JP2023508314A - Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof - Google Patents
Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof Download PDFInfo
- Publication number
- JP2023508314A JP2023508314A JP2022538152A JP2022538152A JP2023508314A JP 2023508314 A JP2023508314 A JP 2023508314A JP 2022538152 A JP2022538152 A JP 2022538152A JP 2022538152 A JP2022538152 A JP 2022538152A JP 2023508314 A JP2023508314 A JP 2023508314A
- Authority
- JP
- Japan
- Prior art keywords
- less
- ultra
- wire
- strength spring
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/16—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/22—Martempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/42—Induction heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/60—Aqueous agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/02—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
【課題】優れた加工性を有する超高強度ばね用線材、鋼線及びその製造方法を提供する。【解決手段】本発明による超高強度ばね用線材は、重量%で、C:0.55~0.65%、Si:0.5~0.9%、Mn:0.3~0.8%、Cr:0.3~0.6%、P:0.015%以下、S:0.01%以下、Al:0.01%以下、N:0.005%以下、Nb:0%超過、0.04%以下、残りは、Fe及び不可避な不純物からなり、以下の式(1)の値が0.77以上、0.83以下である。式(1)C+1/6*Mn+1/5*Cr+1/24*Si式(1)において、C、Mn、Cr、Siは、各元素の含量(重量%)を意味する。An object of the present invention is to provide an ultra-high-strength spring wire, a steel wire, and a method for producing the same, which have excellent workability. A wire rod for an ultrahigh-strength spring according to the present invention has, in % by weight, C: 0.55 to 0.65%, Si: 0.5 to 0.9%, and Mn: 0.3 to 0.8. %, Cr: 0.3 to 0.6%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.005% or less, Nb: over 0% , 0.04% or less, and the remainder consists of Fe and unavoidable impurities, and the value of the following formula (1) is 0.77 or more and 0.83 or less. Formula (1) C+1/6*Mn+1/5*Cr+1/24*Si In formula (1), C, Mn, Cr and Si mean the content (% by weight) of each element.
Description
本発明は、超高強度ばね用線材、鋼線及びその製造方法に関し、より詳細には、優れた加工性を有する超高強度ばね用線材、鋼線及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to an ultra-high-strength spring wire, a steel wire, and a method for producing the same, and more particularly to an ultra-high-strength spring wire, a steel wire, and a method for producing the same, which have excellent workability.
自動車素材の市場と同様に、バイク市場も持続的に軽量化または構造変更を進めている。最近では、従来のバイクに使用されていたデュアルタイプのサスペンションをモノタイプに代替し、高強度ばね鋼に対する需要が増加している。 Similar to the automotive material market, the motorcycle market is also undergoing constant weight reduction or structural changes. Recently, the demand for high-strength spring steel has increased as mono-type suspension replaces the dual-type suspension used in conventional bikes.
バイク懸架ばねに使用されていた従来のばね鋼は、伸線材でモノタイプサスペンションに活用するには強度及び疲労抵抗性が不足している。これにより、自動車用テンパードマルテンサイト(tempered martensite,TM)組織鋼の活用を検討したが、自動車懸架ばねは、管理基準が厳しく、製造し難く、高価なため、バイク懸架ばねに適用しにくいという問題がある。 The conventional spring steel used for motorcycle suspension springs is drawn wire and lacks the strength and fatigue resistance to be used for monotype suspensions. With this in mind, they considered the use of tempered martensite (TM) structure steel for automobiles, but they said that automobile suspension springs have strict control standards, are difficult to manufacture, and are expensive, making it difficult to apply to motorcycle suspension springs. There's a problem.
特にバイク懸架ばねは、自動車に比べてサスペンションサイズが小さく、相対的にばね加工時により高い加工性を要求する。また、バイク懸架ばねは、相対的に薄い直径で使用されるため、脱炭及び低温組織の制御が困難である。したがって、バイクサスペンションに活用できる新しい高強度懸架ばねが必要な実状である。 In particular, a suspension spring for a motorcycle has a smaller suspension size than that for an automobile, and relatively higher workability is required when processing the spring. Also, bike suspension springs are used in relatively thin diameters, making decarburization and cold texture control difficult. Therefore, there is a real need for new high-strength suspension springs that can be used for motorcycle suspensions.
また、従来では、テンパードマルテンサイト組織を作製するとき、熱処理炉で鋼材を加熱した後、油冷(oil quenching)を用いており、硬化能を十分に確保するために鋼材にマンガン、クロムが一定レベル以上で含まれなければならなかった。最近では、誘導加熱(Induction heat treatment)技術の発達により水冷を活用しても十分な硬化能を確保できるようになり、鋼材に含まれる合金元素の含量を下げながら、目的とする強度を達成できるようになった。しかし、現在まで、誘導加熱技術と冷却を活用して合金元素の含量を下げたバイク懸架ばねに適用できる細硬鋼材の研究は、まだ不十分な実状である。 Conventionally, when producing a tempered martensitic structure, steel is heated in a heat treatment furnace and then oil quenched, and manganese and chromium are added to the steel in order to ensure sufficient hardenability. It had to be included at a certain level or higher. Recently, due to the development of induction heat treatment technology, it is possible to secure sufficient hardening ability even if water cooling is used, and it is possible to achieve the desired strength while reducing the content of alloying elements in steel. It became so. However, until now, research on fine hard steel materials that can be applied to motorcycle suspension springs with reduced content of alloying elements using induction heating technology and cooling is still inadequate.
本発明は、上述した問題点を解決するためになされたものであって、本発明の目的は、優れた加工性を有する超高強度ばね用線材、鋼線及びその製造方法を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an ultra-high-strength spring wire and steel wire having excellent workability, and a method for producing the same. be.
上記目的を達成するためになされた本発明の一態様による超高強度ばね用線材は、重量%で、C:0.55~0.65%、Si:0.5~0.9%、Mn:0.3~0.8%、Cr:0.3~0.6%、P:0.015%以下、S:0.01%以下、Al:0.01%以下、N:0.005%以下、Nb:0%超過、0.04%以下、残りは、Fe及び不可避な不純物からなり、以下の式(1)の値が0.77以上、0.83以下であることを特徴とする。 A wire rod for an ultrahigh-strength spring according to one aspect of the present invention, which has been made to achieve the above object, contains, in weight %, C: 0.55 to 0.65%, Si: 0.5 to 0.9%, Mn : 0.3-0.8%, Cr: 0.3-0.6%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.005 % or less, Nb: more than 0%, 0.04% or less, the remainder consisting of Fe and unavoidable impurities, and the value of the following formula (1) is 0.77 or more and 0.83 or less do.
式(1)C+1/6*Mn+1/5*Cr+1/24*Si Formula (1) C + 1/6 * Mn + 1/5 * Cr + 1/24 * Si
前記の式(1)において、C、Mn、Cr、Siは、各元素の含量(重量%)を意味する。 In the above formula (1), C, Mn, Cr, and Si mean the content (% by weight) of each element.
本発明の一態様による超高強度ばね用線材において、長手方向に垂直な断面上で、硬度が400Hv以上のベイナイトとマルテンサイトの面積分率の合計が1%以下であることが好ましい。 In the ultrahigh-strength spring wire according to one aspect of the present invention, the total area fraction of bainite and martensite having a hardness of 400 Hv or more is preferably 1% or less on a cross section perpendicular to the longitudinal direction.
本発明の一態様による超高強度ばね用線材において、フェライト脱炭層の厚さが1μm以下であることが好ましい。 In the ultra-high-strength spring wire according to one aspect of the present invention, the decarburized ferrite layer preferably has a thickness of 1 μm or less.
本発明の一態様による超高強度ばね用線材において、フェライト結晶粒の平均サイズが10μm以下であることが好ましい。 In the ultrahigh-strength spring wire according to one aspect of the present invention, the average size of ferrite crystal grains is preferably 10 μm or less.
本発明の一態様による超高強度ばね用線材において、サイズが20nm以下のNb系炭化物が1000個/mm2以上分布することが好ましい。 In the ultra-high-strength spring wire according to one aspect of the present invention, it is preferable that 1000/mm 2 or more Nb-based carbides having a size of 20 nm or less are distributed.
本発明の一態様による超高強度ばね用線材において、引張強度が1200MPa以下であることが好ましい。 The wire rod for an ultrahigh-strength spring according to one aspect of the present invention preferably has a tensile strength of 1200 MPa or less.
上記目的を達成するためになされた本発明の一態様による超高強度ばね用線材の製造方法は、重量%で、C:0.55~0.65%、Si:0.5~0.9%、Mn:0.3~0.8%、Cr:0.3~0.6%、P:0.015%以下、S:0.01%以下、Al:0.01%以下、N:0.005%以下、Nb:0%超過、0.04%以下、残りは、Fe及び不可避な不純物からなり、以下の式(1)の値が0.77以上、0.83以下のインゴットを加熱温度900~1100℃で180分以内で均質化熱処理する段階、仕上げ圧延温度が730~Ae3℃で線材圧延する段階及び3℃/s以下の冷却速度で冷却する段階を含むことを特徴とする。 A method for producing a wire rod for an ultra-high-strength spring according to one aspect of the present invention, which has been made to achieve the above object, comprises: C: 0.55 to 0.65%; %, Mn: 0.3 to 0.8%, Cr: 0.3 to 0.6%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.005% or less, Nb: more than 0%, 0.04% or less, the remainder consisting of Fe and unavoidable impurities, and the value of the following formula (1) is 0.77 or more and 0.83 or less. Homogenizing heat treatment at a heating temperature of 900 to 1100° C. within 180 minutes, wire rod rolling at a finish rolling temperature of 730 to Ae3° C., and cooling at a cooling rate of 3° C./s or less. .
式(1)C+1/6*Mn+1/5*Cr+1/24*Si Formula (1) C + 1/6 * Mn + 1/5 * Cr + 1/24 * Si
前記の式(1)において、C、Mn、Cr、Siは、各元素の含量(重量%)を意味する。 In the above formula (1), C, Mn, Cr, and Si mean the content (% by weight) of each element.
本発明の一態様による超高強度ばね用線材の製造方法において、前記線材圧延する段階で、変形量は0.3~2.0であることが好ましい。 In the method for producing a wire rod for an ultra-high strength spring according to one aspect of the present invention, it is preferable that the amount of deformation is 0.3 to 2.0 in the step of rolling the wire rod.
本発明の一態様による超高強度ばね用線材の製造方法において、前記線材圧延する段階で仕上げ圧延前のオーステナイト結晶粒の平均サイズが5~15μmであることが好ましい。 In the method for producing a wire rod for an ultra-high strength spring according to one aspect of the present invention, it is preferable that the average size of austenite grains before finish rolling is 5 to 15 μm in the stage of wire rod rolling.
また、上記目的を達成するためになされた本発明の一態様による超高強度ばね用鋼線は、重量%で、C:0.55~0.65%、Si:0.5~0.9%、Mn:0.3~0.8%、Cr:0.3~0.6%、P:0.015%以下、S:0.01%以下、Al:0.01%以下、N:0.005%以下、Nb:0%超過、0.04%以下、残りは、Fe及び不可避な不純物からなり、以下の式(1)の値が0.77以上、0.83以下であり、面積分率で、テンパードマルテンサイトを90%以上含むことを特徴とする。 In addition, a steel wire for ultra-high strength springs according to one aspect of the present invention, which has been made to achieve the above object, has C: 0.55 to 0.65% and Si: 0.5 to 0.9% by weight. %, Mn: 0.3 to 0.8%, Cr: 0.3 to 0.6%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.005% or less, Nb: over 0%, 0.04% or less, the rest consists of Fe and unavoidable impurities, and the value of the following formula (1) is 0.77 or more and 0.83 or less, It is characterized by containing tempered martensite in an area fraction of 90% or more.
式(1)0.77≦C+1/6*Mn+1/5*Cr+1/24*Si≦0.83 Formula (1) 0.77 ≤ C + 1/6 * Mn + 1/5 * Cr + 1/24 * Si ≤ 0.83
前記の式(1)において、C、Mn、Cr、Siは、各元素の含量(重量%)を意味する。 In the above formula (1), C, Mn, Cr, and Si mean the content (% by weight) of each element.
本発明の一態様による超高強度ばね用鋼線において、サイズが20nm以下のNb系炭化物が1000個/mm2以上分布することが好ましい。 In the steel wire for ultra-high-strength spring according to one aspect of the present invention, it is preferable that 1000/mm 2 or more Nb-based carbides having a size of 20 nm or less are distributed.
本発明の一態様による超高強度ばね用鋼線において、旧オーステナイト平均結晶粒のサイズが10μm以下であることが好ましい。 In the steel wire for ultra-high strength spring according to one aspect of the present invention, it is preferable that the size of the prior austenite average crystal grain is 10 μm or less.
本発明の一態様による超高強度ばね用鋼線において、線径が15mm以下であることが好ましい。 In the steel wire for ultra-high strength springs according to one aspect of the present invention, the wire diameter is preferably 15 mm or less.
本発明の一態様による超高強度ばね用鋼線において、強度が1700MPa以上であることが好ましい。 The steel wire for ultra-high strength springs according to one aspect of the present invention preferably has a strength of 1700 MPa or more.
本発明の一態様による超高強度ばね用鋼線において、断面減少率が35%以上であることが好ましい。 In the steel wire for ultrahigh-strength springs according to one aspect of the present invention, it is preferable that the cross-sectional reduction rate is 35% or more.
また、上記目的を達成するためになされた本発明の一態様による超高強度ばね用鋼線の製造方法は、重量%で、C:0.55~0.65%、Si:0.5~0.9%、Mn:0.3~0.8%、Cr:0.3~0.6%、P:0.015%以下、S:0.01%以下、Al:0.01%以下、N:0.005%以下、Nb:0%超過、0.04%以下、残りは、Fe及び不可避な不純物からなり、以下の式(1)の値が0.77以上、0.83以下の線材を伸線する段階、900~1000℃で加熱する段階、高圧で水冷する段階、400~500℃でテンパリングする段階及び水冷する段階を含むことを特徴とする。 In addition, a method for producing an ultrahigh-strength steel wire for springs according to one aspect of the present invention, which has been made to achieve the above object, comprises: C: 0.55 to 0.65%; Si: 0.5 to 0.9%, Mn: 0.3-0.8%, Cr: 0.3-0.6%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less , N: 0.005% or less, Nb: over 0%, 0.04% or less, the rest consists of Fe and inevitable impurities, and the value of the following formula (1) is 0.77 or more and 0.83 or less wire drawing, heating at 900-1000° C., high pressure water cooling, tempering at 400-500° C. and water cooling.
式(1)C+1/6*Mn+1/5*Cr+1/24*Si Formula (1) C + 1/6 * Mn + 1/5 * Cr + 1/24 * Si
前記の式(1)において、C、Mn、Cr、Siは、各元素の含量(重量%)を意味する。 In the above formula (1), C, Mn, Cr, and Si mean the content (% by weight) of each element.
本発明の一態様による超高強度ばね用鋼線の製造方法において、前記加熱する段階は、900~1000℃まで10秒以内に加熱した後、5~60秒間保持することを含んでもよい。 In the method for producing an ultra-high-strength spring steel wire according to an aspect of the present invention, the heating step may include heating to 900 to 1000° C. within 10 seconds and then holding for 5 to 60 seconds.
本発明の一態様による超高強度ばね用鋼線の製造方法において、前記加熱する段階以後のオーステナイト結晶粒の平均サイズが10μm以下であることが好ましい。 In the method for manufacturing a steel wire for ultra-high strength springs according to an aspect of the present invention, it is preferable that the average size of austenite grains after the heating step is 10 μm or less.
本発明の一態様による超高強度ばね用鋼線の製造方法において、前記テンパリングする段階は、400~500℃まで10秒以内に加熱した後、30秒以内で保持してもよい。 In the method of manufacturing the ultra-high-strength spring steel wire according to an aspect of the present invention, the tempering step may include heating to 400 to 500° C. within 10 seconds and holding the temperature within 30 seconds.
本発明によれば、低Ceq及び低Si合金組成を用いて表面脱炭及び低温組織の形成が抑制された超高強度ばね用線材を提供することができる。 According to the present invention, it is possible to provide an ultra-high-strength spring wire in which surface decarburization and low-temperature structure formation are suppressed by using a low- Ceq and low-Si alloy composition.
また、本発明によれば、Nb系炭化物及び制御圧延を用いて結晶粒が微細化された超高強度ばね用線材を提供することができる。 Further, according to the present invention, it is possible to provide an ultra-high-strength spring wire rod in which crystal grains are refined by using Nb-based carbide and controlled rolling.
本発明による超高強度ばね用鋼線は、線径が15mm以下でバイク懸架ばね用鋼線として好適な細径を有する。 The ultrahigh-strength steel wire for springs according to the present invention has a wire diameter of 15 mm or less and has a small diameter suitable as a steel wire for motorcycle suspension springs.
本発明による超高強度ばね用鋼線は、誘導加熱と水冷を活用して低Ceq及び低Si合金組成であるにもかかわらず、強度が1700MPa以上でバイク懸架ばねに要求される超高強度物性を確保することができる。 The steel wire for ultra-high strength springs according to the present invention has a strength of 1700 MPa or more in spite of having a low Ceq and low Si alloy composition by utilizing induction heating and water cooling, and has ultra-high strength required for motorcycle suspension springs. Physical properties can be secured.
本発明による超高強度ばね用鋼線は、結晶粒微細化を通じて断面減少率(RA)が35%以上で、高延性を確保することができ、これにより常温で冷間成形されてバイク懸架ばねとして製造される。 The ultra-high-strength steel wire for spring according to the present invention has an area reduction rate (RA) of 35% or more through grain refinement, and high ductility can be secured. manufactured as
[発明を実施するための最良の形態]
本発明の一実施形態による超高強度ばね用線材は、重量%で、C:0.55~0.65%、Si:0.5~0.9%、Mn:0.3~0.8%、Cr:0.3~0.6%、P:0.015%以下、S:0.01%以下、Al:0.01%以下、N:0.005%以下、Nb:0%超過、0.04%以下、残りは、Fe及び不可避な不純物からなり、以下の式(1)の値が0.77以上、0.83以下であることが好ましい。
[Best mode for carrying out the invention]
The ultra-high-strength spring wire according to one embodiment of the present invention has, in weight %, C: 0.55 to 0.65%, Si: 0.5 to 0.9%, Mn: 0.3 to 0.8 %, Cr: 0.3 to 0.6%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.005% or less, Nb: over 0% , 0.04% or less, the balance being Fe and unavoidable impurities, and the value of the following formula (1) is preferably 0.77 or more and 0.83 or less.
式(1)C+1/6*Mn+1/5*Cr+1/24*Si Formula (1) C + 1/6 * Mn + 1/5 * Cr + 1/24 * Si
上記の式(1)において、C、Mn、Cr、Siは、各元素の含量(重量%)を意味する。 In the above formula (1), C, Mn, Cr, and Si mean the content (% by weight) of each element.
以下、本発明の実施形態について説明する。しかし、本発明の実施形態は、様々な異なる形態に変形されてもよく、本発明の技術思想は以下で説明する実施形態に限定されるものではない。また、本発明の実施形態は、当該技術分野において通常の知識を有する者に本発明をより完全に説明するために提供されるものである。 Embodiments of the present invention will be described below. However, the embodiments of the present invention may be modified in various different forms, and the technical idea of the present invention is not limited to the embodiments described below. Moreover, embodiments of the present invention are provided so that the invention will be more fully understood by those of ordinary skill in the art.
本明細書で使用される用語は、単に特定の例を説明するために使用されるものである。そのために、例えば、単数の表現は、文脈上明らかに単数でなければならないものでない限り、複数の表現を含む。さらに、本明細書で使用される「含む」または「備える」などの用語は、明細書上に記載された特徴、段階、機能、構成要素またはそれらを組み合わせたものが存在することを明確に示すために使用されるものであり、他の特徴や段階、機能、構成要素またはそれらを組み合わせたものの存在を予め排除するために使用されるものではない。 The terms used herein are merely used to describe specific examples. Thus, for example, singular references include plural references unless the context clearly dictates otherwise. Furthermore, terms such as "including" or "comprising" as used herein expressly indicate the presence of the features, steps, functions, components or combinations thereof set forth in the specification. and does not preclude the presence of other features, steps, functions, components or combinations thereof.
一方、特に定義のない限り、本明細書で使用されるすべての用語は、本発明が属する技術分野で通常の知識を有する者によって一般的に理解されるものと同じ意味を有するものである。したがって、本明細書で明確に定義しない限り、特定の用語が過度に理想的または形式的な意味で解釈されない。例えば、本明細書における単数の表現は、文脈上明らかに例外がない限り、複数の表現を含む。 On the other hand, unless defined otherwise, all terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Accordingly, unless expressly defined herein, certain terms should not be interpreted in an overly idealistic or formal sense. For example, the singular references herein include plural references unless the context clearly dictates otherwise.
また、本明細書において「約」、「実質的に」などは、言及した意味に固有の製造及び物質許容誤差が提示されるとき、その数値またはその数値に近い意味で使用され、本発明の理解を助けるために正確かつ絶対的な数値が言及された開示内容を非良心的な侵害者が不当に用いることを防止するために使用される。 Also, as used herein, "about," "substantially," and the like are used to mean that numerical value or close to that numerical value when manufacturing and material tolerances inherent in the referenced meaning are presented, and the present invention. Accurate and absolute numerical values are used to prevent unscrupulous infringers from misappropriating disclosures in which precise and absolute numerical values are referred to to aid comprehension.
本発明の発明者らは、優れた加工性を有する超高強度ばね用線材、鋼線を提供するため、表面脱炭及び低温組織形成の抑制が容易な低Ceq及び低Siの最適な合金組成を導き出した。超高強度ばねは、本明細書に開示される鋼線を常温で冷間成形して製造されてもよく、鋼線は、本明細書に開示される線材を伸線して製造されてもよい。 In order to provide an ultra-high strength spring wire and steel wire having excellent workability, the inventors of the present invention have found an optimum low Ceq and low Si alloy that can easily suppress surface decarburization and low temperature structure formation. A composition was derived. The ultra-high-strength spring may be produced by cold forming the steel wire disclosed herein at room temperature, and the steel wire may be produced by drawing the wire rod disclosed herein. good.
本発明の一実施形態による超高強度ばね用線材は、重量%で、C:0.55~0.65%、Si:0.5~0.9%、Mn:0.3~0.8%、Cr:0.3~0.6%、P:0.015%以下、S:0.01%以下、Al:0.01%以下、N:0.005%以下、Nb:0%超過、0.04%以下、残りは、Fe及び不可避な不純物からなる。 The ultra-high-strength spring wire according to one embodiment of the present invention has, in weight %, C: 0.55 to 0.65%, Si: 0.5 to 0.9%, Mn: 0.3 to 0.8 %, Cr: 0.3 to 0.6%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.005% or less, Nb: over 0% , 0.04% or less, and the balance consists of Fe and unavoidable impurities.
以下、上記の合金組成に限定した理由について具体的に説明する。 The reason why the alloy composition is limited to the above will be specifically described below.
炭素(C):0.55~0.65重量%
炭素は、製品の強度を確保するために添加される元素である。炭素含量が0.55重量%未満の場合、目的とする強度及び低Ceqを確保できない。これにより、鋼材を冷却するときにマルテンサイト組織が完全に形成されず、強度を確保することが困難である場合があり、完全なマルテンサイト組織が形成されても目的とする強度を確保することが困難である場合がある。炭素含量が0.65重量%を超えると、衝撃特性が低下し、水冷時にクエンチングクラック(quenching crack)が発生することがある。したがって、本発明によれば、炭素含量は、0.55~0.65重量%に制御される。
Carbon (C): 0.55 to 0.65% by weight
Carbon is an element added to ensure the strength of the product. If the carbon content is less than 0.55% by weight, the intended strength and low Ceq cannot be ensured. As a result, the martensite structure is not completely formed when the steel material is cooled, making it difficult to ensure strength. can be difficult. If the carbon content exceeds 0.65% by weight, impact properties may deteriorate and quenching cracks may occur during water cooling. Therefore, according to the invention, the carbon content is controlled between 0.55 and 0.65% by weight.
シリコン(Si):0.5~0.9重量%
シリコンは、鋼の脱酸のために使用され、固溶強化による強度確保に有利な元素である。強度を確保するため、本発明においてシリコンは、0.5重量%以上で添加される。しかし、シリコンは、過剰に添加されると、表面脱炭を引き起こすおそれがあり、材料の加工において困難性があるため、これを考慮してその上限は、0.9重量%に制限される。このように本発明は、シリコンを0.9重量%以下に制御した低Si合金設計を用いて表面脱炭を抑制し、十分な加工性を確保する。
Silicon (Si): 0.5 to 0.9% by weight
Silicon is used for deoxidizing steel and is an element advantageous for ensuring strength by solid solution strengthening. In order to ensure strength, silicon is added in an amount of 0.5% by weight or more in the present invention. However, if silicon is added excessively, it may cause surface decarburization, which makes it difficult to process the material. Taking this into consideration, the upper limit is limited to 0.9% by weight. Thus, the present invention suppresses surface decarburization by using a low-Si alloy design in which silicon is controlled to 0.9% by weight or less, and ensures sufficient workability.
マンガン(Mn):0.3~0.8重量%
マンガンは、硬化能向上元素であり、高強度テンパードマルテンサイト(tempered martensite)組織鋼を形成するための必須元素の一つである。強度を確保するため、本発明においてマンガンは、0.3重量%以上で添加される。しかし、テンパードマルテンサイト組織鋼においてマンガン含量が過剰になると靭性が低下するので、マンガン含量の上限は、0.8重量%に制限される。
Manganese (Mn): 0.3 to 0.8% by weight
Manganese is a hardenability-improving element and is one of the essential elements for forming high-strength tempered martensite structure steel. In order to ensure strength, manganese is added in an amount of 0.3% by weight or more in the present invention. However, the upper limit of the manganese content is limited to 0.8% by weight, since excessive manganese content in tempered martensitic steel reduces toughness.
クロム(Cr):0.3~0.6重量%
クロムは、マンガンとともに硬化能向上に有効で、鋼の耐食性を向上させる。このため、本発明においてクロムは、0.3重量%以上で添加される。しかし、クロムは、シリコンとマンガンに比べて相対的に高価な元素であり、Ceqを増加させるため、本発明におけるその上限は、0.6重量%に制限される。
Chromium (Cr): 0.3-0.6% by weight
Chromium, together with manganese, is effective in improving hardenability and improves the corrosion resistance of steel. Therefore, 0.3% by weight or more of chromium is added in the present invention. However, chromium is a relatively expensive element compared to silicon and manganese and increases Ceq , so the upper limit thereof in the present invention is limited to 0.6 wt%.
リン(P):0.015重量%以下
リンは、結晶粒界に偏析して靭性を低下させ、水素遅延破壊抵抗性を低下させる元素であるため、鋼材から最大限排除されることが好ましい。本発明におけるその上限は、0.015重量%に制限される。
Phosphorus (P): 0.015% by weight or less Phosphorus is an element that segregates at grain boundaries to reduce toughness and hydrogen delayed fracture resistance. Its upper limit in the present invention is limited to 0.015% by weight.
硫黄(S):0.01重量%以下
硫黄は、リンと同様に結晶粒界に偏析して靭性を低下させ、MnSを形成して水素遅延破壊抵抗性を低下させることができるため、鋼材から最大限排除されることが好ましい。本発明におけるその上限は、0.01重量%に制限される。
Sulfur (S): 0.01% by weight or less Sulfur, like phosphorus, segregates at grain boundaries to reduce toughness and forms MnS, which reduces hydrogen delayed fracture resistance. Maximum exclusion is preferred. Its upper limit in the present invention is limited to 0.01% by weight.
アルミニウム(Al):0.01重量%以下
アルミニウムは、強力な脱酸元素で、鋼中酸素を除去して清浄度を高めることができる。しかし、アルミニウムは、添加時にAl2O3介在物を形成して疲労抵抗性を低下させるという問題がある。これにより、本発明におけるその上限は、0.01重量%に制限される。
Aluminum (Al): 0.01% by weight or less Aluminum is a strong deoxidizing element and can remove oxygen from steel to improve cleanliness. However, aluminum has the problem that it forms Al 2 O 3 inclusions when added and reduces fatigue resistance. This restricts the upper limit in the present invention to 0.01% by weight.
窒素(N):0.005重量%以下
窒素は、鋼中アルミニウムまたはバナジウムと結合して熱処理時に溶解しない粗大なAlNまたはVN析出物を形成するという問題がある。これにより、本発明におけるその上限は、0.005重量%以下に制限される。
Nitrogen (N): 0.005% by weight or less Nitrogen has the problem of forming coarse AlN or VN precipitates that are not dissolved during heat treatment by combining with aluminum or vanadium in the steel. Accordingly, the upper limit in the present invention is limited to 0.005% by weight or less.
ナイオビウム(Nb):0重量%超過、0.04重量%以下
ナイオビウムは、鋼中炭素と結合してNb系炭化物を形成する元素で、結晶粒を微細化して加工性を向上させる。結晶粒微細化による加工性を向上させるため、本発明において、ナイオビウムは、0重量%を超えて添加される。しかし、ナイオビウムは、過剰に添加されると、粗大な炭化物が形成されて加工性が低下することがあるため、ナイオビウムは、0.04重量%以下で添加される。加工性の向上の側面で、より好ましくは、ナイオビウムは、0.02重量%以下で添加されてもよい。
Niobium (Nb): more than 0% by weight, up to 0.04% by weight Niobium is an element that combines with carbon in steel to form Nb-based carbides, refines crystal grains, and improves workability. Niobium is added in an amount exceeding 0% by weight in the present invention in order to improve workability by grain refinement. However, if niobium is added excessively, coarse carbides may be formed and workability may be deteriorated. Niobium may be added in an amount of 0.02% by weight or less from the aspect of improving workability.
ナイオビウムを添加して形成されたNb系炭化物は、本発明による超高強度ばね用線材、鋼線の組織内に分布しうる。形成されたNb系炭化物のサイズは、20nm以下であることが好ましい。Nb系炭化物のサイズが20nmを超えると、むしろ加工性が低下するおそれがあるためである。また、Nb系炭化物は、1000個/mm2以上で均等に分布することが好ましい。Nb系炭化物が1000個/mm2未満で分布する場合、結晶粒が十分に微細化されないおそれがあるためである。上述したNb系炭化物において、Nbは、10at%以上で含まれてもよい。 The Nb-based carbides formed by adding niobium can be distributed within the structure of the steel wire and wire rod for ultra-high strength springs according to the present invention. The size of the formed Nb-based carbide is preferably 20 nm or less. This is because if the size of the Nb-based carbide exceeds 20 nm, the workability may rather deteriorate. Moreover, it is preferable that the Nb-based carbides are evenly distributed at 1000 pieces/mm 2 or more. This is because if the number of Nb-based carbides is less than 1000/mm 2 , the crystal grains may not be sufficiently refined. In the Nb-based carbide described above, Nb may be contained at 10 atomic % or more.
本発明の残りの成分は、鉄(Fe)である。ただし、通常の製造過程では、原料または周囲環境から意図しない不純物が不可避に混入することがあるので、これを排除することはできない。上記不純物は、通常の製造段階の技術者であれば誰でも分かるものであるため、そのすべての内容を特に本明細書で言及しない。 The remaining component of the present invention is iron (Fe). However, unintended impurities from raw materials or the surrounding environment may inevitably be mixed in during normal manufacturing processes, and cannot be excluded. The above impurities are known to any person skilled in the normal manufacturing process, so the full content thereof is not specifically mentioned herein.
また、以上で述べた線材の合金組成に対する限定理由は、鋼線の合金組成に対する限定理由と同じであり、便宜上、鋼線の合金組成に対する限定理由は、省略する。 In addition, the reasons for limiting the alloy composition of the wire described above are the same as the reasons for limiting the alloy composition of the steel wire, and for the sake of convenience, the reasons for limiting the alloy composition of the steel wire are omitted.
本発明の線材、鋼線の合金組成は、各合金元素の含量を上述した条件により制限すること以外にも、これらの関係を次のようにさらに限定してもよい。 Regarding the alloy composition of the wire rod and steel wire of the present invention, in addition to limiting the content of each alloying element according to the conditions described above, these relationships may be further limited as follows.
式(1)の値:0.77以上、0.83以下
本発明は、線材圧延後、冷却時に発生しやすい表面脱炭と低温組織の形成を抑制できるようにCeq値を制御する。Ceq値は、下記の式(1)で表される。本発明では、表面脱炭と低温組織の形成を抑制するため、式(1)の値を0.77以上、0.83以下に制御する。
Value of formula (1): 0.77 or more and 0.83 or less The present invention controls the Ceq value so as to suppress the surface decarburization and the formation of a low-temperature structure that tend to occur during cooling after wire rolling. The C eq value is represented by the following formula (1). In the present invention, the value of formula (1) is controlled to 0.77 or more and 0.83 or less in order to suppress surface decarburization and formation of low-temperature structures.
式(1)C+1/6*Mn+1/5*Cr+1/24*Si Formula (1) C + 1/6 * Mn + 1/5 * Cr + 1/24 * Si
上記の式(1)において、C、Mn、Cr、Siは、各元素の含量(重量%)を意味する。 In the above formula (1), C, Mn, Cr, and Si mean the content (% by weight) of each element.
式(1)の値が0.83を超えると表面脱炭が発生し、低温組織が形成されるおそれがある。一方、式(1)の値が0.77未満であると、目標とする強度を確保し難い。 If the value of formula (1) exceeds 0.83, surface decarburization may occur and a low temperature structure may be formed. On the other hand, when the value of formula (1) is less than 0.77, it is difficult to ensure the target strength.
以下、本発明による超高強度ばね用線材の製造方法について詳細に説明する。本発明による超高強度ばね用線材は、上述した合金組成及び式(1)の値の範囲を満たすインゴット(ingot)を均質化熱処理し、線材圧延した後、冷却して製造される。以下、各製造段階について説明する。 Hereinafter, a method for manufacturing a wire rod for an ultrahigh-strength spring according to the present invention will be described in detail. A wire rod for an ultrahigh-strength spring according to the present invention is manufactured by subjecting an ingot having the above-mentioned alloy composition and the value of formula (1) to homogenization heat treatment, rolling the wire rod, and then cooling it. Each manufacturing stage will be described below.
本発明において均質化熱処理する段階は、加熱炉で加熱温度900~1100℃で180分以内で行われる。 In the present invention, the homogenization heat treatment step is performed in a heating furnace at a heating temperature of 900-1100° C. within 180 minutes.
本発明において線材圧延する段階の仕上げ圧延温度は、730~Ae3℃であることが好ましい。730~Ae3℃の温度範囲条件で仕上げ圧延を行うと、線材の主組織がオーステナイトからフェライトに変態することになる。言い換えれば、仕上げ圧延前の線材の主組織は、オーステナイトであり、仕上げ圧延後の線材の主組織は、フェライトである。 In the present invention, the finish rolling temperature in the stage of wire rod rolling is preferably 730 to Ae3°C. When finish rolling is performed in the temperature range of 730 to Ae3° C., the main structure of the wire rod transforms from austenite to ferrite. In other words, the main structure of the wire before finish rolling is austenite, and the main structure of the wire after finish rolling is ferrite.
本発明の線材圧延する段階では、制御圧延を通じて結晶粒を微細化し、微細化された結晶粒により十分な加工性を確保できるようになる。一実施形態によれば、線材圧延の変形量は、0.3~2.0である。本発明における変形量は、以下の式で表される。 In the step of wire rod rolling according to the present invention, crystal grains are refined through controlled rolling, and sufficient workability can be ensured by the refined crystal grains. According to one embodiment, the wire rolling deformation amount is between 0.3 and 2.0. The amount of deformation in the present invention is represented by the following formula.
変更量=-ln(1-減面率/100) Change amount = -ln (1 - area reduction rate / 100)
上記の式において、減面率は、線材圧延前の線材の長手方向に垂直な断面積をA、線材圧延後の線材の長手方向に垂直な断面積をA1とするとき、(A-A1)/A*100で計算される値である。 In the above formula, the area reduction rate is defined as ( AA 1 )/A*100.
線材圧延時の変形量が0.3未満の場合、結晶粒を十分に微細化することが難しく、変形量が2.0を超える場合、加工量が高すぎるので、生産工程時に無理がある。したがって、本発明によれば、変形量は、0.3~2.0に制御されることが好ましい。 If the amount of deformation during wire rolling is less than 0.3, it is difficult to sufficiently refine the crystal grains, and if the amount of deformation exceeds 2.0, the amount of processing is too high, which is unreasonable during the production process. Therefore, according to the present invention, the deformation amount is preferably controlled between 0.3 and 2.0.
上述した条件で線材圧延すれば結晶粒を微細化しうる。一実施形態によれば、仕上げ圧延前のオーステナイト結晶粒の平均サイズは5~15μmである。また、仕上げ圧延前のオーステナイト結晶粒の平均サイズを微細化すれば、後続する仕上げ圧延、冷却段階を経た最終線材組織のフェライト結晶粒の平均サイズも微細化できるようになる。 If the wire rod is rolled under the conditions described above, the crystal grains can be refined. According to one embodiment, the average size of the austenite grains before finish rolling is 5-15 μm. In addition, if the average size of austenite grains before finish rolling is refined, the average size of ferrite grains in the final wire structure after subsequent finish rolling and cooling can also be refined.
本発明において冷却する段階は、3℃/s以下の冷却速度で線材を冷却する。冷却速度が3℃/sを超える場合には、低温組織の形成を抑制しにくい。 The cooling step in the present invention cools the wire at a cooling rate of 3° C./s or less. If the cooling rate exceeds 3°C/s, it is difficult to suppress the formation of low-temperature structures.
上述した合金組成及び製造方法により製造された本発明による超高強度ばね用線材は、微細組織としてパーライト、フェライトを含み、一実施形態によれば面積分率で、60%以上のパーライト、残りのフェライトを含んでもよい。 The ultra-high-strength spring wire according to the present invention manufactured by the alloy composition and manufacturing method described above contains pearlite and ferrite as a microstructure, and according to one embodiment, the area fraction is 60% or more of pearlite, and the remaining It may contain ferrite.
本発明によれば、上述した合金組成と式(1)の値の範囲を満たす低Ceq合金組成を通じて低温組織の形成を抑制しうる。本発明の一実施形態による超高強度ばね用線材は、線材の長手方向に垂直な断面上に低温組織が殆ど含まれない。一実施形態によれば、長手方向に垂直な断面(C断面)上で硬度が400Hv以上のベイナイトとマルテンサイトの面積分率の合計が1%以下であってもよい。一方、本発明において低温組織は、ベイナイト、マルテンサイトを意味する。本発明の超高強度ばね用線材は、低温組織の形成を抑制することにより、十分な加工性を確保しうる。 According to the present invention, it is possible to suppress the formation of low-temperature structures through the above-described alloy composition and the low- Ceq alloy composition that satisfies the range of values of formula (1). A wire rod for an ultrahigh-strength spring according to one embodiment of the present invention contains almost no low-temperature structure on a cross section perpendicular to the longitudinal direction of the wire rod. According to one embodiment, the sum of the area fractions of bainite and martensite having a hardness of 400 Hv or more on a cross section perpendicular to the longitudinal direction (C cross section) may be 1% or less. On the other hand, the low temperature structure in the present invention means bainite and martensite. The ultra-high-strength spring wire of the present invention can ensure sufficient workability by suppressing the formation of low-temperature structures.
本発明によれば、上述した合金組成と式(1)の値の範囲を満たす低Ceq及び低Si合金組成を通じて表面脱炭現象を抑制しうる。一実施形態によれば、線材のフェライト脱炭層の厚さが1μm以下でありうる。 According to the present invention, the surface decarburization phenomenon can be suppressed through the alloy composition described above and the low Ceq and low Si alloy composition that satisfies the range of values of formula (1). According to one embodiment, the thickness of the ferrite decarburized layer of the wire may be 1 μm or less.
本発明によれば、Nb系炭化物及び制御圧延を通じてフェライト結晶粒を微細化できる。本発明の一実施形態による線材のフェライト結晶粒の平均サイズが10μm以下でありうる。本発明の超高強度ばね用線材は、結晶粒を微細化して十分な加工性を確保しうる。 According to the present invention, ferrite grains can be refined through Nb-based carbide and controlled rolling. An average size of ferrite grains of the wire according to an embodiment of the present invention may be 10 μm or less. The ultra-high-strength spring wire of the present invention can ensure sufficient workability by refining crystal grains.
本発明の一実施形態による超高強度ばね用線材は、引張強度が1200MPa以下でありうる。 A wire rod for an ultra-high strength spring according to an embodiment of the present invention may have a tensile strength of 1200 MPa or less.
本発明の一実施形態による超高強度ばね用鋼線は、重量%で、C:0.55~0.65%、Si:0.5~0.9%、Mn:0.3~0.8%、Cr:0.3~0.6%、P:0.015%以下、S:0.01%以下、Al:0.01%以下、N:0.005%以下、Nb:0%超過、0.04%以下、残りは、Fe及び不可避な不純物からなり、式(1)の値が0.77以上、0.83以下であり、面積分率で、テンパードマルテンサイトを90%以上含んでもよい。 The steel wire for ultra-high strength spring according to one embodiment of the present invention contains C: 0.55-0.65%, Si: 0.5-0.9%, Mn: 0.3-0. 8%, Cr: 0.3 to 0.6%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.005% or less, Nb: 0% Excess, 0.04% or less, the rest consists of Fe and unavoidable impurities, the value of formula (1) is 0.77 or more and 0.83 or less, and the area fraction is 90% tempered martensite It may contain more than
鋼線の合金組成及び式(1)の値の範囲に対する限定理由は、上述した線材の合金組成及び式(1)の値の範囲に対する限定理由と同一であるので、便宜上、その説明を省略する。 The reason for limiting the alloy composition of the steel wire and the range of the value of formula (1) is the same as the reason for limiting the alloy composition of the wire rod and the range of the value of formula (1) described above. .
以下、本発明による超高強度ばね用鋼線の製造方法について詳細に説明する。本発明による超高強度ばね用鋼線は、上述した合金組成及び式(1)の値の範囲を満たす線材を伸線し、加熱した後、高圧で水冷した後にテンパリングした後、水冷して製造される。以下、各製造段階について説明する。 Hereinafter, a method for manufacturing a steel wire for ultra-high strength springs according to the present invention will be described in detail. The steel wire for ultra-high-strength springs according to the present invention is manufactured by drawing a wire that satisfies the range of the alloy composition and the value of formula (1) described above, heating it, water-cooling it at high pressure, tempering it, and then water-cooling it. be done. Each manufacturing stage will be described below.
本発明において加熱時に焼入温度まで加熱する手段とテンパリングする手段は、急速加熱して後続の水冷時に表面を十分に硬化させることができるように誘導加熱を活用する。本発明は、上述した合金組成と式(1)の値の範囲を満たす低Ceq及び低Si合金組成において誘導加熱と水冷を活用することにより、合金元素の含量を自動車懸架用ばねに比べて下げながらも、目標とする超高強度を確保できるようになる。 In the present invention, the means for heating to the quenching temperature and the means for tempering utilize induction heating so that rapid heating can be achieved to sufficiently harden the surface during subsequent water cooling. The present invention utilizes induction heating and water cooling in low Ceq and low Si alloy compositions that satisfy the range of values of the alloy composition and formula (1) described above to reduce the content of alloying elements compared to automotive suspension springs. While lowering it, it will be possible to secure the target ultra-high strength.
本発明の伸線する段階では、上述した合金組成及び式(1)の値の範囲を満たす線材をバイク懸架ばねに適用できる15mm以下の線径まで伸線して鋼線に製造する。 In the wire drawing step of the present invention, a steel wire is produced by drawing a wire satisfying the range of the alloy composition and the value of formula (1) described above to a wire diameter of 15 mm or less applicable to a motorcycle suspension spring.
次に、伸線した鋼線をQT熱処理するために本発明の加熱する段階では、伸線した鋼線を焼入温度である900~1000℃まで10秒以内に加熱した後、5~60秒間保持して鋼線の組織をオーステナイト化する。目標温度である900~1000℃までの加熱時間が10秒を超える場合には、結晶粒が成長して所望の物性を確保しにくい。保持時間が5秒未満の場合、パーライト組織がオーステナイトに変態しないことがあり、60秒を超える場合、結晶粒が粗大化することがあり、維持時間は、5~60秒に制御することが好ましい。 Next, in the heating step of the present invention for QT heat treatment of the drawn steel wire, the drawn steel wire is heated to a quenching temperature of 900 to 1000 ° C. within 10 seconds, and then heated for 5 to 60 seconds. Hold to austenitize the structure of the steel wire. If the heating time to reach the target temperature of 900 to 1000° C. exceeds 10 seconds, crystal grains grow and it is difficult to ensure desired physical properties. If the holding time is less than 5 seconds, the pearlite structure may not transform into austenite, and if it exceeds 60 seconds, the crystal grains may become coarse. Therefore, it is preferable to control the holding time to 5 to 60 seconds. .
また、伸線した鋼線を誘導加熱を活用して急速に加熱した結果、オーステナイト化した鋼線のオーステナイト結晶粒の平均サイズは、10μm以下に微細化される。この段階でオーステナイト結晶粒を微細に制御した結果、後続の高圧水冷、テンパリング、水冷を経て製造される最終の超高強度ばね用鋼線の結晶粒も微細に制御される。これにより、本発明による超高強度ばね用鋼線は、結晶粒が微細かつ加工性に優れており、常温で冷間成形されてバイク懸架ばねとして製造される。 In addition, as a result of rapidly heating the drawn steel wire using induction heating, the average size of austenite grains in the austenitized steel wire is refined to 10 μm or less. As a result of finely controlling the austenite grains at this stage, the grains of the final ultra-high strength spring steel wire manufactured through subsequent high-pressure water cooling, tempering, and water cooling are also finely controlled. Accordingly, the ultra-high-strength steel wire for spring according to the present invention has fine crystal grains and excellent workability, and is cold-formed at room temperature to be manufactured as a suspension spring for a motorcycle.
本発明において高圧で水冷する段階は、鋼線の主組織をオーステナイトからマルテンサイトに変態させる段階であり、全段階のオーステナイト化された鋼線の沸騰膜を除去できる程度の高圧で水冷する。このとき、冷却を水冷ではなく油冷で行う場合、低Ceq及び低Si合金組成により目的とする強度を確保できない。また、水冷時に沸騰膜を除去できる程度の高圧でない場合、焼入時に亀裂(quenching crack)発生の可能性が高くなるため、水冷時に最大限高い圧力で高圧水冷することが好ましい。また、上述した加熱する段階で焼入温度まで誘導加熱を活用して急速に加熱した後、次にこの段階で水で急速冷却することで鋼線の表面を十分に硬化させる。水冷時の冷却速度は、一実施形態によれば100℃/s以上である。 In the present invention, the step of high-pressure water cooling is a step of transforming the main structure of the steel wire from austenite to martensite. At this time, when cooling is performed by oil cooling instead of water cooling, the target strength cannot be secured due to the low Ceq and low Si alloy composition. In addition, if the pressure is not high enough to remove the boiling film during water cooling, there is a high possibility of quenching cracks during quenching. In addition, in the heating step described above, the steel wire is rapidly heated to the quenching temperature using induction heating, and then rapidly cooled with water in this step to sufficiently harden the surface of the steel wire. The cooling rate during water cooling is 100° C./s or more according to one embodiment.
本発明においてテンパリングする段階は、水冷された鋼線の主組織であるマルテンサイトを加熱してテンパードマルテンサイトでテンパリングする段階である。テンパリングする段階は、400~500℃まで10秒以内に加熱した後に30秒以内で維持される。テンパリング温度が400℃未満の場合、靭性が確保されず加工が困難で、製品が破損するおそれが高くなり、500℃を超える場合、強度が低下するので、上述した温度範囲にテンパリング温度を制限する。また、テンパリング時に上述した温度範囲まで10秒以内に加熱できなければ、粗大な炭化物が形成されて靭性が低下するおそれがあるため、10秒以内に急速加熱することが好ましい。 The step of tempering in the present invention is the step of heating martensite, which is the main structure of the water-cooled steel wire, and tempering it with tempered martensite. The tempering step is maintained within 30 seconds after heating to 400-500° C. within 10 seconds. If the tempering temperature is less than 400°C, the toughness is not ensured, making it difficult to process, and the risk of product breakage increases. If the tempering temperature exceeds 500°C, the strength decreases. . Moreover, if the steel cannot be heated to the above-mentioned temperature range within 10 seconds during tempering, coarse carbides may be formed and the toughness may be lowered. Therefore, rapid heating within 10 seconds is preferable.
次に、テンパリングされた鋼線を常温まで水冷する。 Next, the tempered steel wire is water-cooled to normal temperature.
上述した合金組成及び式(1)の値の範囲を満たし、上述した製造条件により製造されたばね用鋼線は、面積分率で、テンパードマルテンサイトを90%以上含みうる。 A spring steel wire that satisfies the alloy composition and the value range of formula (1) described above and is manufactured under the manufacturing conditions described above can contain tempered martensite at an area fraction of 90% or more.
また、本発明の一実施形態による超高強度ばね用鋼線は、サイズが20nm以下のNb系炭化物が1000個/mm2以上で分布している。 Further, in the steel wire for ultra-high strength spring according to one embodiment of the present invention, Nb-based carbides with a size of 20 nm or less are distributed at 1000 pieces/mm 2 or more.
また、本発明の一実施形態による超高強度ばね用鋼線は、旧オーステナイト平均結晶粒のサイズが10μm以下である。ここで、旧オーステナイトとは、本発明の伸線した鋼線をQT熱処理するために加熱する段階以後における鋼線のオーステナイト組織を意味する。 In addition, the steel wire for ultra-high strength spring according to one embodiment of the present invention has a prior austenite average crystal grain size of 10 μm or less. Here, prior austenite means the austenite structure of the steel wire after the step of heating the drawn steel wire of the present invention for QT heat treatment.
また、本発明の一実施形態による超高強度ばね用鋼線は、線径が15mm以下であり、バイク懸架ばね用鋼線として好適な細径を有する。 Further, the ultra-high-strength steel wire for springs according to one embodiment of the present invention has a wire diameter of 15 mm or less, and has a small diameter suitable as a steel wire for motorcycle suspension springs.
また、本発明の一実施形態による超高強度ばね用鋼線は、強度が1700MPa以上であり、バイク懸架ばねに要求される超高強度物性を確保しうる。 In addition, the steel wire for ultra-high strength springs according to an embodiment of the present invention has a strength of 1700 MPa or more, and can ensure ultra-high strength physical properties required for motorcycle suspension springs.
また、本発明の一実施形態による超高強度ばね用鋼線は、断面減少率(RA)が35%以上であって高延性を確保でき、これにより常温で冷間成形されてバイク懸架ばねとして製造される。本発明は、Nbを添加して線材圧延時に仕上げ圧延前のオーステナイト結晶粒を微細化させることができるため、断面減少率(RA)をさらに改善しうる。本発明の好ましい実施形態による超高強度ばね用鋼線は、断面減少率(RA)が45%以上である。 In addition, the steel wire for ultra-high strength springs according to an embodiment of the present invention has a reduction in area (RA) of 35% or more, so that high ductility can be secured. manufactured. In the present invention, Nb can be added to refine the austenite grains before finish rolling during wire rod rolling, so that the area reduction rate (RA) can be further improved. A steel wire for ultra-high strength springs according to a preferred embodiment of the present invention has a reduction in area (RA) of 45% or more.
以下、実施例を通じて本発明をより具体的に説明する。ただし、下記実施例は、本発明を例示してより詳細に説明するためのものであり、本発明の技術範囲を限定するためのものではない。 Hereinafter, the present invention will be described in more detail through examples. However, the following examples are intended to illustrate the present invention in more detail, and are not intended to limit the technical scope of the present invention.
実施例
下記の表1の合金組成を有する材料をインゴットに鋳造した後、1100℃で均質化熱処理を行った後、1030℃から750℃まで温度を下げながら、最終厚さ12mmで線材圧延した後、3℃/sの速度で冷却して線材に製造した。
Example After casting a material having the alloy composition shown in Table 1 below into an ingot, performing a homogenization heat treatment at 1100°C, and then rolling a wire rod to a final thickness of 12 mm while decreasing the temperature from 1030°C to 750°C. , and cooled at a rate of 3° C./s to produce a wire rod.
下記の表2の結果は、上述した過程で製造された線材の物性を測定した結果である。表2の低温組織面積分率は、線材の長手方向に垂直な断面上でのベイナイトとマルテンサイトの面積分率との合計を意味する。 The results shown in Table 2 below are the results of measuring the physical properties of the wires manufactured in the above-described process. The low-temperature structure area fraction in Table 2 means the sum of the area fractions of bainite and martensite on the cross section perpendicular to the longitudinal direction of the wire.
表2のAGSは、線材圧延する段階で仕上げ圧延前のオーステナイト結晶粒の平均サイズを意味し、ASTM E112規格を用いて測定した。 AGS in Table 2 means the average size of austenite grains before finish rolling at the wire rod rolling stage, and was measured using the ASTM E112 standard.
フェライト脱炭層の厚さは、線材圧延後に鋼表面に脱炭でできたフェライトのみからなる層の厚さを測定したものであり、全脱炭層の厚さは、脱炭層の表面から母材の炭素濃度と同じ炭素濃度を有する地点までの垂直距離を測定したものである。 The thickness of the ferrite decarburized layer is the thickness of the ferrite-only layer formed by decarburization on the surface of the steel after wire rod rolling. It measures the vertical distance to a point with the same carbon concentration as the carbon concentration.
表2の線材を直径10mmの鋼線に伸線した後に加熱した後、高圧水冷を行った。高圧水冷以後にはテンパリングを行い、一般水冷を行って最終の超高強度ばね用鋼線を製造した。下記の表3において加熱温度は、伸線した後鋼線を加熱した温度を意味し、テンパリング温度は、高圧水冷以後に鋼線をテンパリングした温度を意味する。RAは、断面減少率を意味する。 The wires in Table 2 were drawn into steel wires with a diameter of 10 mm, heated, and then cooled with high-pressure water. After high-pressure water cooling, tempering was performed, and general water cooling was performed to produce the final steel wire for ultra-high strength springs. In Table 3 below, the heating temperature means the temperature at which the steel wire is heated after wire drawing, and the tempering temperature means the temperature at which the steel wire is tempered after high-pressure water cooling. RA means area reduction rate.
表1~3を参照すると、発明例1、2は、本発明の合金組成、式(1)及び製造条件を満たした結果、線材の低温組織及びフェライト脱炭層の形成が抑制され、Nbを添加して線材圧延時に仕上げ圧延前のオーステナイト結晶粒が微細化された。また、表3に示すように引張強度が1700MPa以上であり、断面減少率が35%以上であった。一方、比較例1は、Si含量が高く、冷却時にフェライト脱炭層が厚く形成された。比較例2は、式(1)の値が0.77よりも低く、目標とする1700MPa以上の強度を確保できなかった。比較例3は、Nbが添加されず、結晶粒粗大化が発生して目標とするオーステナイト結晶粒の平均サイズを確保できなかった。これにより、断面減少率(RA)がNb添加素材に比べて低かった。 Referring to Tables 1 to 3, invention examples 1 and 2 satisfy the alloy composition, formula (1), and manufacturing conditions of the present invention. As a result, the austenite grains before finish rolling were refined during wire rolling. Moreover, as shown in Table 3, the tensile strength was 1700 MPa or more, and the area reduction rate was 35% or more. On the other hand, Comparative Example 1 had a high Si content and formed a thick ferrite decarburized layer during cooling. In Comparative Example 2, the value of formula (1) was lower than 0.77, and the target strength of 1700 MPa or more could not be secured. In Comparative Example 3, Nb was not added, grain coarsening occurred, and the target average size of austenite grains could not be secured. As a result, the area reduction rate (RA) was lower than that of the Nb-added material.
以上、本発明の例示的な実施形態を説明したが、本発明は、これに限定されず、当該技術分野において通常の知識を有する者であれば、本発明の概念と技術範囲から逸脱しない範囲内で様々な変更及び変形が可能であることを理解できる。 Although the exemplary embodiments of the present invention have been described above, the present invention is not limited thereto, and any person having ordinary knowledge in the relevant technical field can make modifications within the concept and technical scope of the present invention. It can be understood that various modifications and variations are possible within.
本発明による超高強度ばね用線材は、自動車、バイク、各種移動手段の懸架ばねまたは様々な産業分野において用いられるばねとして適用される。
The ultra-high-strength spring wire according to the present invention is applied as suspension springs for automobiles, motorcycles, various means of transportation, or springs used in various industrial fields.
Claims (15)
式(1)C+1/6*Mn+1/5*Cr+1/24*Si
(前記式(1)において、C、Mn、Cr、Siは、各元素の含量(重量%)を意味する。) % by weight, C: 0.55-0.65%, Si: 0.5-0.9%, Mn: 0.3-0.8%, Cr: 0.3-0.6%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.005% or less, Nb: over 0%, 0.04% or less, the balance being Fe and inevitable impurities A wire rod for an ultra-high-strength spring, characterized in that the value of the following formula (1) is 0.77 or more and 0.83 or less.
Formula (1) C + 1/6 * Mn + 1/5 * Cr + 1/24 * Si
(In the above formula (1), C, Mn, Cr, and Si mean the content (% by weight) of each element.)
硬度が400Hv以上のベイナイトとマルテンサイトの面積分率の合計が1%以下であることを特徴とする請求項1に記載の超高強度ばね用線材。 On a cross section perpendicular to the longitudinal direction,
2. A wire rod for an ultrahigh-strength spring according to claim 1, wherein the total area fraction of bainite and martensite having a hardness of 400 Hv or more is 1% or less.
以下の式(1)の値が0.77以上、0.83以下のインゴットを加熱温度900~1100℃で180分以内で均質化熱処理する段階と、
仕上げ圧延温度を730~Ae3℃で線材圧延する段階と、
3℃/s以下の冷却速度で冷却する段階と、を含むことを特徴とする超高強度ばね用線材の製造方法。
式(1)C+1/6*Mn+1/5*Cr+1/24*Si
(前記式(1)において、C、Mn、Cr、Siは、各元素の含量(重量%)を意味する。) % by weight, C: 0.55-0.65%, Si: 0.5-0.9%, Mn: 0.3-0.8%, Cr: 0.3-0.6%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.005% or less, Nb: over 0%, 0.04% or less, the balance being Fe and inevitable impurities consists of
Homogenizing heat treatment of an ingot having a value of the following formula (1) of 0.77 or more and 0.83 or less at a heating temperature of 900 to 1100 ° C. within 180 minutes;
A step of wire rod rolling at a finish rolling temperature of 730 to Ae3 ° C.;
and cooling at a cooling rate of 3° C./s or less.
Formula (1) C + 1/6 * Mn + 1/5 * Cr + 1/24 * Si
(In the above formula (1), C, Mn, Cr, and Si mean the content (% by weight) of each element.)
面積分率で、テンパードマルテンサイトを90%以上含むことを特徴とする超高強度ばね用鋼線。
式(1)0.77≦C+1/6*Mn+1/5*Cr+1/24*Si≦0.83
(前記式(1)において、C、Mn、Cr、Siは、各元素の含量(重量%)を意味する。) % by weight, C: 0.55-0.65%, Si: 0.5-0.9%, Mn: 0.3-0.8%, Cr: 0.3-0.6%, P: 0.015% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.005% or less, Nb: over 0%, 0.04% or less, the balance being Fe and inevitable impurities The value of the following formula (1) is 0.77 or more and 0.83 or less,
A steel wire for an ultra-high-strength spring containing 90% or more of tempered martensite in terms of area fraction.
Formula (1) 0.77 ≤ C + 1/6 * Mn + 1/5 * Cr + 1/24 * Si ≤ 0.83
(In the above formula (1), C, Mn, Cr, and Si mean the content (% by weight) of each element.)
11. The steel wire for ultra-high strength springs according to claim 10, wherein the cross-sectional reduction rate is 35% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024035371A JP2024060017A (en) | 2019-12-20 | 2024-03-07 | Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0172003 | 2019-12-20 | ||
KR1020190172003A KR102326263B1 (en) | 2019-12-20 | 2019-12-20 | Steel wire rod, steel wire for ultra high strength spring and manufacturing mehtod thereof |
PCT/KR2020/008091 WO2021125471A1 (en) | 2019-12-20 | 2020-06-22 | Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024035371A Division JP2024060017A (en) | 2019-12-20 | 2024-03-07 | Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023508314A true JP2023508314A (en) | 2023-03-02 |
Family
ID=76477565
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022538152A Pending JP2023508314A (en) | 2019-12-20 | 2020-06-22 | Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof |
JP2024035371A Pending JP2024060017A (en) | 2019-12-20 | 2024-03-07 | Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024035371A Pending JP2024060017A (en) | 2019-12-20 | 2024-03-07 | Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4063531A4 (en) |
JP (2) | JP2023508314A (en) |
KR (1) | KR102326263B1 (en) |
CN (1) | CN114929923B (en) |
WO (1) | WO2021125471A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7667279B2 (en) | 2020-12-18 | 2025-04-22 | ポスコ カンパニー リミテッド | Ultra-high strength spring wire rod, steel wire and manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113943895B (en) * | 2021-10-15 | 2022-04-22 | 本钢板材股份有限公司 | A kind of high-quality spring steel wire and its production process |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03130347A (en) * | 1989-10-13 | 1991-06-04 | Sumitomo Metal Ind Ltd | High stress spring steel |
JPH06322480A (en) * | 1993-05-13 | 1994-11-22 | Sumitomo Metal Ind Ltd | Wire rod for reinforced high strength steel wire and method for manufacturing the same |
JPH10196697A (en) * | 1997-01-10 | 1998-07-31 | Kobe Steel Ltd | High strength spring with excellent environmental brittleness resistance |
JP2000119756A (en) * | 1998-10-16 | 2000-04-25 | Pohang Iron & Steel Co Ltd | Wire rod for high strength steel wire excellent in wire drawability and production of high strength steel wire |
JP2004011002A (en) * | 2002-06-10 | 2004-01-15 | Sumitomo Metal Ind Ltd | Wire and wire for wire drawing |
US20170175221A1 (en) * | 2014-02-11 | 2017-06-22 | Institute Of Research Of Iron And Steel, Jiangsu Province/Sha-Steel, Co. Ltd | High-carbon steel wire rod and preparation method therefor |
JP2017166037A (en) * | 2016-03-17 | 2017-09-21 | 新日鐵住金株式会社 | Steel and spring for high strength spring |
WO2018230717A1 (en) * | 2017-06-15 | 2018-12-20 | 新日鐵住金株式会社 | Rolled wire for spring steel |
CN109161803A (en) * | 2018-09-29 | 2019-01-08 | 武汉钢铁有限公司 | A kind of 1550MPa grades of spring flat steel and its production method |
WO2019164015A1 (en) * | 2018-02-26 | 2019-08-29 | 日本製鉄株式会社 | Wire rod, steel wire, and aluminum-coated steel wire |
JP2019178405A (en) * | 2018-03-30 | 2019-10-17 | Jfeスチール株式会社 | Production method of steel wire |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100311795B1 (en) | 1997-12-19 | 2001-11-22 | 이구택 | Spring steel and its manufacturing method |
KR100516516B1 (en) * | 2001-12-24 | 2005-09-26 | 주식회사 포스코 | A method for manufacturing spring steel without ferrite decarburization |
KR100940674B1 (en) * | 2002-10-18 | 2010-02-08 | 주식회사 포스코 | Manufacturing method of spring steel wire |
CN102268604A (en) * | 2007-07-20 | 2011-12-07 | 株式会社神户制钢所 | Steel wire material for spring and its producing method |
US9097306B2 (en) * | 2010-08-30 | 2015-08-04 | Kobe Steel, Ltd. | Steel wire rod for high-strength spring excellent in wire drawability, manufacturing method therefor, and high-strength spring |
JP5541418B2 (en) * | 2011-08-18 | 2014-07-09 | 新日鐵住金株式会社 | Spring steel and spring |
EP3055436B1 (en) * | 2013-10-11 | 2017-08-30 | N.V. Bekaert S.A. | High tensile strength steel wire |
KR20150089846A (en) * | 2014-01-28 | 2015-08-05 | 현대제철 주식회사 | Spring and method of manufacturing the same |
EP3250719B1 (en) * | 2015-01-30 | 2019-09-04 | NV Bekaert SA | High tensile steel wire |
KR101940873B1 (en) * | 2016-12-22 | 2019-01-21 | 주식회사 포스코 | Steel wire rod and steel wire having high toughness and method for manufacturing thereof |
CN107299291B (en) * | 2017-06-30 | 2019-05-24 | 武汉钢铁有限公司 | A kind of spring steel and its skin decarburization control technique |
CN108179355A (en) * | 2018-01-31 | 2018-06-19 | 中钢集团郑州金属制品研究院有限公司 | A kind of high-intensity and high-tenacity spring steel wire and its preparation process |
-
2019
- 2019-12-20 KR KR1020190172003A patent/KR102326263B1/en active Active
-
2020
- 2020-06-22 JP JP2022538152A patent/JP2023508314A/en active Pending
- 2020-06-22 WO PCT/KR2020/008091 patent/WO2021125471A1/en unknown
- 2020-06-22 CN CN202080093502.7A patent/CN114929923B/en active Active
- 2020-06-22 EP EP20903249.9A patent/EP4063531A4/en active Pending
-
2024
- 2024-03-07 JP JP2024035371A patent/JP2024060017A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03130347A (en) * | 1989-10-13 | 1991-06-04 | Sumitomo Metal Ind Ltd | High stress spring steel |
JPH06322480A (en) * | 1993-05-13 | 1994-11-22 | Sumitomo Metal Ind Ltd | Wire rod for reinforced high strength steel wire and method for manufacturing the same |
JPH10196697A (en) * | 1997-01-10 | 1998-07-31 | Kobe Steel Ltd | High strength spring with excellent environmental brittleness resistance |
JP2000119756A (en) * | 1998-10-16 | 2000-04-25 | Pohang Iron & Steel Co Ltd | Wire rod for high strength steel wire excellent in wire drawability and production of high strength steel wire |
JP2004011002A (en) * | 2002-06-10 | 2004-01-15 | Sumitomo Metal Ind Ltd | Wire and wire for wire drawing |
US20170175221A1 (en) * | 2014-02-11 | 2017-06-22 | Institute Of Research Of Iron And Steel, Jiangsu Province/Sha-Steel, Co. Ltd | High-carbon steel wire rod and preparation method therefor |
JP2017166037A (en) * | 2016-03-17 | 2017-09-21 | 新日鐵住金株式会社 | Steel and spring for high strength spring |
WO2018230717A1 (en) * | 2017-06-15 | 2018-12-20 | 新日鐵住金株式会社 | Rolled wire for spring steel |
WO2019164015A1 (en) * | 2018-02-26 | 2019-08-29 | 日本製鉄株式会社 | Wire rod, steel wire, and aluminum-coated steel wire |
JP2019178405A (en) * | 2018-03-30 | 2019-10-17 | Jfeスチール株式会社 | Production method of steel wire |
CN109161803A (en) * | 2018-09-29 | 2019-01-08 | 武汉钢铁有限公司 | A kind of 1550MPa grades of spring flat steel and its production method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7667279B2 (en) | 2020-12-18 | 2025-04-22 | ポスコ カンパニー リミテッド | Ultra-high strength spring wire rod, steel wire and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP4063531A1 (en) | 2022-09-28 |
CN114929923B (en) | 2023-10-20 |
WO2021125471A1 (en) | 2021-06-24 |
EP4063531A4 (en) | 2023-12-06 |
CN114929923A (en) | 2022-08-19 |
JP2024060017A (en) | 2024-05-01 |
KR102326263B1 (en) | 2021-11-15 |
KR20210079830A (en) | 2021-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016534230A (en) | High hardness hot rolled steel product and method for producing the same | |
JP2022513964A (en) | Cold-rolled steel sheets with excellent workability, hot-dip galvanized steel sheets, and methods for manufacturing these. | |
CN110669914B (en) | A kind of high-strength automobile axle housing steel for cold stamping and production method thereof | |
JP4381355B2 (en) | Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof | |
CN113737087A (en) | Ultrahigh-strength dual-phase steel and manufacturing method thereof | |
JP2024060017A (en) | Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof | |
CN107130172B (en) | 400HBW grades of Brinell hardness whole constrictive type high tenacity easily weld special thick wear-resisting steel plate and its manufacturing method | |
JP5372944B2 (en) | Deep drawing high strength steel and manufacturing method thereof | |
JP6152375B2 (en) | Steel for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance, manufacturing method thereof, and deep drawing product manufacturing method | |
JP2022510212A (en) | High-strength steel with excellent ductility and low-temperature toughness and its manufacturing method | |
JPH11236644A (en) | Steel for induction hardening excellent in high strength characteristics and low heat treatment distortion characteristics and its manufacturing method | |
JP6684353B2 (en) | Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same | |
JP2025500864A (en) | Cold forging wire rod with excellent drilling characteristics and screw parts and manufacturing method thereof | |
CN112877591A (en) | High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof | |
JP7427764B2 (en) | High-strength spring wire rod and steel wire and manufacturing method thereof | |
WO2018061101A1 (en) | Steel | |
JP6390685B2 (en) | Non-tempered steel and method for producing the same | |
JP2001303172A (en) | Case hardening boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method | |
KR20090071177A (en) | High strength hot forming hot rolled steel sheet with reduced cracking during cooling and winding and manufacturing method | |
CN111647803A (en) | Copper-containing high-strength steel and preparation method thereof | |
JP7439241B2 (en) | Steel material with excellent strength and low-temperature impact toughness and its manufacturing method | |
KR101443445B1 (en) | Non-heated type high strength hot-rolled steel sheet and method of manufacturing the same | |
KR20130072881A (en) | High carbon hot/cold rolled steel coil and manufactureing method thereof | |
KR102470032B1 (en) | Manufacturing method for alloy steel having excellent strength and elongation | |
JP2024500146A (en) | Ultra-high strength spring wire rod, steel wire and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230927 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20231107 |