[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2024042172A - Fiber-reinforced mortar composition and mortar thereof - Google Patents

Fiber-reinforced mortar composition and mortar thereof Download PDF

Info

Publication number
JP2024042172A
JP2024042172A JP2022146691A JP2022146691A JP2024042172A JP 2024042172 A JP2024042172 A JP 2024042172A JP 2022146691 A JP2022146691 A JP 2022146691A JP 2022146691 A JP2022146691 A JP 2022146691A JP 2024042172 A JP2024042172 A JP 2024042172A
Authority
JP
Japan
Prior art keywords
mass
fiber
parts
mortar
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022146691A
Other languages
Japanese (ja)
Inventor
信哉 赤江
Shinya Akae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2022146691A priority Critical patent/JP2024042172A/en
Publication of JP2024042172A publication Critical patent/JP2024042172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide a fiber-reinforced mortar composition that exhibits low mortar residue on devices such as mixers, excellent workability, and high strength development, and to provide a mortar thereof.SOLUTION: A fiber-reinforced mortar composition comprises: a binder consisting of cement, calcium aluminates, gypsum, and a pozzolanic substance; a metallic fiber; and a fine aggregate, wherein a content of the pozzolanic substance is 1 to 20 pts.mass to 100 pts.mass of the binder, a content of the metallic fibers is 3 to 30 pts.mass to 100 pts.mass of the binder, and a content of the fine aggregate is 110 to 330 pts.mass to 100 pts.mass of the binder.SELECTED DRAWING: None

Description

本発明は、繊維補強モルタル組成物及びそのモルタルに関する。 The present invention relates to a fiber-reinforced mortar composition and mortar thereof.

近年、建築構造物や土木構造物に対する超高層化・大規模化・高耐久性化の要求が一層明確になっている。このような構造物を実現するために高強度モルタルの開発が行われている。高強度モルタルとして、例えば、少なとも、セメント、ポゾラン質微粉末、粒径3.5mm以下の細骨材、減水剤及び水を含むことを特徴とする超高強度モルタルが開示されている(特許文献1)。 In recent years, demands for building structures and civil engineering structures to be ultra-high-rise, large-scale, and highly durable have become even clearer. In order to realize such structures, high-strength mortar is being developed. As a high-strength mortar, for example, an ultra-high-strength mortar characterized by containing at least cement, pozzolanic fine powder, fine aggregate with a particle size of 3.5 mm or less, a water reducing agent, and water has been disclosed (patent Reference 1).

各種構造物に用いられるコンクリートは本来耐久性に優れたものであるが、構造や使用環境によってその一部が劣化する場合がある。このような劣化が生じると構造物の機能が低下する恐れがあるため、劣化部位の修復及び補強が必要となる。劣化部位の修復及び補強には、例えば、セメント、フライアッシュ、液体の収縮低減剤をまぶした細骨材、流動化剤、膨張材、粉末ポリマー、増粘剤、及び短繊維を含有する繊維補強モルタル組成物が用いられる(特許文献2)。 Concrete used in various structures is inherently durable, but some parts of it may deteriorate depending on the structure and the environment in which it is used. If such deterioration occurs, the function of the structure may deteriorate, so it is necessary to repair and reinforce the deteriorated portion. Repair and reinforcement of deteriorated areas can be achieved using, for example, cement, fly ash, fine aggregate sprinkled with liquid shrinkage reducers, superplasticizers, expansive agents, powdered polymers, thickeners, and fiber reinforcement containing short fibers. A mortar composition is used (Patent Document 2).

特開2004-043234号公報Japanese Patent Application Publication No. 2004-043234 特開2011-121795号公報Japanese Patent Application Publication No. 2011-121795

しかしながら、モルタルの高強度化は単位セメント量の増加、ポゾラン物質の混入や低水結合材比での練り混ぜを可能とするための高性能減水剤の添加等により、モルタルの粘性が大きくなりやすい。その結果、作業性が低下したり、練り混ぜたモルタルを排出する際にミキサ内にモルタルが残存したりするという問題があった。加えて、速硬性を付与した高強度モルタルにおいてはミキサ内に残存するモルタルが硬化し、ミキサの性能に影響を与える恐れがあった。 However, increasing the strength of mortar can easily increase the viscosity of the mortar due to factors such as an increase in the unit cement content, the inclusion of pozzolanic substances, and the addition of high-performance water-reducing agents to enable mixing at low water-to-binder ratios. This can result in problems such as reduced workability and mortar remaining in the mixer when the mixed mortar is discharged. In addition, in the case of high-strength mortar that has been given rapid hardening properties, there is a risk that the mortar remaining in the mixer will harden and affect the performance of the mixer.

したがって、本発明は、ミキサ等の機器へのモルタル残存が少なく、且つ作業性が良好で高い強度発現性を示す繊維補強モルタル組成物及びそのモルタルを提供することを目的とする。 Therefore, an object of the present invention is to provide a fiber-reinforced mortar composition and mortar thereof that have little mortar remaining in equipment such as mixers, have good workability, and exhibit high strength development.

本発明者は上記課題について鋭意検討した結果、結合材の配合を調整し、金属繊維及び細骨材を適切に配合することでミキサ等の機器へのモルタル残存を減らすことができ、且つ作業性及び強度発現性に優れる繊維補強モルタル組成物及びそのモルタルが得られることを見出した。 As a result of intensive study on the above-mentioned problems, the inventor of the present invention has found that by adjusting the composition of the binder and appropriately blending metal fibers and fine aggregate, it is possible to reduce mortar remaining in equipment such as mixers, and improve workability. It has also been found that a fiber-reinforced mortar composition and mortar thereof having excellent strength development properties can be obtained.

すなわち、本発明は以下のとおりである。
[1]セメント、カルシウムアルミネート類、石膏類及びポゾラン物質からなる結合材と、金属繊維と、細骨材とを含み、ポゾラン物質の含有量が、結合材100質量部に対し、1~20質量部であり、金属繊維の含有量が、結合材100質量部に対し、3~30質量部であり、細骨材の含有量が、結合材100質量部に対し、110~330質量部である、繊維補強モルタル組成物。
[2]金属繊維のアスペクト比が25~150である、[1]に記載の繊維補強モルタル組成物。
[3]金属繊維の端部がかぎ状である、[1]又は[2]に記載の繊維補強モルタル組成物。
[4]膨張材を更に含む、[1]又は[2]に記載の繊維補強モルタル組成物。
[5][1]又は[2]に記載の繊維補強モルタル組成物と水とを含み、水の含有量が、結合材100質量部に対し、25~45質量部である、繊維補強モルタル。
[6]JIS R 5201:2015「セメントの物理試験方法」12.フロー試験に準じて、20℃環境下で測定した0打と15打のフロー値の比率([15打フロー値(mm)]/[0打フロー値(mm)])が1.3~1.8である、[5]に記載の繊維補強モルタル。
That is, the present invention is as follows.
[1] Contains a binder made of cement, calcium aluminates, gypsum, and pozzolanic substances, metal fibers, and fine aggregate, and the content of the pozzolanic substance is 1 to 20 parts by mass per 100 parts by mass of the binder. parts by mass, the content of metal fibers is 3 to 30 parts by mass relative to 100 parts by mass of the binder, and the content of fine aggregate is 110 to 330 parts by mass relative to 100 parts by mass of the binder. A fiber-reinforced mortar composition.
[2] The fiber-reinforced mortar composition according to [1], wherein the metal fibers have an aspect ratio of 25 to 150.
[3] The fiber-reinforced mortar composition according to [1] or [2], wherein the ends of the metal fibers are hook-shaped.
[4] The fiber-reinforced mortar composition according to [1] or [2], further comprising an expanding material.
[5] A fiber-reinforced mortar comprising the fiber-reinforced mortar composition according to [1] or [2] and water, the water content being 25 to 45 parts by mass based on 100 parts by mass of the binder.
[6] JIS R 5201:2015 “Physical test method for cement” 12. According to the flow test, the ratio of flow values for 0 strokes and 15 strokes ([15 stroke flow value (mm)]/[0 stroke flow value (mm)]) measured in a 20°C environment is 1.3 to 1. .8, the fiber-reinforced mortar according to [5].

本発明によれば、ミキサ等の機器へのモルタル残存が少なく、且つ作業性が良好で高い強度発現性を示す繊維補強モルタル組成物及びそのモルタルを提供することができる。 According to the present invention, it is possible to provide a fiber-reinforced mortar composition that leaves little mortar remaining in equipment such as mixers, has good workability, and exhibits high strength development, and its mortar.

以下、本発明の一実施形態について説明する。 An embodiment of the present invention will be described below.

本実施形態の繊維補強モルタル組成物は、セメント、カルシウムアルミネート類、石膏類及びポゾラン物質からなる結合材と、金属繊維と、細骨材とを含む。 The fiber-reinforced mortar composition of this embodiment includes a binder made of cement, calcium aluminates, gypsum, and pozzolanic substances, metal fibers, and fine aggregate.

本実施形態に係る結合材は、セメント、カルシウムアルミネート類、石膏類及びポゾラン物質の4成分から構成される。 The binder in this embodiment is composed of four components: cement, calcium aluminates, gypsum, and pozzolanic substances.

セメントは、種々のものを使用することができ、例えば、普通、早強、超早強、低熱及び中庸熱等の各種ポルトランドセメント、エコセメント、速硬性セメント等が挙げられる。セメントとしては、速硬性及び流動性を両立しやすいという観点から、普通ポルトランドセメント、早強ポルトランドセメントが好ましい。セメントは、一種を単独で用いてもよく、二種以上を併せて用いてもよい。 Various types of cement can be used, such as ordinary, early-strength, ultra-early-strength, low-heat and moderate-heat Portland cements, ecocements, quick-hardening cements, and the like. As the cement, ordinary Portland cement and early-strength Portland cement are preferred from the viewpoint of achieving both quick hardening and fluidity. One type of cement may be used alone, or two or more types may be used in combination.

セメントの含有量は、結合材100質量部に対し、50~75質量部であることが好ましく、55~70質量部であることがより好ましく、60~65質量部であることが更に好ましい。セメントの含有量が上記範囲内であれば、強度発現性がより一層向上する。 The cement content is preferably 50 to 75 parts by mass, more preferably 55 to 70 parts by mass, and even more preferably 60 to 65 parts by mass, per 100 parts by mass of binder. If the cement content is within the above range, strength development is further improved.

カルシウムアルミネート類としては、CaOをC、AlをA、NaOをN、及びFeをFとして表したとき、CA、CA、C12、CA、又はCA等と表示される鉱物組成を有するカルシウムアルミネート、CAF等と表示されるカルシウムアルミノフェライト、カルシウムアルミネートにハロゲンが固溶又は置換したC・CaFやC11・CaF2等と表示されるカルシウムフルオロアルミネートを含むカルシウムハロアルミネート、CNAやC等と表示されるカルシウムナトリウムアルミネート、カルシウムリチウムアルミネート、アルミナセメント、並びにC・CaSO等と表示されるカルシウムサルホアルミネートを総称するものである。このカルシウムアルミネート類は、結晶質のもの、非結晶質のもの、非晶質及び結晶質が混在したもののいずれも使用可能である。カルシウムアルミネート類は、一種を単独で用いてもよく、二種以上を併せて用いてもよい。カルシウムアルミネート類の粉末度は、初期強度発現性をより向上させるという観点から、ブレーン比表面積で3000cm/g以上であることが好ましく、5000cm/g以上であることがより好ましい。また、カルシウムアルミネート類の粉末度は、ブレーン比表面積で8000cm/g以下であることが好ましい。 Calcium aluminates include C 3 A, C 2 A, C 12 A 7 , CA when CaO is C, Al 2 O 3 is A, Na 2 O is N, and Fe 2 O 3 is F. , or calcium aluminate with a mineral composition expressed as CA 2 , etc., calcium aluminoferrite expressed as C 4 AF, etc., C 3 A 3・CaF 2 or C 11 in which halogen is dissolved or substituted in calcium aluminate. Calcium haloaluminates, including calcium fluoroaluminates labeled as A7.CaF2 , etc .; calcium sodium aluminates, calcium lithium aluminates, alumina cements, labeled as C8NA3 , C3N2A5 , etc .; It is a general term for calcium sulfoaluminates expressed as C 3 A 3 , CaSO 4 , etc. These calcium aluminates can be either crystalline, amorphous, or a mixture of amorphous and crystalline. One type of calcium aluminate may be used alone, or two or more types may be used in combination. The fineness of the calcium aluminates is preferably 3000 cm 2 /g or more in Blaine specific surface area, more preferably 5000 cm 2 /g or more, from the viewpoint of further improving initial strength development. Further, the powder degree of the calcium aluminates is preferably 8000 cm 2 /g or less in Blaine specific surface area.

カルシウムアルミネート類の含有量は、結合材100質量部に対し、10~35質量部であることが好ましく、12~30質量部であることがより好ましく、14~25質量部であることが更に好ましい。カルシウムアルミネート類の含有量が上記範囲内であれば、速硬性がより優れたものとなりやすい。 The content of calcium aluminates is preferably 10 to 35 parts by mass, more preferably 12 to 30 parts by mass, and even more preferably 14 to 25 parts by mass, based on 100 parts by mass of the binder. preferable. If the content of calcium aluminates is within the above range, the quick hardening properties tend to be better.

石膏類としては、例えば、無水石膏、半水石膏、二水石膏等が挙げられる。石膏類としては、強度発現性を更に向上させるという観点から、無水石膏が好ましい。石膏類は、一種を単独で用いてもよく、二種以上を併せて用いてもよい。 Examples of gypsum include anhydrite, hemihydrate gypsum, dihydrate gypsum, and the like. As the gypsum, anhydrite is preferred from the viewpoint of further improving strength development. One type of gypsum may be used alone, or two or more types may be used in combination.

石膏類の含有量としては、結合材100質量部に対し、無水物換算で7~23質量部であることが好ましく、8~20質量部であることがより好ましく、9~15質量部であることが更に好ましい。石膏類の含有量が上記範囲内であれば、長期の強度発現性がより一層向上する。石膏類の粉末度は、長期の強度発現性をより向上させるという観点から、ブレーン比表面積で4500cm/g以上であることが好ましく、6000cm/g以上であることがより好ましい。また、石膏類の粉末度は、ブレーン比表面積で15000cm/g以下であることが好ましい。 The content of the gypsum is preferably 7 to 23 parts by mass, more preferably 8 to 20 parts by mass, and even more preferably 9 to 15 parts by mass, in terms of anhydride, per 100 parts by mass of the binder. If the content of the gypsum is within the above range, the long-term strength development is further improved. From the viewpoint of further improving the long-term strength development, the fineness of the gypsum is preferably 4500 cm 2 /g or more in terms of Blaine specific surface area, and more preferably 6000 cm 2 /g or more. In addition, the fineness of the gypsum is preferably 15000 cm 2 /g or less in terms of Blaine specific surface area.

ポゾラン物質は、JIS A 6201:2015に記載されている各種フライアッシュ、JIS A 6207:2016に記載されているシリカフューム、スラグ粉末、非晶質アルミノシリケート等が挙げられる。ポゾラン物質は、長期の強度発現性や施工性に一層優れるという観点から、シリカフューム、非晶質アルミノシリケートが好ましい。ポゾラン物質は、一種を単独で用いてもよく、二種以上を併せて用いてもよい。 Pozzolanic substances include various fly ash described in JIS A 6201:2015, silica fume, slag powder, amorphous aluminosilicate, etc. described in JIS A 6207:2016. The pozzolan substance is preferably silica fume or amorphous aluminosilicate from the viewpoint of superior long-term strength development and workability. One type of pozzolan substance may be used alone, or two or more types may be used in combination.

ポゾラン物質の含有量は、結合材100質量部に対し、1~20質量部である。ポゾラン物質の含有量が上記範囲外であると、強度発現性が低下し、モルタルの練り混ぜ性や流動性といった作業性も低下する。作業性及び強度発現性が更に良好になり、機器へのモルタルの残存が一層少なくなるという観点から、ポゾラン物質の含有量は、結合材100質量部に対し、3~15質量部であることが好ましく、5~10質量部であることがより好ましい。ポゾラン物質の粉末度は、長期の強度発現性をより向上させるという観点から、BET比表面積で5m/g以上であることが好ましく、10m/g以上であることがより好ましい。また、ポゾラン物質の粉末度は、BET比表面積で30m/g以下であることが好ましい。 The content of the pozzolan substance is 1 to 20 parts by mass based on 100 parts by mass of the binder. If the content of the pozzolanic substance is outside the above range, the strength development property will be reduced and the workability such as mortar kneading properties and fluidity will also be reduced. From the viewpoint of further improving workability and strength development and further reducing the amount of mortar remaining in the equipment, the content of the pozzolan substance is preferably 3 to 15 parts by mass per 100 parts by mass of the binder. The amount is preferably 5 to 10 parts by mass, and more preferably 5 to 10 parts by mass. The fineness of the pozzolan substance is preferably 5 m 2 /g or more in terms of BET specific surface area, more preferably 10 m 2 /g or more, from the viewpoint of further improving long-term strength development. Further, the powder degree of the pozzolan substance is preferably 30 m 2 /g or less in terms of BET specific surface area.

金属繊維は、金属製であれば特に限定されず、例えば、鋼繊維、ステンレス繊維、アモルファス金属繊維、及びそれらの表面に化学的・物理的な処理を施したもの等が挙げられる。金属繊維としては、モルタルの混練性及び硬化性状を両立し、機器へのモルタルの残存が一層少なくなるという観点から、鋼繊維が好ましい。金属繊維は、一種を単独で用いてもよく、二種以上を併せて用いてもよい。金属繊維の形状は特に限定されるものではなく、直線状、先端が折れ曲がったかぎ状等が挙げられる。機器へのモルタルの残存が一層少なくなるという観点から、金属繊維の形状はかぎ状であることが好ましい。かぎ状の金属繊維において、折れ曲がり部は先端の片側だけでにあってもよく、両側にあってもよいが、機器へのモルタルの残存がより一層少なくなるという観点から、両側にある方が好ましい。 The metal fibers are not particularly limited as long as they are made of metal, and include, for example, steel fibers, stainless steel fibers, amorphous metal fibers, and those whose surfaces have been chemically or physically treated. As the metal fiber, steel fiber is preferable from the viewpoint of achieving both good mortar kneading properties and hardening properties, and further reducing mortar remaining in the equipment. One type of metal fiber may be used alone, or two or more types may be used in combination. The shape of the metal fiber is not particularly limited, and examples thereof include a straight shape, a hook shape with a bent tip, and the like. From the viewpoint of further reducing the amount of mortar remaining in the equipment, it is preferable that the metal fibers have a hook-like shape. In the hook-shaped metal fiber, the bent part may be on only one side of the tip or on both sides, but it is preferable to have the bent part on both sides from the viewpoint of further reducing the amount of mortar remaining in the equipment. .

金属繊維の含有量は、結合材100質量部に対し、3~30質量部である。金属繊維の含有量が上記範囲外であると、金属繊維の分散性や流動性といった作業性及び初期強度発現性が低下する。機器へのモルタルの残存が一層少なくなり、またより高い靭性を付与することができるという観点から、金属繊維の含有量は、結合材100質量部に対し、4~25質量部であることが好ましく、5~20質量部であることがより好ましい。 The content of metal fibers is 3 to 30 parts by mass based on 100 parts by mass of the binder. If the content of metal fibers is outside the above range, workability such as dispersibility and fluidity of the metal fibers and initial strength development are reduced. From the viewpoint of further reducing mortar remaining in the equipment and imparting higher toughness, the content of metal fibers is preferably 4 to 25 parts by mass based on 100 parts by mass of the binder. , more preferably 5 to 20 parts by mass.

金属繊維の全長は、10~50mmであることが好ましく、13~45mmであることがより好ましく、20~40mmであることが更に好ましい。金属繊維の全長が上記範囲内であれば、モルタルの混練性及び作業性が更に向上する。 The total length of the metal fiber is preferably 10 to 50 mm, more preferably 13 to 45 mm, and even more preferably 20 to 40 mm. If the total length of the metal fibers is within the above range, the kneading properties and workability of the mortar will be further improved.

金属繊維のアスペクト比(全長/直径)は25~150であることが好ましく、30~100であることがより好ましく、40~65であることが更に好ましい。アスペクト比が上記範囲内であれば、モルタルの混練性及び作業性が一層向上し、ダレが生じにくくなる。 The aspect ratio (full length/diameter) of the metal fiber is preferably 25 to 150, more preferably 30 to 100, and even more preferably 40 to 65. If the aspect ratio is within the above range, the kneading properties and workability of the mortar will be further improved, and sag will be less likely to occur.

細骨材は特に限定されず、川砂、珪砂、砕砂、寒水石、石灰石砂、スラグ骨材、軽量骨材等が挙げられる。これらの細骨材は、一種を単独で用いてもよく、二種以上を併せて用いてもよい。 The fine aggregate is not particularly limited, and includes river sand, silica sand, crushed sand, kansui stone, limestone sand, slag aggregate, lightweight aggregate, and the like. These fine aggregates may be used alone or in combination of two or more.

細骨材の含有量は、結合材100質量部に対し、110~330質量部である。細骨材の含有量が上記範囲外であると、モルタルの練り混ぜ性の低下や機器へのモルタルの付着が生じる。機器へのモルタルの残存が一層少なくなるという観点から、細骨材の含有量は、結合材100質量部に対し、150~300質量部であることが好ましく、200~270質量部であることがより好ましい。 The content of fine aggregate is 110 to 330 parts by mass based on 100 parts by mass of the binder. If the content of fine aggregate is outside the above range, the kneading properties of the mortar will deteriorate and the mortar will adhere to equipment. From the viewpoint of further reducing mortar remaining in the equipment, the content of fine aggregate is preferably 150 to 300 parts by mass, and preferably 200 to 270 parts by mass, based on 100 parts by mass of the binder. More preferred.

本実施形態の繊維補強モルタル組成物は膨張材を含んでもよい。繊維補強モルタル組成物が膨張材を含むことで、モルタルの圧縮強度及び寸法変化率が優れたものとなる。膨張材は、コンクリート用膨張材として一般に使用されているJIS適合の膨張材(JIS A 6202:2008)であれば、何れの膨張材でもかまわない。膨張材としては、例えば、遊離生石灰を主成分とする膨張材(生石灰系膨張材)、アウインを主成分とする膨張材(エトリンガイト系膨張材)、遊離生石灰とエトリンガイト生成物質の複合系膨張材が挙げられる。膨張材は、一種を単独で用いてもよく、二種以上を併せて用いてもよい。膨張材はブレーン比表面積が2000~6000cm/gのものを使用することが好ましい。 The fiber-reinforced mortar composition of this embodiment may contain an expanding material. When the fiber-reinforced mortar composition contains an expanding material, the mortar has excellent compressive strength and dimensional change rate. The expansion material may be any expansion material as long as it is a JIS-compliant expansion material (JIS A 6202:2008) that is generally used as an expansion material for concrete. Examples of the expanding material include an expanding material whose main component is free quicklime (quicklime-based expanding material), an expanding material whose main component is Auin (ettringite-based expanding material), and a composite expanding material of free quicklime and ettringite-forming substances. Can be mentioned. One type of expansion material may be used alone, or two or more types may be used in combination. It is preferable to use an expanding material having a Blaine specific surface area of 2000 to 6000 cm 2 /g.

膨張材の含有量は、結合材100質量部に対し、0.1~5質量部であることが好ましく、0.5~4質量部であることがより好ましく、1~3質量部であることが更に好ましい。膨張材の含有量が上記範囲内であれば、圧縮強度、寸法変化率等がより一層優れたものとなる。 The content of the expanding material is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 4 parts by mass, and 1 to 3 parts by mass based on 100 parts by mass of the binder. is even more preferable. If the content of the expanding material is within the above range, the compressive strength, dimensional change rate, etc. will be even better.

本実施形態の繊維補強モルタル組成物は減水剤を含んでもよい。減水剤は、高性能減水剤、高性能AE減水剤、AE減水剤及び流動化剤を含む。このような減水剤としては、JIS A 6204:2011「コンクリート用化学混和剤」に規定される減水剤が挙げられる。減水剤としては、例えば、ポリカルボン酸系減水剤、ナフタレンスルホン酸系減水剤、リグニンスルホン酸系減水剤、メラミン系減水剤が挙げられる。これらの減水剤の中でも、少量の添加量であっても流動性保持時間を確保しやすいという観点から、ポリカルボン酸系減水剤が好ましい。減水剤は、一種を単独で用いてもよく、二種以上を併せて用いてもよい。 The fiber reinforced mortar composition of this embodiment may also contain a water reducing agent. Water reducers include superplasticizers, super AE water reducers, AE water reducers, and superplasticizers. Examples of such water reducing agents include water reducing agents specified in JIS A 6204:2011 "Chemical admixtures for concrete". Examples of the water reducing agent include polycarboxylic acid water reducing agents, naphthalene sulfonic acid water reducing agents, lignin sulfonic acid water reducing agents, and melamine water reducing agents. Among these water reducing agents, polycarboxylic acid type water reducing agents are preferred from the viewpoint of easily ensuring fluidity retention time even when added in a small amount. One type of water reducing agent may be used alone, or two or more types may be used in combination.

減水剤の含有量は、結合材100質量部に対し、固形分換算で0.1~5質量部であることが好ましく、0.2~3質量部であることがより好ましく、0.3~1質量部であることが更に好ましい。減水剤の含有量が上記範囲内であれば、可使時間を確保しやすく、流動性がより一層向上する。 The content of the water reducing agent is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass, and more preferably 0.3 to 3 parts by mass in terms of solid content per 100 parts by mass of the binder. More preferably, it is 1 part by mass. If the content of the water reducing agent is within the above range, the pot life can be easily ensured and the fluidity can be further improved.

本実施形態の繊維補強モルタル組成物は凝結遅延剤を含んでもよい。繊維補強モルタル組成物が凝結遅延剤を含むことで、夏場等ポリマーセメントモルタルの練り上り温度が高くなる場合においても、可使時間を確保しやすい。凝結遅延剤としては、例えば、クエン酸、グルコン酸、リンゴ酸、酒石酸等の有機酸又はその塩;ホウ酸、ホウ酸ナトリウム等のホウ酸塩、リン酸塩、アルカリ金属炭酸塩、アルカリ金属重炭酸塩等の無機塩;糖類が挙げられる。これらの中でも、クエン酸、クエン酸塩、酒石酸、酒石酸塩、アルカリ金属炭酸塩が好ましい。凝結遅延剤は、粉体であってもよく、液状体(例えば、水溶液、エマルジョン、懸濁液の形態)であってもよい。凝結遅延剤は、一種を単独で用いてもよく、二種以上を併せて用いてもよい。 The fiber-reinforced mortar composition of this embodiment may contain a setting retarder. By including a setting retarder in the fiber-reinforced mortar composition, it is easy to ensure the working time even when the mixing temperature of the polymer cement mortar is high in summer, etc. Examples of setting retarders include organic acids or salts thereof such as citric acid, gluconic acid, malic acid, and tartaric acid; inorganic salts such as boric acid, borates such as sodium borate, phosphates, alkali metal carbonates, and alkali metal bicarbonates; and sugars. Among these, citric acid, citrates, tartaric acid, tartrates, and alkali metal carbonates are preferred. The setting retarder may be in the form of a powder or a liquid (for example, an aqueous solution, emulsion, or suspension). The setting retarder may be used alone or in combination of two or more types.

凝結遅延剤の含有量は、結合材100質量部に対し、固形分換算で0.1~7.5質量部であることが好ましく、0.3~5質量部であることがより好ましく、0.5~3.5質量部であることが最も好ましい。凝結遅延剤の含有量が上記範囲内であれば、可使時間を更に確保しやすく、初期強度発現性が低下しにくい。 The content of the setting retarder is preferably 0.1 to 7.5 parts by mass, more preferably 0.3 to 5 parts by mass, and more preferably 0.3 to 5 parts by mass in terms of solid content, based on 100 parts by mass of the binder. Most preferably, it is between .5 and 3.5 parts by weight. If the content of the setting retarder is within the above range, it is easier to ensure a longer pot life, and the initial strength development is less likely to deteriorate.

本実施形態の繊維補強モルタル組成物には、本発明の効果が損なわれない範囲で各種混和材料を配合してもよい。混和材料としては、例えば、発泡剤、消泡剤、増粘剤、セメント用ポリマー、防水材、防錆剤、収縮低減剤、保水剤、顔料、繊維、撥水剤、白華防止剤、急結剤(材)、急硬剤(材)、石粉、火山灰、空気連行剤、表面硬化剤が挙げられる。 The fiber-reinforced mortar composition of this embodiment may contain various types of admixtures as long as the effects of the present invention are not impaired. Examples of admixture materials include foaming agents, antifoaming agents, thickeners, polymers for cement, waterproofing materials, rust preventive agents, shrinkage reducing agents, water retention agents, pigments, fibers, water repellents, anti-efflorescence agents, and anti-efflorescence agents. Examples include binder (material), quick hardening agent (material), stone powder, volcanic ash, air entrainment agent, and surface hardening agent.

本実施形態の繊維補強モルタル組成物を製造する方法は、特に限定されず、例えば、V型混合機や可傾式コンクリートミキサー等の重力式ミキサー、ヘンシェル式ミキサー、噴射型ミキサー、リボンミキサー、パドルミキサー等のミキサーにより上記成分を混合することで製造することができる。 The method for producing the fiber-reinforced mortar composition of the present embodiment is not particularly limited, and examples include gravity mixers such as V-type mixers and tilting concrete mixers, Henschel mixers, injection mixers, ribbon mixers, paddle mixers, etc. It can be manufactured by mixing the above components using a mixer such as a mixer.

本実施形態の繊維補強モルタル組成物は、水と混合して繊維補強モルタルとして調製することができ、その水の含有量は用途に応じて適宜調整すればよい。水の含有量は、結合材100質量部に対して25~45質量部であることが好ましく、28~40質量部であることがより好ましく、30~35質量部であることが更に好ましい。水の含有量が上記範囲内であれば、金属繊維の混練性、並びに、初期及び長期の強度発現性がより一層優れたものとなる。 The fiber-reinforced mortar composition of this embodiment can be mixed with water to prepare a fiber-reinforced mortar, and the water content may be adjusted as appropriate depending on the application. The content of water is preferably 25 to 45 parts by weight, more preferably 28 to 40 parts by weight, and even more preferably 30 to 35 parts by weight based on 100 parts by weight of the binder. If the water content is within the above range, the kneading properties of the metal fibers and the initial and long-term strength development properties will be even better.

本実施形態の繊維補強モルタルは、JIS R 5201:2015「セメントの物理試験方法」12.フロー試験に準じて、20℃環境下で測定した0打と15打のフロー値の比率([15打フロー値(mm)]/[0打フロー値(mm)])が1.3~1.8であることが好ましく、1.32~1.6であることがより好ましく、1.35~1.5であることが更に好ましい。モルタルのフロー値の比率が上記範囲内であれば、モルタルの伸びがよく作業性に一層優れるものとなる。 The fiber-reinforced mortar of this embodiment conforms to JIS R 5201:2015 "Physical test method for cement" 12. According to the flow test, the ratio of flow values for 0 strokes and 15 strokes ([15 stroke flow value (mm)]/[0 stroke flow value (mm)]) measured in a 20°C environment is 1.3 to 1. It is preferably .8, more preferably 1.32 to 1.6, even more preferably 1.35 to 1.5. If the flow value ratio of the mortar is within the above range, the mortar will have good elongation and even better workability.

本実施形態の繊維補強モルタルの調製は、通常のモルタル組成物と同様の混練器具を使用することができ、特に限定されるものではない。混練器具としては、例えば、モルタルミキサー、ハンドミキサー、傾胴ミキサー、二軸ミキサー、パン型ミキサー等が挙げられる。 The fiber-reinforced mortar of this embodiment can be prepared using the same kneading equipment as used for ordinary mortar compositions, and is not particularly limited. Examples of the kneading device include a mortar mixer, a hand mixer, a tilting mixer, a twin-screw mixer, and a pan-type mixer.

本実施形態の繊維補強モルタル組成物及び繊維補強モルタルは、高強度のモルタルでありながら、金属繊維の分散性に優れるものである。したがって、高い強度発現性が求められる各種構造物や現場の補修・補強に好適に用いることができる。その施工方法は特に限定されず、型枠を作り充填する方法、コテ塗り、振動機を用いて敷き均す方法等が選択できる。 The fiber-reinforced mortar composition and fiber-reinforced mortar of the present embodiment are high-strength mortars and have excellent dispersibility of metal fibers. Therefore, it can be suitably used for repairing and reinforcing various structures and sites that require high strength development. The construction method is not particularly limited, and can be selected from methods such as making a formwork and filling it, troweling, and leveling using a vibrator.

以下、本発明の実施例に基づいて説明するが、本発明がこれらに限定されるものではない。 The present invention will be described below based on Examples, but the present invention is not limited thereto.

[使用材料]
・セメント(C):早強セメント 比表面積4500cm/g
・カルシウムアルミネート(CA):CaO/Al=1.4、ガラス化率:40%、ブレーン比表面積5000cm/g
・石膏(CS):ブレーン比表面積7000cm/g
・ポゾラン物質(SF):シリカフューム BET比表面積:15m/g
・細骨材:珪砂(S)(粒度調整済み)
・繊維:鋼繊維(F1):繊維長30mm、アスペクト比45、両端部かぎ状
ポリプロピレン繊維(F2):繊維長12mm、、アスペクト比280、
鋼繊維(F3):繊維長13mm、アスペクト比62、直線形状
・膨張材:生石灰系膨張材、比表面積3200cm/g
・減水剤:ポリカルボン酸系高性能減水剤
・遅延剤:クエン酸塩
[Materials used]
・Cement (C): Early strength cement Specific surface area 4500cm 2 /g
・Calcium aluminate (CA): CaO/Al 2 O 3 = 1.4, vitrification rate: 40%, Blaine specific surface area 5000 cm 2 /g
・Gypsum (CS): Blaine specific surface area 7000cm 2 /g
・Pozzolanic substance (SF): Silica fume BET specific surface area: 15m 2 /g
・Fine aggregate: Silica sand (S) (particle size adjusted)
・Fiber: Steel fiber (F1): Fiber length 30 mm, aspect ratio 45, hooked at both ends Polypropylene fiber (F2): Fiber length 12 mm, aspect ratio 280,
Steel fiber (F3): fiber length 13 mm, aspect ratio 62, linear shape, expanding material: quicklime-based expanding material, specific surface area 3200 cm 2 /g
・Water reducer: Polycarboxylic acid-based high performance water reducer ・Retardant: Citrate

[繊維補強モルタル組成物の配合設計]
セメント、カルシウムアルミネート類、石膏類及びポゾラン物質からなる結合材を表1に示す質量部の割合とし、結合材100質量部に対して、表1に示す含有量及び種類の金属繊維、細骨材、膨張材2質量部、減水剤0.5質量部、凝結遅延剤0.6質量部として配合設計した。
[Mixing design of fiber-reinforced mortar composition]
The binders consisting of cement, calcium aluminates, gypsum and pozzolanic substances were used in the proportions by mass shown in Table 1, and the mixture was designed so that per 100 parts by mass of binder, the metal fibers, fine aggregate, expansive agent, 2 parts by mass, water reducing agent, 0.5 part by mass and setting retarder, with the contents and types shown in Table 1, were added.

[モルタルの作製]
20℃環境下において結合材100質量部に対して、水32質量部を添加し、表1で配合設計したモルタル組成物の各材料(繊維以外)を添加し、パン型強制練りミキサで90秒混練して、その後、繊維を添加し60秒混錬しモルタルを約25L作製した。
[Preparation of mortar]
In a 20°C environment, 32 parts by mass of water was added to 100 parts by mass of the binder, and each material (other than fibers) of the mortar composition designed according to Table 1 was added, and the mixture was mixed in a pan-type forced mixer for 90 seconds. After kneading, fibers were added and kneaded for 60 seconds to prepare about 25 L of mortar.

Figure 2024042172000001
Figure 2024042172000001

[評価方法]
各項目については、以下の方法で評価した。評価結果を表2に示す。
1)フレッシュ性状(コンシステンシー)
JIS R 5201:2015「セメントの物理試験方法」12.フロー試験に準じて、20℃環境下でモルタルの引抜き(0打)及び15打フロー値を測定し、これをコンシステンシーとして評価した。
2)圧縮強度
JIS A 1108:2018「コンクリートの圧縮強度試験方法」に準じて、材齢4時間及び28日における圧縮強度を測定した。供試体の寸法は、直径100mm、高さ200mmとした。材齢28日の供試体は翌日に脱型した後、材齢日まで水中で養生した。養生は常に20℃の恒温槽内で行った。
3)排出ロス率
モルタルミキサで作製したモルタルを掻き落とし等せずに容器に排出し、その重量を測定し、投入した材料重量に対する重量割合によりモルタル排出率を算出した。算出したモルタル排出率を100%より差し引くことで排出ロス率を算出した。排出ロス率が8質量%以下であれば良好とし、8質量%を超える場合は不良と判断した。
[Evaluation method]
Each item was evaluated using the following method. The evaluation results are shown in Table 2.
1) Fresh properties (consistency)
JIS R 5201:2015 “Physical test method for cement” 12. According to the flow test, mortar drawing (0 stroke) and 15 stroke flow values were measured in a 20° C. environment, and this was evaluated as consistency.
2) Compressive strength Compressive strength at 4 hours and 28 days of age was measured according to JIS A 1108:2018 "Test method for compressive strength of concrete". The dimensions of the specimen were 100 mm in diameter and 200 mm in height. The 28-day-old specimens were demolded the next day and then cured in water until the age of the specimens. Curing was always carried out in a constant temperature bath at 20°C.
3) Discharge loss rate The mortar prepared with a mortar mixer was discharged into a container without scraping, etc., its weight was measured, and the mortar discharge rate was calculated from the weight ratio to the weight of the input material. The discharge loss rate was calculated by subtracting the calculated mortar discharge rate from 100%. If the discharge loss rate was 8% by mass or less, it was considered good, and if it exceeded 8% by mass, it was judged to be poor.

Figure 2024042172000002
Figure 2024042172000002

実施例の繊維補強モルタルは、排出ロスが少なく、且つ0打フローと15打フローの比率がよいためモルタルの伸びがよく作業性に優れ、高い圧縮強度を示した。一方、練り混ぜが困難だったNo.4,8,14のモルタルを始め、比較例の繊維補強モルタルは作業性、圧縮強度、モルタルの排出ロス等の性能が優れなかった。
The fiber-reinforced mortar of the example had less discharge loss and a good ratio of 0-stroke flow to 15-stroke flow, so the mortar had good elongation, excellent workability, and high compressive strength. On the other hand, No. 1, which was difficult to knead and mix. The fiber-reinforced mortars of Comparative Examples, including mortars Nos. 4, 8, and 14, were not excellent in performance such as workability, compressive strength, and mortar discharge loss.

Claims (6)

セメント、カルシウムアルミネート類、石膏類及びポゾラン物質からなる結合材と、金
属繊維と、細骨材とを含み、
前記ポゾラン物質の含有量が、前記結合材100質量部に対し、1~20質量部であり、
前記金属繊維の含有量が、前記結合材100質量部に対し、3~30質量部であり、
前記細骨材の含有量が、前記結合材100質量部に対し、110~330質量部である、繊維補強モルタル組成物。
The present invention includes a binder including cement, calcium aluminates, gypsum, and a pozzolanic material, metal fibers, and fine aggregates,
The content of the pozzolanic substance is 1 to 20 parts by mass per 100 parts by mass of the binder,
The content of the metal fibers is 3 to 30 parts by mass relative to 100 parts by mass of the binder,
The fiber-reinforced mortar composition has a content of the fine aggregate of 110 to 330 parts by mass per 100 parts by mass of the binder.
前記金属繊維のアスペクト比が25~150である、請求項1に記載の繊維補強モルタル組成物。 The fiber-reinforced mortar composition according to claim 1, wherein the metal fibers have an aspect ratio of 25 to 150. 前記金属繊維の端部がかぎ状である、請求項1又は2に記載の繊維補強モルタル組成物。 The fiber-reinforced mortar composition according to claim 1 or 2, wherein the ends of the metal fibers are hook-shaped. 膨張材を更に含む、請求項1又は2に記載の繊維補強モルタル組成物。 The fiber-reinforced mortar composition according to claim 1 or 2, further comprising an expansive material. 請求項委1又は2に記載の繊維補強モルタル組成物と水とを含み、
前記水の含有量が、前記結合材100質量部に対し、25~45質量部である、繊維補強モルタル。
comprising the fiber-reinforced mortar composition according to claim 1 or 2 and water,
A fiber-reinforced mortar, wherein the water content is 25 to 45 parts by mass based on 100 parts by mass of the binder.
JIS R 5201:2015「セメントの物理試験方法」12.フロー試験に準じて、20℃環境下で測定した0打と15打のフロー値の比率([15打フロー値(mm)]/[0打フロー値(mm)])が1.3~1.8である、請求項5に記載の繊維補強モルタル。 JIS R 5201:2015 “Physical test method for cement” 12. According to the flow test, the ratio of flow values for 0 strokes and 15 strokes ([15 stroke flow value (mm)]/[0 stroke flow value (mm)]) measured in a 20°C environment is 1.3 to 1. 6. The fiber reinforced mortar of claim 5, wherein the fiber reinforced mortar is .8.
JP2022146691A 2022-09-15 2022-09-15 Fiber-reinforced mortar composition and mortar thereof Pending JP2024042172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022146691A JP2024042172A (en) 2022-09-15 2022-09-15 Fiber-reinforced mortar composition and mortar thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022146691A JP2024042172A (en) 2022-09-15 2022-09-15 Fiber-reinforced mortar composition and mortar thereof

Publications (1)

Publication Number Publication Date
JP2024042172A true JP2024042172A (en) 2024-03-28

Family

ID=90418018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022146691A Pending JP2024042172A (en) 2022-09-15 2022-09-15 Fiber-reinforced mortar composition and mortar thereof

Country Status (1)

Country Link
JP (1) JP2024042172A (en)

Similar Documents

Publication Publication Date Title
JP4558569B2 (en) Ultra high strength fiber reinforced cement composition, ultra high strength fiber reinforced mortar or concrete, and ultra high strength cement admixture
JP6732404B2 (en) Fiber-reinforced cement composite material and manufacturing method thereof
JP7394194B2 (en) grout mortar
JP5165873B2 (en) Reinforcement joint filling method using filler for reinforcing steel joints
WO2011081115A1 (en) Hardening accelerator for hydraulic composition
JP7395633B2 (en) polymer cement mortar
JP6891041B2 (en) Fast-strength ultra-high-strength grout composition
JP4090772B2 (en) Cement composition
JP2019172493A (en) Mortar composition and manufacturing method therefor, and repair and reinforcement method of concrete structure
JP2011136863A (en) Superhigh strength grout composition
JP7141195B2 (en) Polymer cement mortar composition and polymer cement mortar
JP7386107B2 (en) Underwater non-separable grout composition and underwater non-separable grout
JP2024042172A (en) Fiber-reinforced mortar composition and mortar thereof
JP7058913B2 (en) Fast-hardening cement composition and fast-hardening mortar
JP7493974B2 (en) Fiber Reinforced Mortar
JPH10167792A (en) Fiber-reinforced cement composition and production of cement cured product
JP2022142866A (en) Fiber-reinforced mortar composition and mortar thereof
JP7542969B2 (en) Fast-hardening grout composition and fast-hardening grout material
JP7574091B2 (en) High-strength underwater non-segregating mortar composition for high-temperature environments and mortar using the same
JP7558625B2 (en) Fast-hardening grout composition and fast-hardening grout
JP7150575B2 (en) Low-temperature fast-hardening lightweight filling mortar composition for U-ribs and its mortar
JP7150405B2 (en) Grout composition and grout
JP7437207B2 (en) Mortar for reinforced concrete and reinforcement method for reinforced concrete
JP2022142867A (en) Fiber-reinforced polymer cement mortar composition and mortar thereof
JP7437203B2 (en) mortar concrete