JP2023113549A - Water-soluble chelating polymer and method for producing the same - Google Patents
Water-soluble chelating polymer and method for producing the same Download PDFInfo
- Publication number
- JP2023113549A JP2023113549A JP2022162036A JP2022162036A JP2023113549A JP 2023113549 A JP2023113549 A JP 2023113549A JP 2022162036 A JP2022162036 A JP 2022162036A JP 2022162036 A JP2022162036 A JP 2022162036A JP 2023113549 A JP2023113549 A JP 2023113549A
- Authority
- JP
- Japan
- Prior art keywords
- chelate
- group
- polymer
- water
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 100
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 125000000524 functional group Chemical group 0.000 claims abstract description 81
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 56
- 150000002500 ions Chemical class 0.000 claims abstract description 56
- 229920006318 anionic polymer Polymers 0.000 claims abstract description 44
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 25
- 125000000542 sulfonic acid group Chemical group 0.000 claims abstract description 21
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 12
- 125000002091 cationic group Chemical group 0.000 claims abstract description 7
- 239000013522 chelant Substances 0.000 claims description 162
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 150000001875 compounds Chemical class 0.000 claims description 22
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 21
- 125000003277 amino group Chemical group 0.000 claims description 15
- 239000002253 acid Substances 0.000 claims description 14
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical group [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 12
- 230000002209 hydrophobic effect Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims description 5
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoramidic acid Chemical group NP(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 claims description 5
- 229920001284 acidic polysaccharide Polymers 0.000 claims description 4
- 150000004805 acidic polysaccharides Chemical group 0.000 claims description 4
- 239000000839 emulsion Substances 0.000 claims description 2
- 235000010443 alginic acid Nutrition 0.000 description 53
- 239000000783 alginic acid Substances 0.000 description 53
- 229920000615 alginic acid Polymers 0.000 description 53
- 229960001126 alginic acid Drugs 0.000 description 53
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 48
- -1 hydrogen ion form alginic acid Chemical class 0.000 description 48
- 150000004781 alginic acids Chemical class 0.000 description 37
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 33
- 238000006243 chemical reaction Methods 0.000 description 32
- 229910001437 manganese ion Inorganic materials 0.000 description 31
- 238000010521 absorption reaction Methods 0.000 description 24
- 229910052757 nitrogen Inorganic materials 0.000 description 24
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 22
- 239000000706 filtrate Substances 0.000 description 16
- 238000005227 gel permeation chromatography Methods 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 15
- 238000000921 elemental analysis Methods 0.000 description 14
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 11
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- FTEDXVNDVHYDQW-UHFFFAOYSA-N BAPTA Chemical compound OC(=O)CN(CC(O)=O)C1=CC=CC=C1OCCOC1=CC=CC=C1N(CC(O)=O)CC(O)=O FTEDXVNDVHYDQW-UHFFFAOYSA-N 0.000 description 9
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 150000002772 monosaccharides Chemical group 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000007762 w/o emulsion Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 6
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical group OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- 229920002125 Sokalan® Polymers 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- HAXVIVNBOQIMTE-UHFFFAOYSA-L disodium;2-(carboxylatomethylamino)acetate Chemical compound [Na+].[Na+].[O-]C(=O)CNCC([O-])=O HAXVIVNBOQIMTE-UHFFFAOYSA-L 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 235000010724 Wisteria floribunda Nutrition 0.000 description 4
- YSBGCHXLMBAKPV-UHFFFAOYSA-L disodium;2-(carboxylatomethylamino)acetate;hydrate Chemical compound O.[Na+].[Na+].[O-]C(=O)CNCC([O-])=O YSBGCHXLMBAKPV-UHFFFAOYSA-L 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000004584 polyacrylic acid Substances 0.000 description 4
- MGRVRXRGTBOSHW-UHFFFAOYSA-N (aminomethyl)phosphonic acid Chemical group NCP(O)(O)=O MGRVRXRGTBOSHW-UHFFFAOYSA-N 0.000 description 3
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 3
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 150000004804 polysaccharides Chemical class 0.000 description 3
- 235000010413 sodium alginate Nutrition 0.000 description 3
- 239000000661 sodium alginate Substances 0.000 description 3
- 229940005550 sodium alginate Drugs 0.000 description 3
- 239000001593 sorbitan monooleate Substances 0.000 description 3
- 235000011069 sorbitan monooleate Nutrition 0.000 description 3
- 229940035049 sorbitan monooleate Drugs 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- AEMOLEFTQBMNLQ-BZINKQHNSA-N D-Guluronic Acid Chemical compound OC1O[C@H](C(O)=O)[C@H](O)[C@@H](O)[C@H]1O AEMOLEFTQBMNLQ-BZINKQHNSA-N 0.000 description 2
- AEMOLEFTQBMNLQ-VANFPWTGSA-N D-mannopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@@H]1O AEMOLEFTQBMNLQ-VANFPWTGSA-N 0.000 description 2
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- JYXGIOKAKDAARW-UHFFFAOYSA-N N-(2-hydroxyethyl)iminodiacetic acid Chemical group OCCN(CC(O)=O)CC(O)=O JYXGIOKAKDAARW-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- AEMOLEFTQBMNLQ-UHFFFAOYSA-N beta-D-galactopyranuronic acid Natural products OC1OC(C(O)=O)C(O)C(O)C1O AEMOLEFTQBMNLQ-UHFFFAOYSA-N 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 229950007919 egtazic acid Drugs 0.000 description 2
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- AOGQPLXWSUTHQB-UHFFFAOYSA-N hexyl acetate Chemical compound CCCCCCOC(C)=O AOGQPLXWSUTHQB-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical group OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 125000005496 phosphonium group Chemical group 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- QQVDJLLNRSOCEL-UHFFFAOYSA-N (2-aminoethyl)phosphonic acid Chemical compound [NH3+]CCP(O)([O-])=O QQVDJLLNRSOCEL-UHFFFAOYSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- GSZQTIFGANBTNF-UHFFFAOYSA-N (3-aminopropyl)phosphonic acid Chemical compound NCCCP(O)(O)=O GSZQTIFGANBTNF-UHFFFAOYSA-N 0.000 description 1
- MMTOZJBMQSASCE-UHFFFAOYSA-N 1,4-dipyridin-2-yl-2,3-bis(pyridin-2-ylmethyl)butane-2,3-diamine Chemical compound C=1C=CC=NC=1CC(C(N)(CC=1N=CC=CC=1)CC=1N=CC=CC=1)(N)CC1=CC=CC=N1 MMTOZJBMQSASCE-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FOUZISDNESEYLX-UHFFFAOYSA-N 2-(2-hydroxyethylazaniumyl)acetate Chemical group OCCNCC(O)=O FOUZISDNESEYLX-UHFFFAOYSA-N 0.000 description 1
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- ULRJULIGAUPYCB-UHFFFAOYSA-N C(C)(=O)O.C(C)(=O)O.C(C)(=O)O.C(C)(=O)O.NCCC(C(CCN)O)O Chemical compound C(C)(=O)O.C(C)(=O)O.C(C)(=O)O.C(C)(=O)O.NCCC(C(CCN)O)O ULRJULIGAUPYCB-UHFFFAOYSA-N 0.000 description 1
- ONAIRGOTKJCYEY-XXDXYRHBSA-N CCCCCCCCCCCCCCCCCC(O)=O.O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 Chemical compound CCCCCCCCCCCCCCCCCC(O)=O.O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 ONAIRGOTKJCYEY-XXDXYRHBSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- FCKYPQBAHLOOJQ-UHFFFAOYSA-N Cyclohexane-1,2-diaminetetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)C1CCCCC1N(CC(O)=O)CC(O)=O FCKYPQBAHLOOJQ-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- FSVCELGFZIQNCK-UHFFFAOYSA-N N,N-bis(2-hydroxyethyl)glycine Chemical compound OCCN(CCO)CC(O)=O FSVCELGFZIQNCK-UHFFFAOYSA-N 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- DGWOWDJDIBPYOR-UHFFFAOYSA-N O.O.[Na].[Na].[Na].[Na].OC(=O)CN(CCN(CC(O)=O)CC(O)=O)CC(O)=O Chemical compound O.O.[Na].[Na].[Na].[Na].OC(=O)CN(CCN(CC(O)=O)CC(O)=O)CC(O)=O DGWOWDJDIBPYOR-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 229920002230 Pectic acid Polymers 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000010492 gellan gum Nutrition 0.000 description 1
- 239000000216 gellan gum Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004676 glycans Polymers 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 238000012844 infrared spectroscopy analysis Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- VNDQAQJERHGYCM-UHFFFAOYSA-N n,n-bis[hydroxy(methoxy)phosphoryl]-methoxyphosphonamidic acid Chemical group COP(O)(=O)N(P(O)(=O)OC)P(O)(=O)OC VNDQAQJERHGYCM-UHFFFAOYSA-N 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- LCLHHZYHLXDRQG-ZNKJPWOQSA-N pectic acid Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)O[C@H](C(O)=O)[C@@H]1OC1[C@H](O)[C@@H](O)[C@@H](OC2[C@@H]([C@@H](O)[C@@H](O)[C@H](O2)C(O)=O)O)[C@@H](C(O)=O)O1 LCLHHZYHLXDRQG-ZNKJPWOQSA-N 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 239000010318 polygalacturonic acid Substances 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- UDYFLDICVHJSOY-UHFFFAOYSA-N sulfur trioxide-pyridine complex Substances O=S(=O)=O.C1=CC=NC=C1 UDYFLDICVHJSOY-UHFFFAOYSA-N 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
本発明は、水溶性キレートポリマー及びその製造方法に関するものである。 TECHNICAL FIELD The present invention relates to a water-soluble chelate polymer and a method for producing the same.
従来、金属イオンとの間でキレートを形成してこれらを選択的に捕捉するキレート官能基が導入されたキレート樹脂は、金属イオン、特に重金属イオンに対して優れた選択性を有しているため、排水処理等の水処理分野で重金属の除去に用いられてきた。近年、半導体の高集積化やリチウムイオン電池の長寿命化要請に対応して、有機溶媒中の微量重金属イオンの除去についてもニーズが高まってきており、キレート樹脂による有機溶媒の精製が行われている。しかしながら、従来のキレート樹脂はジビニルベンゼン等の架橋剤により高度に架橋されたビーズ状粒子であるため、樹脂内部への重金属イオンの拡散が遅く、処理速度を遅くし、ゆっくりと通液しないと重金属イオンの捕捉効率が低下してしまうといった問題点を有していた。 Conventionally, chelating resins introduced with chelate functional groups that form chelates with metal ions and selectively capture them have excellent selectivity for metal ions, especially heavy metal ions. It has been used to remove heavy metals in the field of water treatment such as wastewater treatment. In recent years, in response to the demand for higher integration of semiconductors and longer life of lithium-ion batteries, the need for removal of trace heavy metal ions in organic solvents has increased. there is However, since conventional chelate resins are bead-like particles that are highly crosslinked with a crosslinking agent such as divinylbenzene, the diffusion of heavy metal ions into the interior of the resin is slow, slowing down the treatment speed and slowing down the flow of heavy metal ions. There is a problem that the ion trapping efficiency is lowered.
上記ビーズ状キレート樹脂の問題点を解決するため、繊維状のキレート樹脂が提案されている(例えば、特許文献1、2参照。)。繊維状のキレート樹脂は比表面積が大きく、表面近傍にキレート官能基が導入されているため重金属イオンの捕捉速度が速く、上記ビーズ状キレート樹脂の欠点を改善できるものであった。しかし、重金属イオンの除去レベルに対する要求は、近年、ますます高くなっており、上記繊維状キレート樹脂を用いても除去レベルを満足できないケースが増えてきている。 In order to solve the problems of the bead-like chelate resin, fibrous chelate resins have been proposed (see, for example, Patent Documents 1 and 2). The fibrous chelate resin has a large specific surface area and a chelate functional group introduced in the vicinity of the surface, so that it captures heavy metal ions at a high rate and can improve the drawbacks of the bead-like chelate resin. However, in recent years, the demand for a removal level of heavy metal ions has become higher and higher, and there are an increasing number of cases where the removal level cannot be satisfied even with the use of the fibrous chelate resin.
本発明は、微量の重金属イオンを迅速に捕捉し、短時間でppmレベル以下まで重金属イオン量を低減可能な水溶性キレートポリマーを提供することを目的とする。 An object of the present invention is to provide a water-soluble chelate polymer capable of quickly trapping trace amounts of heavy metal ions and reducing the amount of heavy metal ions to the ppm level or less in a short period of time.
本発明者らは、上記課題を解決するべく鋭意検討を行った結果、カルボキシル基、スルホン酸基および/または硫酸基を有するアニオン性ポリマーに、イオン結合を介してキレート官能基を導入して得られる水溶性キレートポリマーを用いることで前記目的が達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have obtained by introducing a chelate functional group into an anionic polymer having a carboxyl group, a sulfonic acid group and/or a sulfuric acid group via an ionic bond. The present inventors have found that the above objects can be achieved by using a water-soluble chelate polymer obtained by the present invention, and have completed the present invention.
すなわち、本発明の各態様は、以下に示す[1]~[5]である。
[1] カルボキシル基、スルホン酸基および/または硫酸基を有するアニオン性ポリマーと、カチオン性官能基を有するキレート官能基がイオン結合を介して結合している水溶性キレートポリマーであって、キレート官能基を0.2~6mmol/g含み、重量平均分子量が30,000~1,000,000である、水溶性キレートポリマー。
[2] 前記アニオン性ポリマーが酸性多糖類である、上記[1]に記載の水溶性キレートポリマー。
[3] 前記キレート官能基がアミノカルボン酸基又はアミノホスホン酸基である、上記[1]又は[2]に記載の水溶性キレートポリマー。
[4] カルボキシル基、スルホン酸基および/または硫酸基を有するアニオン性ポリマーを酸と接触させ、カルボキシル基、スルホン酸基および/または硫酸基を水素イオン形とした後、アミノ基を有するキレート官能基含有化合物と接触させ、キレート官能基をアニオン性ポリマーに導入する、水溶性キレートポリマーの製造方法。
[5] 水素イオン形のカルボキシル基、スルホン酸基および/または硫酸基を有するアニオン性ポリマーを疎水性溶媒に分散させ、アミノ基を有するキレート官能基含有化合物を水に溶解させ、両者を混合することで油中水滴型エマルションを調製し、キレート官能基をアニオン性ポリマーに導入することを特徴とする、[4]に記載の水溶性キレートポリマーの製造方法。
[6] 上記[1]~[3]に記載の水溶性キレートポリマーを重金属イオンを含有する溶液に添加し、該キレートポリマーで重金属イオンを捕捉する、重金属イオンの捕捉方法。
That is, each aspect of the present invention is [1] to [5] shown below.
[1] A water-soluble chelate polymer in which an anionic polymer having a carboxyl group, a sulfonic acid group and/or a sulfate group and a chelate functional group having a cationic functional group are bound via an ionic bond, the chelate functional A water-soluble chelate polymer containing groups of 0.2 to 6 mmol/g and having a weight average molecular weight of 30,000 to 1,000,000.
[2] The water-soluble chelate polymer according to [1] above, wherein the anionic polymer is an acidic polysaccharide.
[3] The water-soluble chelate polymer according to [1] or [2] above, wherein the chelate functional group is an aminocarboxylic acid group or an aminophosphonic acid group.
[4] contacting an anionic polymer having a carboxyl group, a sulfonic acid group and/or a sulfuric acid group with an acid to convert the carboxyl group, the sulfonic acid group and/or the sulfuric acid group into a hydrogen ion form, and then a chelate function having an amino group; A method for producing a water-soluble chelating polymer comprising contacting with a group-containing compound to introduce chelating functional groups into an anionic polymer.
[5] Dispersing an anionic polymer having a hydrogen ion type carboxyl group, a sulfonic acid group and/or a sulfate group in a hydrophobic solvent, dissolving a chelate functional group-containing compound having an amino group in water, and mixing the two. The method for producing a water-soluble chelate polymer according to [4], characterized by preparing a water-in-oil type emulsion and introducing a chelate functional group into an anionic polymer.
[6] A method for capturing heavy metal ions, comprising adding the water-soluble chelate polymer according to any one of [1] to [3] above to a solution containing heavy metal ions, and capturing the heavy metal ions with the chelate polymer.
なお、本発明の水溶性キレートポリマーによって前記目的が達成される理由に関し、本発明者らは以下のように推察する。 The present inventors speculate as follows regarding the reason why the above object is achieved by the water-soluble chelate polymer of the present invention.
すなわち、本発明のキレートポリマーは水溶液の作成が可能であり、高極性で比表面積の大きな微粒子担体にも簡便にコーティングでき、コーティングされた微粒子担体はキレート官能基が表面近傍に配置されていることと、比表面積が大きいこととの相乗作用で有機溶媒中の微量重金属イオンを短時間で迅速に吸着・除去できる。 That is, the chelate polymer of the present invention can be prepared as an aqueous solution, can be easily coated on a highly polar microparticle carrier having a large specific surface area, and the chelate functional group is arranged near the surface of the coated microparticle carrier. With the synergistic action of the large specific surface area, trace heavy metal ions in the organic solvent can be rapidly adsorbed and removed in a short time.
なお、前記の繊維状のキレート樹脂で同様の効果を得ようとすると、繊維状キレート樹脂を粉砕して平均粒径を5μm以下にする必要があるが、繊維状キレート樹脂の微粉砕は困難であり、コスト面からも適当ではない。 In order to obtain the same effect with the fibrous chelate resin, it is necessary to pulverize the fibrous chelate resin to an average particle size of 5 μm or less, but fine pulverization of the fibrous chelate resin is difficult. Yes, it is not suitable from the viewpoint of cost.
本発明によれば、微量の重金属イオンを迅速に捕捉し、短時間でppmレベル以下まで重金属イオン量を低減可能な水溶性キレートポリマーを簡便な方法で製造し、提供することが可能となる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to produce and provide a water-soluble chelate polymer capable of quickly trapping trace amounts of heavy metal ions and reducing the amount of heavy metal ions to the ppm level or less in a short period of time.
以下、本発明をその好適な実施形態に即して詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail with reference to its preferred embodiments.
本発明の一態様である水溶性キレートポリマーは、カルボキシル基、スルホン酸基および/または硫酸基を有するアニオン性ポリマーと、カチオン性官能基を有するキレート官能基がイオン結合を介して結合している水溶性キレートポリマーであって、キレート官能基を0.2~6mmol/g含み、重量平均分子量が30,000~1,000,000である、水溶性キレートポリマーである。本発明で言う「水溶性」とは、水への溶解度が0.1~50g/100gであることを指す。「アニオン性ポリマー」とは、キレート官能基をイオン結合を介して固定化可能なポリマーを指し、キレート官能基を固定化する官能基としてカルボキシル基、スルホン酸基および/または硫酸基を有しているポリマーである。カルボキシル基、スルホン酸基および/または硫酸基を有するアニオン性ポリマーの若干の例としては、ポリ(アクリル酸)、ポリ(メタクリル酸)、ポリ(イタコン酸)、ポリ(マレイン酸)、エチレン‐マレイン酸共重合体、イソブテン‐マレイン酸共重合体、メチルビニルエーテル‐マレイン酸共重合体、スチレン‐マレイン酸共重合体、ポリ(フマル酸)、ポリ(ビニルスルホン酸)、ポリ(スチレンスルホン酸)、ポリ(2-スルホエチルメタクリレート)、ポリ(2-スルホエチルアクリレート)、ポリ(3-スルホプロピルメタクリレート)、ポリ(3-スルホプロピルアクリレート)、ポリ(4-スルホブチルメタクリレート)、ポリ(4-スルホブチルアクリレート)、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリ(2-メタクリルアミド-2-メチルプロパンスルホン酸)及びこれらの共重合体からなるビニルポリマー;カルボキシメチルセルロース、ジェランガム、アルギン酸、硫酸化アルギン酸、カラギーナン、キサンタンガム、コンドロイチン硫酸、ヘパリン、ヒアルロン酸、ペクチン酸、アラビアガム、寒天、トラガントガム等の酸性多糖類が挙げられる。これらのポリマーは、水溶性を維持できる範囲で他のモノマーと共重合しても差し支えない。これらのアニオン性ポリマーの中で、機械的強度に優れ、耐酸化性も高い酸性多糖類が好ましく用いられ、アルギン酸や硫酸化アルギン酸がさらに好ましく用いられる。アルギン酸の構成成分であるマンヌロン酸とグルロン酸の比率は任意であり、柔軟なゲルを生成するマンヌロン酸比率の高いアルギン酸、剛直なゲルが得られるグルロン酸比率の高いアルギン酸、いずれも用いることができる。 A water-soluble chelate polymer, which is one aspect of the present invention, comprises an anionic polymer having a carboxyl group, a sulfonic acid group and/or a sulfate group, and a chelate functional group having a cationic functional group, which are bonded via an ionic bond. A water-soluble chelating polymer containing 0.2 to 6 mmol/g of chelating functional groups and having a weight average molecular weight of 30,000 to 1,000,000. "Water-soluble" as used in the present invention means that the solubility in water is 0.1 to 50 g/100 g. An "anionic polymer" refers to a polymer capable of immobilizing a chelate functional group via an ionic bond, and has a carboxyl group, a sulfonic acid group and/or a sulfate group as a functional group for immobilizing the chelate functional group. It is a polymer with Some examples of anionic polymers with carboxyl, sulfonate and/or sulfate groups are poly(acrylic acid), poly(methacrylic acid), poly(itaconic acid), poly(maleic acid), ethylene-malein acid copolymers, isobutene-maleic acid copolymers, methyl vinyl ether-maleic acid copolymers, styrene-maleic acid copolymers, poly(fumaric acid), poly(vinylsulfonic acid), poly(styrenesulfonic acid), Poly(2-sulfoethyl methacrylate), Poly(2-sulfoethyl acrylate), Poly(3-sulfopropyl methacrylate), Poly(3-sulfopropyl acrylate), Poly(4-sulfobutyl methacrylate), Poly(4-sulfo butyl acrylate), poly(2-acrylamido-2-methylpropanesulfonic acid), poly(2-methacrylamido-2-methylpropanesulfonic acid) and vinyl polymers composed of these copolymers; carboxymethylcellulose, gellan gum, alginic acid, Acidic polysaccharides such as sulfated alginic acid, carrageenan, xanthan gum, chondroitin sulfate, heparin, hyaluronic acid, pectic acid, gum arabic, agar and gum tragacanth. These polymers may be copolymerized with other monomers as long as they remain water-soluble. Among these anionic polymers, acidic polysaccharides having excellent mechanical strength and high oxidation resistance are preferably used, and alginic acid and sulfated alginic acid are more preferably used. The ratio of mannuronic acid and guluronic acid, which are the constituents of alginic acid, is arbitrary, and either alginic acid with a high mannuronic acid ratio that produces a flexible gel or alginic acid with a high guluronic acid ratio that produces a rigid gel can be used. .
多糖類に硫酸基が導入された硫酸化多糖類も好適に用いられる。硫酸基は、塩基性塩のみならずNaClやCaCl2等の中性塩もイオン交換可能な強酸性陽イオン交換基である。硫酸基の導入位置は、多糖類構造中に含まれる水酸基の部位であり、水酸基の水素が-SO3Hに置換されて導入される。硫酸基の含有量は、0.5~5.0mmol/gであることが好ましい。硫酸基含有量が上記範囲であると、キレート官能基含有量が増大し、耐酸化性も向上するため好ましい。 Sulfated polysaccharides in which sulfate groups are introduced into polysaccharides are also preferably used. The sulfate group is a strongly acidic cation exchange group capable of ion-exchanging not only basic salts but also neutral salts such as NaCl and CaCl2 . The introduction position of the sulfate group is the site of the hydroxyl group contained in the polysaccharide structure, and the hydrogen of the hydroxyl group is substituted with —SO 3 H and introduced. The content of sulfate groups is preferably 0.5 to 5.0 mmol/g. When the sulfate group content is within the above range, the chelate functional group content is increased and the oxidation resistance is also improved, which is preferable.
水溶性キレートポリマーは、前記アニオン性ポリマーとカチオン性官能基を有するキレート官能基がイオン結合を介して結合している。キレート官能基とは、複数の配位座を有する配位子を指し、多価金属イオンとの間でキレートを形成できる官能基である。キレート官能基としては、アミノカルボン酸基やアミノホスホン酸基を含むキレート官能基が好適に用いられる。アミノカルボン酸基を含むキレート官能基の若干の例としては、イミノ二酢酸基、ニトリロ三酢酸基、ヒドロキシエチルグリシン基、ヒドロキシエチルイミノ二酢酸基等が挙げられる。アミノホスホン酸を含むキレート官能基の若干の例としては、アミノメチルホスホン酸基、ニトリロトリス(メチルホスホン酸)基等が挙げられる。 In the water-soluble chelate polymer, the anionic polymer and a chelate functional group having a cationic functional group are bonded via an ionic bond. A chelate functional group refers to a ligand having multiple coordination sites and is a functional group capable of forming a chelate with a polyvalent metal ion. As the chelate functional group, a chelate functional group containing an aminocarboxylic acid group or an aminophosphonic acid group is preferably used. Some examples of chelating functional groups containing aminocarboxylic acid groups include iminodiacetic acid groups, nitrilotriacetic acid groups, hydroxyethylglycine groups, hydroxyethyliminodiacetic acid groups, and the like. Some examples of chelating functional groups containing aminophosphonic acid include aminomethylphosphonic acid groups, nitrilotris (methylphosphonic acid) groups, and the like.
水溶性キレートポリマーに含まれるキレート官能基の量は0.2~6mmol/gであり、好ましくは0.5~5mmol/gである。キレート官能基の含有量がこの範囲にあると、重金属イオンが迅速に捕捉でき、重金属イオン捕捉量も十分であるため好ましい。ここで、水溶性キレートポリマーの官能基の量は元素分析により計算することができる。 The amount of chelate functional groups contained in the water-soluble chelate polymer is 0.2-6 mmol/g, preferably 0.5-5 mmol/g. When the content of the chelate functional group is within this range, heavy metal ions can be rapidly captured and the amount of heavy metal ion captured is sufficient, which is preferable. Here, the amount of functional groups in the water-soluble chelate polymer can be calculated by elemental analysis.
水溶性キレートポリマーの分子量は、重量平均分子量で30,000~1,000,000、好ましくは50,000~1,000,000である。重量平均分子量がこの範囲にあると、十分な機械的強度が確保でき、加工時の粘性も問題のない範囲に調整できるため好ましい。ここで、水溶性ポリマーの重量平均分子量はゲル・パーミエーション・クロマトグラフィー(GPC)測定により計算することができる。 The weight average molecular weight of the water-soluble chelate polymer is 30,000 to 1,000,000, preferably 50,000 to 1,000,000. When the weight-average molecular weight is within this range, sufficient mechanical strength can be ensured, and the viscosity during processing can be adjusted within a range that poses no problems, which is preferable. Here, the weight average molecular weight of the water-soluble polymer can be calculated by gel permeation chromatography (GPC) measurement.
本発明の一態様である水溶性キレートポリマーは、キレート官能基がイオン結合を介してアニオン性ポリマーと結合した構造を有している。アニオン性ポリマーとイオン結合を形成するためには、キレート官能基含有化合物中にカチオン性官能基が必要である。カチオン性官能基の例としては、アンモニウム基、ホスホニウム基、スルホニウム基等が挙げられる。ここで、水溶性ポリマーにおいてイオン結合を形成していることは、FT―IR等の赤外線分光分析によるスペクトルの変化を観察することにより確認することができる。 A water-soluble chelate polymer, which is one aspect of the present invention, has a structure in which a chelate functional group is bound to an anionic polymer via an ionic bond. A cationic functional group is required in the chelating functional group-containing compound in order to form an ionic bond with an anionic polymer. Examples of cationic functional groups include ammonium groups, phosphonium groups, sulfonium groups, and the like. Here, the formation of ionic bonds in the water-soluble polymer can be confirmed by observing changes in spectrum by infrared spectroscopic analysis such as FT-IR.
一例として、アニオン性ポリマーとしてアルギン酸を、キレート基含有化合物としてイミノ二酢酸二ナトリウムを用いた場合の、キレートポリマー生成反応式を以下に示す。 As an example, a chelate polymer production reaction formula in the case of using alginic acid as an anionic polymer and disodium iminodiacetate as a chelate group-containing compound is shown below.
次に、本発明の一態様であるキレートポリマーの製造方法について説明する。水溶性キレートポリマーは、カルボキシル基、スルホン酸基および/または硫酸基を有するアニオン性ポリマーを酸と接触させ、カルボキシル基、スルホン酸基および/または硫酸基を水素イオン形とした後、アミノ基を有するキレート官能基含有化合物やホスホニウム基を有するキレート官能基含有化合物やスルホニウム基を有するキレート官能基含有化合物と接触させ、キレート官能基をアニオン性ポリマーに導入することにより製造することができる。 Next, a method for producing a chelate polymer, which is one embodiment of the present invention, will be described. A water-soluble chelate polymer is obtained by contacting an anionic polymer having a carboxyl group, a sulfonic acid group and/or a sulfuric acid group with an acid to convert the carboxyl group, the sulfonic acid group and/or the sulfuric acid group into a hydrogen ion form, and then converting the amino group. chelate functional group-containing compound having a phosphonium group or a chelate functional group-containing compound having a sulfonium group to introduce a chelate functional group into an anionic polymer.
最初に、カルボキシル基、スルホン酸基および/または硫酸基を有するアニオン性ポリマーを酸と接触させ、カルボキシル基、スルホン酸基および/または硫酸基を水素イオン形に変換する。カルボキシル基、スルホン酸基および/または硫酸基を水素イオン形にすることで、キレート化合物中のアミノ基とカルボキシル基、スルホン酸基および/または硫酸基とが塩を形成しやすくなり、イオン結合を介してキレート化合物をアニオン性ポリマーに導入することができる。アニオン性ポリマー中のカルボキシル基、スルホン酸基および/または硫酸基を水素イオン形に変換する反応は、アニオン性ポリマーを水に溶解させ、酸を加えて実施する。アニオン性ポリマー水溶液の濃度に特に制限はないが、0.1~5%がハンドリング性に優れ、生産性も良好であるため好ましい。反応温度については、水が凝固したり沸騰したりする温度領域を除けば任意の温度を設定でき、具体的には、5~90℃が好ましい。反応時間も特に制限はなく、5~120分が好ましい。用いる酸も、pHを2以下に下げられるものであれば特に制限はなく、塩酸、硫酸、硝酸、トリフルオロ酢酸などが用いられる。酸の添加量は、アニオン性ポリマー水溶液のpHが2以下となるように添加すればよい。反応終了後、水素イオン形アニオンポリマーはゲル状に析出するので析出したゲルをろ過等により回収し、必要に応じて水洗・乾燥して単離する。 First, an anionic polymer having carboxyl groups, sulfonate groups and/or sulfate groups is contacted with an acid to convert the carboxyl groups, sulfonate groups and/or sulfate groups to the hydrogen ion form. By converting the carboxyl group, sulfonic acid group and/or sulfate group into a hydrogen ion form, the amino group in the chelate compound and the carboxyl group, sulfonic acid group and/or sulfate group are likely to form a salt, resulting in an ionic bond. A chelate compound can be introduced into the anionic polymer via A reaction that converts the carboxyl, sulfonic acid and/or sulfate groups in the anionic polymer to the hydrogen ion form is carried out by dissolving the anionic polymer in water and adding an acid. Although the concentration of the aqueous anionic polymer solution is not particularly limited, it is preferably from 0.1 to 5% because of excellent handleability and good productivity. Regarding the reaction temperature, any temperature can be set except for the temperature range where water freezes or boils, and specifically, 5 to 90°C is preferable. The reaction time is also not particularly limited, preferably 5 to 120 minutes. The acid to be used is not particularly limited as long as it can lower the pH to 2 or less, and hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid and the like are used. The amount of acid to be added may be such that the pH of the aqueous anionic polymer solution is 2 or less. After completion of the reaction, the hydrogen ion type anionic polymer precipitates in a gel form, and the precipitated gel is collected by filtration or the like, and if necessary, washed with water and dried to isolate.
なお、あらかじめカルボキシル基、スルホン酸基および/または硫酸基を水素イオン形に変換してあるアニオン性ポリマーが販売されており、そのようなアニオン性ポリマーを用いる場合は上記酸処理工程は不要である。 In addition, anionic polymers in which carboxyl groups, sulfonic acid groups and/or sulfate groups have been converted to hydrogen ion forms in advance are commercially available, and when such anionic polymers are used, the above acid treatment step is unnecessary. .
次いで、水素イオン形にしたアニオン性ポリマーにアミノ基を有するキレート官能基含有化合物を接触させ、キレート官能基をアニオン性ポリマーに導入する。アミノ基を有するキレート官能基含有化合物とは、アミノ基とキレート官能基を有する化合物を指す。キレート官能基としては、例えばアミノカルボン酸基やアミノホスホン酸基などが挙げられる。キレート官能基含有化合物の若干の具体例としては、イミノ二酢酸、ニトリロ三酢酸、エチレンジアミン四酢酸、N,N‐ビス(2‐ヒドロキシエチル)グリシン、1,2‐ジアミノシクロヘキサン四酢酸、ジエチレントリアミン五酢酸、N‐(2‐ヒドロキシエチル)エチレンジアミン三酢酸、ビス(2‐アミノエチル)エチレングリコール四酢酸、ビス(2‐アミノフェニル)エチレングリコール四酢酸、N‐(2‐ヒドロキシエチル)イミノ二酢酸、テトラキス(2‐ピリジルメチル)エチレンジアミン、トリエチレンテトラミン六酢酸、アミノメチルホスホン酸、アミノエチルホスホン酸、アミノプロピルホスホン酸、ニトリロトリス(メチルホスホン酸)及びそれらの塩が挙げられる。これらのアミノ基を有するキレート化合物は、単独で用いても二種類以上を混合して用いてもかまわない。アミノ基を有するキレート官能基含有化合物の添加量は、アニオン性ポリマー中のカルボキシル基、スルホン酸基および/または硫酸基1モルに対し、0.1~1モルの範囲で用いられる。 Next, the hydrogen ion-form anionic polymer is brought into contact with a chelate functional group-containing compound having an amino group to introduce a chelate functional group into the anionic polymer. A chelate functional group-containing compound having an amino group refers to a compound having an amino group and a chelate functional group. Chelate functional groups include, for example, aminocarboxylic acid groups and aminophosphonic acid groups. Some specific examples of chelating functional group-containing compounds include iminodiacetic acid, nitrilotriacetic acid, ethylenediaminetetraacetic acid, N,N-bis(2-hydroxyethyl)glycine, 1,2-diaminocyclohexanetetraacetic acid, diethylenetriaminepentaacetic acid. , N-(2-hydroxyethyl)ethylenediaminetriacetic acid, bis(2-aminoethyl)ethyleneglycoltetraacetic acid, bis(2-aminophenyl)ethyleneglycoltetraacetic acid, N-(2-hydroxyethyl)iminodiacetic acid, tetrakis (2-pyridylmethyl)ethylenediamine, triethylenetetraminehexaacetic acid, aminomethylphosphonic acid, aminoethylphosphonic acid, aminopropylphosphonic acid, nitrilotris (methylphosphonic acid) and salts thereof. These amino group-containing chelate compounds may be used alone or in combination of two or more. The amount of the chelate functional group-containing compound having an amino group to be added is in the range of 0.1 to 1 mol per 1 mol of the carboxyl group, sulfonic acid group and/or sulfate group in the anionic polymer.
得られた水溶性キレートポリマーは水溶液のまま保存してもよいが、固体として単離して保存してもよい。固体として単離する方法としては、水溶液を加熱し水を除去して単離する方法や、水溶液をキレートポリマーの貧溶媒であるアルコールやアセトン等に滴下し、ポリマーを沈殿させて単離する方法等が挙げられる。 The resulting water-soluble chelate polymer may be stored as an aqueous solution, or may be isolated and stored as a solid. As a method of isolating as a solid, a method of heating an aqueous solution to remove water and a method of dropping the aqueous solution into alcohol, acetone, etc., which are poor solvents for the chelate polymer, and isolating the polymer by precipitating it. etc.
上記水溶性キレートポリマーは、水に溶解させると低濃度でも高い粘性を示すため、高濃度条件下での製造が困難であった。そこで、水素イオン形のカルボキシル基、スルホン酸基および/または硫酸基を有するアニオン性ポリマーを疎水性溶媒に分散させ、アミノ基を有するキレート官能基含有化合物を水に溶解させ、両者を混合して油中水滴型エマルションを調製することで、高濃度条件下でも該水溶性キレートポリマーの製造が可能になり、生産性が改善できることを見出した。 When the water-soluble chelate polymer is dissolved in water, it exhibits high viscosity even at low concentrations, making it difficult to produce under high-concentration conditions. Therefore, an anionic polymer having a hydrogen ion type carboxyl group, a sulfonic acid group and/or a sulfate group is dispersed in a hydrophobic solvent, a chelate functional group-containing compound having an amino group is dissolved in water, and the two are mixed. The present inventors have found that by preparing a water-in-oil emulsion, the water-soluble chelate polymer can be produced even under high concentration conditions, and productivity can be improved.
水素イオン形のカルボキシル基、スルホン酸基および/または硫酸基を有するアニオン性ポリマーは、上記と同様に、カルボキシル基、スルホン酸基および/または硫酸基を有するアニオン性ポリマーを酸と接触させることで得られる。得られた水素イオン形のアニオンポリマーは親水性が高いため、疎水性溶媒には不溶であり、両者を接触させると水素イオン形のアニオンポリマーが疎水性溶媒に分散したスラリーが得られる。用いられる疎水性溶媒としては、水と相互溶解しない溶媒が挙げられ、その若干の例としては、ブタノール、ヘキサノール、オクタノール等の高級アルコール;オリーブ油、パーム油、菜種油、大豆油、綿実油等の植物油;酢酸プロピル、酢酸ブチル、酢酸ヘキシル等のエステル溶媒;ヘキサン、デカン、ヘキサデカン、ベンゼン、トルエン、キシレンなどの炭化水素などが挙げられる。スラリーの濃度に特に制限はないが、10~30重量%とかなり高い濃度でスラリーを調製できる。また、後述する油中水滴型エマルションを安定化させるため、必要に応じて乳化剤を加えることもできる。好ましい乳化剤としては、HLB(親水性‐親油性バランス)が7以下である親油性乳化剤が挙げられ、具体例としては、ソルビタンモノオレエート、ソルビタンモノステアレートなどのソルビタン脂肪酸エステル、ショ糖ステアリン酸エステル、ショ糖オレイン酸エステル等のショ糖脂肪酸エステル、レシチン等が挙げられる。乳化剤の添加量にも特に制限はないが、疎水性溶媒に対して5~30重量%を添加することができる。 An anionic polymer having a hydrogen ion form of a carboxyl group, a sulfonic acid group and/or a sulfuric acid group can be obtained by contacting an anionic polymer having a carboxyl group, a sulfonic acid group and/or a sulfuric acid group with an acid in the same manner as described above. can get. Since the resulting hydrogen ion type anionic polymer is highly hydrophilic, it is insoluble in a hydrophobic solvent, and when the two are brought into contact with each other, a slurry in which the hydrogen ion type anionic polymer is dispersed in the hydrophobic solvent is obtained. Hydrophobic solvents that can be used include solvents that are not mutually soluble with water, some examples of which are higher alcohols such as butanol, hexanol, octanol; vegetable oils such as olive oil, palm oil, rapeseed oil, soybean oil, cottonseed oil; ester solvents such as propyl acetate, butyl acetate and hexyl acetate; and hydrocarbons such as hexane, decane, hexadecane, benzene, toluene and xylene. There is no particular limitation on the concentration of the slurry, but the slurry can be prepared with a considerably high concentration of 10 to 30% by weight. In addition, an emulsifier can be added as necessary in order to stabilize the water-in-oil emulsion to be described later. Preferred emulsifiers include lipophilic emulsifiers having an HLB (hydrophilic-lipophilic balance) of 7 or less, and specific examples include sorbitan monooleate, sorbitan fatty acid esters such as sorbitan monostearate, sucrose stearate. Examples include esters, sucrose fatty acid esters such as sucrose oleate, and lecithin. The amount of the emulsifier to be added is not particularly limited, but it can be added in an amount of 5 to 30% by weight relative to the hydrophobic solvent.
アミノ基を有するキレート官能基含有化合物の水溶液は、アミノ基を有するキレート官能基含有化合物を水に溶解することで調製できる。水溶液の濃度は、生産性を高める上ではできる限り高いことが好ましく、10~30重量%であることが好ましい。 An aqueous solution of the chelate functional group-containing compound having an amino group can be prepared by dissolving the chelate functional group-containing compound having an amino group in water. The concentration of the aqueous solution is preferably as high as possible in order to increase productivity, and is preferably 10 to 30% by weight.
上記水素イオン形のアニオンポリマーが疎水性溶媒に分散したスラリーと、上記アミノ基を有するキレート官能基含有化合物の水溶液を接触・混合することで、油中水滴型エマルションが得られる。接触・混合方法に制限はないが、アニオンポリマー分散液にキレート化合物水溶液を滴下する方法が、均一な水溶性キレートポリマーを調製しやすいため好ましい。両者を接触・混合する際の温度は、油中水滴型エマルションを安定に維持するため、0~15℃と低めの温度が好ましい。接触・混合に要する時間に特に制限はないが、10分~5時間程度が好ましい。なお、接触・混合を均一に維持するため、撹拌翼はフルゾーン、マックスブレンドのような大型翼が好ましい。 A water-in-oil emulsion is obtained by contacting and mixing a slurry in which the hydrogen ion type anionic polymer is dispersed in a hydrophobic solvent and an aqueous solution of the chelate functional group-containing compound having an amino group. The method of contacting and mixing is not limited, but the method of dropping the aqueous solution of the chelate compound into the dispersion of the anionic polymer is preferable because a uniform water-soluble chelate polymer can be easily prepared. The temperature at which the two are brought into contact and mixed is preferably as low as 0 to 15° C. in order to stably maintain the water-in-oil emulsion. The time required for contact and mixing is not particularly limited, but is preferably about 10 minutes to 5 hours. In order to maintain uniform contact and mixing, the stirring blades are preferably large blades such as Fullzone and Maxblend.
得られた油中水滴型エマルションから水溶性キレートポリマーを単離する方法についても特に制限はなく、例えば、油中水滴型エマルションを加熱して水を除去した後、濾過により水溶性キレートポリマー粒子を単離する方法や、油中水滴型エマルションを水と疎水性溶媒の両方に混和する溶媒(アセトンや低級アルコールなど)中に滴下し、水溶性キレートポリマー粒子を単離する方法等が挙げられる。 The method for isolating the water-soluble chelate polymer from the obtained water-in-oil emulsion is not particularly limited. and a method of dropping a water-in-oil emulsion into a solvent (acetone, lower alcohol, etc.) that is miscible with both water and a hydrophobic solvent to isolate the water-soluble chelate polymer particles.
前記水溶性キレートポリマーは水溶液の作成が可能であり、高極性で比表面積の大きな微粒子担体にも簡便にコーティングでき、コーティングされた微粒子担体はキレート官能基が表面近傍に配置されていることと、比表面積が大きいこととの相乗作用で有機溶媒中の微量重金属イオンを短時間で迅速に吸着・除去できるため、高純度が要求される半導体製造用有機溶媒の精製等に好適に用いることができる。 The water-soluble chelate polymer can be prepared as an aqueous solution, can be easily coated on a highly polar fine particle carrier having a large specific surface area, and the coated fine particle carrier has a chelate functional group arranged near the surface; Due to the synergistic effect of the large specific surface area, trace heavy metal ions in the organic solvent can be rapidly adsorbed and removed in a short time, so it can be suitably used for the purification of organic solvents for semiconductor manufacturing that require high purity. .
水溶性キレートポリマーを重金属イオンを含有する溶液に添加し、該キレートポリマーで重金属イオンを捕捉することができる。 A water-soluble chelating polymer can be added to a solution containing heavy metal ions to trap heavy metal ions with the chelating polymer.
以下に、本発明を更に詳細に実施例に基づき説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below based on examples, but the present invention is not limited to these examples.
(参考例1)硫酸化アルギン酸の製造
ジメチルスルホキシド(以下DMSOと略す)150mlにH形アルギン酸(株式会社キミカ製、商品名キミカアシッドG)3.0g(単糖ユニットとして17mmol)を撹拌下少量ずつ添加し、均一分散させた。次いで、三酸化硫黄ピリジン錯体6.75g(42.5mmol)を撹拌下添加し、均一に分散させた後昇温し、40℃で8時間反応させた。アルギン酸は反応の進行に伴って溶解し、反応終了時には均一溶液となった。反応終了後、反応液をエタノールに滴下し、析出した生成物をガラスフィルターで捕集し、更にエタノールで洗浄した後、室温で減圧乾燥し生成物を単離した。単離収量は5.8g、元素分析で求めた硫黄含有量は12.5質量%、ゲルパミエーション・クロマトグラフィー(GPC)で測定した重量平均分子量は85,000であった。硫黄含有量から算出した硫酸基含有量は3.9mmol/gであった。
(Reference Example 1) Production of sulfated alginic acid To 150 ml of dimethyl sulfoxide (hereinafter abbreviated as DMSO), 3.0 g of H-form alginic acid (manufactured by Kimika Co., Ltd., trade name Kimika Acid G) (17 mmol as a monosaccharide unit) was added little by little while stirring. added and evenly dispersed. Then, 6.75 g (42.5 mmol) of a sulfur trioxide pyridine complex was added with stirring, dispersed uniformly, and then heated to 40° C. for 8 hours to react. Alginic acid dissolved as the reaction progressed, and became a homogeneous solution at the end of the reaction. After completion of the reaction, the reaction solution was added dropwise to ethanol, and the precipitated product was collected with a glass filter, washed with ethanol, and dried under reduced pressure at room temperature to isolate the product. The isolated yield was 5.8 g, the sulfur content determined by elemental analysis was 12.5% by mass, and the weight average molecular weight determined by gel permeation chromatography (GPC) was 85,000. The sulfate group content calculated from the sulfur content was 3.9 mmol/g.
(実施例1)
純水100mlに水素イオン形アルギン酸(株式会社キミカ製、商品名キミカアシッドG)1.0g(単糖ユニットとして5.7mmol)を撹拌下少量ずつ添加し、白色糊状均一分散液を作製した。次いで、ビス(2‐アミノエチル)エチレングリコール四酢酸(東京化成製、以下BAPTAと略す)2.72g(5.7mmol)と水酸化ナトリウム(東京化成製)0.93g(22.8mmol)とを純水20mlに溶解し、上記アルギン酸分散液に滴下した。滴下に伴い分散液は徐々に透明となり、滴下終了後、透明粘調な褐色水溶液となった。この水溶液を室温にて1時間撹拌した後、アセトン4Lに滴下し、沈殿を生成させた。得られた沈殿物はろ過により回収し、更にアセトンで洗浄した後、減圧乾燥して単離した。単離収量は3.9g、元素分析で求めた窒素含有量は4.6質量%、窒素含有量から算出したキレート官能基含有量は3.3mmol/gであり、水に易溶であった。
(Example 1)
To 100 ml of pure water, 1.0 g (5.7 mmol as a monosaccharide unit) of hydrogen ion alginic acid (manufactured by Kimika Co., Ltd., trade name: Kimika Acid G) was added little by little with stirring to prepare a white pasty uniform dispersion. Then, 2.72 g (5.7 mmol) of bis(2-aminoethyl)ethylene glycol tetraacetic acid (manufactured by Tokyo Kasei, hereinafter abbreviated as BAPTA) and 0.93 g (22.8 mmol) of sodium hydroxide (manufactured by Tokyo Kasei) It was dissolved in 20 ml of pure water and added dropwise to the above alginic acid dispersion. The dispersion liquid gradually became transparent as the dropping was completed, and became a transparent, viscous brown aqueous solution after the dropping was completed. After stirring this aqueous solution at room temperature for 1 hour, it was added dropwise to 4 L of acetone to form a precipitate. The resulting precipitate was collected by filtration, washed with acetone, and dried under reduced pressure to isolate it. The isolated yield was 3.9 g, the nitrogen content determined by elemental analysis was 4.6% by mass, the chelate functional group content calculated from the nitrogen content was 3.3 mmol/g, and it was readily soluble in water. .
キレート官能基がアルギン酸に導入されていることを確認するため、反応前後でFT-IRスペクトルを比較した。結果を図1および図2に示す。反応前の水素イオン形アルギン酸は、1740cm-1にカルボン酸のカルボニルの伸縮振動に由来する吸収が認められたのに対し、反応後では1740cm-1の吸収が消失し、1600cm-1にカルボン酸塩のカルボニルの伸縮振動に由来する新たな吸収が認められた。このことから、アルギン酸とBAPTAがイオン結合を介して結合したことがわかる。 In order to confirm that the chelate functional group was introduced into alginic acid, FT-IR spectra were compared before and after the reaction. The results are shown in FIGS. 1 and 2. FIG. In the hydrogen ion form alginic acid before the reaction, an absorption derived from the carbonyl stretching vibration of the carboxylic acid was observed at 1740 cm-1. A new absorption originating from the stretching vibration of the carbonyl of the salt was observed. This indicates that alginic acid and BAPTA are bound via ionic bond.
キレートポリマーの分子量を水系GPCで測定した。重量平均分子量は350,000であった。 The molecular weight of the chelate polymer was measured by aqueous GPC. The weight average molecular weight was 350,000.
<重金属イオンの捕捉能評価>
キレートポリマーの重金属イオン捕捉能を評価するため、以下の測定を行った。上記キレートポリマー0.1gを純水20mlに溶解させ、マンガン酸リチウム(自社で試作、結晶構造:スピネル、以下LMOと略す)1.9gを加え、スラリーを調製した。得られたスラリーをエバポレーターで濃縮後、80℃で減圧乾燥し、水を除去し、キレートポリマーとLMOの混合物を得た。上記混合物から1.0gを分取し、テフロン(登録商標)容器に入れ120℃で4時間減圧乾燥した後、密封した。密封したテフロン(登録商標)容器をグローブボックス中で開封し、電解液(キシダ化学製、エチレンカーボネート:ジメチルカーボネート=1:2の混合溶媒にLiPF6を1モル/L溶解させた溶液)15mlを添加した後、再度密封し、85℃で4時間加熱した。加熱終了後、グローブボックス中でテフロン(登録商標)容器を開封し、シリンジフィルターを用いてろ過し、濾過液を採取した。得られた濾過液を酸分解し、ICP-MSでマンガンイオンを定量したところ、マンガンイオンの濃度は1ppm未満であり、加熱によりLMOから溶出したマンガンイオンがキレートポリマーで捕捉されていることが確認できた。
<Evaluation of ability to trap heavy metal ions>
In order to evaluate the ability of the chelate polymer to trap heavy metal ions, the following measurements were performed. 0.1 g of the above chelate polymer was dissolved in 20 ml of pure water, and 1.9 g of lithium manganate (prototyped by the company, crystal structure: spinel, hereinafter abbreviated as LMO) was added to prepare a slurry. After concentrating the resulting slurry with an evaporator, it was dried under reduced pressure at 80° C. to remove water and obtain a mixture of chelate polymer and LMO. A 1.0 g portion was taken from the above mixture, placed in a Teflon (registered trademark) container, dried under reduced pressure at 120° C. for 4 hours, and then sealed. The sealed Teflon (registered trademark) container was opened in a glove box, and 15 ml of electrolytic solution (manufactured by Kishida Chemical Co., Ltd., a solution in which 1 mol/L of LiPF6 was dissolved in a mixed solvent of ethylene carbonate:dimethyl carbonate = 1:2) was added. After that, it was sealed again and heated at 85° C. for 4 hours. After completion of heating, the Teflon (registered trademark) container was opened in the glove box, filtered using a syringe filter, and the filtrate was collected. The obtained filtrate was subjected to acid decomposition, and manganese ions were quantified by ICP-MS. The concentration of manganese ions was less than 1 ppm, confirming that the manganese ions eluted from the LMO due to heating were captured by the chelate polymer. did it.
(実施例2)
BAPTAと水酸化ナトリウムに代えてイミノ二酢酸二ナトリウム一水和物(富士フィルム和光純薬製)1.1g(5.7mmol)を用いたことを除いて、実施例1と同様の操作でキレートポリマーを製造した。単離収量は1.9g、元素分析で求めた窒素含有量は3.7質量%、窒素含有量から算出したキレート官能基含有量は2.6mmol/gで、水に易溶であった。
(Example 2)
Chelate by the same operation as in Example 1, except that 1.1 g (5.7 mmol) of disodium iminodiacetate monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries) was used instead of BAPTA and sodium hydroxide. A polymer was produced. The isolated yield was 1.9 g, the nitrogen content determined by elemental analysis was 3.7% by mass, the chelate functional group content calculated from the nitrogen content was 2.6 mmol/g, and it was readily soluble in water.
キレート官能基がアルギン酸に導入されていることを確認するため、反応前後でFT-
IRスペクトルを比較した。反応前の水素イオン形アルギン酸は、1740cm-1にカルボン酸のカルボニルの伸縮振動に由来する吸収が認められたのに対し、反応後では1740cm-1の吸収が消失し、1620cm-1にカルボン酸塩のカルボニルの伸縮振動に由来する新たな吸収が認められた。このことから、アルギン酸とイミノ二酢酸がイオン結合を介して結合したことがわかる。
FT-
IR spectra were compared. In the hydrogen ion form alginic acid before the reaction, an absorption derived from the carbonyl stretching vibration of the carboxylic acid was observed at 1740 cm-1. A new absorption originating from the stretching vibration of the carbonyl of the salt was observed. This indicates that alginic acid and iminodiacetic acid are bound via ionic bond.
キレートポリマーの分子量を水系GPCで測定した。重量平均分子量は320,000であった。 The molecular weight of the chelate polymer was measured by aqueous GPC. The weight average molecular weight was 320,000.
<重金属イオンの捕捉能評価>
実施例2で製造したキレートポリマーの重金属イオン捕捉能を、実施例1と同様の方法で評価した。濾過液中のマンガンイオンの濃度は1ppm未満であり、加熱によりLMOから溶出したマンガンイオンがキレートポリマーで捕捉されていることが確認できた。
<Evaluation of ability to trap heavy metal ions>
The ability of the chelate polymer produced in Example 2 to trap heavy metal ions was evaluated in the same manner as in Example 1. The concentration of manganese ions in the filtrate was less than 1 ppm, and it was confirmed that the manganese ions eluted from the LMO due to heating were captured by the chelate polymer.
(実施例3)
BAPTAと水酸化ナトリウムに代えてエチレンジアミン四酢酸四ナトリウム(東京化成製、以下EDTAと略す)2.37g(5.7mmol)を用いたことを除いて、実施例1と同様の操作でキレートポリマーを製造した。単離収量は2.4g、元素分析で求めた窒素含有量は3.9質量%、窒素含有量から算出したキレート官能基含有量は1.4mmol/gで、水に易溶であった。
(Example 3)
A chelate polymer was prepared in the same manner as in Example 1, except that 2.37 g (5.7 mmol) of tetrasodium ethylenediaminetetraacetate (manufactured by Tokyo Chemical Industry, hereinafter abbreviated as EDTA) was used instead of BAPTA and sodium hydroxide. manufactured. The isolated yield was 2.4 g, the nitrogen content determined by elemental analysis was 3.9% by mass, the chelate functional group content calculated from the nitrogen content was 1.4 mmol/g, and it was readily soluble in water.
キレート官能基がアルギン酸に導入されていることを確認するため、反応前後でFT-IRスペクトルを比較した。反応前の水素イオン形アルギン酸は、1740cm-1にカルボン酸のカルボニルの伸縮振動に由来する吸収が認められたのに対し、反応後では1740cm-1の吸収が消失し、1600cm-1にカルボン酸塩のカルボニルの伸縮振動に由来する新たな吸収が認められた。このことから、アルギン酸とEDTAがイオン結合を介して結合したことがわかる。 In order to confirm that the chelate functional group was introduced into alginic acid, FT-IR spectra were compared before and after the reaction. In the hydrogen ion form alginic acid before the reaction, an absorption derived from the carbonyl stretching vibration of the carboxylic acid was observed at 1740 cm-1. A new absorption originating from the stretching vibration of the carbonyl of the salt was observed. This indicates that alginic acid and EDTA were bound via ionic bonding.
キレートポリマーの分子量を水系GPCで測定した。重量平均分子量は380,000であった。 The molecular weight of the chelate polymer was measured by aqueous GPC. The weight average molecular weight was 380,000.
<重金属イオンの捕捉能評価>
実施例3で製造したキレートポリマーの重金属イオン捕捉能を、実施例1と同様の方法で評価した。濾過液中のマンガンイオンの濃度は1ppm未満であり、加熱によりLMOから溶出したマンガンイオンがキレートポリマーで捕捉されていることが確認できた。
<Evaluation of ability to trap heavy metal ions>
The ability of the chelate polymer produced in Example 3 to trap heavy metal ions was evaluated in the same manner as in Example 1. The concentration of manganese ions in the filtrate was less than 1 ppm, and it was confirmed that the manganese ions eluted from the LMO due to heating were captured by the chelate polymer.
(実施例4)
BAPTAと水酸化ナトリウムに代えてアミノメチルホスホン酸(東京化成製、以下AMPと略す)0.63g(5.7mmol)と水酸化ナトリウム(東京化成製)0.46g(11.4mmol)を用いたことを除いて、実施例1と同様の操作でキレートポリマーを製造した。単離収量は1.7g、元素分析で求めた窒素含有量は2.8質量%、窒素含有量から算出したキレート官能基含有量は2.0mmol/gで、水に易溶であった。
(Example 4)
0.63 g (5.7 mmol) of aminomethylphosphonic acid (manufactured by Tokyo Kasei, hereinafter abbreviated as AMP) and 0.46 g (11.4 mmol) of sodium hydroxide (manufactured by Tokyo Kasei) were used instead of BAPTA and sodium hydroxide. A chelate polymer was produced in the same manner as in Example 1, except for The isolated yield was 1.7 g, the nitrogen content determined by elemental analysis was 2.8% by mass, the chelate functional group content calculated from the nitrogen content was 2.0 mmol/g, and it was readily soluble in water.
キレート官能基がアルギン酸に導入されていることを確認するため、反応前後でFT-IRスペクトルを比較した。反応前の水素イオン形アルギン酸は、1740cm‐1にカルボン酸のカルボニルの伸縮振動に由来する吸収が認められたのに対し、反応後では1740cm‐1の吸収が消失し、1630cm‐1にカルボン酸塩のカルボニルの伸縮振動に由来する新たな吸収が認められた。このことから、アルギン酸とAMPがイオン結合を介して結合したことがわかる。 In order to confirm that the chelate functional group was introduced into alginic acid, FT-IR spectra were compared before and after the reaction. In the hydrogen ion form alginic acid before the reaction, an absorption derived from the carbonyl stretching vibration of the carboxylic acid was observed at 1740 cm-1. A new absorption originating from the stretching vibration of the carbonyl of the salt was observed. This indicates that alginic acid and AMP were bound via ionic bonding.
キレートポリマーの分子量を水系GPCで測定した。重量平均分子量は300,000であった。 The molecular weight of the chelate polymer was measured by aqueous GPC. The weight average molecular weight was 300,000.
<重金属イオンの捕捉能評価>
実施例4で製造したキレートポリマーの重金属イオン捕捉能を、実施例1と同様の方法で評価した。濾過液中のマンガンイオンの濃度は1ppm未満であり、加熱によりLMOから溶出したマンガンイオンがキレートポリマーで捕捉されていることが確認できた。
<Evaluation of ability to trap heavy metal ions>
The ability of the chelate polymer produced in Example 4 to trap heavy metal ions was evaluated in the same manner as in Example 1. The concentration of manganese ions in the filtrate was less than 1 ppm, and it was confirmed that the manganese ions eluted from the LMO due to heating were captured by the chelate polymer.
(実施例5)
BAPTAと水酸化ナトリウムに代えてニトリロトリス(メチルホスホン酸)(東京化成製、以下NTMPと略す)50%水溶液2.6ml(5.7mmol)と水酸化ナトリウム(東京化成製)1.37g(34.2mmol)を用いたことを除いて、実施例1と同様の操作でキレートポリマーを製造した。単離収量は3.3g、元素分析で求めた窒素含有量は1.8質量%、窒素含有量から算出したキレート官能基含有量は1.3mmol/gで、水に易溶であった。
(Example 5)
Instead of BAPTA and sodium hydroxide, 2.6 ml (5.7 mmol) of a 50% aqueous solution of nitrilotris (methylphosphonic acid) (manufactured by Tokyo Kasei, hereinafter abbreviated as NTMP) and 1.37 g (34.0 mmol) of sodium hydroxide (manufactured by Tokyo Kasei). A chelate polymer was produced in the same manner as in Example 1, except that 2 mmol) was used. The isolated yield was 3.3 g, the nitrogen content determined by elemental analysis was 1.8% by mass, the chelate functional group content calculated from the nitrogen content was 1.3 mmol/g, and it was readily soluble in water.
キレート官能基がアルギン酸に導入されていることを確認するため、反応前後でFT-IRスペクトルを比較した。反応前の水素イオン形アルギン酸は、1740cm-1にカルボン酸のカルボニルの伸縮振動に由来する吸収が認められたのに対し、反応後では1740cm-1の吸収が消失し、1640cm-1にカルボン酸塩のカルボニルの伸縮振動に由来する新たな吸収が認められた。このことから、アルギン酸とNTMPがイオン結合を介して結合したことがわかる。 In order to confirm that the chelate functional group was introduced into alginic acid, FT-IR spectra were compared before and after the reaction. In the hydrogen ion form alginic acid before the reaction, an absorption derived from the carbonyl stretching vibration of the carboxylic acid was observed at 1740 cm-1. A new absorption originating from the stretching vibration of the carbonyl of the salt was observed. This indicates that alginic acid and NTMP were bound via ionic bonding.
キレートポリマーの分子量を水系GPCで測定した。重量平均分子量は350,000であった。 The molecular weight of the chelate polymer was measured by aqueous GPC. The weight average molecular weight was 350,000.
<重金属イオンの捕捉能評価>
実施例5で製造したキレートポリマーの重金属イオン捕捉能を、実施例1と同様の方法で評価した。濾過液中のマンガンイオンの濃度は1ppm未満であり、加熱によりLMOから溶出したマンガンイオンがキレートポリマーで捕捉されていることが確認できた。
<Evaluation of ability to trap heavy metal ions>
The ability of the chelate polymer produced in Example 5 to trap heavy metal ions was evaluated in the same manner as in Example 1. The concentration of manganese ions in the filtrate was less than 1 ppm, and it was confirmed that the manganese ions eluted from the LMO due to heating were captured by the chelate polymer.
(実施例6)
水素イオン形アルギン酸に代えて参考例1で製造した硫酸化アルギン酸1.5g(単糖ユニットとして5.7mmol)を用いたことと、BAPTAと水酸化ナトリウムに代えてイミノ二酢酸二ナトリウム一水和物(富士フィルム和光純薬製)2.2g(11.4mmol)を用いたことを除いて、実施例1と同様の操作でキレートポリマーを製造した。単離収量は3.0g、元素分析で求めた窒素含有量は5.4質量%、窒素含有量から算出したキレート官能基含有量は3.9mmol/gで、水に易溶であった。
(Example 6)
1.5 g of the sulfated alginic acid produced in Reference Example 1 (5.7 mmol as a monosaccharide unit) was used instead of hydrogen ion form alginic acid, and disodium iminodiacetate monohydrate was used instead of BAPTA and sodium hydroxide. A chelate polymer was produced in the same manner as in Example 1, except that 2.2 g (11.4 mmol) of the product (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was used. The isolated yield was 3.0 g, the nitrogen content determined by elemental analysis was 5.4% by mass, the chelate functional group content calculated from the nitrogen content was 3.9 mmol/g, and it was readily soluble in water.
キレート官能基がアルギン酸に導入されていることを確認するため、反応前後でFT-IRスペクトルを比較した。反応前の硫酸化アルギン酸は、1730cm-1にカルボン酸のカルボニルの伸縮振動に由来する吸収が認められたのに対し、反応後では1730cm-1の吸収が消失し、1620cm-1にカルボン酸塩のカルボニルの伸縮振動に由来する新たな吸収が認められた。このことから、硫酸化アルギン酸とイミノ二酢酸がイオン結合を介して結合したことがわかる。 In order to confirm that the chelate functional group was introduced into alginic acid, FT-IR spectra were compared before and after the reaction. In the sulfated alginic acid before the reaction, an absorption derived from the carbonyl stretching vibration of the carboxylic acid was observed at 1730 cm-1, whereas after the reaction the absorption at 1730 cm-1 disappeared and the carboxylate was observed at 1620 cm-1. A new absorption originating from the carbonyl stretching vibration of was observed. This indicates that the sulfated alginic acid and iminodiacetic acid were bound via an ionic bond.
キレートポリマーの分子量を水系GPCで測定した。重量平均分子量は88,000であった。 The molecular weight of the chelate polymer was measured by aqueous GPC. The weight average molecular weight was 88,000.
<重金属イオンの捕捉能評価>
実施例6で製造したキレートポリマーの重金属イオン捕捉能を、実施例1と同様の方法で評価した。濾過液中のマンガンイオンの濃度は1ppm未満であり、加熱によりLMOから溶出したマンガンイオンがキレートポリマーで捕捉されていることが確認できた。
<Evaluation of ability to trap heavy metal ions>
The ability of the chelate polymer produced in Example 6 to trap heavy metal ions was evaluated in the same manner as in Example 1. The concentration of manganese ions in the filtrate was less than 1 ppm, and it was confirmed that the manganese ions eluted from the LMO due to heating were captured by the chelate polymer.
(実施例7)
水素イオン形アルギン酸に代えてポリアクリル酸(富士フィルム和光純薬製、平均分子量1,000,000)1.0g(カルボキシル基として13.9mmol)を用いたことと、BAPTAと水酸化ナトリウムに代えてイミノ二酢酸二ナトリウム一水和物(富士フィルム和光純薬製)2.7g(14mmol)を用いたことを除いて、実施例1と同様の操作でキレートポリマーを製造した。単離収量は2.6g、元素分析で求めた窒素含有量は6.1質量%、窒素含有量から算出したキレート官能基含有量は4.4mmol/gで、水に易溶であった。
(Example 7)
1.0 g of polyacrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, average molecular weight: 1,000,000) (13.9 mmol as carboxyl group) was used instead of hydrogen ion-type alginic acid, and BAPTA and sodium hydroxide were used instead. A chelate polymer was produced in the same manner as in Example 1, except that 2.7 g (14 mmol) of disodium iminodiacetate monohydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was used. The isolated yield was 2.6 g, the nitrogen content determined by elemental analysis was 6.1% by mass, the chelate functional group content calculated from the nitrogen content was 4.4 mmol/g, and it was readily soluble in water.
キレート官能基がポリアクリル酸に導入されていることを確認するため、反応前後でFT-IRスペクトルを比較した。反応前のポリアクリル酸は、1710cm-1にカルボン酸のカルボニルの伸縮振動に由来する吸収が認められたのに対し、反応後では1710cm-1の吸収が消失し、1570cm-1にカルボン酸塩のカルボニルの伸縮振動に由来する新たな吸収が認められた。このことから、ポリアクリル酸とイミノ二酢酸がイオン結合を介して結合したことがわかる。 In order to confirm that the chelate functional group was introduced into the polyacrylic acid, FT-IR spectra were compared before and after the reaction. In the polyacrylic acid before the reaction, an absorption derived from the carbonyl stretching vibration of the carboxylic acid was observed at 1710 cm-1, whereas after the reaction the absorption at 1710 cm-1 disappeared, and the carboxylate at 1570 cm-1. A new absorption originating from the carbonyl stretching vibration of was observed. This indicates that polyacrylic acid and iminodiacetic acid are bonded via ionic bonds.
キレートポリマーの分子量を水系GPCで測定した。重量平均分子量は340,000であった。 The molecular weight of the chelate polymer was measured by aqueous GPC. The weight average molecular weight was 340,000.
<重金属イオンの捕捉能評価>
実施例7で製造したキレートポリマーの重金属イオン捕捉能を、実施例1と同様の方法で評価した。濾過液中のマンガンイオンの濃度は1ppm未満であり、加熱によりLMOから溶出したマンガンイオンがキレートポリマーで捕捉されていることが確認できた。
<Evaluation of ability to trap heavy metal ions>
The ability of the chelate polymer produced in Example 7 to trap heavy metal ions was evaluated in the same manner as in Example 1. The concentration of manganese ions in the filtrate was less than 1 ppm, and it was confirmed that the manganese ions eluted from the LMO due to heating were captured by the chelate polymer.
(実施例8)
n-デカン(富士フィルム和光純薬製)300mlをフルゾーン撹拌翼を備えた1Lセパラブルフラスコに仕込み、撹拌下、ソルビタンモノオレエート(富士フィルム和光純薬製)37.1gを添加し溶解させ、系を5℃に冷却した。次いで水素イオン形アルギン酸(株式会社キミカ製、商品名キミカアシッドSA)60g(単糖ユニットとして341mmol)を撹拌下少量ずつ添加し、淡褐色均一分散液を作製した。一方、イミノ二酢酸二ナトリウム水和物(東京化成製)79.0g(375mmol)を純水220mlに溶解し、上記アルギン酸分散液に1時間かけてゆっくり滴下した。滴下に伴い分散液はw/oエマルションを形成し、滴下終了時には淡褐色クリーム状となった。この水溶液を5℃にて1時間撹拌した後、アセトン4Lに滴下し、沈殿を生成させた。得られた沈殿物はろ過により回収し、更にアセトンで洗浄した後、減圧乾燥して単離した。単離収量は130.2g、元素分析で求めた窒素含有量は4.2質量%、窒素含有量から算出したキレート官能基含有量は3.0mmol/gであり、水に易溶であった。
(Example 8)
300 ml of n-decane (manufactured by Fuji Film Wako Pure Chemical Industries) was charged into a 1 L separable flask equipped with a full zone stirring blade, and 37.1 g of sorbitan monooleate (manufactured by Fuji Film Wako Pure Chemical Industries) was added and dissolved under stirring, The system was cooled to 5°C. Next, 60 g (341 mmol as a monosaccharide unit) of hydrogen ion alginic acid (manufactured by Kimika Co., Ltd., trade name: Kimika Acid SA) was added little by little with stirring to prepare a pale brown uniform dispersion. On the other hand, 79.0 g (375 mmol) of disodium iminodiacetate hydrate (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 220 ml of pure water and slowly added dropwise to the above alginic acid dispersion over 1 hour. The dispersion formed a w/o emulsion as it was added dropwise, and became light brown and creamy when the dropwise addition was completed. After the aqueous solution was stirred at 5° C. for 1 hour, it was added dropwise to 4 L of acetone to form a precipitate. The resulting precipitate was collected by filtration, washed with acetone, and dried under reduced pressure to isolate it. The isolated yield was 130.2 g, the nitrogen content determined by elemental analysis was 4.2% by mass, the chelate functional group content calculated from the nitrogen content was 3.0 mmol/g, and it was readily soluble in water. .
キレート官能基がアルギン酸に導入されていることを確認するため、反応前後でFT-IRスペクトルを比較した。反応前の水素イオン形アルギン酸は、1740cm-1にカルボン酸のカルボニルの伸縮振動に由来する吸収が認められたのに対し、反応後では1740cm-1の吸収が消失し、1620cm-1にカルボン酸塩のカルボニルの伸縮振動に由来する新たな吸収が認められた。このことから、アルギン酸とイミノ二酢酸二ナトリウムがイオン結合を介して結合したことがわかる。 In order to confirm that the chelate functional group was introduced into alginic acid, FT-IR spectra were compared before and after the reaction. In the hydrogen ion form alginic acid before the reaction, an absorption derived from the carbonyl stretching vibration of the carboxylic acid was observed at 1740 cm-1. A new absorption originating from the stretching vibration of the carbonyl of the salt was observed. This indicates that alginic acid and disodium iminodiacetate are bound via ionic bond.
キレートポリマーの分子量を水系GPCで測定した。重量平均分子量は160,000であった。 The molecular weight of the chelate polymer was measured by aqueous GPC. The weight average molecular weight was 160,000.
<重金属イオンの捕捉能評価>
実施例8で製造したキレートポリマーの重金属イオン捕捉能を、実施例1と同様の方法で評価した。濾過液中のマンガンイオンの濃度は1ppm未満であり、加熱によりLMOから溶出したマンガンイオンがキレートポリマーで捕捉されていることが確認できた。
<Evaluation of ability to trap heavy metal ions>
The ability of the chelate polymer produced in Example 8 to trap heavy metal ions was evaluated in the same manner as in Example 1. The concentration of manganese ions in the filtrate was less than 1 ppm, and it was confirmed that the manganese ions eluted from the LMO due to heating were captured by the chelate polymer.
(実施例9)
n-デカンに代えて大豆油(富士フィルム和光純薬製)300mlを用いたことと、ソルビタンモノオレエートを用いなかったことを除いて、実施例8と同様の操作でキレートポリマーを製造した。単離収量は138.4g、元素分析で求めた窒素含有量は3.3質量%、窒素含有量から算出したキレート官能基含有量は2.4mmol/gで、水に易溶であった。
(Example 9)
A chelate polymer was produced in the same manner as in Example 8, except that 300 ml of soybean oil (manufactured by Fujifilm Wako Pure Chemical Industries) was used instead of n-decane and sorbitan monooleate was not used. The isolated yield was 138.4 g, the nitrogen content determined by elemental analysis was 3.3% by mass, the chelate functional group content calculated from the nitrogen content was 2.4 mmol/g, and it was readily soluble in water.
キレート官能基がアルギン酸に導入されていることを確認するため、反応前後でFT-IRスペクトルを比較した。反応前の水素イオン形アルギン酸は、1740cm-1にカルボン酸のカルボニルの伸縮振動に由来する吸収が認められたのに対し、反応後では1740cm-1の吸収が消失し、1620cm-1にカルボン酸塩のカルボニルの伸縮振動に由来する新たな吸収が認められた。このことから、アルギン酸とイミノ二酢酸二ナトリウムがイオン結合を介して結合したことがわかる。 In order to confirm that the chelate functional group was introduced into alginic acid, FT-IR spectra were compared before and after the reaction. In the hydrogen ion form alginic acid before the reaction, an absorption derived from the carbonyl stretching vibration of the carboxylic acid was observed at 1740 cm-1. A new absorption originating from the stretching vibration of the carbonyl of the salt was observed. This indicates that alginic acid and disodium iminodiacetate are bound via ionic bond.
キレートポリマーの分子量を水系GPCで測定した。重量平均分子量は160,000であった。 The molecular weight of the chelate polymer was measured by aqueous GPC. The weight average molecular weight was 160,000.
<重金属イオンの捕捉能評価>
実施例9で製造したキレートポリマーの重金属イオン捕捉能を、実施例1と同様の方法で評価した。濾過液中のマンガンイオンの濃度は1ppm未満であり、加熱によりLMOから溶出したマンガンイオンがキレートポリマーで捕捉されていることが確認できた。
<Evaluation of ability to trap heavy metal ions>
The ability of the chelate polymer produced in Example 9 to trap heavy metal ions was evaluated in the same manner as in Example 1. The concentration of manganese ions in the filtrate was less than 1 ppm, and it was confirmed that the manganese ions eluted from the LMO due to heating were captured by the chelate polymer.
(実施例10)
水素イオン形アルギン酸添加量を30g(単糖ユニットとして171mmol)としたことと、イミノ二酢酸二ナトリウムに代えてエチレンジアミン四酢酸四ナトリウム二水和物(東京化成製)71.1g(171mmol)を用いたことを除いて、実施例8と同様の操作でキレートポリマーを製造した。単離収量は95.0g、元素分析で求めた窒素含有量は5.0質量%、窒素含有量から算出したキレート官能基含有量は3.5mmol/gで、水に易溶であった。
(Example 10)
The amount of hydrogen ion alginic acid added was 30 g (171 mmol as a monosaccharide unit), and 71.1 g (171 mmol) of ethylenediaminetetraacetic acid tetrasodium dihydrate (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of disodium iminodiacetate. A chelate polymer was produced in the same manner as in Example 8, except that The isolated yield was 95.0 g, the nitrogen content determined by elemental analysis was 5.0% by mass, the chelate functional group content calculated from the nitrogen content was 3.5 mmol/g, and it was readily soluble in water.
キレート官能基がアルギン酸に導入されていることを確認するため、反応前後でFT-IRスペクトルを比較した。反応前の水素イオン形アルギン酸は、1740cm-1にカルボン酸のカルボニルの伸縮振動に由来する吸収が認められたのに対し、反応後では1740cm-1の吸収が消失し、1600cm-1にカルボン酸塩のカルボニルの伸縮振動に由来する新たな吸収が認められた。このことから、アルギン酸とEDTAがイオン結合を介して結合したことがわかる。 In order to confirm that the chelate functional group was introduced into alginic acid, FT-IR spectra were compared before and after the reaction. In the hydrogen ion form alginic acid before the reaction, an absorption derived from the carbonyl stretching vibration of the carboxylic acid was observed at 1740 cm-1. A new absorption originating from the stretching vibration of the carbonyl of the salt was observed. This indicates that alginic acid and EDTA were bound via ionic bonding.
キレートポリマーの分子量を水系GPCで測定した。重量平均分子量は180,000であった。 The molecular weight of the chelate polymer was measured by aqueous GPC. The weight average molecular weight was 180,000.
<重金属イオンの捕捉能評価>
実施例10で製造したキレートポリマーの重金属イオン捕捉能を、実施例1と同様の方法で評価した。濾過液中のマンガンイオンの濃度は1ppm未満であり、加熱によりLMOから溶出したマンガンイオンがキレートポリマーで捕捉されていることが確認できた。
<Evaluation of ability to trap heavy metal ions>
The ability of the chelate polymer produced in Example 10 to trap heavy metal ions was evaluated in the same manner as in Example 1. The concentration of manganese ions in the filtrate was less than 1 ppm, and it was confirmed that the manganese ions eluted from the LMO due to heating were captured by the chelate polymer.
(実施例11)
水素イオン形アルギン酸添加量を30g(単糖ユニットとして171mmol)としたことと、n-デカンに代えてヘキサデカン(富士フィルム和光純薬製)300mlを用いたこと、イミノ二酢酸二ナトリウム水溶液に代えてNTMP(東京化成製)50%水溶液100.5g(171mmol)と50%水酸化ナトリウム水溶液(富士フィルム和光純薬製)109.0g(1363mmol)を用いたこと、反応温度を20℃としたこを除いて、実施例8と同様の操作でキレートポリマーを製造した。単離収量は118.3g、元素分析で求めた窒素含有量は2.3質量%、窒素含有量から算出したキレート官能基含有量は1.6mmol/gで、水に易溶であった。
(Example 11)
The amount of hydrogen ion alginic acid added was 30 g (171 mmol as a monosaccharide unit), 300 ml of hexadecane (manufactured by Fujifilm Wako Pure Chemical Industries) was used instead of n-decane, and disodium iminodiacetate was used instead of the aqueous solution. 100.5 g (171 mmol) of 50% aqueous solution of NTMP (manufactured by Tokyo Kasei) and 109.0 g (1363 mmol) of 50% aqueous sodium hydroxide solution (manufactured by Fujifilm Wako Pure Chemical Industries) were used, and the reaction temperature was set to 20°C. A chelate polymer was produced in the same manner as in Example 8, except for The isolated yield was 118.3 g, the nitrogen content determined by elemental analysis was 2.3% by mass, the chelate functional group content calculated from the nitrogen content was 1.6 mmol/g, and it was readily soluble in water.
キレート官能基がアルギン酸に導入されていることを確認するため、反応前後でFT-IRスペクトルを比較した。反応前の水素イオン形アルギン酸は、1740cm-1にカルボン酸のカルボニルの伸縮振動に由来する吸収が認められたのに対し、反応後では1740cm-1の吸収が消失し、1640cm-1にカルボン酸塩のカルボニルの伸縮振動に由来する新たな吸収が認められた。このことから、アルギン酸とNTMPがイオン結合を介して結合したことがわかる。 In order to confirm that the chelate functional group was introduced into alginic acid, FT-IR spectra were compared before and after the reaction. In the hydrogen ion form alginic acid before the reaction, an absorption derived from the carbonyl stretching vibration of the carboxylic acid was observed at 1740 cm-1. A new absorption originating from the stretching vibration of the carbonyl of the salt was observed. This indicates that alginic acid and NTMP were bound via ionic bonding.
キレートポリマーの分子量を水系GPCで測定した。重量平均分子量は180,000であった。 The molecular weight of the chelate polymer was measured by aqueous GPC. The weight average molecular weight was 180,000.
<重金属イオンの捕捉能評価>
実施例11で製造したキレートポリマーの重金属イオン捕捉能を、実施例1と同様の方法で評価した。濾過液中のマンガンイオンの濃度は1ppm未満であり、加熱によりLMOから溶出したマンガンイオンがキレートポリマーで捕捉されていることが確認できた。
<Evaluation of ability to trap heavy metal ions>
The ability of the chelate polymer produced in Example 11 to trap heavy metal ions was evaluated in the same manner as in Example 1. The concentration of manganese ions in the filtrate was less than 1 ppm, and it was confirmed that the manganese ions eluted from the LMO due to heating were captured by the chelate polymer.
(比較例1)
<重金属イオンの捕捉能評価>
キレートポリマーを用いず、LMOのみで実施例1と同様の条件でマンガンイオンの溶出挙動を評価した。濾過液中のマンガンイオンの濃度は15ppmと実施例より高い値を示した。
(Comparative example 1)
<Evaluation of ability to trap heavy metal ions>
The elution behavior of manganese ions was evaluated under the same conditions as in Example 1 using only LMO without using the chelate polymer. The concentration of manganese ions in the filtrate was 15 ppm, which was higher than that of the example.
(比較例2)
水素イオン形アルギン酸に代えてアルギン酸ナトリウム(株式会社キミカ製、商品名アルギテックスLL)1.0g(単糖ユニットとして5.0mmol)を用いたことと、BAPTAと水酸化ナトリウムに代えてイミノ二酢酸(東京化成製)1.5g(11.4mmol)を用いたことを除いて、実施例1と同様の操作でキレートポリマーを製造した。単離収量は2.0g、元素分析で求めた窒素含有量は2.9質量%、窒素含有量から算出したキレート官能基含有量は2.1mmol/gと実施例に比べ低い値であった。用いたアニオン性ポリマーがナトリウム塩となっているため、キレート化合物との間でイオン結合が形成できず、生成物中のキレート官能基含有量が低下したものと考えられる。なお、GPC測定より得られた重量平均分子量は300,000であった。
(Comparative example 2)
1.0 g (5.0 mmol as a monosaccharide unit) of sodium alginate (manufactured by Kimika Co., Ltd., trade name Algitex LL) was used instead of hydrogen ion form alginic acid, and iminodiacetic acid was used instead of BAPTA and sodium hydroxide. A chelate polymer was produced in the same manner as in Example 1, except that 1.5 g (11.4 mmol) (manufactured by Tokyo Chemical Industry Co., Ltd.) was used. The isolated yield was 2.0 g, the nitrogen content determined by elemental analysis was 2.9% by mass, and the chelate functional group content calculated from the nitrogen content was 2.1 mmol/g, which were lower values than those of Examples. . Since the anionic polymer used is a sodium salt, it is thought that ionic bonds cannot be formed with the chelate compound, resulting in a decrease in the content of chelate functional groups in the product. The weight average molecular weight obtained by GPC measurement was 300,000.
<重金属イオンの捕捉能評価>
比較例2で得られた生成物の重金属イオン捕捉能を、実施例1と同様の方法で評価した。濾過液中のマンガンイオンの濃度は12ppmと実施例より高い値を示し、比較例2の生成物のマンガンイオン捕捉能は、実施例のキレートポリマーより低かった。
<Evaluation of ability to trap heavy metal ions>
The ability of the product obtained in Comparative Example 2 to trap heavy metal ions was evaluated in the same manner as in Example 1. The concentration of manganese ions in the filtrate was 12 ppm, which was higher than that of Examples, and the ability of the product of Comparative Example 2 to trap manganese ions was lower than that of the chelate polymer of Examples.
(比較例3)
<重金属イオンの捕捉能評価>
比較例2で用いたアルギン酸ナトリウム単独での重金属イオン捕捉能を、実施例1と同様の方法で評価した。濾過液中のマンガンイオンの濃度は14ppmと実施例より高い値を示した。アルギン酸ナトリウム単独のマンガンイオン捕捉能は、実施例のキレートポリマーより低いことがわかる。
(Comparative Example 3)
<Evaluation of ability to trap heavy metal ions>
The ability of sodium alginate alone to trap heavy metal ions used in Comparative Example 2 was evaluated in the same manner as in Example 1. The concentration of manganese ions in the filtrate was 14 ppm, which was higher than that of the example. It can be seen that the manganese ion trapping ability of sodium alginate alone is lower than that of the chelate polymers of Examples.
(比較例4)
<重金属イオンの捕捉能評価>
参考例1で製造した硫酸化アルギン酸単独での重金属イオン捕捉能を、実施例1と同様の方法で評価した。濾過液中のマンガンイオンの濃度は11ppmと実施例より高い値を示した。硫酸化アルギン酸単独のマンガンイオン捕捉能は、実施例のキレートポリマーより低いことがわかる。
(Comparative Example 4)
<Evaluation of ability to trap heavy metal ions>
The ability of the sulfated alginic acid produced in Reference Example 1 alone to trap heavy metal ions was evaluated in the same manner as in Example 1. The concentration of manganese ions in the filtrate was 11 ppm, which was higher than that of the example. It can be seen that the ability of sulfated alginic acid alone to trap manganese ions is lower than that of the chelate polymers of Examples.
以上説明したように、本発明によれば、微量の重金属イオンを迅速に捕捉し、短時間でppmレベル以下まで重金属イオン量を低減可能な水溶性キレートポリマーを提供することが可能となる。 As described above, according to the present invention, it is possible to provide a water-soluble chelate polymer capable of rapidly trapping trace amounts of heavy metal ions and reducing the amount of heavy metal ions to the ppm level or less in a short period of time.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/002909 WO2023149402A1 (en) | 2022-02-03 | 2023-01-30 | Water-soluble chelating polymer and method for producing same |
KR1020247029589A KR20240147993A (en) | 2022-02-03 | 2023-01-30 | Water-soluble chelate polymer and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022015789 | 2022-02-03 | ||
JP2022015789 | 2022-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023113549A true JP2023113549A (en) | 2023-08-16 |
Family
ID=87566342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022162036A Pending JP2023113549A (en) | 2022-02-03 | 2022-10-07 | Water-soluble chelating polymer and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023113549A (en) |
-
2022
- 2022-10-07 JP JP2022162036A patent/JP2023113549A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ramasamy et al. | Ligand immobilized novel hybrid adsorbents for rare earth elements (REE) removal from waste water: assessing the feasibility of using APTES functionalized silica in the hybridization process with chitosan | |
CN107999037B (en) | Magnetic polymer adsorption material, preparation method and application | |
CN101599335B (en) | Oxidation resistant dimethyl silicon oil based magnetic fluid and preparation method thereof | |
Fryxell et al. | Design and synthesis of chelating diamide sorbents for the separation of lanthanides | |
KR20140020856A (en) | Modified poly(styrene-co-maleic anhydride) and uses thereof | |
US9468902B1 (en) | Synthesis of zinc oxide nanocomposites using poly (ionic liquid) | |
KR101206826B1 (en) | Improved preparation of metal ion imprinted microporous polymer particles | |
US6576590B2 (en) | Materials for the separation of copper ions and ferric iron in liquid solutions | |
Mohammadikish et al. | Rapid adsorption of cationic and anionic dyes from aqueous solution via metal-based coordination polymers nanoparticles | |
JP5796867B2 (en) | Chelating resin | |
Mazumder et al. | Immobilization of two polyelectrolytes leading to a novel hydrogel for high-performance Hg2+ removal to ppb and sub-ppb levels | |
Oyarce et al. | Removal of lithium ions from aqueous solutions by an ultrafiltration membrane coupled to soluble functional polymer | |
JP2023113549A (en) | Water-soluble chelating polymer and method for producing the same | |
CN109704974A (en) | Heavy metal chelating agent and preparation method and application thereof | |
CN101774628A (en) | Preparation method of water-soluble metal sulfide semiconductor nanoparticle | |
CN114797750B (en) | Crosslinked starch-based composite adsorbent and preparation method and application thereof | |
Sahadevan et al. | Sulfur–oleylamine copolymer synthesized via inverse vulcanization for the selective recovery of copper from lithium-ion battery E-waste | |
JP2011240287A (en) | Solid chelating agent and method of manufacturing the same, and method for separation of cobalt, manganese and nickel employing the agent | |
Zhou et al. | Ethanol-guided synthesis of (flower-on-leaf)-like aniline oligomers with excellent adsorption properties | |
EP3665177A1 (en) | Method for separating uranium and/or thorium | |
JP2004337748A (en) | Metal recovering/separating agent and recovering/separating process of metal using it | |
Rivas et al. | Water‐soluble polymeric materials with the ability to bind metal ions | |
WO2021053326A1 (en) | Selective removal of charged species | |
CN105273109A (en) | Method for removing copper from reaction products of atom free radical polymerization system | |
JP2020143322A (en) | Separation recovery method of precious metal and precious metal fine particle recovered by the method |