衣料や産業資材中の含有率が比較的低いゆえ、分離、取り出しが困難で、再資源化が難しく、サーマルリサイクルが好ましい場合がある。そのため、カーボンニュートラルなバイオマス資源由来の成分を原料とすることが提案されてきた(特許文献5および6)。 Furthermore, in recent years, with the growing interest in various environmental issues, efforts towards a sustainable society are being called for for organic materials in general, and polyurethane elastic fibers, which have a relatively low content in elastic materials, are no exception. Because the content in elastic clothing and industrial materials is relatively low, separation and extraction are difficult, making recycling difficult, and thermal recycling may be preferable. For this reason, it has been proposed to use components derived from carbon-neutral biomass resources as raw materials (Patent Documents 5 and 6).

特開平2-19511号公報Japanese Patent Application Laid-Open No. 2-19511 特開平9-136937号公報Japanese Patent Application Laid-Open No. 9-136937 特開2008-69506号公報JP 2008-69506 A WO2009/011189WO2009/011189 特表2014-522446号公報JP 2014-522446 A 特開2021-152139号公報JP 2021-152139 A

しかしながら、これら従来の技術では、回復応力または抗酸化性が不十分であった。このように、回復応力が高く、抗酸化性に優れたポリウレタン弾性繊維を与え得るポリウレタン樹脂組成物が求められている。 However, these conventional techniques were insufficient in terms of recovery stress or oxidation resistance. Thus, there is a demand for a polyurethane resin composition that can provide polyurethane elastic fibers with high recovery stress and excellent oxidation resistance.

本発明の課題は、収縮時の応力、すなわち回復応力が高く、抗酸化性に優れた高耐久性のポリウレタン弾性繊維を与え得るポリウレタン樹脂組成物を提供することにある。 The object of the present invention is to provide a polyurethane resin composition that can provide polyurethane elastic fibers that have high stress during shrinkage, i.e., high recovery stress, and excellent oxidation resistance and are highly durable.

かかる課題に対して発明者らは、テトラメチレンエーテルにおけるエーテル基に隣接する炭素原子にアルキル基が存在する場合を検討した。すなわち、テトラヒドロフランと2-アルキルテトラヒドロフランとのコポリエーテルジオールとジイソシアネートからなるポリウレタン構造である。その結果、3-アルキル基に比べて、2-アルキル基の方が、ポリウレタン弾性繊維の回復応力が高いポリウレタン樹脂組成物を得ることができることを見出した。また、発明者らは3-アルキル基に比べて、2-アルキル基の場合には全く異なる耐熱挙動を示すことを見出した。すなわち、2-アルキル基の場合には窒素含有芳香族化合物は特定添加量にて耐熱性を極大にすることを見出した。これらの現象は、テトラメチレンエーテルにおけるエーテル基に隣接する炭素原子にアルキル基が存在する場合、アルキル基の立体障害が3-アルキル基より2-アルキル基の方が優位にあること、また、抗酸化の観点ではエーテル基に隣接する炭素原子にアルキル基が存在する場合、エーテル酸素と隣接炭素の開裂を抑制できていると考えられる。よって、回復応力が高く、抗酸化性に優れた高耐久性のポリウレタン弾性繊維を与え得るポリウレタン樹脂組成物を得ることが可能となることを見出した。これによって、低融点・高ヒートセット化しても高耐熱性と高耐久性を兼ね備えたるため、低温加工が可能となり、環境問題に対する省エネルギー化が可能となる。また、従来はサーマルリサイクルに好適な、カーボンニュートラルなバイオマス資源由来の成分を原料とすることが提案されてきた(特許文献5および6)。しかし、新規またはこれまで汎用で無かった特殊な化学構造の原料を使用することは合理的でなく、公知の化学構造の非石油化学でバイオマスの原料、すなわちバイオマスモノマーを使用することが重要である。 In response to this problem, the inventors have investigated the case where an alkyl group exists on the carbon atom adjacent to the ether group in tetramethylene ether. That is, the polyurethane structure is composed of a copolyether diol of tetrahydrofuran and 2-alkyltetrahydrofuran, and a diisocyanate. As a result, they have found that a polyurethane resin composition having a higher recovery stress of polyurethane elastic fiber can be obtained with a 2-alkyl group compared to a 3-alkyl group. The inventors have also found that the heat resistance behavior is completely different in the case of a 2-alkyl group compared to a 3-alkyl group. That is, they have found that in the case of a 2-alkyl group, a nitrogen-containing aromatic compound maximizes heat resistance at a specific addition amount. These phenomena are thought to be due to the fact that when an alkyl group exists on the carbon atom adjacent to the ether group in tetramethylene ether, the steric hindrance of the alkyl group is more dominant in the case of a 2-alkyl group than in the case of a 3-alkyl group, and also, from the viewpoint of oxidation resistance, when an alkyl group exists on the carbon atom adjacent to the ether group, the cleavage of the ether oxygen and the adjacent carbon can be suppressed. Therefore, they have found that it is possible to obtain a polyurethane resin composition capable of providing polyurethane elastic fiber having high recovery stress and excellent oxidation resistance and high durability. This allows the material to have both high heat resistance and high durability even when it is made to have a low melting point and high heat setting, making it possible to process it at low temperatures and saving energy to address environmental issues. In addition, it has been proposed to use carbon-neutral components derived from biomass resources that are suitable for thermal recycling as raw materials (Patent Documents 5 and 6). However, it is not rational to use raw materials with new or special chemical structures that have not been widely used until now, and it is important to use non-petrochemical biomass raw materials with known chemical structures, i.e., biomass monomers.

すなわち、本発明は、以下のような構成を有する。
(1)ポリエーテル構造を骨格中に有するポリウレタンと、窒素含有芳香族化合物とを含むポリウレタン樹脂組成物であって、
ポリエーテル構造が下記一般式(1)を満たし、
ポリウレタン樹脂組成物中に窒素含有芳香族化合物が0.05質量%以上2.0質量%以下含有される、ポリウレタン樹脂組成物。

Figure 2024077017000001
(Rは炭素数2~6のアルキレン基、Rは炭素数1~2のアルキル基であり、
l,m,nは、4≦n/(l+m+n)×100≦50を満たす)
(2)前記一般式(1)中のl,m,nが、6≦n/(l+m+n)×100≦16を満たす(1)に記載のポリウレタン樹脂組成物。
(3)ポリウレタン樹脂組成物中に窒素含有芳香族化合物が0.2質量%以上0.8質量%以下含有される(1)または(2)に記載のポリウレタン樹脂組成物。
(4)前記一般式(1)中の-(CHCHCHCHR-O)n-のうち末端にあるものの数をn'としたとき、5≦n'/(l+m+n)×100≦30を満たす(1)~(3)のいずれかに記載のポリウレタン樹脂組成物。
(5)前記一般式(1)部分の数平均分子量が3000以上30000以下である(1)~(4)のいずれかに記載のポリウレタン樹脂組成物。
(6)ISO 16620-2に定められる炭素同位体比測定によるバイオ化率が炭素質量比で3%以上である、(1)~(5)のいずれかに記載のポリウレタン樹脂組成物。 That is, the present invention has the following configuration.
(1) A polyurethane resin composition comprising a polyurethane having a polyether structure in its skeleton and a nitrogen-containing aromatic compound,
The polyether structure satisfies the following general formula (1):
A polyurethane resin composition comprising a nitrogen-containing aromatic compound in an amount of 0.05% by mass or more and 2.0% by mass or less.
Figure 2024077017000001
(R 1 is an alkylene group having 2 to 6 carbon atoms, R 2 is an alkyl group having 1 to 2 carbon atoms,
l, m, and n satisfy the following: 4≦n/(l+m+n)×100≦50
(2) The polyurethane resin composition according to (1), wherein l, m and n in the general formula (1) satisfy 6≦n/(l+m+n)×100≦16.
(3) The polyurethane resin composition according to (1) or (2), wherein the polyurethane resin composition contains a nitrogen-containing aromatic compound in an amount of 0.2% by mass or more and 0.8% by mass or less.
(4) The polyurethane resin composition according to any one of (1) to (3), wherein, when the number of terminal groups among -(CH 2 CH 2 CH 2 CHR 2 -O)n- in the general formula (1) is n', the relationship 5≦n'/(l+m+n)×100≦30 is satisfied.
(5) The polyurethane resin composition according to any one of (1) to (4), wherein the number average molecular weight of the portion of the general formula (1) is 3,000 or more and 30,000 or less.
(6) The polyurethane resin composition according to any one of (1) to (5), wherein the biocontent rate is 3% or more in terms of carbon mass ratio, as determined by carbon isotope ratio measurement according to ISO 16620-2.

本発明によれば、収縮時の応力、すなわち回復応力が高く、抗酸化性に優れた高耐久性のポリウレタン弾性繊維を与え得るポリウレタン樹脂組成物を提供することが可能となる。 The present invention makes it possible to provide a polyurethane resin composition that can give polyurethane elastic fibers that have high stress during shrinkage, i.e., high recovery stress, and excellent oxidation resistance and are highly durable.

以下に、本発明について、実施の形態とともに詳細に説明する。
まず本発明のポリウレタン樹脂組成物において使用されるポリウレタンについて述べる。ここで述べるポリウレタンは主構成成分として使用されることが好ましく、ここでいう主構成成分とは、ポリウレタン樹脂組成物に50質量%を超えて含有される成分である。
The present invention will be described in detail below with reference to the embodiments.
First, the polyurethane used in the polyurethane resin composition of the present invention will be described. The polyurethane described here is preferably used as a main component, and the main component here means a component contained in the polyurethane resin composition in an amount of more than 50 mass %.

本発明に使用されるポリウレタンは、ポリエーテル構造を骨格中に有するものである。ポリエーテル構造を骨格中に有するポリウレタンは、ポリエーテル構造を有するポリマージオールおよびジイソシアネートを出発物質とする構造を有するものである。ここで出発物質とする構造を有するとは、ポリマーの骨格構造を説明するために出発物質の該当部分の構造を参照するものであって、出発物やその合成法は特に限定されるものではない。すなわち、例えば、ポリマージオールとジイソシアネートと鎖伸長剤として低分子量ジアミンとからなるポリウレタンウレアであってもよく、また、ポリマージオールとジイソシアネートと鎖伸長剤として低分子量ジオールとからなるポリウレタンウレタンであってもよい。また、鎖伸長剤として水酸基とアミノ基を分子内に有する化合物を使用したポリウレタンウレアであってもよい。本発明の効果を妨げない範囲で3官能性以上の多官能性のグリコールやイソシアネート等が使用されることも好ましい。さらには、その加工法も特に限定されるものではない。すなわち、再成形、再製糸を経たリサイクルによるポリウレタンでもよい。 The polyurethane used in the present invention has a polyether structure in its skeleton. The polyurethane having a polyether structure in its skeleton has a structure in which a polymer diol and a diisocyanate having a polyether structure are used as starting materials. Here, the phrase "having a structure in which a starting material is used" refers to the structure of the corresponding part of the starting material in order to explain the skeleton structure of the polymer, and the starting material and its synthesis method are not particularly limited. That is, for example, it may be a polyurethane urea made of a polymer diol, a diisocyanate, and a low molecular weight diamine as a chain extender, or it may be a polyurethane urethane made of a polymer diol, a diisocyanate, and a low molecular weight diol as a chain extender. It may also be a polyurethane urea using a compound having a hydroxyl group and an amino group in the molecule as a chain extender. It is also preferable to use a polyfunctional glycol or isocyanate having a functionality of three or more to the extent that it does not interfere with the effects of the present invention. Furthermore, the processing method is not particularly limited. That is, it may be a polyurethane that has been recycled through remolding and re-spun.

本発明においてポリエーテル構造を有するポリマージオールはポリエーテル構造が下記一般式(1)を満たすものである。 In the present invention, the polymer diol having a polyether structure has a polyether structure that satisfies the following general formula (1).

Figure 2024077017000002
(Rは炭素数2~6のアルキレン基、Rは炭素数1~2のアルキル基であり、
l,m,nは、4≦n/(l+m+n)×100≦50を満たす)
Figure 2024077017000002
(R 1 is an alkylene group having 2 to 6 carbon atoms, R 2 is an alkyl group having 1 to 2 carbon atoms,
l, m, and n satisfy the following: 4≦n/(l+m+n)×100≦50

そして、前記一般式(1)中のl,m,nが、6≦n/(l+m+n)×100≦16を満たす場合、伸長時の応力と伸長回復時の応力のバランスが良好であり、変性テトラメチレンエーテル単位(CHCHCHCHR-O)に相当する従来の技術、例えば(CHCHCHRCH-O)などに対してより少ない変性テトラメチレンエーテル単位で同等の特性が得られることから好ましい。なお、一般式(1)において、l,m,nは比率をのみを表すものである。すなわち、それぞれの単位が繰り返し単位としてl,m,nを有するブロック体のみに限定されず、それぞれの単位がランダムに連結したランダム体であってもよい。 When l, m, and n in the general formula (1) satisfy 6≦n/(l+m+n)×100≦16, the balance between the stress during elongation and the stress during elongation recovery is good, and it is preferable because the equivalent properties can be obtained with fewer modified tetramethylene ether units compared to the conventional technology corresponding to the modified tetramethylene ether unit (CH 2 CH 2 CH 2 CHR 2 -O), such as (CH 2 CH 2 CHRCH 2 -O). Note that in the general formula (1), l, m, and n only represent the ratio. In other words, each unit is not limited to a block body having l, m, and n as a repeating unit, but may be a random body in which each unit is randomly linked.

前記一般式(1)中の-(CHCHCHCHR-O)n-のうち前記一般式(1)の末端にあるものの数をn’としたとき、5≦n’/(l+m+n)×100≦30を満たす場合、伸長時の応力と伸長回復時の応力のバランスがより良好であり、耐久性、すなわち、窒素含有芳香族化合物との相乗的な作用による耐熱酸化劣化、耐紫外線劣化、耐塩素劣化、これらの複合耐久性が向上することから好ましい。 When the number of -(CH 2 CH 2 CH 2 CHR 2 -O)n- groups at the terminals of general formula (1) is n', if the relationship 5≦n'/(l+m+n)×100≦30 is satisfied, the balance between the stress during elongation and the stress during elongation recovery is better, and durability, i.e., resistance to thermal oxidative degradation, resistance to ultraviolet degradation, resistance to chlorine degradation, and the combined durability of these due to the synergistic action with the nitrogen-containing aromatic compound, is improved, which is preferable.

なお、Rは炭素数4以外の2、3、5、6を取る場合も好ましく、2の場合は水蒸気の透過性が増し、吸湿や吸水機能を付与せしめたり、6では逆に疎水性を付与せしめたり、奇数炭素数3および5では、ソフトセグメントの伸長時結晶(歪み誘発結晶)を抑制し、伸長回復性に寄与できる。 In addition, R 1 may preferably have a carbon number of 2, 3, 5, or 6 other than 4. In the case of R 1 having a carbon number of 2, water vapor permeability is increased and moisture absorption or water absorption functions are imparted. In the case of R 1 having a carbon number of 6, hydrophobicity is imparted conversely. In the cases of R 1 having an odd carbon number of 3 or 5, crystallization during elongation (strain-induced crystallization) of the soft segment is inhibited, contributing to elongation recovery properties.

さらに、(CHCHCHCH-O)および(CHCHCHCHR-O)構造単位の原料となるTHFおよび2-MeTHFはサーマルリサイクルに好適な、カーボンニュートラルなバイオマス資源由来の成分を原料とすることが好ましい。かかる場合において、バイオマス資源由来の成分を原料としている度合いは、バイオ化率として表される。バイオ化率は、放射性炭素(炭素14)の濃度測定同定法であるISO 16620-2により得ることができる。左記ISO 16620-2の放射性炭素(炭素14)の濃度測定同定法を本発明において単に炭素同位体比測定と呼ぶ場合がある。本発明のポリウレタン樹脂組成物は炭素同位体比測定によるバイオ化率が炭素質量比で3%以上であることが好ましい。 Furthermore, it is preferable that THF and 2-MeTHF, which are the raw materials for the (CH 2 CH 2 CH 2 CH 2 -O) and (CH 2 CH 2 CH 2 CHR 2 -O) structural units, are made from carbon-neutral biomass-derived components suitable for thermal recycling. In such a case, the degree to which the raw materials are made from components derived from biomass resources is expressed as the bio-based ratio. The bio-based ratio can be obtained by ISO 16620-2, which is a method for measuring and identifying the concentration of radioactive carbon (carbon-14). In the present invention, the method for measuring and identifying the concentration of radioactive carbon (carbon-14) in ISO 16620-2 may be simply referred to as carbon isotope ratio measurement. It is preferable that the polyurethane resin composition of the present invention has a bio-based ratio of 3% or more in terms of carbon mass ratio, as determined by carbon isotope ratio measurement.

その他のポリマージオールはポリエーテル系、ポリエステル系ジオール、ポリカーボネートジオール等を含有していることも好ましい。そして、特に柔軟性、伸度を、本発明のポリウレタン樹脂組成物から得られる成形体、及び、本発明のポリウレタン樹脂組成物から得られるポリウレタン弾性繊維に付与する観点からポリエーテル系ジオールが使用されることが好ましい。また、こうしたポリマージオールは2種以上混合して使用してもよい。 The other polymer diols preferably contain polyether-based, polyester-based diols, polycarbonate diols, etc. In particular, polyether-based diols are preferably used from the viewpoint of imparting flexibility and elongation to the molded article obtained from the polyurethane resin composition of the present invention and the polyurethane elastic fiber obtained from the polyurethane resin composition of the present invention. In addition, two or more of these polymer diols may be mixed and used.

ポリマージオールの分子量は、弾性繊維にした際の伸度、強度、耐熱性などを得る観点から、数平均分子量が1,000以上のものが好ましく、3000以上がより好ましい。この範囲の分子量のポリオールが使用されることにより、伸度、強度、耐熱性に優れた弾性繊維を得ることができる。また、数平均分子量が30,000以下のものが好ましく、6,000以下がより好ましい。この範囲の分子量のポリオールが使用されることにより、伸度、弾性回復力、耐熱性、窒素含有芳香族化合物との相乗効果による耐久性に優れた弾性繊維を得ることができる。 From the viewpoint of obtaining elongation, strength, heat resistance, etc., when made into an elastic fiber, the molecular weight of the polymer diol is preferably a number average molecular weight of 1,000 or more, and more preferably 3,000 or more. By using a polyol with a molecular weight in this range, it is possible to obtain an elastic fiber with excellent elongation, strength, and heat resistance. In addition, it is preferable that the number average molecular weight is 30,000 or less, and more preferably 6,000 or less. By using a polyol with a molecular weight in this range, it is possible to obtain an elastic fiber with excellent elongation, elastic recovery force, heat resistance, and durability due to the synergistic effect with the nitrogen-containing aromatic compound.

次に、ジイソシアネートとしては、ジフェニルメタンジイソシアネート(以下、MDIと略すこともある)、トリレンジイソシアネート、1,4-ジイソシアネートベンゼン、キシリレンジイソシアネート、2,6-ナフタレンジイソシアネートなどの芳香族ジイソシアネートが、特に耐熱性や強度の高いポリウレタンを合成するのに好適である。さらに脂環族ジイソシアネートとして、例えば、メチレンビス(シクロヘキシルイソシアネート)、イソホロンジイソシアネート、メチルシクロヘキサン2,4-ジイソシアネート、メチルシクロヘキサン2,6-ジイソシアネート、シクロヘキサン1,4-ジイソシアネート、ヘキサヒドロキシリレンジイソシアネート、ヘキサヒドロトリレンジイソシアネート、オクタヒドロ1,5-ナフタレンジイソシアネートなどが好ましい。脂環族ジイソシアネートは、特に本発明のポリウレタン樹脂組成物から得られる成形体、及び、本発明のポリウレタン樹脂組成物から得られるポリウレタン弾性繊維の黄変を抑制する際に有効に使用できる。そして、これらのジイソシアネートは単独で使用してもよいし、2種以上を併用してもよい。以降、ポリウレタン樹脂組成物から得られる成形体を、ポリウレタン樹脂成形体と記すこともある。 Next, as diisocyanates, aromatic diisocyanates such as diphenylmethane diisocyanate (hereinafter sometimes abbreviated as MDI), tolylene diisocyanate, 1,4-diisocyanate benzene, xylylene diisocyanate, and 2,6-naphthalene diisocyanate are particularly suitable for synthesizing polyurethanes with high heat resistance and strength. Furthermore, as alicyclic diisocyanates, for example, methylene bis (cyclohexyl isocyanate), isophorone diisocyanate, methylcyclohexane 2,4-diisocyanate, methylcyclohexane 2,6-diisocyanate, cyclohexane 1,4-diisocyanate, hexahydroxylylene diisocyanate, hexahydrotolylene diisocyanate, and octahydro 1,5-naphthalene diisocyanate are preferred. Alicyclic diisocyanates can be effectively used in particular to suppress yellowing of molded articles obtained from the polyurethane resin composition of the present invention and polyurethane elastic fibers obtained from the polyurethane resin composition of the present invention. These diisocyanates may be used alone or in combination of two or more. Hereinafter, molded articles obtained from polyurethane resin compositions may be referred to as polyurethane resin molded articles.

次にポリウレタンを合成するにあたって用いられる鎖伸長剤は、低分子量ジアミンおよび低分子量ジオールのうちの少なくとも1種を使用するのが好ましい。なお、エタノールアミンのような水酸基とアミノ基を一分子中に両方有するものであってもよい。 The chain extender used to synthesize the polyurethane is preferably at least one of low molecular weight diamines and low molecular weight diols. It is also acceptable to use one that has both a hydroxyl group and an amino group in one molecule, such as ethanolamine.

好ましい低分子量ジアミンとしては、例えば、エチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、ヘキサメチレンジアミン、p-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、p,p’-メチレンジアニリン、1,3-シクロヘキシルジアミン、ヘキサヒドロメタフェニレンジアミン、2-メチルペンタメチレンジアミン、ビス(4-アミノフェニル)フォスフィンオキシドなどが挙げられる。これらの中から1種または2種以上が使用されることが好ましい。特に好ましくはエチレンジアミンである。エチレンジアミンを用いることにより伸度および弾性回復性、さらに耐熱性に優れた弾性繊維を容易に得ることができる。これらの鎖伸長剤に架橋構造を形成することのできるトリアミン化合物、例えば、ジエチレントリアミン等を効果が失わない程度に加えてもよい。 Preferred low molecular weight diamines include, for example, ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, hexamethylenediamine, p-phenylenediamine, p-xylylenediamine, m-xylylenediamine, p,p'-methylenedianiline, 1,3-cyclohexyldiamine, hexahydrometaphenylenediamine, 2-methylpentamethylenediamine, and bis(4-aminophenyl)phosphine oxide. It is preferable to use one or more of these. Ethylenediamine is particularly preferable. By using ethylenediamine, it is possible to easily obtain elastic fibers that are excellent in elongation, elastic recovery, and heat resistance. A triamine compound capable of forming a crosslinked structure, such as diethylenetriamine, may be added to these chain extenders to an extent that the effect is not lost.

また、低分子量ジオールとしては、エチレングリコール、1,3プロパンジオール、1,4ブタンジオール、ビスヒドロキシエトキシベンゼン、ビスヒドロキシエチレンテレフタレート、1-メチル-1,2-エタンジオールなどが代表的なものである。これらの中から1種または2種以上が使用されることが好ましい。特に好ましくはエチレングリコール、1,3プロパンジオール、1,4ブタンジオールである。これらを用いると、ジオール伸長のポリウレタンとしては耐熱性がより高くなり、また、より強度の高いポリウレタン樹脂成形体、及び、弾性繊維を得ることができるのである。 Representative low molecular weight diols include ethylene glycol, 1,3 propanediol, 1,4 butanediol, bishydroxyethoxybenzene, bishydroxyethylene terephthalate, and 1-methyl-1,2-ethanediol. It is preferable to use one or more of these. Ethylene glycol, 1,3 propanediol, and 1,4 butanediol are particularly preferable. When these are used, the heat resistance of the diol-extended polyurethane is increased, and polyurethane resin molded bodies and elastic fibers with higher strength can be obtained.

また、本発明においてポリウレタンの分子量は、耐久性や強度の高いポリウレタン樹脂成形体、及び、ポリウレタン弾性繊維を得る観点から、数平均分子量として30,000以上150,000以下の範囲であることが好ましい。なお、分子量はGPC(ゲルパーミエーションクロマトグラフィー)で測定し、ポリスチレンにより換算する。 In addition, in the present invention, the molecular weight of the polyurethane is preferably in the range of 30,000 to 150,000 in terms of number average molecular weight, from the viewpoint of obtaining polyurethane resin molded bodies and polyurethane elastic fibers with high durability and strength. The molecular weight is measured by GPC (gel permeation chromatography) and converted into polystyrene.

ポリウレタンには、末端封鎖剤が1種または2種以上混合使用されることも好ましい。末端封鎖剤としては、ジメチルアミン、ジイソプロピルアミン、エチルメチルアミン、ジエチルアミン、メチルプロピルアミン、イソプロピルメチルアミン、ジイソプロピルアミン、ブチルメチルアミン、イソブチルメチルアミン、イソペンチルメチルアミン、ジブチルアミン、ジアミルアミンなどのモノアミン、エタノール、プロパノール、ブタノール、イソプロパノール、アリルアルコール、シクロペンタノールなどのモノオール、フェニルイソシアネートなどのモノイソシアネートなどが好ましい。 It is also preferable to use one or more types of terminal blocking agents in combination for polyurethane. Preferred terminal blocking agents include monoamines such as dimethylamine, diisopropylamine, ethylmethylamine, diethylamine, methylpropylamine, isopropylmethylamine, diisopropylamine, butylmethylamine, isobutylmethylamine, isopentylmethylamine, dibutylamine, and diamylamine; monools such as ethanol, propanol, butanol, isopropanol, allyl alcohol, and cyclopentanol; and monoisocyanates such as phenylisocyanate.

本発明におけるポリウレタン樹脂組成物は、窒素含有芳香族化合物を0.05質量%以上2.0質量%以下を含有する。前記一般式(1)のポリエーテル構造を骨格中に有するポリウレタンの耐久性、特に抗酸化性に優れた高耐久性を相乗的に発現する。 The polyurethane resin composition of the present invention contains 0.05% by mass or more and 2.0% by mass or less of a nitrogen-containing aromatic compound. This synergistically exhibits the durability of the polyurethane having the polyether structure of the general formula (1) in its skeleton, particularly high durability with excellent oxidation resistance.

Figure 2024077017000003
(Rは炭素数2~6のアルキレン基、Rは炭素数1~2のアルキル基であり、
l,m,nは、4≦n/(l+m+n)×100≦50を満たす)
Figure 2024077017000003
(R 1 is an alkylene group having 2 to 6 carbon atoms, R 2 is an alkyl group having 1 to 2 carbon atoms,
l, m, and n satisfy the following: 4≦n/(l+m+n)×100≦50

窒素含有芳香族化合物の含有量が0.05質量%未満であれば、ポリウレタン樹脂成形体、及び、ポリウレタン弾性繊維の耐久性が不足するおそれがあり、2.0質量%を超えると、ポリウレタン樹脂成形体、及び、ポリウレタン弾性繊維の耐熱性の低下が顕著となり、耐黄化性が低下するおそれがある。 If the content of the nitrogen-containing aromatic compound is less than 0.05% by mass, the durability of the polyurethane resin molded body and polyurethane elastic fiber may be insufficient, and if it exceeds 2.0% by mass, the heat resistance of the polyurethane resin molded body and polyurethane elastic fiber may decrease significantly, and the yellowing resistance may decrease.

窒素含有芳香族化合物の含有量の0.05重量%以上2.0重量%以下という値は、一般的に、窒素含有芳香族化合物が樹脂組成物1kg中に0.25~13.3ミリ当量(meq/kg)の範囲で存在することに相当する。これに対し、窒素原子を含む芳香環は熱分解を起こし易いので、窒素含有芳香族化合物の含有量が多すぎる場合(すなわち、芳香環窒素原子が13.3ミリ当量を超える量の場合)には、一般式(1)のポリエーテル構造を骨格中に有するポリウレタンとの相乗効果よりも、熱分解によるラジカル生成の方が優位になり、耐熱性を低下させたり、キノン構造を形成し熱変色を起こしたりするので、高耐熱性などの機能が得られない。また、窒素含有芳香族化合物を耐光剤として多く含有させる場合があるが、その含有量が2.0質量%を超えるほどに多い場合には、本発明の目的である高耐熱性などの効果は得られない。これら点からして、窒素含有芳香族化合物の含有量は多すぎない適正量とすることが好ましく、好ましい範囲は、0.1質量%以上1.0質量%以下、さらには、0.2質量%以上0.8質量%以下である。 The content of the nitrogen-containing aromatic compound of 0.05% by weight or more and 2.0% by weight or less generally corresponds to the presence of the nitrogen-containing aromatic compound in the range of 0.25 to 13.3 milliequivalents (meq/kg) per 1 kg of the resin composition. On the other hand, aromatic rings containing nitrogen atoms are prone to thermal decomposition, so when the content of the nitrogen-containing aromatic compound is too high (i.e., when the aromatic ring nitrogen atom is in an amount exceeding 13.3 milliequivalents), the radical generation due to thermal decomposition becomes dominant over the synergistic effect with the polyurethane having the polyether structure of general formula (1) in its skeleton, and the heat resistance is reduced or a quinone structure is formed, causing thermal discoloration, so that functions such as high heat resistance cannot be obtained. In addition, although there are cases in which a large amount of the nitrogen-containing aromatic compound is contained as a light resistance agent, when the content is so high that it exceeds 2.0% by mass, the effect of high heat resistance, which is the object of the present invention, cannot be obtained. From these perspectives, it is preferable that the content of the nitrogen-containing aromatic compound is not too high, but is an appropriate amount, and the preferred range is 0.1% by mass or more and 1.0% by mass or less, and even more preferably 0.2% by mass or more and 0.8% by mass or less.

さらには、前記一般式(1)のポリエーテル構造を骨格中に有するポリウレタンの-(CHCHCHCHR-O)n-のうち末端にあるものの数をn’としたとき、5≦n’/(l+m+n)×100≦30を満たすことが好ましい。かかる場合、窒素含有芳香族化合物との抗酸化性の効果が相乗的に発揮できる。また、10≦n’/(l+m+n)×100≦15であればより好ましく、窒素含有芳香族化合物はより少量含有で有効であり、これらの場合には、窒素含有芳香族化合物の含有量は0.1質量%以上0.6質量%以下であることも好ましい。 Furthermore, when the number of terminal -(CH 2 CH 2 CH 2 CHR 2 -O)n- in the polyurethane having the polyether structure of the general formula (1) in its skeleton is n', it is preferable that the content satisfies 5≦n'/(l+m+n)×100≦30. In such a case, the antioxidant effect with the nitrogen-containing aromatic compound can be exerted synergistically. Furthermore, it is more preferable that the content satisfies 10≦n'/(l+m+n)×100≦15, and a smaller amount of the nitrogen-containing aromatic compound is effective. In such cases, it is also preferable that the content of the nitrogen-containing aromatic compound is 0.1% by mass or more and 0.6% by mass or less.

含有される窒素含有芳香族化合物としては、より具体的には、分子内の芳香環に窒素原子が配されている含窒素芳香族複素環を持つ化合物である。化学構造骨格としては、1窒素芳香族複素環を持つピロール、ピリジン、カルバゾール、キノリン、2窒素芳香族複素環を持つイミザゾール、ピラゾール、ピリダジン、ピラジン、ピリミジン、ナフチリジン、フェナントロリン、3窒素芳香族複素環を持つトリアジン、ベンゾトリアゾール、ナフチリジンなどが挙げられ、ベンゾチアゾールやベンゾオキサゾールなど、窒素以外のヘテロ原子を配していても構わない。かかる含窒素芳香族化合物の具体例としては、紫外線吸収剤として知られているベンゾトリアゾール化合物やトリアジン化合物が好ましく、より具体的には、2-(3、5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ビスフェニル)ベンゾトリアゾール、2,4-ジ(2′,4′-ジメチルフエニル)-6-(2″-ヒドロキシ-4″-アルコキシフエニル)-1,3,5-トリアジン、2,2′-(1,4-フェニレン)ビス[4H-3,1-ベンザキサジン-4-オン]などの化合物が挙げられる。商品名で記載すると、チバガイギー社製“チヌビン”-P、“チヌビン”-213、“チヌビン”-234、“チヌビン”-327、“チヌビン”-328、“チヌビン”-571、“チヌビン”-1577、住友化学工業(株)製“スミソーブ”250、アメリカンサイナミド社製“サイアソルブ”UV-541 1、UV-1164、UV-3638、旭電化工業(株)製“アデカスタブ”LA-31、等が挙げられる。 More specifically, the nitrogen-containing aromatic compounds contained therein are compounds having a nitrogen-containing aromatic heterocycle in which a nitrogen atom is arranged in an aromatic ring in the molecule. Examples of chemical structural skeletons include pyrrole, pyridine, carbazole, and quinoline having one nitrogen aromatic heterocycle, imizazole, pyrazole, pyridazine, pyrazine, pyrimidine, naphthyridine, and phenanthroline having two nitrogen aromatic heterocycles, and triazine, benzotriazole, and naphthyridine having three nitrogen aromatic heterocycles. Heteroatoms other than nitrogen, such as benzothiazole and benzoxazole, may also be arranged. Specific examples of such nitrogen-containing aromatic compounds are preferably benzotriazole compounds and triazine compounds known as ultraviolet absorbents, and more specific examples include compounds such as 2-(3,5-di-t-amyl-2-hydroxyphenyl)benzotriazole, 2-(3-t-butyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3,5-bisphenyl)benzotriazole, 2,4-di(2',4'-dimethylphenyl)-6-(2"-hydroxy-4"-alkoxyphenyl)-1,3,5-triazine, and 2,2'-(1,4-phenylene)bis[4H-3,1-benzaxazin-4-one]. Listed by trade name are "TINUVIN"-P, "TINUVIN"-213, "TINUVIN"-234, "TINUVIN"-327, "TINUVIN"-328, "TINUVIN"-571, and "TINUVIN"-1577 manufactured by Ciba-Geigy Co., Ltd., "Sumisorb" 250 manufactured by Sumitomo Chemical Co., Ltd., "Cyasorb" UV-541 1, UV-1164, and UV-3638 manufactured by American Cyanamid Co., Ltd., and "ADK STAB" LA-31 manufactured by Asahi Denka Kogyo Co., Ltd., and the like.

染色時における高耐熱性、不飽和脂肪酸への耐性、及び重金属への耐性を併せて発揮するとともに、高弾性回復性及び高強伸度を有するポリウレタン弾性繊維とするためには、窒素含有芳香族化合物の含有量は0.05重量%以上2.0重量%以下であることが必要である。 In order to produce polyurethane elastic fibers that exhibit high heat resistance during dyeing, resistance to unsaturated fatty acids, and resistance to heavy metals, as well as high elastic recovery and high strength and elongation, the content of nitrogen-containing aromatic compounds must be 0.05% by weight or more and 2.0% by weight or less.

窒素含有芳香族化合物のなかでも、紡糸中の揮発減量を抑制する観点から分子量300 以上の化合物群が好ましい。そして、染色時における耐熱性および紡糸性を良好とする観 点から、芳香環に窒素原子を2個以上有する化合物であることがより好ましく、重金属と の錯体形成が容易であり、キレート効果を発揮するためと推察される。さらに該効果を十 分に発揮するためには、窒素含有芳香族化合物の化学構造骨格はトリアジンであることが好ましい。なお、実際に用いる窒素含有芳香族化合物の分子量と芳香環の有効窒素数等や用途等に応じて事前にテストし、最適値を適宜決定することが好ましい。 Among the nitrogen-containing aromatic compounds, compounds with a molecular weight of 300 or more are preferred from the viewpoint of suppressing volatilization during spinning. From the viewpoint of improving heat resistance and spinnability during dyeing, it is more preferable to use compounds with two or more nitrogen atoms in the aromatic ring, which is presumably because it is easy to form a complex with heavy metals and exerts a chelating effect. Furthermore, in order to fully exert this effect, it is preferable that the chemical structural skeleton of the nitrogen-containing aromatic compound is triazine. It is preferable to carry out tests in advance according to the molecular weight of the nitrogen-containing aromatic compound actually used, the effective number of nitrogen in the aromatic ring, the purpose, etc., and to appropriately determine the optimal value.

そして、特に高い染色時耐熱性を有するポリウレタン弾性繊維とするためには、窒素含有芳香族化合物として、2,4-ジ(2′,4′-ジメチルフエニル)-6-(2″- ヒドロキシ-4″-アルコキシフエニル)-1,3,5-トリアジンが好適である。 And to produce polyurethane elastic fibers with particularly high heat resistance during dyeing, 2,4-di(2',4'-dimethylphenyl)-6-(2"-hydroxy-4"-alkoxyphenyl)-1,3,5-triazine is a suitable nitrogen-containing aromatic compound.

さらに、含窒素芳香族化合物として使用する化合物は、ポリウレタンへの分散および溶解を速くし、製造されるポリウレタン弾性繊維に所望の特性を付与し、さらに適度な透明度のポリウレタン弾性繊維とすることができ、さらに紡糸工程で熱などを受けた時でもこれら化合物の含有量が低下せずポリウレタン弾性繊維の変色および黄変色を生じないという観点から、20℃での粘度が100cP以上10000P以下となる液体状の化合物であるものが好ましい。 Furthermore, the compounds used as the nitrogen-containing aromatic compounds are preferably liquid compounds with a viscosity of 100 cP or more and 10,000 P or less at 20°C, from the viewpoints of accelerating dispersion and dissolution in polyurethane, imparting the desired properties to the polyurethane elastic fiber produced, and enabling the polyurethane elastic fiber to have an appropriate degree of transparency, and further, preventing the content of these compounds from decreasing even when exposed to heat during the spinning process, and preventing discoloration or yellowing of the polyurethane elastic fiber.

さらに、本発明で使用されるポリウレタンは、末端封鎖剤が1種または2種以上混合使用されたものが好ましい。末端封鎖剤として、ジメチルアミン、ジイソプロピルアミン、エチルメチルアミン、ジエチルアミン、メチルプロピルアミン、イソプロピルメチルアミン、ジイソプロピルアミン、ブチルメチルアミン、イソブチルメチルアミン、イソペンチルメチルアミン、ジブチルアミン、ジアミルアミンなどのモノアミン、エタノール、プロパノール、ブタノール、イソプロパノール、アリルアルコール、シクロペンタノールなどのモノオール、フェニルイソシアネートなどのモノイソシアネートなどが好ましい。 Furthermore, the polyurethane used in the present invention is preferably one in which one or more types of end-capping agents are used in combination. Preferred end-capping agents include monoamines such as dimethylamine, diisopropylamine, ethylmethylamine, diethylamine, methylpropylamine, isopropylmethylamine, diisopropylamine, butylmethylamine, isobutylmethylamine, isopentylmethylamine, dibutylamine, and diamylamine; monools such as ethanol, propanol, butanol, isopropanol, allyl alcohol, and cyclopentanol; and monoisocyanates such as phenylisocyanate.

また、本発明において、ポリウレタン樹脂組成物中に、前述した以外 の各種安定剤であるヒンダートフェノール系、硫黄系、燐系等の酸化防止剤、ヒンダート アミン系、トリアゾール系、ベンゾフェノン系、ベンゾエート系、ニッケル系、サリチル 系等の光安定剤、帯電防止剤、滑剤、過酸化物等の分子調整剤、金属不活性化剤、有機及 び無機系の核剤、中和剤、蛍光増白剤、充填剤、難燃剤、難燃助剤、顔料等を本発明の効 果を阻害しない範囲で含有されていてもよい。例えば、耐光剤、酸化防止剤などに2,6 -ジ-tブチル-pクレゾール(BHT)やベンゾフェノン系薬剤、各種のヒンダードア ミン系薬剤、酸化鉄、酸化チタンなどの各種顔料、酸化亜鉛、酸化セリウム、酸化マグネ シウム、カーボンブラックなどの無機物、フッ素系またはシリコーン系樹脂粉体、ステアリン酸マグネシウムなどの金属石鹸、また、銀や亜鉛やこれらの化合物などを含む殺菌剤 、消臭剤、防菌剤、またシリコーン、鉱物油などの滑剤、硫酸バリウム、酸化セリウム、 ベタインやリン酸系などの各種の帯電防止剤などが含まれることも好ましく、またこれら とポリマとを反応させることも好ましい。そして、特に光や各種の酸化窒素などへの耐久 性をさらに高めるには、例えば、日本ファインケム(株)製のHN-130、HN-150などの酸化窒素捕捉剤が使用されることも好ましい。 In addition, in the present invention, the polyurethane resin composition may contain various stabilizers other than those mentioned above, such as antioxidants such as hindered phenols, sulfurs, and phosphorus, light stabilizers such as hindered amines, triazoles, benzophenones, benzoates, nickel, and salicylic acid, antistatic agents, lubricants, molecular regulators such as peroxides, metal deactivators, organic and inorganic nucleating agents, neutralizing agents, fluorescent brighteners, fillers, flame retardants, flame retardant assistants, pigments, etc., to the extent that the effects of the present invention are not impaired. For example, it is preferable that the light fasteners and antioxidants include 2,6-di-t-butyl-p-cresol (BHT) and benzophenone-based agents, various hindered amine-based agents, various pigments such as iron oxide and titanium oxide, inorganic substances such as zinc oxide, cerium oxide, magnesium oxide, and carbon black, fluorine-based or silicone-based resin powders, metal soaps such as magnesium stearate, bactericides, deodorants, and antibacterial agents containing silver, zinc, or compounds thereof, lubricants such as silicone and mineral oil, and various antistatic agents such as barium sulfate, cerium oxide, betaine, and phosphoric acid, and it is also preferable to react these with the polymer. In order to further increase the durability to light and various nitrogen oxides, it is also preferable to use nitrogen oxide scavengers such as HN-130 and HN-150 manufactured by Nippon Finechem Co., Ltd.

また、乾式紡糸工程における紡糸速度を上げ易いという観点から、紡糸原液中に二酸化チタン、酸化亜鉛等の金属酸化物の微粒子を添加してもよい。また、耐熱性向上や機能性向上の観点から、無機物や無機多孔質(例えば、竹炭、木炭、カーボンブラック、多孔質泥、粘土、ケイソウ土、ヤシガラ活性炭、石炭系活性炭、ゼオライト、パーライト等)を、本発明の効果を阻害しない範囲内で添加してもよい。 In order to facilitate an increase in the spinning speed in the dry spinning process, fine particles of metal oxides such as titanium dioxide and zinc oxide may be added to the spinning solution. In order to improve heat resistance and functionality, inorganic substances and inorganic porous substances (e.g., bamboo charcoal, charcoal, carbon black, porous mud, clay, diatomaceous earth, coconut shell activated carbon, coal-based activated carbon, zeolite, perlite, etc.) may be added within a range that does not impair the effects of the present invention.

これら添加剤は、ポリウレタン溶液と前記した改質剤との混合により紡糸原液を調製する際に添加してもよいし、また、混合前のポリウレタン溶液中や分散液中に予め含有させておいてもよい。これら添加剤の含有量は目的等に応じて適宜決定される。 These additives may be added when preparing the spinning dope by mixing the polyurethane solution with the above-mentioned modifier, or may be contained in the polyurethane solution or dispersion before mixing. The content of these additives is appropriately determined depending on the purpose, etc.

本発明のポリウレタン樹脂組成物においては、酸化防止剤を含有する場合には、0.002質量%以上5.0質量%以下含有していることが好ましい。酸化防止剤の含有量がこの範囲内にあると、実用上好ましいポリウレタン樹脂組成物の特性、特に好ましい酸化防止剤はヒンダードフェノール化合物であり、一般に抗酸化防止剤として知られているフェノール化合物が挙げられる。例えば、3,5-ジ-t-ブチル-4-ヒドロキシ-トルエン、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピオネート、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、1,3,5-トリメチル-2,4,6’-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、カルシウム(3,5-ジ-t-ブチル-4-ヒドロキシ-ベンジル-モノエチル-フォスフェート)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、トコフェロール、2,2’-エチリデンビス(4,6-ジ-t-ブチルフェノール)、N,N’-ビス[3-(3,5-ジーt-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、2,2’-オキサミドビス[エチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、エチレン-1,2-ビス(3,3-ビス[3-t-ブチル-4-ヒドロキシフェニル]ブチレート)、エチレン-1,2-ビス(3-[3-t-ブチル-4-ヒドロキシフェニル]ブチレート)、1,1-ビス(2-メチル-5-t-ブチル-4-ヒドロキシフェニル)ブタン、1,1,3-トリス(2-メチル-5-t-ブチル-4-ヒドロキシフェニル)ブタン、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(3’-t-ブチル-4’-ヒドロキシ-5-メチルベンジル)-S-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、さらには、ポリウレタン樹脂組成物用の抗酸化防止剤として知られている高分子量のヒンダードフェノール化合物も好適に用いられる。 In the polyurethane resin composition of the present invention, when an antioxidant is contained, it is preferable that the antioxidant is contained in an amount of 0.002 mass% or more and 5.0 mass% or less. When the content of the antioxidant is within this range, the polyurethane resin composition has practically preferable properties. Particularly preferable antioxidants are hindered phenol compounds, and examples of phenol compounds generally known as antioxidants include those. For example, 3,5-di-t-butyl-4-hydroxy-toluene, n-octadecyl-β-(4'-hydroxy-3',5'-di-t-butylphenyl)propionate, tetrakis[methylene-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate]methane, 1,3,5-trimethyl-2,4,6'-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, calcium(3,5-di-t-butyl-4-hydroxy-benzyl-monoethyl-phosphate), triethylene glycol-bis[3-(3 -t-butyl-5-methyl-4-hydroxyphenyl)propionate], 3,9-bis[1,1-dimethyl-2-{β-(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy}ethyl]2,4,8,10-tetraoxaspiro[5,5]undecane, tocopherol, 2,2'-ethylidenebis(4,6-di-t-butylphenol), N,N'-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyl]hydrazine, 2,2'-oxamidebis[ethyl-3-(3,5-di-t-butyl-4-hydroxide] hydroxyphenyl)propionate], 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane, ethylene-1,2-bis(3,3-bis[3-t-butyl-4-hydroxyphenyl]butyrate), ethylene-1,2-bis(3-[3-t-butyl-4-hydroxyphenyl]butyrate), 1,1-bis(2-methyl-5-t-butyl-4-hydroxyphenyl)butane, 1,1,3-tris(2-methyl-5-t-butyl-4-hydroxyphenyl)butane, 1,3,5-tris(3',5'-di-t-butyl -4'-hydroxybenzyl)-S-triazine-2,4,6(1H,3H,5H)-trione, 1,3,5-tris(3'-t-butyl-4'-hydroxy-5-methylbenzyl)-S-triazine-2,4,6(1H,3H,5H)-trione, 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, and high molecular weight hindered phenol compounds known as antioxidants for polyurethane resin compositions are also preferably used.

かかる高分子量のヒンダードフェノール化合物の好ましい具体例としては、ジビニルベンゼンとクレゾールとの付加重合体、ジシクロペンタジエンとクレゾールとの付加重合体イソブチレン付加物、クロロメチルスチレンと、クレゾール、エチルフェノール、t-ブチルフェノールなどの化合物との重合体が使用される。ここで、ジビニルベンゼン、クロロメチルスチレンは、p-でもm-でもよい。また、クレゾール、エチルフェノール、t-ブチルフェノールは、o-、m-、p-のいずれでもよい。 Specific examples of preferred high molecular weight hindered phenol compounds include addition polymers of divinylbenzene and cresol, addition polymers of dicyclopentadiene and cresol, isobutylene adducts, and polymers of chloromethylstyrene and compounds such as cresol, ethylphenol, and t-butylphenol. Here, divinylbenzene and chloromethylstyrene may be p- or m-. Furthermore, cresol, ethylphenol, and t-butylphenol may be o-, m-, or p-.

なかでも、ポリウレタン弾性繊維の原料紡糸液の粘度を安定化し、紡糸中の揮発減量を抑制し、良好な紡糸性を得る観点から、分子量300以上の化合物であることが好ましく、さらには、高い紡糸速度、染色時における耐熱性、不飽和脂肪酸への耐性、重金属への耐性を効率よく発揮するためには、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、エチレン-1,2-ビス(3,3-ビス[3-t-ブチル-4-ヒドロキシフェニル]ブチレート)、ジビニルベンゼンとp-クレゾールとの付加物であって、6~12の繰り返し数を持つ重合体のいずれかまたはそれらを併用して用いることが好ましい。なかでも1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンが特に好ましい。また、(a)化合物および(c)化合物にトリアジン化合物を選択した場合には染色時における耐熱性において特に高い相乗効果を得ることができる。なかでも、(a)化合物が1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンであり、かつ、(c)化合物が2,4-ジ(2′,4′-ジメチルフエニル)-6-(2″-ヒドロキシ-4″-アルコキシフエニル)-1,3,5-トリアジンであることが特に好ましい。 Among these, from the viewpoints of stabilizing the viscosity of the raw material spinning solution for polyurethane elastic fiber, suppressing volatile loss during spinning, and obtaining good spinnability, compounds with a molecular weight of 300 or more are preferred; furthermore, in order to efficiently exhibit high spinning speed, heat resistance during dyeing, resistance to unsaturated fatty acids, and resistance to heavy metals, it is preferred to use any one of 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, triethylene glycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], ethylene-1,2-bis(3,3-bis[3-t-butyl-4-hydroxyphenyl]butyrate), and an adduct of divinylbenzene and p-cresol having a repeat number of 6 to 12, or a combination of these. Among these, 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione is particularly preferred. Also, when triazine compounds are selected as compound (a) and compound (c), a particularly high synergistic effect can be obtained in terms of heat resistance during dyeing. Among these, it is particularly preferred that compound (a) is 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, and compound (c) is 2,4-di(2',4'-dimethylphenyl)-6-(2"-hydroxy-4"-alkoxyphenyl)-1,3,5-triazine.

更に、本発明のポリウレタン樹脂組成物には耐熱性、複合耐久性、耐光性、黄変色など酸化による各種耐久性低下を抑制する観点から、片ヒンダードフェノール化合物を含有していることが好ましい。片ヒンダードフェノール化合物としては、片ヒンダードのヒドロキシフェニル基を少なくとも2つ含み、かつ、ビスエステル、アルキリデンから選択される骨格を有する化合物であることが好ましい。ここで、ヒドロキシフェニル基における水酸基に隣接する環位置に存在するアルキル基はターシャリーブチル基であることがより望ましく、水酸基の当量が600以下であることが更に望ましい。 Furthermore, from the viewpoint of suppressing deterioration of various durability properties due to oxidation, such as heat resistance, composite durability, light resistance, and yellowing, the polyurethane resin composition of the present invention preferably contains a singly hindered phenol compound. The singly hindered phenol compound is preferably a compound containing at least two singly hindered hydroxyphenyl groups and having a skeleton selected from bisester and alkylidene. Here, it is more preferable that the alkyl group present at the ring position adjacent to the hydroxyl group in the hydroxyphenyl group is a tertiary butyl group, and it is even more preferable that the equivalent weight of the hydroxyl group is 600 or less.

さらに、本発明におけるフェノール化合物として、片ヒンダードフェノール化合物も好ましい。片ヒンダードフェノール化合物としては、例えば、片ヒンダードのヒドロキシフェニル基がビスエステル骨格に共有結合した構造のエチレン-1,2-ビス(3,3-ビス[3-t-ブチル-4-ヒドロキシフェニル]ブチレート)(下記の化学式)が好ましい。 Furthermore, as the phenol compound in the present invention, a singly hindered phenol compound is also preferred. As a singly hindered phenol compound, for example, ethylene-1,2-bis(3,3-bis[3-t-butyl-4-hydroxyphenyl]butyrate) (chemical formula below), which has a structure in which a singly hindered hydroxyphenyl group is covalently bonded to a bis-ester skeleton, is preferred.

Figure 2024077017000004
Figure 2024077017000004

前記した片ヒンダードフェノール化合物を含有させることにより、特性低下抑制効果を高めることができる。そして、このタイプのヒンダードフェノール化合物は下着など高頻度に洗濯および漂白が実施される場合には、特異的にポリウレタン弾性繊維を構成するポリウレタンの分子量抑制に働き、有効である。この効果を十分なものとし、かつ、繊維の物理的特性に悪影響を与えない観点から、片ヒンダードフェノール化合物はポリウレタン樹脂組成物に対し0.15~4質量%含有されるのが好ましく、0.5~3.5質量%含有されるのがより好ましく、破断強伸度、複合耐久性、耐黄変色、場合により耐光性が確保される。より好ましい酸化防止剤の含有量は0.2質量%以上3.0質量%以下の範囲であり、さらに好ましくは0.5質量%以上2.0質量%以下の範囲である。 By including the aforementioned single-hindered phenol compound, the effect of suppressing the deterioration of properties can be enhanced. This type of hindered phenol compound is effective in suppressing the molecular weight of polyurethane constituting polyurethane elastic fiber, specifically in the case of underwear and other items that are washed and bleached frequently. In order to obtain a sufficient effect and not adversely affect the physical properties of the fiber, the single-hindered phenol compound is preferably included in the polyurethane resin composition in an amount of 0.15 to 4 mass%, more preferably 0.5 to 3.5 mass%, so that the breaking strength and elongation, composite durability, yellowing resistance, and in some cases light resistance are ensured. The content of the antioxidant is more preferably in the range of 0.2 mass% to 3.0 mass%, and even more preferably in the range of 0.5 mass% to 2.0 mass%.

また、ポリウレタン樹脂組成物の酸化防止剤の含有量としては、0.1質量%以上5.0質量%以下の範囲が好ましい。ポリウレタン樹脂組成物の酸化防止剤の含有量がこの範囲内にあると、最終的に製造されるポリウレタン弾性繊維の内部に含有される酸化防止剤の含有量を、上述の望ましい酸化防止剤の含有量に容易に制御することが可能になる。ポリウレタン樹脂組成物の酸化防止剤の含有量としてより好ましくは0.2質量%以上3.0質量%以下であり、さらに好ましくは0.5質量%以上2.0質量%以下の範囲である。 The content of the antioxidant in the polyurethane resin composition is preferably in the range of 0.1% by mass to 5.0% by mass. When the content of the antioxidant in the polyurethane resin composition is within this range, it becomes possible to easily control the content of the antioxidant contained inside the polyurethane elastic fiber that is finally produced to the desired content of the antioxidant described above. The content of the antioxidant in the polyurethane resin composition is more preferably in the range of 0.2% by mass to 3.0% by mass, and even more preferably in the range of 0.5% by mass to 2.0% by mass.

含有される酸化防止剤としては、より具体的には、分子量が1000以上のヒンダードフェノール化合物であり、ポリウレタン樹脂組成物用の抗酸化防止剤として知られている分子量1,000以上のヒンダードフェノール化合物が用いられることが好ましい。分子量が1,000以上と云う比較的高分子量である以外には特に制限はなく、かかる高分子量のヒンダードフェノール化合物の好ましい具体例としては、ジビニルベンゼンとクレゾールとの付加重合体、ジシクロペンタジエンとクレゾールとの付加重合体イソブチレン付加物、クロロメチルスチレンと、クレゾール、エチルフェノール、t-ブチルフェノールなどの化合物との重合体が使用される。ここで、ジビニルベンゼン、クロロメチルスチレンは、p-でもm-でもよい。また、クレゾール、エチルフェノール、t-ブチルフェノールは、o-、m-、p-のいずれでもよい。 More specifically, the antioxidant contained is a hindered phenol compound having a molecular weight of 1000 or more, and it is preferable to use a hindered phenol compound having a molecular weight of 1,000 or more that is known as an antioxidant for polyurethane resin compositions. There is no particular restriction other than the relatively high molecular weight of 1,000 or more, and preferred examples of such high molecular weight hindered phenol compounds include addition polymers of divinylbenzene and cresol, addition polymers of dicyclopentadiene and cresol, isobutylene adducts, and polymers of chloromethylstyrene and compounds such as cresol, ethylphenol, and t-butylphenol. Here, divinylbenzene and chloromethylstyrene may be p- or m-. Furthermore, cresol, ethylphenol, and t-butylphenol may be o-, m-, or p-.

なかでも、ポリウレタン弾性繊維の原料紡糸液の粘度を安定化し、良好な紡糸性を得る観点から、クレゾールから誘導される重合体のヒンダードフェノール化合物であることが好ましい。さらには、高い紡糸速度、染色時における耐熱性、不飽和脂肪酸への耐性、重金属への耐性を効率よく発揮するためには、その高分子量ヒンダードフェノール化合物をある程度多く含むことが好ましいが、ポリウレタン弾性繊維としてより良好な基本物性を得る観点からすると多過ぎないことが好ましい。 Among these, from the viewpoint of stabilizing the viscosity of the raw material spinning solution for polyurethane elastic fiber and obtaining good spinnability, a polymer hindered phenol compound derived from cresol is preferable. Furthermore, in order to efficiently exhibit a high spinning speed, heat resistance during dyeing, resistance to unsaturated fatty acids, and resistance to heavy metals, it is preferable to contain a certain amount of the high molecular weight hindered phenol compound, but from the viewpoint of obtaining better basic physical properties as polyurethane elastic fiber, it is preferable that the amount is not too much.

本発明のポリウレタン樹脂組成物においては、上記のような酸化防止剤の分解物についても、その含有量が1.0質量%以下に規制されていることが好ましい。酸化防止剤の分解物の含有量がこの範囲内にあると、実用上好ましいポリウレタン樹脂組成物の特性、特にポリウレタン樹脂組成物を用いたポリウレタン弾性繊維の好ましい破断強伸度、耐変色性、耐久性が確保される。好ましい酸化防止剤の分解物の含有量は1.0質量%以下の範囲であり、より好ましくは0.5質量%以下の範囲である。 In the polyurethane resin composition of the present invention, it is preferable that the content of the decomposition products of the antioxidant as described above is also restricted to 1.0 mass% or less. When the content of the decomposition products of the antioxidant is within this range, the practically preferable properties of the polyurethane resin composition, in particular the preferable breaking strength and elongation, discoloration resistance, and durability of the polyurethane elastic fiber using the polyurethane resin composition, are ensured. The content of the decomposition products of the antioxidant is preferably in the range of 1.0 mass% or less, and more preferably in the range of 0.5 mass% or less.

本発明のポリウレタン樹脂組成物においては、三級アミン化合物を含有する場合には、0.2質量%以上5.0質量%以下含有していることが好ましい。三級アミン化合物の含有量がこの範囲内にあると、ポリウレタン樹脂組成物を用いたポリウレタン弾性繊維の実用上好ましい特性、紡糸性、染色性、耐久性、耐黄変色性が向上する。 In the polyurethane resin composition of the present invention, when a tertiary amine compound is contained, it is preferable that the content is 0.2 mass% or more and 5.0 mass% or less. When the content of the tertiary amine compound is within this range, the practically preferable properties, spinnability, dyeability, durability, and yellowing resistance of the polyurethane elastic fiber using the polyurethane resin composition are improved.

本発明で用いる三級アミン化合物としては、構造中にアミノ基を有する化合物であれば特に限定されるものではないが、ポリウレタン樹脂組成物の耐塩素劣化性および黄変性の観点から1級から3級アミノ基のうち、3級アミノ基のみを分子中に有するものが特に好ましい。 The tertiary amine compound used in the present invention is not particularly limited as long as it has an amino group in its structure, but from the viewpoint of the chlorine deterioration resistance and yellowing of the polyurethane resin composition, it is particularly preferable to use a compound having only a tertiary amino group in the molecule among the primary to tertiary amino groups.

三級アミン化合物は数平均分子量が2,000未満であると、ポリウレタン樹脂組成物を用いたポリウレタン弾性繊維の編成時に、ガイドや編み針との擦過により脱落や、染色等の浴中での加工時に流出により、撥水加工性が悪化するため数平均分子量が2,000以上である必要がある。ポリウレタン紡糸原液への溶解性を鑑みると、数平均分子量の範囲としては2,000~10,000の範囲のものが好ましい。より好ましくは2,000~4,000の範囲である。 If the number average molecular weight of the tertiary amine compound is less than 2,000, it will fall off due to rubbing against guides or knitting needles when knitting polyurethane elastic fibers using the polyurethane resin composition, or will flow out during processing in a bath such as dyeing, resulting in poor water repellency, so the number average molecular weight must be 2,000 or more. In consideration of solubility in polyurethane spinning dope, the number average molecular weight is preferably in the range of 2,000 to 10,000. More preferably, it is in the range of 2,000 to 4,000.

前記した三級アミン化合物を含有させることにより、ポリウレタン樹脂組成物の性能、特に黄変防止性能を高めることができる。この効果を十分なものとし、かつ、ポリウレタン樹脂組成物を用いたポリウレタン弾性繊維の物理的特性に悪影響を与えない観点から、三級アミン化合物は繊維質量に対して、0.2質量%以上、5.0質量%以下含有されるのが好ましく、0.5質量%以上、4.0質量%以下含有させるのがより好ましい。より好ましい三級アミン化合物の含有量は0.5質量%以上3.0質量%以下の範囲であり、さらに好ましくは0.5質量%以上2.0質量%以下の範囲である。 By including the above-mentioned tertiary amine compound, the performance of the polyurethane resin composition, particularly the yellowing prevention performance, can be improved. From the viewpoint of ensuring this effect sufficiently and not adversely affecting the physical properties of the polyurethane elastic fiber using the polyurethane resin composition, the tertiary amine compound is preferably included in an amount of 0.2 mass% or more and 5.0 mass% or less, and more preferably 0.5 mass% or more and 4.0 mass% or less, based on the fiber mass. A more preferable content of the tertiary amine compound is in the range of 0.5 mass% or more and 3.0 mass% or less, and even more preferably 0.5 mass% or more and 2.0 mass% or less.

含有される三級アミン化合物としては、より具体的には、t-ブチルジエタノールアミンとメチレン-ビス-(4-シクロヘキシルイソシアネ-ト)の反応による、数平均分子量2000以上の線状の高分子化合物、ポリエチレンイミンや分子骨格中に、第一級アミノ基と、第二級アミノ基と、第三級アミノ基とを含む分岐構造を有している高分子量化合物等が挙げられる。 Specific examples of the tertiary amine compounds contained include linear polymeric compounds with a number average molecular weight of 2000 or more, which are produced by the reaction of t-butyldiethanolamine with methylene-bis-(4-cyclohexylisocyanate), polyethyleneimine, and high molecular weight compounds that have a branched structure containing primary amino groups, secondary amino groups, and tertiary amino groups in the molecular skeleton.

本発明のポリウレタン樹脂組成物においては、上記のような三級アミン化合物の分解物についても、その含有量が1.0質量%以下に規制されていることが好ましい。三級アミン化合物の分解物の含有量がこの範囲内にあると、ポリウレタン樹脂組成物を用いたポリウレタン弾性繊維の実用上好ましい特性、特に好ましい巻糸体形状、複合耐久性、耐黄変色が確保される。より好ましい三級アミン化合物の分解物の含有量は1.0質量%以下の範囲であり、さらに好ましくは0.5質量%以下の範囲である。 In the polyurethane resin composition of the present invention, it is preferable that the content of the decomposition products of the tertiary amine compounds as described above is also restricted to 1.0 mass% or less. When the content of the decomposition products of the tertiary amine compounds is within this range, the polyurethane elastic fiber using the polyurethane resin composition has practically preferable properties, particularly preferable wound yarn shape, composite durability, and yellowing resistance. The content of the decomposition products of the tertiary amine compounds is more preferably in the range of 1.0 mass% or less, and even more preferably in the range of 0.5 mass% or less.

また、本発明のポリウレタン樹脂組成物においては、架橋構造調節剤を含有する場合には、0.002質量%以上2.0質量%以下含有していることが好ましい。架橋構造調節剤はポリウレタンの重合停止剤が投入されて、重合が完了してから添加する剤である。架橋構造調節剤の含有量がこの範囲内にあると、ポリウレタン樹脂組成物を用いたポリウレタン弾性繊維の実用上好ましい特性、特に好ましい破断強伸度、永久歪み率、耐黄化性が確保される。より好ましい架橋構造調節剤の含有量は0.02質量%以上1.5質量%以下の範囲であり、さらに好ましくは0.2質量%以上1.0質量%以下の範囲である。 In addition, when the polyurethane resin composition of the present invention contains a crosslinking structure regulator, it is preferable that the crosslinking structure regulator is contained in an amount of 0.002% by mass or more and 2.0% by mass or less. The crosslinking structure regulator is an agent that is added after the polymerization terminator for polyurethane is added and polymerization is completed. When the content of the crosslinking structure regulator is within this range, the polyurethane elastic fiber using the polyurethane resin composition has practically preferable properties, particularly preferable breaking strength and elongation, permanent set rate, and yellowing resistance. The content of the crosslinking structure regulator is more preferably in the range of 0.02% by mass or more and 1.5% by mass or less, and even more preferably in the range of 0.2% by mass or more and 1.0% by mass or less.

含有される架橋構造調節剤としては、モノアミンおよび/またはジアミンが挙げられる。より具体的には、モノアミンとしてジメチルアミン、ジエチルアミン、シクロヘキシルアミン等、ジアミンとしてエチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、ヘキサメチレンジアミン、p-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、1,3-シクロヘキシルジアミン、ヘキサヒドロメタフェニレンジアミン、2-メチルペンタメチレンジアミンが挙げられる。特に好ましいのは、モノアミンとジアミンの混合使用である。 Examples of the crosslinking structure regulator contained in the composition include monoamines and/or diamines. More specifically, examples of monoamines include dimethylamine, diethylamine, cyclohexylamine, etc., and examples of diamines include ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, hexamethylenediamine, p-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 1,3-cyclohexyldiamine, hexahydrometaphenylenediamine, and 2-methylpentamethylenediamine. Particularly preferred is the use of a mixture of monoamines and diamines.

本発明で得られるポリウレタンの指標は、GPCにより数平均分子量(M)を評価して行われる。GPCで評価した分子量はポリスチレンにより換算する。数平均分子量(Mn)が20000以上120000以下、かつ、数平均分子量が30000以下の領域の検出強度カーブにピークまたはショルダーがないポリウレタンを配合することが好ましい。ポリウレタン弾性繊維の破断強伸度を鑑みると、数平均分子量の範囲としては30000以上100000以下の範囲のものが好ましい。より好ましくは40000以上80000以下の範囲である。なお、検出強度カーブとは微分分子量分布曲線(横軸は分子量、縦軸は濃度分率を分子量の対数値で微分した値)、ショルダーとはショルダーピークのことである。 The index of the polyurethane obtained in the present invention is determined by evaluating the number average molecular weight ( Mn ) by GPC. The molecular weight evaluated by GPC is converted into polystyrene. It is preferable to blend polyurethane having a number average molecular weight (Mn) of 20,000 to 120,000 and no peak or shoulder in the detection intensity curve in the region of the number average molecular weight of 30,000 or less. In consideration of the breaking strength and elongation of the polyurethane elastic fiber, the number average molecular weight is preferably in the range of 30,000 to 100,000. More preferably, it is in the range of 40,000 to 80,000. The detection intensity curve is a differential molecular weight distribution curve (the horizontal axis is molecular weight, and the vertical axis is the value obtained by differentiating the concentration fraction by the logarithm of the molecular weight), and the shoulder is a shoulder peak.

なお、本発明においてポリウレタン樹脂としての分子量は、数平均分子量2,000~10,000の範囲の三級アミン化合物や好んで用いられる分子量1,000以上の酸化防止剤を配合する場合には、数平均分子量として10,000以上50,000以下の範囲となっても好ましい。なお、分子量はGPCで測定し、ポリスチレンにより換算する。 In the present invention, the molecular weight of the polyurethane resin is preferably in the range of 10,000 to 50,000 in terms of number average molecular weight when a tertiary amine compound with a number average molecular weight in the range of 2,000 to 10,000 or a preferred antioxidant with a molecular weight of 1,000 or more is blended. The molecular weight is measured by GPC and converted into polystyrene.

次に本発明のポリウレタン樹脂組成物を用いたポリウレタン弾性繊維の製造方法について詳細に説明する。 Next, we will explain in detail the method for producing polyurethane elastic fibers using the polyurethane resin composition of the present invention.

本発明においては最初にポリウレタン溶液を作製するのが好ましい。ポリウレタン溶液 、また、その溶液中の溶質であるポリウレタンを製造する方法は、溶融重合法、溶液重合 法のいずれであってもよく、他の方法であってもよい。しかし、より好ましいのは溶液重 合法である。溶液重合法の場合には、ポリウレタンにゲルなどの異物の発生が少ないので 、紡糸しやすく、低繊度のポリウレタン弾性繊維を製造しやすい。また、溶液重合の場合、溶液 にする操作が省けるという利点がある。 In the present invention, it is preferable to first prepare a polyurethane solution. The method for producing the polyurethane solution and the polyurethane, which is the solute in the solution, may be either the melt polymerization method, the solution polymerization method, or another method. However, the solution polymerization method is more preferable. In the case of the solution polymerization method, there is little generation of foreign matter such as gel in the polyurethane, so it is easy to spin and it is easy to produce polyurethane elastic fibers with low fineness. In addition, the solution polymerization has the advantage that the operation of making a solution is omitted.

本発明のポリウレタン樹脂組成物を用いたポリウレタン弾性繊維としては、様々な用途に利用可能である。その具体的な例としては、パンティーストッキング、ブラジャー、スリップ、キャミソール、ボディースーツ、ショーツ、ガードル、靴下やパンツ等の締め付け用紐、水着、トレーニングウェア、ヨガウェア、登山服、作業服、煙火服、天然短繊維との併用による紳士・婦人用スーツ等の衣服、ウェットスーツ、紙おむつ等のサニタリー品の漏れ防止締め付け部材、人工皮膚、人工血管、人工心臓、電気絶縁材、ワイピングクロス、コピークリーナー、ガスケット、安全衣服の締め付け部材、実験着の締め付け部材、防水資材の締め付け部材、包帯、手袋の締め付け部材など、すなわち、弾性伸縮力を必要とされる部位に好適に使用することができる。 The polyurethane elastic fiber using the polyurethane resin composition of the present invention can be used for various applications. Specific examples include tightening strings for pantyhose, brassieres, slips, camisoles, body suits, shorts, girdles, socks and pants, swimsuits, training wear, yoga wear, mountain climbing clothes, work clothes, fireworks clothes, men's and women's suits and other clothing used in combination with natural short fibers, wet suits, leak-proof tightening members for sanitary products such as disposable diapers, artificial skin, artificial blood vessels, artificial hearts, electrical insulation materials, wiping cloths, copy cleaners, gaskets, tightening members for safety clothing, tightening members for laboratory clothes, tightening members for waterproof materials, bandages, tightening members for gloves, etc. In other words, it can be used suitably in areas where elastic stretching force is required.

(実施例1~18、比較例1~10)
以下に、表1~4に示した実施例1~18、比較例1~10について、ポリウレタン樹脂組成物を用いたポリウレタン弾性繊維および窒素含有芳香族化合物を添加した弾性繊維の製造と評価について説明する。
(Examples 1 to 18, Comparative Examples 1 to 10)
The production and evaluation of polyurethane elastic fibers using a polyurethane resin composition and elastic fibers to which a nitrogen-containing aromatic compound has been added will be described below for Examples 1 to 18 and Comparative Examples 1 to 10 shown in Tables 1 to 4.

[比較例1]
従来技術である比較例1では、脱水されたテトラヒドロフラン87.5モルと脱水された3―メチル-テトラヒドロフラン4.0モルとを撹拌機付き反応器に仕込み、窒素シール下、温度10℃で、触媒(過塩素酸70重量%及び無水酢酸30重量%の混合物)の存在下で8時間重合反応を行ない、反応終了液に水酸化ナトリウム水溶液で中和する共重合方法により得られた、数平均分子量3500の共重合テトラメチレンエーテルジオール(3-メチル-テトラヒドロフラン由来の構造単位(a)を4.0モル%含む)を、ポリアルキレンエーテルジオールとして用いた。
[Comparative Example 1]
In Comparative Example 1, which is a conventional technique, 87.5 mol of dehydrated tetrahydrofuran and 4.0 mol of dehydrated 3-methyl-tetrahydrofuran were charged into a reactor equipped with a stirrer, and a polymerization reaction was carried out for 8 hours under a nitrogen blanket at a temperature of 10° C. in the presence of a catalyst (a mixture of 70% by weight of perchloric acid and 30% by weight of acetic anhydride), and the reaction liquid was neutralized with an aqueous sodium hydroxide solution. This copolymerized tetramethylene ether diol having a number average molecular weight of 3,500 (containing 4.0 mol % of structural units (a) derived from 3-methyl-tetrahydrofuran) was used as the polyalkylene ether diol.

この共重合テトラメチレンエーテルジオール1モルに対し4,4’-MDIを1.97モルになるように容器に仕込み、90℃で反応せしめ、得られた反応生成物をN,N-ジメチルアセトアミド(DMAc)に十分に撹拌し、溶解させて溶液を得た。次に、鎖伸長剤として60モル%のエチレンジアミン(EDA)と40モル%の1,2-プロパンジアミン(1,2-PDA)を含むDMAc溶液を、前記反応物を溶解させた溶液に添加し、さらに末端封鎖剤としてジエチルアミンを含むDMAc溶液を添加して、ポリマー固体分が25重量%であるポリウレタンウレア溶液を調製した。得られた溶液は40℃で約2400ポイズの粘度を有していた。重合体はDMAc中で0.5g/100mlの溶液濃度で25℃で測定すると、0.90の極限粘度であった。 1.97 moles of 4,4'-MDI per mole of this copolymerized tetramethylene ether diol were charged into a vessel and reacted at 90°C. The resulting reaction product was thoroughly stirred and dissolved in N,N-dimethylacetamide (DMAc) to obtain a solution. A DMAc solution containing 60 mole % ethylenediamine (EDA) and 40 mole % 1,2-propanediamine (1,2-PDA) as chain extenders was then added to the solution containing the reactants, and a DMAc solution containing diethylamine as an end-blocking agent was then added to prepare a polyurethane urea solution with a polymer solid content of 25% by weight. The resulting solution had a viscosity of about 2400 poise at 40°C. The polymer had an intrinsic viscosity of 0.90 when measured at 25°C in DMAc at a solution concentration of 0.5 g/100 ml.

このポリウレタンウレア溶液を、紡糸口金から高温(350℃)の不活性ガス(窒素ガス)中に4フィラメントで吐出し、この高温ガス中の通過により乾燥し、乾燥途中の糸が撚り合わされるようにエアージェット式撚糸機を通し、4フィラメントを合着させ、540m/分のスピードで巻き取り、4フィラメント合着で44dtexのポリウレタンウレア繊維を製造した。ガラス転移点(Tg)は-74℃であった。なお、このポリウレタンウレア繊維を構成するポリウレタンウレアのウレタン基濃度は0.49mol/kgであり、有効末端アミン濃度は18meq/kgであった。 This polyurethane urea solution was extruded from the spinneret into high-temperature (350°C) inert gas (nitrogen gas) in four filaments, dried by passing through this high-temperature gas, and passed through an air jet twisting machine so that the yarn in the middle of drying was twisted together, the four filaments were bonded together, and wound up at a speed of 540 m/min to produce a polyurethane urea fiber of 44 dtex by bonding the four filaments together. The glass transition point (Tg) was -74°C. The polyurethane urea constituting this polyurethane urea fiber had a urethane group concentration of 0.49 mol/kg and an effective terminal amine concentration of 18 meq/kg.

次に、酸化防止剤として、t-ブチルジエタノールアミンとメチレン-ビス-(4-シクロヘキシルイソシアネート)との反応によって生成せしめたポリウレタン(デュポン社製“メタクロール”(登録商標)2462)と、p-クレゾールとジビニルベンゼンの縮合重合体(デュポン社製“メタクロール”(登録商標)2390)との1対1(質量比)の混合物を用い、この混合物のDMAc溶液(35質量%)を調製し、添加剤溶液(B)とした。 Next, a 1:1 (mass ratio) mixture of polyurethane (DuPont's "Methachlor" (registered trademark) 2462) produced by the reaction of t-butyldiethanolamine with methylene-bis-(4-cyclohexylisocyanate) and a condensation polymer of p-cresol and divinylbenzene (DuPont's "Methachlor" (registered trademark) 2390) was used as an antioxidant, and a DMAc solution (35 mass%) of this mixture was prepared to serve as additive solution (B).

上記の溶液PUUX1、添加剤溶液(B)、窒素含有芳香族化合物(C)をそれぞれを99質量%、1.0質量%、0.2質量%で均一に混合し、一旦、紡糸溶液(D)とした。 The above solution PUUX1, additive solution (B), and nitrogen-containing aromatic compound (C) were mixed uniformly at 99 mass%, 1.0 mass%, and 0.2 mass%, respectively, to form a spinning solution (D).

こうして得られた紡糸原液を用いて、紡糸溶液中のDMAcおよび浮遊するエチレンジアミンを紡糸原液含有量の1/100以下になる様に乾燥窒素温度300℃以上にて乾式紡糸する。このとき、ゴデローラーと巻取機の速度比を1:1.20として、22dtex/3filのマルチフィラメントのポリウレタン弾性繊維を紡糸して、巻き取り前のオイリングローラーによって後述する処理剤(油剤)をローラー給油し、巻き取り速度が600m/分で、長さ58mmの円筒状紙管に、巻き幅38mmを与えるトラバースガイドを介して、サーフェイスドライブの巻取機を用いて巻き取り、500gの巻糸体として乾式紡糸ポリウレタン弾性繊維を得た。得られたポリウレタン弾性繊維は3本のフィラメントを合着させた合着糸であった。処理剤付与量が糸に対して所定量になるようにオイリングローラーの回転数を調整した。また、処理剤の付与量は、JIS-L1073(合成繊維フィラメント糸試験方法)に準拠して、抽出溶剤としてn-ヘキサンを用いて測定した。ここで使用した処理剤の組成は、25℃で1×10-5/sの粘度を有するポリジメチルシロキサン80質量部、25℃で1.2×10-5/sの粘度を有する鉱物油15質量部、平均粒子径0.5μmのジステアリン酸マグネシウム塩5質量部の混合物である。 Using the spinning solution thus obtained, dry spinning is performed at a dry nitrogen temperature of 300°C or higher so that the DMAc in the spinning solution and the floating ethylenediamine are 1/100 or less of the spinning solution content. At this time, the speed ratio of the godet roller and the winder is set to 1:1.20, and a multifilament polyurethane elastic fiber of 22 dtex/3fil is spun, and a treatment agent (oil agent) described later is roller-lubricated by an oiling roller before winding, and the winding speed is 600 m/min, and the fiber is wound on a cylindrical paper tube of 58 mm in length through a traverse guide that gives a winding width of 38 mm using a surface drive winder, to obtain a dry spun polyurethane elastic fiber as a wound body of 500 g. The obtained polyurethane elastic fiber was a fused yarn in which three filaments were fused together. The rotation speed of the oiling roller was adjusted so that the amount of the treatment agent applied was a predetermined amount relative to the yarn. The amount of treatment agent applied was measured using n-hexane as an extraction solvent in accordance with JIS-L1073 (synthetic fiber filament yarn test method). The composition of the treatment agent used here was a mixture of 80 parts by mass of polydimethylsiloxane having a viscosity of 1× 10-5 m2 /s at 25°C, 15 parts by mass of mineral oil having a viscosity of 1.2× 10-5 m2 /s at 25°C, and 5 parts by mass of magnesium distearate with an average particle size of 0.5 μm.

[実施例1]
比較例1の3―メチル-テトラヒドロフランの替わりに、2―メチル-テトラヒドロフランを使用した(ポリマ名称:PUU1)以外は全く同様に44dtexのポリウレタンウレア繊維を製造した。ガラス転移点(Tg)は-70℃であった。なお、このポリウレタンウレア繊維を構成するポリウレタンウレアのウレン基濃度は0.49mol/kgであり、有効末端アミン濃度は20meq/kgであった。
[Example 1]
A polyurethane urea fiber of 44 dtex was produced in the same manner as in Comparative Example 1 except that 2-methyl-tetrahydrofuran was used instead of 3-methyl-tetrahydrofuran (polymer name: PUU1). The glass transition point (Tg) was -70°C. The polyurethane urea constituting this polyurethane urea fiber had a urea group concentration of 0.49 mol/kg and an effective terminal amine concentration of 20 meq/kg.

[実施例2~5]
表1の通り、コポリエーテルポリオール中の2-メチル-テトラヒドロフランの濃度のみを変更し(ポリマ名称:PUU2~PUU5)、実施例1と同様の方法で44dtexのポリウレタンウレア繊維を製造した。
[Examples 2 to 5]
As shown in Table 1, only the concentration of 2-methyl-tetrahydrofuran in the copolyether polyol was changed (polymer names: PUU2 to PUU5), and polyurethane urea fibers of 44 dtex were produced in the same manner as in Example 1.

[比較例例2~5]
表1の通り、コポリエーテルポリオール中の3-アルキルテトラヒドフランの濃度のみを変更し(ポリマ名称:PUUX2~PUUX5)、実施例1と同様の方法で44dtexのポリウレタンウレア繊維を製造した。
[Comparative Examples 2 to 5]
As shown in Table 1, only the concentration of 3-alkyltetrahydrofuran in the copolyether polyol was changed (polymer names: PUUX2 to PUUX5), and polyurethane urea fibers of 44 dtex were produced in the same manner as in Example 1.

[実施例6~10]
表2の通り、実施例2をベースに、ポリウレタン弾性繊維中の窒素含有芳香族化合物の含有量のみを変更し、実施例1と同様の方法で44dtexのポリウレタンウレア繊維を製造した。
[Examples 6 to 10]
As shown in Table 2, based on Example 2, only the content of the nitrogen-containing aromatic compound in the polyurethane elastic fiber was changed, and a polyurethane urea fiber of 44 dtex was produced in the same manner as in Example 1.

[比較例6~10]
表2の通り、比較例4をベースに、ポリウレタン弾性繊維中の窒素含有芳香族化合物の含有量のみを変更し、実施例2と同様の方法で44dtexのポリウレタンウレア繊維を製造した。
[Comparative Examples 6 to 10]
As shown in Table 2, based on Comparative Example 4, only the content of the nitrogen-containing aromatic compound in the polyurethane elastic fiber was changed, and a polyurethane urea fiber of 44 dtex was produced in the same manner as in Example 2.

[実施例11~13]
表3の通り、実施例7をベースに、コポリエーテルポリオール中の2級水酸基濃度のみを変更し(ポリマ名称:PUU11~PUU13)、実施例1と同様の方法で44dtexのポリウレタンウレア繊維を製造した。
[Examples 11 to 13]
As shown in Table 3, based on Example 7, only the secondary hydroxyl group concentration in the copolyether polyol was changed (polymer names: PUU11 to PUU13), and polyurethane urea fibers of 44 dtex were produced in the same manner as in Example 1.

[実施例14~16]
表4の通り、実施例7をベースに、コポリエーテルポリオールの数平均分子量のみを変更し、実施例1と同様の方法で44dtexのポリウレタンウレア繊維を製造した。
[Examples 14 to 16]
As shown in Table 4, based on Example 7, polyurethane urea fibers of 44 dtex were produced in the same manner as in Example 1, except that only the number average molecular weight of the copolyether polyol was changed.

[実施例17,18]
表4の通り、実施例7をベースに、バイオ化率のみを変更し、実施例1と同様の方法で44dtexのポリウレタンウレア繊維を製造した。
[Examples 17 and 18]
As shown in Table 4, based on Example 7, polyurethane urea fibers of 44 dtex were produced in the same manner as in Example 1, except that the bio-content rate was changed.

表1から分かる通り、200%伸長回復時の応力などの機械物性は2―メチル-テトラヒドロフランの共重合モル濃度が3―メチル-テトラヒドロフランの共重合モル濃度の半量で同じ効果が発現される。 As can be seen from Table 1, the mechanical properties such as stress at 200% elongation recovery have the same effect when the copolymerization molar concentration of 2-methyl-tetrahydrofuran is half that of 3-methyl-tetrahydrofuran.

表2から分かる通り、2―メチル-テトラヒドロフラン系における窒素含有芳香族化合物量は0.6周辺で耐熱性を極大にする。3―メチル-テトラヒドロフラン系にはそれは起こらないで減衰するだけである。なお、コポリエーテルポリオール中の2-テトラヒドロフランの濃度は8、コポリエーテルポリオール中の3-テトラヒドロフランの濃度は16を採用した。200%伸長回復時の応力などの機械物性が同様の値を示すためである。 As can be seen from Table 2, the heat resistance of the 2-methyl-tetrahydrofuran system is maximized when the amount of nitrogen-containing aromatic compounds is around 0.6. This does not happen with the 3-methyl-tetrahydrofuran system, but rather attenuates. The concentration of 2-tetrahydrofuran in the copolyether polyol was 8, and the concentration of 3-tetrahydrofuran in the copolyether polyol was 16. This is because the mechanical properties such as the stress at 200% elongation recovery show similar values.

表3から分かる通り、2―メチル-テトラヒドロフラン系における2級水酸基濃度は回復応力および耐久性の両方に影響する。 As can be seen from Table 3, the concentration of secondary hydroxyl groups in the 2-methyl-tetrahydrofuran system affects both the recovery stress and durability.

表4から分かる通り、2―メチル-テトラヒドロフラン系におけるコポリエーテルポリオールの数平均分子量は回復応力および耐久性の両方に影響する。 As can be seen from Table 4, the number average molecular weight of the copolyether polyol in the 2-methyl-tetrahydrofuran system affects both the recovery stress and durability.

また、実施例17は(CHCHCHCHR-O)構造単位の原料となる2-MeTHFにはサーマルリサイクルに好適な、カーボンニュートラルなバイオマス資源由来の成分を原料とするために、ヘミセルロース起源でD-キシロールとフルフラールを経由して合成した2-MeTHFを用いた。さらに実施例18は、(CHCHCHCH-O)構造単位の原料にも同様にヘミセルロース起源でD-キシロールとフルフラールを経由して合成したTHFを用いた。その結果、石油化学起源の原料を用いた実施例7と同等以上の性能を示した。 In Example 17, 2-MeTHF, which is the raw material for the (CH 2 CH 2 CH 2 CHR 2 -O) structural unit, was synthesized from hemicellulose origin via D-xylol and furfural in order to use a carbon-neutral biomass resource-derived component suitable for thermal recycling. Furthermore, in Example 18, THF, which was also synthesized from hemicellulose origin via D-xylol and furfural, was used as the raw material for the (CH 2 CH 2 CH 2 CH 2 -O) structural unit. As a result, performance was shown to be equal to or better than that of Example 7, which used a petrochemical-origin raw material.

なお、表1~表4において、含有率とは、紡糸原液中のポリマ固形分100質量部に対する値である。 In Tables 1 to 4, the content is based on 100 parts by mass of polymer solids in the spinning solution.

次に、上記で得た乾式紡糸ポリウレタン弾性繊維(以下、試料糸)を下記の評価に供した。 Next, the dry-spun polyurethane elastic fiber obtained above (hereinafter, sample yarn) was subjected to the following evaluation.

<破断伸度、破断強度、永久歪み率、応力緩和率>
破断伸度、破断強度、永久歪み率、応力緩和率は、ポリウレタン弾性繊維を、インストロン5564型引張試験機を用いて引張テストすることにより測定した。
<Breaking elongation, breaking strength, permanent set rate, stress relaxation rate>
The breaking elongation, breaking strength, permanent set rate and stress relaxation rate were measured by subjecting the polyurethane elastic fiber to a tensile test using an Instron 5564 tensile tester.

試長5cm(L1)の試料を50cm/分の引張速度で300%伸長を5回繰返した。このとき、
200%伸長時の応力を(G+200)、
300%伸長時の応力を(G1)とした。
A sample having a length of 5 cm (L1) was repeatedly stretched by 300% at a tensile speed of 50 cm/min five times.
The stress at 200% elongation is (G+200).
The stress at 300% elongation was defined as (G1).

次に試料の長さを300%伸長のまま30秒間保持した。30秒間保持後の応力を(G2)とした。 Then, the length of the sample was held at 300% extension for 30 seconds. The stress after holding for 30 seconds was taken as (G2).

次に試料の伸長を回復せしめ、
200%伸長回復時の応力を(G-200)、
応力が0になった際の試料の長さを(L2)とした。
The sample is then allowed to recover its elongation,
The stress at 200% elongation and recovery is (G-200).
The length of the sample when the stress became 0 was defined as (L2).

この300%伸張、保持及び回復の操作を繰り返し、6回目の伸張において試料が切断するまで伸長した。この破断時の応力を(G3)、破断時の試料長さを(L3)とした。以下、上記特性は下記式により算出される。
破断強度(cN)=(G3)
20以上:◎、17以上20未満:〇、14以上17未満:△、14未満:×
破断伸度(%)=100×((L3)-(L1))/(L1)
480以上:◎、460以上480未満:〇、430以上460未満:△、430未満:×
200%伸長時の応力(cN)=(G+200)
1.2以上1.4未満:◎、1.4以上1.5未満:〇、1.5以上1.6未満:△、1.6超:×
200%伸長回復時の応力=(G-200)、
1.2以上:◎、1.0以上1.2未満:〇、0.8以上1.0未満:△、0.8未満:×
永久歪み率(%)=100×((L2)-(L1))/(L1)
20未満:◎、20以上22未満:〇、22以上24未満:△、24以上:×
応力緩和率(%)=100×((G1)-(G2))/(G1)
25未満:◎、25以上28未満:〇、28以上31未満:△、31以上:×。
This 300% stretch, hold and recovery cycle was repeated until the sample broke at the sixth stretch. The stress at break was (G3), and the sample length at break was (L3). The above properties are calculated using the following formulas.
Breaking strength (cN) = (G3)
20 or more: ◎, 17 to less than 20: 〇, 14 to less than 17: △, less than 14: ×
Breaking elongation (%) = 100 × ((L3) - (L1)) / (L1)
480 or more: ◎, 460 to less than 480: 〇, 430 to less than 460: △, less than 430: ×
Stress at 200% elongation (cN) = (G + 200)
1.2 or more and less than 1.4: ⊚, 1.4 or more and less than 1.5: ◯, 1.5 or more and less than 1.6: △, over 1.6: ×
Stress at 200% elongation recovery = (G-200),
1.2 or more: ⊚, 1.0 or more and less than 1.2: ◯, 0.8 or more and less than 1.0: △, less than 0.8: ×
Permanent set rate (%) = 100 × ((L2) - (L1)) / (L1)
Less than 20: ◎, 20 to less than 22: 〇, 22 to less than 24: △, 24 or more: ×
Stress relaxation rate (%) = 100 × ((G1) - (G2)) / (G1)
Under 25: ◎, 25 to under 28: 〇, 28 to under 31: △, 31 or more: ×.

<耐熱性>
ナイロンフィラメント(24dtex、7フィラメント)85重量%とポリウレタン弾性繊維(44dtex)15重量%とからなる機上ウエル数9/インチ、機上コース数18/インチの2ウエイハーフトリコットを、通常の編成方法で作製し、生編布帛とした。
<Heat resistance>
A two-way half tricot consisting of 85% by weight of nylon filament (24 dtex, 7 filaments) and 15% by weight of polyurethane elastic fiber (44 dtex) with a well number of 9/inch and a course number of 18/inch was produced by a conventional knitting method to form a raw knitted fabric.

得られた生編布帛を、170℃、60秒間、3%伸長下の条件でプレセットし、0.1mlの薬剤1を塗布し、続いて(ほぼ同時ないし1分以内に)0.1mlの薬剤2を塗布した後、乾熱処理(175℃、60秒間の乾熱処理後、一旦取り出し室温まで放熱した後、180℃、60秒間で乾熱処理)を行い、次に、縦横両方向交互に最大20%伸長、2回/秒の屈曲試験機にかけた。なお、薬剤1にはオレイン酸1%含有する鉱物油系ナイロン用紡糸油剤を使用した。また、薬剤2には酢酸銅水溶液(銅濃度100ppm)を使用した。このようにして薬剤1及び薬剤2を付着させた生編布帛は、染色前の段階のナイロン系ストレッチ生編布帛に、編成時の機械油(金属分混入)とナイロン用紡糸油剤が微量付着していることをモデル的に再現したものであり、生編布帛0.9gに対する薬剤1の付着量は3.0mg、薬剤2の付着量は3.0mgであった。 The resulting raw knit fabric was preset at 170°C for 60 seconds under 3% elongation, 0.1 ml of chemical 1 was applied, and then (almost simultaneously or within 1 minute) 0.1 ml of chemical 2 was applied, followed by dry heat treatment (dry heat treatment at 175°C for 60 seconds, then removed and cooled to room temperature, then dry heat treatment at 180°C for 60 seconds), and then subjected to a bending tester at a maximum elongation of 20% in both the vertical and horizontal directions, 2 times per second. Chemical 1 was a mineral oil-based nylon spinning oil containing 1% oleic acid. Chemical 2 was an aqueous solution of copper acetate (copper concentration 100 ppm). The raw knit fabric to which chemicals 1 and 2 were applied in this way was a model that reproduced the nylon-based stretch raw knit fabric before dyeing, which has trace amounts of machine oil (contaminated with metals) and nylon spinning oil adhering to it during knitting. The amount of chemical 1 attached to 0.9 g of raw knit fabric was 3.0 mg, and the amount of chemical 2 attached was 3.0 mg.

得られたストレッチ布帛を、常法にて染色した。得られた染色ストレッチ布帛におけるポリウレタン組織の損傷の程度を目視または拡大して観察し、次の基準で判定を行った。なお、判定は5人で行い、最頻値(最も多く現れた判定)を用いた。また、2人、2人、1人と判定が分かれた場合は、判定は「△」とした。
◎:損傷がなく、編組織も均質である。
○:損傷がない。
△:生地にへたり、陥没がみられ、拡大観察するとポリウレタン弾性繊維が脆化している。
×:布帛に穴が空いている。
The resulting stretch fabric was dyed in a conventional manner. The degree of damage to the polyurethane tissue in the resulting dyed stretch fabric was observed visually or under magnification, and judged according to the following criteria. The judgement was performed by five people, and the most frequent judgement (the judgement that appeared most frequently) was used. When the judgements were divided into two, two, and one person, the judgement was given as "△".
⊚: No damage, and the knitting structure is uniform.
○: No damage.
△: The fabric is worn and dented, and under magnification the polyurethane elastic fibers are brittle.
×: There is a hole in the fabric.

<耐光性、黄変色性、複合耐久性>
以下の(ア)(イ)(ウ)の暴露処理後それぞれの特性を以下に従い求めた。
<Lightfastness, yellowing resistance, and composite durability>
After the following exposure treatments (a), (b), and (c), the respective characteristics were determined as follows.

・耐光性
試料糸を100%伸長した状態で、以下の(ア)の暴露処理を行い、その後の破断強度の保持率を求めた。
Light resistance The sample yarn was subjected to the following exposure treatment (A) while being stretched to 100%, and the retention of breaking strength thereafter was determined.

・黄変色性
黄変色性は、試料を(ア)および(イ)の暴露処理後の黄変度(以下Δbと略記)によって評価した。各暴露処理の際、黄変度は下記のようにして算出した。
Δb=暴露処理後のb値-暴露処理前のb値
Yellowing The yellowing was evaluated based on the degree of yellowing (hereinafter abbreviated as Δb) after the samples were exposed to the light (a) and (b). The degree of yellowing was calculated as follows:
Δb = b value after exposure processing - b value before exposure processing

黄変色性の測定サンプル形態および測定は、以下の通り行った。
試料糸を5×5cmの試料板に、試料板の色の影響が現れない程度に密接に最小の荷重で巻き取り、試料とした。試料及び常用標準白色面(JIS Z 8722の4.3.4)の前面を均質平たんで透明な約1mmのガラス板で密着させて覆った。b値の測定は、JIS L 1013のC法(ハンターの方法)に準じ、ハンター形色差計を用い、下記式に基づき算出した。測定回数は、5回とし、その平均値を採用した。
b=7.0(Y-0.847Z)/Y1/2
(但し、X、Y、ZはJIS Z 8701により算出した)
Measurement of Yellowing Property The sample form and measurement were carried out as follows.
The sample yarn was wound tightly on a 5 x 5 cm sample plate with a minimum load so that the color of the sample plate would not be affected, and used as a sample. The front of the sample and the common standard white surface (JIS Z 8722 4.3.4) were covered with a homogeneous, flat, transparent glass plate of about 1 mm in thickness in close contact. The b value was measured using a Hunter type color difference meter in accordance with JIS L 1013 C method (Hunter's method) and calculated based on the following formula. The measurement was performed five times, and the average value was used.
b = 7.0 (Y - 0.847Z) / Y 1/2
(X, Y, and Z were calculated according to JIS Z 8701)

・複合耐久性
試料糸を100%伸長した状態で、以下の(ア)(イ)(ウ)の暴露処理を行い、その後の破断強度の保持率を求めた。
Composite durability The sample yarn was stretched to 100% and subjected to the following exposure treatments (a), (b), and (c), and the retention of breaking strength thereafter was determined.

各暴露処理は下記のとおり実施した。
(ア)紫外線(UV)暴露処理
スガ試験機(株)社製のカーボンアーク型ウェザーメーターを用い、63℃、60%RHの温湿度で試料を25時間暴露処理した。
(イ)窒素酸化物(NOx)暴露処理
試料スタンドが回転する密閉容器(スコットテスター)を用い、NO2ガス10ppm、40℃、60%RHの温湿度で試料を20時間暴露処理した。
(ウ)塩素漂白剤(Cl2)暴露処理
恒温槽中の花王(株)社製「花王ハイター」500ppm水溶液に試料を40℃、30分間暴露後、10分水洗というサイクルを8回繰り返した。
Each exposure treatment was carried out as follows.
(a) Ultraviolet (UV) Exposure Treatment Using a carbon arc type weather meter manufactured by Suga Test Instruments Co., Ltd., the sample was exposed to a temperature of 63° C. and a humidity of 60% for 25 hours.
(a) Nitrogen oxide (NOx) exposure treatment Using a closed container (Scott tester) with a rotating sample stand, the samples were exposed to 10 ppm NO2 gas at 40°C and 60% RH for 20 hours.
(c) Chlorine bleach (Cl2) exposure treatment: The sample was exposed to a 500 ppm aqueous solution of "Kao Haiter" manufactured by Kao Corporation in a thermostatic chamber at 40°C for 30 minutes, and then washed with water for 10 minutes. This cycle was repeated 8 times.

判定基準は以下の通りである。
・耐光性
80%以上を◎、60%以上80%未満を〇、40%以上60%未満を△、40%未満を×
・黄変色性
3未満を◎、3以上6未満を〇 6以上10未満を△、10以上を×
・複合耐久性
60%以上を◎、40%以上60%未満を〇、20%以上40%未満を△、20%未満を×
The criteria for judgment are as follows:
Light resistance: 80% or more is ◎, 60% to less than 80% is 〇, 40% to less than 60% is △, and less than 40% is ×
Yellowing: Less than 3 = ◎, 3 to less than 6 = 〇, 6 to less than 10 = △, 10 or more = ×
- Composite durability: 60% or more = ◎, 40% to less than 60% = 〇, 20% to less than 40% = △, less than 20% = ×

<分子量>
GPCによる分子量測定は次の条件で実施した。
カラム:昭和電工(株)製 SHODEX KF-806M2本
溶媒:N,N-ジメチルアセトアミド 1ml/min
温度:40℃
検出器:示差屈折計(RI検出器)
<Molecular weight>
The molecular weight measurement by GPC was carried out under the following conditions.
Column: Showa Denko K.K., SHODEX KF-806M (2 columns) Solvent: N,N-dimethylacetamide 1 ml/min
Temperature: 40°C
Detector: Differential refractometer (RI detector)

<バイオ化率>
バイオ化率(質量%)は放射性炭素(炭素14)の濃度測定同定法であるISO 16620-2により測定した。
<Bio-based rate>
The biomass ratio (mass%) was measured using ISO 16620-2, a method for measuring and identifying the concentration of radioactive carbon (carbon-14).

Figure 2024077017000005
Figure 2024077017000005

Figure 2024077017000006
Figure 2024077017000006

Figure 2024077017000007
Figure 2024077017000007

Figure 2024077017000008
Figure 2024077017000008

実施例1~5及び比較例1~5で紡糸に供されたのと同じポリウレタンウレア溶液を用いて、下記方法により測定したポリウレタン樹脂組成物の切断時引張強さ、切断時伸び、残留歪率及び熱軟化点の値を表5に示す。表5から明らかなように、本発明のポリウレタン樹脂組成物は成形形態がフィルムであっても、良好な特性を示す。 The tensile strength at break, elongation at break, residual strain rate, and heat softening point of the polyurethane resin composition measured by the following methods using the same polyurethane urea solution as that spun in Examples 1 to 5 and Comparative Examples 1 to 5 are shown in Table 5. As is clear from Table 5, the polyurethane resin composition of the present invention exhibits good properties even when molded into a film.

[1]フィルムの作製
ポリウレタン樹脂溶液を、離型処理したガラス板上に1.0mmの厚みに塗布し、70℃の循風乾燥機で3時間乾燥した後、ガラス板から剥がすことにより、厚さが約0.2mmのフィルムを作製した。
[1] Preparation of film The polyurethane resin solution was applied to a release-treated glass plate to a thickness of 1.0 mm, and then dried in a circulating air dryer at 70° C. for 3 hours. The resulting film was then peeled off from the glass plate to prepare a film with a thickness of approximately 0.2 mm.

[2]フィルムの強度及び伸びの測定方法
前記で得られたフィルムを温度25℃、湿度65%RHに調整した室内に1日間静置した後、JIS K 6251に準じて、切断時引張強さ及び切断時伸びを測定した。これらの値が大きい程、弾性繊維としての性質に優れている。尚、ダンベル状試験片の平行部分の厚さは200μm、平行部分の幅は5mm、初期の標線間距離は20mmである。
[2] Method for measuring strength and elongation of film The film obtained above was left to stand for one day in a room adjusted to a temperature of 25°C and a humidity of 65% RH, and then the tensile strength at break and elongation at break were measured according to JIS K 6251. The larger these values are, the better the properties as an elastic fiber are. The thickness of the parallel part of the dumbbell-shaped test piece is 200 μm, the width of the parallel part is 5 mm, and the initial gauge length is 20 mm.

[3]残留歪率の測定方法
前記で得られたフィルムから、縦100mm×横5mmの短冊状の試験片を切り出して標線間距離が50mmとなるように標線をつけた。この試験片をインストロン型引張り試験機(島津製作所製オートグラフ)のチャックにセットして、25℃の雰囲気下、500mm/分の一定速度で標線間の距離が300%になるまで伸長後、直ちに同じ速度で伸長前のチャック間の距離まで戻す操作を行った。
前記操作後の標線間の距離(D1)を測定してこの値と試験前の標線間の距離(D0=50mm)を用いて下式から残留歪率(%)を求めた。
残留歪率(%)={(D1-D0)/D0}×100
[3] Measurement method of residual strain rate From the film obtained above, a rectangular test piece of 100 mm length × 5 mm width was cut out and marked so that the distance between the marks was 50 mm. This test piece was set in the chuck of an Instron type tensile tester (Shimadzu Corporation Autograph) and elongated at a constant speed of 500 mm/min in an atmosphere of 25°C until the distance between the marks became 300%, and then immediately returned to the distance between the chucks before elongation at the same speed.
The distance between the marked lines after the above-mentioned operation (D1) was measured, and the residual strain rate (%) was calculated using this value and the distance between the marked lines before the test (D0 = 50 mm) according to the following formula.
Residual distortion rate (%) = {(D1 - D0) / D0} x 100

[4]熱軟化点の測定方法
前記で得られたフィルムから、縦10mm×横10mmの試験片を切り出し、JIS K 7196に準じて、サンプルを室温から300℃まで5℃/分のスピードで昇温し、熱軟化点を測定した。測定にはTMA/SS6100(SII製)を使用した。
熱軟化点が高い程、ポリウレタン樹脂組成物の耐熱性が良好である。
[4] Method for measuring thermal softening point A test piece measuring 10 mm in length and 10 mm in width was cut out from the film obtained above, and the sample was heated from room temperature to 300° C. at a rate of 5° C./min to measure the thermal softening point in accordance with JIS K 7196. A TMA/SS6100 (manufactured by SII) was used for the measurement.
The higher the thermal softening point, the better the heat resistance of the polyurethane resin composition.

Figure 2024077017000009
Figure 2024077017000009

Claims (6)

ポリエーテル構造を骨格中に有するポリウレタンと、窒素含有芳香族化合物とを含むポリウレタン樹脂組成物であって、
ポリエーテル構造が下記一般式(1)で表され、
ポリウレタン樹脂組成物中に窒素含有芳香族化合物が0.05質量%以上2.0質量%以下含有される、ポリウレタン樹脂組成物。
Figure 2024077017000010
(Rは炭素数2~6のアルキレン基、Rは炭素数1~2のアルキル基であり、
l,m,nは、4≦n/(l+m+n)×100≦50を満たす。)
A polyurethane resin composition comprising a polyurethane having a polyether structure in its skeleton and a nitrogen-containing aromatic compound,
The polyether structure is represented by the following general formula (1):
A polyurethane resin composition comprising a nitrogen-containing aromatic compound in an amount of 0.05% by mass or more and 2.0% by mass or less.
Figure 2024077017000010
(R 1 is an alkylene group having 2 to 6 carbon atoms, R 2 is an alkyl group having 1 to 2 carbon atoms,
l, m, and n satisfy 4≦n/(l+m+n)×100≦50.
前記一般式(1)中のl,m,nが、6≦n/(l+m+n)×100≦16を満たす請求項1に記載のポリウレタン樹脂組成物。 The polyurethane resin composition according to claim 1, wherein l, m, and n in the general formula (1) satisfy 6≦n/(l+m+n)×100≦16. ポリウレタン樹脂組成物中に窒素含有芳香族化合物が0.2質量%以上0.8質量%以下含有される請求項1または2に記載のポリウレタン樹脂組成物。 The polyurethane resin composition according to claim 1 or 2, wherein the polyurethane resin composition contains 0.2% by mass or more and 0.8% by mass or less of a nitrogen-containing aromatic compound. 前記一般式(1)中の-(CHCHCHCHR-O)n-のうち前記ポリウレタンの末端にあるものの数をn’としたとき、5≦n’/(l+m+n)×100≦30を満たす請求項1または2に記載のポリウレタン樹脂組成物。 The polyurethane resin composition according to claim 1 or 2, wherein, when the number of -(CH 2 CH 2 CH 2 CHR 2 -O)n- groups at the terminals of the polyurethane in the general formula (1) is n', the relationship 5≦n'/(l+m+n)×100≦30 is satisfied. 前記一般式(1)部分の数平均分子量が3000以上30000以下である請求項1または2に記載のポリウレタン樹脂組成物。 The polyurethane resin composition according to claim 1 or 2, wherein the number average molecular weight of the general formula (1) portion is 3,000 or more and 30,000 or less. ISO 16620-2に定められる炭素同位体比測定によるバイオ化率が炭素質量比で3%以上である請求項1または2に記載のポリウレタン樹脂組成物。 The polyurethane resin composition according to claim 1 or 2, in which the bio-based content is 3% or more by carbon mass ratio as determined by carbon isotope ratio measurement according to ISO 16620-2.
JP2024040902A 2022-11-25 2024-03-15 Polyurethane resin composition Pending JP2024077017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024040902A JP2024077017A (en) 2022-11-25 2024-03-15 Polyurethane resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022188027A JP2024076480A (en) 2022-11-25 2022-11-25 Polyurethane Elastic Fiber
JP2024040902A JP2024077017A (en) 2022-11-25 2024-03-15 Polyurethane resin composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022188027A Division JP2024076480A (en) 2022-11-25 2022-11-25 Polyurethane Elastic Fiber

Publications (1)

Publication Number Publication Date
JP2024077017A true JP2024077017A (en) 2024-06-06

Family

ID=89068716

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022188027A Pending JP2024076480A (en) 2022-11-25 2022-11-25 Polyurethane Elastic Fiber
JP2024040902A Pending JP2024077017A (en) 2022-11-25 2024-03-15 Polyurethane resin composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022188027A Pending JP2024076480A (en) 2022-11-25 2022-11-25 Polyurethane Elastic Fiber

Country Status (2)

Country Link
JP (2) JP2024076480A (en)
WO (1) WO2024110903A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000899A (en) 1988-05-26 1991-03-19 E. I. Du Pont De Nemours And Company Spandex fiber with copolymer soft segment
JPH09136937A (en) 1995-11-13 1997-05-27 Du Pont Toray Co Ltd Elastic resin, elastic resin molding, clothing, and auxiliary material for clothing
US6503996B1 (en) * 2001-11-14 2003-01-07 Dupont Dow Elastomers L.L.C. High-uniformity spandex and process for making spandex
JP4984150B2 (en) 2006-08-18 2012-07-25 東レ・オペロンテックス株式会社 Polyurethane elastic yarn and method for producing the same
WO2009011189A1 (en) 2007-06-22 2009-01-22 Opelontex Co., Ltd. Elastic polyurethane yarn and process for production thereof
CN111534883A (en) * 2020-01-22 2020-08-14 郑州中远氨纶工程技术有限公司 High-elastic polyurethane urea fiber, preparation method thereof and fabric
JP2021152139A (en) 2020-03-24 2021-09-30 三菱ケミカル株式会社 Polyurethane for elastic fiber and polyurethane elastic fiber using the same
JP7162195B1 (en) * 2022-02-25 2022-10-28 東レ・オペロンテックス株式会社 polyurethane elastic fiber

Also Published As

Publication number Publication date
JP2024076480A (en) 2024-06-06
WO2024110903A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
JP5168401B2 (en) Polyurethane elastic yarn and method for producing the same
JP5136943B2 (en) Polyurethane elastic yarn and method for producing the same
KR101851406B1 (en) Polyurethane elastic yarn and method for producing same
JP2011117120A (en) Polyurethane elastic yarn and method for producing the same
KR20160143845A (en) Bioderived polyurethane fiber
JP7162195B1 (en) polyurethane elastic fiber
JP5659781B2 (en) Polyurethane elastic yarn and method for producing the same
JP6031331B2 (en) Polyurethane elastic fiber and method for producing the same
JP4839455B2 (en) Polyurethane elastic yarn and method for producing the same
JP2024077017A (en) Polyurethane resin composition
JP6063210B2 (en) Polyurethane elastic fiber and its fiber product
JP6061245B2 (en) Polyurethane elastic fiber and method for producing the same
JP4984150B2 (en) Polyurethane elastic yarn and method for producing the same
JP4968648B2 (en) Polyurethane elastic yarn and method for producing the same
JP4324907B2 (en) Polyurethane elastic yarn and method for producing the same
JP5141975B2 (en) Polyurethane elastic yarn and method for producing the same
JP2002249929A (en) Polyurethane yarn and method for producing the same
JP7464496B2 (en) Polyurethane urea elastic fiber and its manufacturing method
JP6075036B2 (en) Polyurethane elastic yarn and method for producing the same
WO2024201418A2 (en) Dope additive and fiber

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240624