[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2023169221A - Manufacturing method of fiber reinforced concrete member - Google Patents

Manufacturing method of fiber reinforced concrete member Download PDF

Info

Publication number
JP2023169221A
JP2023169221A JP2023143682A JP2023143682A JP2023169221A JP 2023169221 A JP2023169221 A JP 2023169221A JP 2023143682 A JP2023143682 A JP 2023143682A JP 2023143682 A JP2023143682 A JP 2023143682A JP 2023169221 A JP2023169221 A JP 2023169221A
Authority
JP
Japan
Prior art keywords
fiber
reinforced concrete
fibers
concrete member
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023143682A
Other languages
Japanese (ja)
Inventor
大季 小倉
Daiki Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69099395&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2023169221(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2023143682A priority Critical patent/JP2023169221A/en
Publication of JP2023169221A publication Critical patent/JP2023169221A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Bridges Or Land Bridges (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

To provide a manufacturing method of a fiber reinforced concrete member capable of controlling an orientation of the fiber easily.SOLUTION: A concrete with fiber generation process of mixing a plurality of fiber F into concrete or mortar in uncured state and generating concrete with a fiber FC and a fiber reinforced concrete body construction process of extruding the concrete with fiber FC to a predetermined position from a nozzle 10 of an additional manufacturing device and constructing a fiber reinforced concrete body AC1 are provided.SELECTED DRAWING: Figure 6

Description

本発明は、繊維補強コンクリート部材の製造方法に関する。 The present invention relates to a method for manufacturing fiber-reinforced concrete members.

近年、未硬化状態のコンクリートやモルタル(以下、これらをまとめてコンクリート材料という場合がある)に所定量の繊維を混入させることによって、コンクリートの靭性を高めてコンクリートを補強した繊維補強コンクリートが注目されている。繊維補強コンクリートは、トンネルの吹き付けや道路の舗装、建築物における土間コンクリート、基礎構造や脚部、コンクリ-ト二次製品等に広く使用されている。コンクリート材料に混入させる繊維の種類は、繊維補強コンクリートの使用目的や繊維が混入されるコンクリート材料の種類等を勘案して適宜選択される。 In recent years, fiber-reinforced concrete, which strengthens concrete by increasing its toughness by mixing a predetermined amount of fibers into uncured concrete or mortar (hereinafter collectively referred to as concrete materials), has attracted attention. ing. Fiber-reinforced concrete is widely used for spraying tunnels, paving roads, concrete floors in buildings, foundation structures and legs, secondary concrete products, etc. The type of fibers to be mixed into the concrete material is appropriately selected in consideration of the intended use of the fiber-reinforced concrete, the type of concrete material to be mixed with the fibers, and the like.

例えば、特許文献1には、高強度鋼繊維補強コンクリートを適用したずれ止め構造が開示されている。このずれ止め構造は、橋梁の鋼桁と鉄筋コンクリート橋脚との接合に適用可能である。 For example, Patent Document 1 discloses an anti-slip structure using high-strength steel fiber reinforced concrete. This anti-slip structure is applicable to joining steel girders and reinforced concrete piers of bridges.

特開2011-196098号公報Japanese Patent Application Publication No. 2011-196098

特許文献1に記載されている高強度鋼繊維補強コンクリートは、鋼殻をはじめとする型枠内への充填及び打設終了後に、特殊な養生を施すことなく、一般的な湿潤養生で完成させることができる。しかしながら、特許文献1に記載されているずれ止め構造を構築する際に、流動性を有する練り上げ直後の高強度鋼繊維補強コンクリートを鋼殻(型枠)内に充填すると、未硬化状態のコンクリートの流動に伴って繊維が所望の方向とは異なる方向に配向する場合があった。すなわち、従来の繊維補強コンクリートでは、繊維の配向を制御することが難しいという問題があった。繊維の方向が所望の方向とは異なる、あるいは繊維の配向に偏りが生じると、硬化後の繊維補強コンクリート及び繊維補強コンクリートを用いた構造物の力学性能に影響を及ぼす虞があった。 The high-strength steel fiber-reinforced concrete described in Patent Document 1 is completed by general wet curing without special curing after filling and pouring into the formwork including the steel shell. be able to. However, when constructing the anti-slip structure described in Patent Document 1, if the steel shell (formwork) is filled with fluid high-strength steel fiber-reinforced concrete that has just been kneaded, the unhardened concrete There were cases in which the fibers were oriented in a direction different from the desired direction due to the flow. That is, conventional fiber-reinforced concrete has a problem in that it is difficult to control the orientation of fibers. If the direction of the fibers differs from the desired direction, or if the orientation of the fibers is biased, there is a risk that the mechanical performance of the fiber-reinforced concrete after curing and the structure using the fiber-reinforced concrete will be affected.

上述の問題に対応する一つの方法として、繊維補強コンクリートを打設している最中又は直後(すなわち、未硬化状態のとき)に、回転自在な円盤を備えた整流器を打設したコンクリート中に挿入し、円盤を回転させながら繊維を所望の方向に沿って動かす方法が提案されている。しかしながら、この方法では、コンクリートの打設後に整流器を動かす手間と労力と時間を要し、煩雑である。 One way to address the above-mentioned problems is to install a rectifier with rotatable discs into the poured concrete during or immediately after the fiber-reinforced concrete is being poured (i.e., when it is in an uncured state). A method has been proposed in which the disk is inserted and the fibers are moved along a desired direction while rotating the disk. However, this method requires time, effort, and effort to move the rectifier after concrete is poured, and is complicated.

本発明は、上述の事情に鑑みてなされたものであり、繊維の配向を容易に制御可能な繊維補強コンクリート部材の製造方法を提供する。 The present invention has been made in view of the above-mentioned circumstances, and provides a method for manufacturing a fiber-reinforced concrete member in which the orientation of fibers can be easily controlled.

本発明の繊維補強コンクリート部材の製造方法は、未硬化状態のコンクリート又はモルタルに複数の繊維を混入させて繊維入りコンクリートを生成する繊維入りコンクリート生成工程と、前記繊維入りコンクリートを付加製造装置のノズルから所定の位置に押し出して繊維補強コンクリート体を施工する繊維補強コンクリート体施工工程と、を備えることを特徴とする。 The method for manufacturing a fiber-reinforced concrete member of the present invention includes a fiber-filled concrete production step in which a plurality of fibers are mixed into uncured concrete or mortar to produce fiber-filled concrete, and a nozzle of an additive manufacturing device in which the fiber-filled concrete is produced. A fiber-reinforced concrete body construction step of extruding the fiber-reinforced concrete body from the fiber-reinforced concrete body to a predetermined position and constructing the fiber-reinforced concrete body.

本発明の繊維補強コンクリート部材の製造方法によれば、繊維入りコンクリートを付加製造装置のノズル(以下、単にノズルという場合がある)から押し出すだけで、それぞれの繊維が造形(プリント)方向に配向されやすく、複数の繊維が整列しやすくなる。このことによって、繊維補強コンクリート体で構成される繊維補強コンクリート部材中の繊維の配向が容易に制御される。 According to the method for producing fiber-reinforced concrete members of the present invention, each fiber is oriented in the printing direction by simply extruding fiber-containing concrete from a nozzle (hereinafter sometimes simply referred to as a nozzle) of an additive manufacturing device. This makes it easier for multiple fibers to line up. As a result, the orientation of fibers in the fiber-reinforced concrete member constituted by the fiber-reinforced concrete body can be easily controlled.

本発明の繊維補強コンクリート部材の製造方法では、前記ノズルの押出口の大きさは、前記複数の繊維の平均長さより短いことが好ましい。 In the method for manufacturing a fiber-reinforced concrete member of the present invention, it is preferable that the size of the extrusion opening of the nozzle is shorter than the average length of the plurality of fibers.

本発明の繊維補強コンクリート部材の製造方法によれば、繊維入りコンクリートがノズルの押出口付近に集められて押出口から押し出される過程において、繊維の長手方向が押出口を含む面に略直交する方向に配向されるので、ノズルの押出口の直径が複数の繊維の平均長さ以上である場合に比べて、複数の繊維がより確実に整列する。 According to the method for manufacturing a fiber-reinforced concrete member of the present invention, in the process in which fiber-filled concrete is collected near the extrusion port of a nozzle and extruded from the extrusion port, the longitudinal direction of the fibers is in a direction substantially perpendicular to the plane including the extrusion port. Therefore, the plurality of fibers are aligned more reliably than when the diameter of the extrusion port of the nozzle is equal to or greater than the average length of the plurality of fibers.

本発明の繊維補強コンクリート部材の製造方法によれば、繊維の配向を容易に制御できる。 According to the method for manufacturing a fiber-reinforced concrete member of the present invention, the orientation of fibers can be easily controlled.

本発明の一実施形態に係る繊維補強コンクリート部材の製造方法を説明するための概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram for demonstrating the manufacturing method of the fiber reinforced concrete member based on one embodiment of this invention. 本発明の一実施形態に係る繊維補強コンクリート部材の製造方法によって製造可能な繊維補強コンクリート部材の斜視図である。1 is a perspective view of a fiber-reinforced concrete member that can be manufactured by a method for manufacturing a fiber-reinforced concrete member according to an embodiment of the present invention. 本発明の一実施形態に係る繊維補強コンクリート部材の製造方法によって製造可能な別の繊維補強コンクリート部材の斜視図である。It is a perspective view of another fiber-reinforced concrete member which can be manufactured by the method for manufacturing a fiber-reinforced concrete member according to an embodiment of the present invention. 本発明の一実施形態に係る繊維補強コンクリート部材の製造方法によって製造可能なさらに別の繊維補強コンクリート部材の平面図である。It is a top view of yet another fiber-reinforced concrete member which can be manufactured by the method for manufacturing a fiber-reinforced concrete member according to an embodiment of the present invention. 図4に示す繊維補強コンクリート部材をD-D´線で矢視した断面図である。FIG. 5 is a cross-sectional view of the fiber-reinforced concrete member shown in FIG. 4 taken along line DD'. 図4に示す繊維補強コンクリート部材の製造方法を説明するための概略図である。FIG. 5 is a schematic diagram for explaining a method for manufacturing the fiber-reinforced concrete member shown in FIG. 4. FIG. 本発明の一実施形態に係る繊維補強コンクリート部材の製造方法によって製造可能な他の繊維補強コンクリート部材の図であり、図4に示すD-D´線で矢視した場合に対応する断面図である。5 is a diagram of another fiber-reinforced concrete member that can be manufactured by the method for manufacturing a fiber-reinforced concrete member according to an embodiment of the present invention, and is a cross-sectional view corresponding to the case taken along the line DD' shown in FIG. 4. be. 本発明の一実施形態に係る繊維補強コンクリート部材の製造方法によって製造可能なさらに他の繊維補強コンクリート部材の図であり、図4に示すD-D´線で矢視した場合に対応する断面図である。5 is a diagram of still another fiber-reinforced concrete member that can be manufactured by the method for manufacturing a fiber-reinforced concrete member according to an embodiment of the present invention, and is a cross-sectional view corresponding to the case taken along the line DD' shown in FIG. 4. It is.

以下、本発明を適用した繊維補強コンクリート部材の製造方法の実施形態について、図面を参照して説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a method for manufacturing a fiber-reinforced concrete member to which the present invention is applied will be described with reference to the drawings.

(繊維補強コンクリート部材の製造方法)
本実施形態の繊維補強コンクリート部材の製造方法は、繊維入りコンクリート生成工程(以下、単に生成工程という場合がある)と、設置工程と、繊維補強コンクリート体施工工程(以下、単に施工工程という場合がある)と、を備える。以下、各工程について説明する。
(Method for manufacturing fiber reinforced concrete members)
The manufacturing method of the fiber-reinforced concrete member of this embodiment includes a fiber-reinforced concrete production process (hereinafter sometimes simply referred to as the production process), an installation process, and a fiber-reinforced concrete body construction process (hereinafter sometimes simply referred to as the construction process). ) and. Each step will be explained below.

[生成工程]
生成工程では、コンクリート材料に複数の繊維を混入させて繊維入りコンクリートを生成する。本実施形態で使用するコンクリート材料は、未硬化状態で適度な流動性を有するコンクリート又はモルタルであり、公知のものを使用できるが、例えば積層造形が適切に行えるように、形状保持性やチキソトロピー性を有し、さらに積層プロセスにおいて適度に硬化して短時間で高い強度を発現する材料であることが好ましい。
[Generation process]
In the production process, a plurality of fibers are mixed into the concrete material to produce fiber-filled concrete. The concrete material used in this embodiment is concrete or mortar that has appropriate fluidity in an uncured state, and any known material can be used. It is preferable that the material has the following characteristics, and furthermore, is appropriately hardened in the lamination process and exhibits high strength in a short period of time.

コンクリート材料に混入させる繊維は、金属又は樹脂からなる短繊維である。本発明で使用される繊維の直径に制限はないが、短繊維の直径は例えば0.005mm以上1.0mm以下であることが好ましい。複数の繊維の平均長さは、例えば3mm以上30mm以下であることが好ましい。なお、後述するノズル10の押出口18の内径に対して、繊維の長さが長いほうが、繊維がより確実に整列する。 The fibers mixed into the concrete material are short fibers made of metal or resin. Although there is no restriction on the diameter of the fibers used in the present invention, it is preferable that the diameter of the short fibers is, for example, 0.005 mm or more and 1.0 mm or less. It is preferable that the average length of the plurality of fibers is, for example, 3 mm or more and 30 mm or less. Note that the longer the length of the fibers is with respect to the inner diameter of the extrusion port 18 of the nozzle 10, which will be described later, the more reliably the fibers are aligned.

繊維は、コンクリート材料に対して、例えば0.1容量%以上5.0容量%以下で混入されることが好ましい。詳しくは、繊維入りコンクリートが空気中で形状を維持可能な程度、かつ繊維入りコンクリートの乾燥収縮ひび割れを抑制できる程度に、コンクリート材料における繊維の割合を調整する。繊維入りコンクリートの硬化後に、外力に抗して繊維補強コンクリート体の引張靭性を発揮させるためには、繊維がコンクリート材料に対して1.0容量%以上で混入されることが好ましい。 It is preferable that the fibers be mixed, for example, in an amount of 0.1% by volume or more and 5.0% by volume or less with respect to the concrete material. Specifically, the proportion of fibers in the concrete material is adjusted to such an extent that the fiber-filled concrete can maintain its shape in the air and to the extent that drying shrinkage cracking of the fiber-filled concrete can be suppressed. In order to exhibit the tensile toughness of the fiber-reinforced concrete body against external forces after the fiber-filled concrete hardens, it is preferable that fibers be mixed in an amount of 1.0% by volume or more based on the concrete material.

[設置工程]
製造対象の繊維補強コンクリート部材の形状に合わせて、次に説明する施工工程で少なくともノズル10を移動可能にするために、図1に示すノズル10を有する付加製造装置(ノズル10以外の部分は不図示)を施工現場に設置する。また、付加製造装置も移動可能とし、付加製造装置のX方向及びY方向の位置やZ方向の高さを変更できるようにするため、現場にレールやリフトをさらに設けてもよい。
[Installation process]
In order to make at least the nozzle 10 movable in the construction process described below in accordance with the shape of the fiber-reinforced concrete member to be manufactured, an additive manufacturing apparatus having the nozzle 10 shown in FIG. (as shown) is installed at the construction site. Further, in order to make the additive manufacturing device movable and change the position of the additive manufacturing device in the X and Y directions and the height in the Z direction, rails and lifts may be further provided at the site.

[施工工程]
施工工程では、図1に示すように、生成工程で生成された繊維入りコンクリートFCを付加製造装置に供給し、繊維入りコンクリートFCを付加製造装置のノズル10から所定の位置に押し出して繊維補強コンクリート体ACを施工する。本実施形態の製造対象の繊維補強コンクリート部材は、繊維入りコンクリートFCを層状に接合することによって形成される部材であり、層状に接合された繊維補強コンクリート体ACによって構成される部材である。
[Construction process]
In the construction process, as shown in Fig. 1, the fiber-filled concrete FC generated in the generation process is supplied to an additive manufacturing device, and the fiber-filled concrete FC is extruded from the nozzle 10 of the additive manufacturing device to a predetermined position to form fiber-reinforced concrete. Install body AC. The fiber-reinforced concrete member to be manufactured in this embodiment is a member formed by joining fiber-filled concrete FC in layers, and is a member constituted by fiber-reinforced concrete bodies AC joined in layers.

ノズル10は、大径部12と、大径部12の押出方向Pの先端に連結された小径部14と、を備える。大径部12及び小径部14は略四角柱状に形成され、大径部12の中空部と小径部14の中空部とは連結部16で接続されている。 The nozzle 10 includes a large diameter portion 12 and a small diameter portion 14 connected to the tip of the large diameter portion 12 in the extrusion direction P. The large diameter portion 12 and the small diameter portion 14 are formed into a substantially rectangular prism shape, and the hollow portion of the large diameter portion 12 and the hollow portion of the small diameter portion 14 are connected by a connecting portion 16 .

大径部12及び小径部14の形状は特に限定されないが、未硬化状態のコンクリートC中又はモルタルM中(すなわち、コンクリート材料中)の複数の繊維Fをより確実に整列させる点から、小径部14は少なくとも押出方向Pに沿って同じ大きさの断面を有する柱状であることが好ましい。すなわち、小径部14の内壁面14eの幅(すなわち、ノズル10の長手方向及び押出方向Pに直交する方向の大きさ)wは、ノズル10の長手方向及び押出方向Pに沿って均一であることが好ましい。ここで、「複数の繊維Fが整列する」とは、複数の繊維Fの長手方向が互いに平行になり、かつ、任意の方向に沿って揃うことを意味する。 Although the shapes of the large diameter portion 12 and the small diameter portion 14 are not particularly limited, the small diameter portion 14 is preferably columnar and has a cross section of the same size at least along the extrusion direction P. That is, the width w of the inner wall surface 14e of the small diameter portion 14 (that is, the size in the direction perpendicular to the longitudinal direction of the nozzle 10 and the extrusion direction P) is uniform along the longitudinal direction of the nozzle 10 and the extrusion direction P. is preferred. Here, "the plurality of fibers F are aligned" means that the longitudinal directions of the plurality of fibers F are parallel to each other and aligned along an arbitrary direction.

小径部14の押出方向Pの先端には、押出口18が設けられている。押出口18の幅(大きさ、すなわち、ノズル10の長手方向及び押出方向Pに直交する方向の幅)gは、本実施形態では幅wに等しい。幅gは、複数の繊維Fの平均長さより短いことが好ましい。小径部14において押出方向Pに沿って押し出されるコンクリート材料中の複数の繊維Fを確実に整列させる点から、小径部14の長さ(すなわち、ノズル10の長手方向及び押出方向Pに平行な方向の大きさ)は、複数の繊維Fの平均長さより長いことが好ましい。 An extrusion port 18 is provided at the tip of the small diameter portion 14 in the extrusion direction P. The width (size, that is, the width in the direction perpendicular to the longitudinal direction of the nozzle 10 and the extrusion direction P) g of the extrusion port 18 is equal to the width w in this embodiment. The width g is preferably shorter than the average length of the plurality of fibers F. From the point of view of ensuring alignment of the plurality of fibers F in the concrete material extruded along the extrusion direction P in the small diameter part 14, the length of the small diameter part 14 (i.e., the longitudinal direction of the nozzle 10 and the direction parallel to the extrusion direction P) It is preferable that the average length of the plurality of fibers F is longer than the average length of the plurality of fibers F.

施工工程では、繊維入りコンクリートFCを所定の位置でノズル10の押出口18から押し出しつつ、所定の位置に所謂3次元プリントし、積層する。層状に繊維入りコンクリートFCを押し出す。この際、繊維入りコンクリートFCを、製造対象の繊維補強コンクリート部材の形状に合わせて複数回(例えば、図1ではZ方向に3回であり、図2ではY方向に3回、Z方向に2回)にわたって押し出してもよく、製造対象の繊維補強コンクリート部材の形状をなぞるように1回で押し出してもよい。 In the construction process, while extruding the fiber-filled concrete FC from the extrusion port 18 of the nozzle 10 at a predetermined position, so-called three-dimensional printing is performed at a predetermined position and laminated. Extrude fiber-filled concrete FC in layers. At this time, the fiber-filled concrete FC is applied multiple times (for example, 3 times in the Z direction in Fig. 1, 3 times in the Y direction and 2 times in the Z direction in Fig. 2) depending on the shape of the fiber-reinforced concrete member to be manufactured. It may be extruded over several times, or it may be extruded in one step so as to trace the shape of the fiber-reinforced concrete member to be manufactured.

なお、Z方向(高さ方向)において隣接する繊維入りコンクリートFCを3次元プリントする方向(以下、プリント方向とする)Tを平面視で互いに90°ずらしてもよい。本実施形態では、不図示の床面又は地面に対して平行かつ互いに直交する方向をX方向及びY方向とし、前述の床面又は地面に対して直交する方向をZ方向とする。 Note that the directions (hereinafter referred to as printing directions) T in which adjacent fiber-filled concrete FCs are three-dimensionally printed in the Z direction (height direction) may be shifted by 90 degrees from each other in plan view. In the present embodiment, the directions parallel to and orthogonal to a floor or ground (not shown) are defined as the X direction and the Y direction, and the direction orthogonal to the floor or ground described above is defined as the Z direction.

繊維入りコンクリートFCは、所定の時間の経過と共に硬化し、隣接する繊維入りコンクリートFCの表面同士が接合し、繊維補強コンクリート体ACが施工される。製造対象の繊維補強コンクリート部材の形状に合わせて押し出された繊維入りコンクリートFCを全て繊維補強コンクリート体ACとして施工することによって、施工工程が完了する。なお、図1では、Z方向の最下層及び下から2層目を繊維補強コンクリート体ACとしているが、最下層及び下から2層目のそれぞれの未硬化状態で最上層の繊維入りコンクリートFCを設けた場合は、Z方向の最下層及び下から2層目は繊維入りコンクリートFCである。 The fiber-filled concrete FC hardens over a predetermined period of time, and the surfaces of adjacent fiber-filled concrete FC are joined to each other, and a fiber-reinforced concrete body AC is constructed. The construction process is completed by constructing all the fiber-filled concrete FC extruded in accordance with the shape of the fiber-reinforced concrete member to be manufactured as a fiber-reinforced concrete body AC. In Fig. 1, the lowest layer and the second layer from the bottom in the Z direction are the fiber reinforced concrete body AC, but the fiber reinforced concrete FC of the top layer is in the uncured state of the lowest layer and the second layer from the bottom. If provided, the lowest layer in the Z direction and the second layer from the bottom are fiber-filled concrete FC.

また、設置工程は施工工程前に行うが、生成工程と施工工程は、並行して行ってもよい。例えば、製造対象の繊維補強コンクリート部材の製造に必要とされる繊維入りコンクリートFCの総量に対して、ノズル10の中空部に収容可能な繊維入りコンクリートFCの量が少ない場合は、生成工程で生成された繊維入りコンクリートFCをノズル10の中空部に供給しつつ、施工工程でノズル10から繊維入りコンクリートFCを所定の位置に押し出してもよい。 Moreover, although the installation process is performed before the construction process, the generation process and the construction process may be performed in parallel. For example, if the amount of fiber-filled concrete FC that can be accommodated in the hollow part of the nozzle 10 is small compared to the total amount of fiber-filled concrete FC required for manufacturing the fiber-reinforced concrete member to be manufactured, if the amount of fiber-filled concrete FC that can be accommodated in the hollow part of the nozzle 10 is small, The fiber-filled concrete FC may be extruded from the nozzle 10 to a predetermined position in the construction process while the fiber-filled concrete FC is supplied to the hollow part of the nozzle 10.

[作用効果]
以上説明した本実施形態の繊維補強コンクリート部材の製造方法によれば、上述の生成工程及び施工工程を備えるので、ノズル10から繊維入りコンクリートFCを押し出すだけで、図2に示すようにそれぞれの繊維Fの長手方向を造形方向、すなわちプリント方向Tと平行に配向させ、かつ複数の繊維Fを容易に整列させることができる。図2には、X方向をプリント方向Tとして、Y方向に3層の繊維補強コンクリート体AC、Z方向に2層の繊維補強コンクリート体ACが積層された繊維補強コンクリート部材M1が例示されている。繊維補強コンクリート部材M1では、複数の繊維補強コンクリート体ACのそれぞれに複数含まれる繊維Fがプリント方向Tに対して平行に整列されている。このことによって、配向制御による材料の不均一性を回避することができ、プリント方向Tに沿った外力作用に対して、繊維による補強効果をより効率的に発揮させることができる。
[Effect]
According to the method for manufacturing a fiber-reinforced concrete member of the present embodiment described above, since it includes the above-mentioned generation step and construction step, by simply extruding the fiber-reinforced concrete FC from the nozzle 10, each fiber-reinforced concrete member FC is formed as shown in FIG. The longitudinal direction of the fibers F can be oriented parallel to the modeling direction, that is, the printing direction T, and the plurality of fibers F can be easily aligned. FIG. 2 illustrates a fiber-reinforced concrete member M1 in which three layers of fiber-reinforced concrete bodies AC are stacked in the Y direction and two layers of fiber-reinforced concrete bodies AC are stacked in the Z direction, with the X direction as the printing direction T. . In the fiber-reinforced concrete member M1, a plurality of fibers F included in each of the plurality of fiber-reinforced concrete bodies AC are aligned parallel to the printing direction T. This makes it possible to avoid non-uniformity of the material due to orientation control, and it is possible to more efficiently exert the reinforcing effect of the fibers against the action of external force along the printing direction T.

また、本実施形態の繊維補強コンクリート部材の製造方法によれば、ノズル10から繊維入りコンクリートFCを押し出すだけで、繊維補強コンクリート体ACを施工でき、型枠不要とし、作業時間及び工程数を減じることができる。 Further, according to the method for manufacturing a fiber-reinforced concrete member of the present embodiment, the fiber-reinforced concrete body AC can be constructed by simply extruding the fiber-reinforced concrete FC from the nozzle 10, eliminating the need for formwork and reducing work time and the number of steps. be able to.

また、本実施形態の繊維補強コンクリート部材の製造方法によれば、ノズル10の押出口18の幅gは、複数の繊維Fの平均長さより短い。このことによって、繊維入りコンクリートFCがノズル10の大径部12の中空部から、連結部16を介して小径部14の中空部に集められる際に、大径部12の中空部内でランダムに配向していた複数の繊維Fを、図1に示すように、順次押出方向Pに沿って概ね配向させることができる。さらに、押出口18の押出方向Pの前後で繊維Fを確実に押出方向Pに配向させることができる。その結果、押出口18の幅が複数の繊維Fの平均長さ以上である場合に比べて、押出口18から押し出された繊維入りコンクリートFCの複数の繊維Fをプリント方向Tに対して平行にし、容易かつ確実に整列させることができる。 Further, according to the method for manufacturing a fiber-reinforced concrete member of the present embodiment, the width g of the extrusion port 18 of the nozzle 10 is shorter than the average length of the plurality of fibers F. By this, when the fiber-filled concrete FC is collected from the hollow part of the large diameter part 12 of the nozzle 10 into the hollow part of the small diameter part 14 via the connecting part 16, it is randomly oriented within the hollow part of the large diameter part 12. As shown in FIG. 1, the plurality of fibers F, which had been previously Furthermore, the fibers F can be reliably oriented in the extrusion direction P before and after the extrusion direction P of the extrusion port 18. As a result, compared to the case where the width of the extrusion port 18 is equal to or greater than the average length of the plurality of fibers F, the plurality of fibers F of the fiber-filled concrete FC extruded from the extrusion port 18 are made parallel to the printing direction T. , can be easily and reliably aligned.

また、本実施形態の繊維補強コンクリート部材の製造方法では、Z方向において隣接する繊維入りコンクリートFCのプリント方向Tを平面視で互いに90°ずらすことができる。このことによって、図3に示すように、Z方向で隣接する繊維補強コンクリート体AC中の繊維Fの長手方向(すなわち、配向)を互いに90°ずらすことができる。その結果、例えば図2に示す繊維補強コンクリート部材M1のように繊維Fの長手方向がX方向に揃っている場合に比べて、図3に示す繊維補強コンクリート部材M2は、材料の異方性を弱めることができる。すなわち、多方向(X方向とy方向の両方)に外力が作用する場合であっても、繊維の補強効果を発揮させると共に、部材の靭性を高めることができる。 Furthermore, in the method for manufacturing a fiber-reinforced concrete member of the present embodiment, the printing directions T of adjacent fiber-filled concrete FCs in the Z direction can be shifted by 90° from each other in plan view. As a result, as shown in FIG. 3, the longitudinal direction (that is, the orientation) of the fibers F in the fiber-reinforced concrete bodies AC adjacent in the Z direction can be shifted by 90° from each other. As a result, compared to the fiber reinforced concrete member M1 shown in FIG. 2 in which the longitudinal direction of the fibers F is aligned in the X direction, the fiber reinforced concrete member M2 shown in FIG. It can be weakened. That is, even when external forces act in multiple directions (both the X direction and the y direction), the reinforcing effect of the fibers can be exerted and the toughness of the member can be improved.

(繊維補強コンクリート部材の例)
次に、上述の実施形態の繊維補強コンクリート部材の製造方法によって製造可能な繊維補強コンクリート部材の例を説明する。
(Example of fiber reinforced concrete member)
Next, an example of a fiber-reinforced concrete member that can be manufactured by the method for manufacturing a fiber-reinforced concrete member of the above-described embodiment will be described.

[第1例]
図4に示す繊維補強コンクリート部材M3は、既存の柱Lの基部L0の外周から基部L0に当接して設けられ、柱Lの靭性を向上させる。
[First example]
The fiber-reinforced concrete member M3 shown in FIG. 4 is provided from the outer periphery of the base L0 of the existing column L in contact with the base L0, and improves the toughness of the column L.

図5に示すように、柱Lは、フーチング(又はスタブ)Sと、鉄筋コンクリート柱LCと、を備える。 As shown in FIG. 5, the column L includes a footing (or stub) S and a reinforced concrete column LC.

繊維補強コンクリート部材M3は、Z方向に積層された複数の繊維補強コンクリート体AC1によって構成されている。繊維補強コンクリート体AC1は、基部L0の外周から基部L0に当接するように形成されている。 The fiber-reinforced concrete member M3 is composed of a plurality of fiber-reinforced concrete bodies AC1 stacked in the Z direction. The fiber-reinforced concrete body AC1 is formed so as to come into contact with the base L0 from the outer periphery of the base L0.

図6に示すように、繊維補強コンクリート部材M3を製造する際は、上述の実施形態の繊維補強コンクリート部材の製造方法の施工工程において、付加製造装置のノズル10を基部L0の外周部上方で周回させ、ノズル10から、繊維入りコンクリートFCを基部L0に当接させつつ、基部L0の全周に押し出し、Z方向の最下層の繊維補強コンクリート体AC1を施工する。 As shown in FIG. 6, when manufacturing the fiber-reinforced concrete member M3, the nozzle 10 of the additive manufacturing device is rotated above the outer periphery of the base L0 in the construction process of the method for manufacturing the fiber-reinforced concrete member of the above-described embodiment. Then, from the nozzle 10, the fiber-reinforced concrete FC is extruded around the entire circumference of the base L0 while being brought into contact with the base L0, thereby constructing the lowest layer of fiber-reinforced concrete body AC1 in the Z direction.

続いて、ノズル10を基部L0の外周部かつ最下層の繊維補強コンクリート体AC1の上方で周回させ、繊維入りコンクリートFCをノズル10から、基部L0に当接させつつ、基部L0の全周に押し出してZ方向の2層目の繊維補強コンクリート体AC1を施工する。
なお、図6では、Z方向の最下層から下から3層目までを繊維補強コンクリート体AC1としているが、これらのいずれかの未硬化状態で最上層の繊維入りコンクリートFCを設けた場合は、前述の未硬化状態の層は繊維入りコンクリートFCである。
Subsequently, the nozzle 10 is rotated around the outer circumference of the base L0 and above the lowermost fiber-reinforced concrete body AC1, and the fiber-filled concrete FC is extruded from the nozzle 10 to the entire circumference of the base L0 while being brought into contact with the base L0. Then, construct the second layer of fiber-reinforced concrete body AC1 in the Z direction.
In addition, in FIG. 6, the fiber-reinforced concrete body AC1 is from the lowest layer to the third layer from the bottom in the Z direction, but if the fiber-reinforced concrete FC of the top layer is provided in any of these uncured states, The aforementioned uncured layer is fiber-filled concrete FC.

同様の工程を続け、所定の層数の繊維補強コンクリート体AC1を施工することによって、繊維補強コンクリート部材M3が完成する。 By continuing the same process and constructing a predetermined number of layers of fiber-reinforced concrete body AC1, fiber-reinforced concrete member M3 is completed.

上述の繊維補強コンクリート部材M3の製造方法によれば、型枠等を用いることなく、ノズル10から繊維入りコンクリートFCを押し出すだけで、それぞれの繊維Fの長手方向を基部L0の外周面に沿った造形方向、すなわちプリント方向Tと平行に配向させ、かつ複数の繊維Fを容易に整列させることができる。したがって、柱Lの基部L0の靭性を補強する繊維補強コンクリート部材M3を容易に製造できる。 According to the method for manufacturing the fiber-reinforced concrete member M3 described above, by simply extruding the fiber-filled concrete FC from the nozzle 10 without using a formwork or the like, the longitudinal direction of each fiber F is aligned along the outer peripheral surface of the base L0. The fibers F can be oriented parallel to the modeling direction, that is, the printing direction T, and the plurality of fibers F can be easily aligned. Therefore, the fiber-reinforced concrete member M3 that reinforces the toughness of the base L0 of the column L can be easily manufactured.

[第2例]
第1例の繊維補強コンクリート部材M3の変形例として、図7に示す繊維補強コンクリート部材M4が挙げられる。なお、繊維補強コンクリート部材M4の構成のうち、繊維補強コンクリート部材M3と共通する構成には、繊維補強コンクリート部材M3と同じ符号を付し、その説明を省略する。
[Second example]
A fiber-reinforced concrete member M4 shown in FIG. 7 is a modification of the fiber-reinforced concrete member M3 of the first example. In addition, among the configurations of the fiber-reinforced concrete member M4, the same components as those of the fiber-reinforced concrete member M3 are given the same reference numerals as those of the fiber-reinforced concrete member M3, and the explanation thereof will be omitted.

図7に示すように、繊維補強コンクリート部材M4では、Z方向に複数積層された繊維補強コンクリート体AC1の外周に、それぞれZ方向に複数積層された繊維補強コンクリート体AC2,AC3,・・・ACX(Xは2以上の任意の自然数)が設けられている。繊維補強コンクリート体AC2は、繊維補強コンクリート体AC1の外周からX方向又はY方向において繊維補強コンクリート体AC1に当接するように形成されている。繊維補強コンクリート体AC3は、繊維補強コンクリート体AC2の外周からX方向又はY方向において繊維補強コンクリート体AC2に当接するように形成されている。さらに、繊維補強コンクリート体ACXは、繊維補強コンクリート体AC(X-1)の外周からX方向又はY方向において繊維補強コンクリート体AC(X-1)に当接するように形成されている。繊維補強コンクリート体AC2,AC3,・・・,ACXのそれぞれのZ方向の層数は、繊維補強コンクリート体AC1,AC2,・・・,AC(X-1)のそれぞれのZ方向の層数より小さい。 As shown in FIG. 7, in the fiber-reinforced concrete member M4, a plurality of fiber-reinforced concrete bodies AC2, AC3, . (X is any natural number of 2 or more). The fiber-reinforced concrete body AC2 is formed so as to come into contact with the fiber-reinforced concrete body AC1 in the X direction or the Y direction from the outer periphery of the fiber-reinforced concrete body AC1. The fiber-reinforced concrete body AC3 is formed so as to come into contact with the fiber-reinforced concrete body AC2 in the X direction or the Y direction from the outer periphery of the fiber-reinforced concrete body AC2. Furthermore, the fiber-reinforced concrete body ACX is formed so as to come into contact with the fiber-reinforced concrete body AC (X-1) in the X direction or the Y direction from the outer periphery of the fiber-reinforced concrete body AC (X-1). The number of layers in the Z direction of each of the fiber reinforced concrete bodies AC2, AC3, ..., ACX is greater than the number of layers in the Z direction of each of the fiber reinforced concrete bodies AC1, AC2, ..., AC (X-1). small.

繊維補強コンクリート部材M4を製造する際は、上述の繊維補強コンクリート部材M3の製造方法の完了後に、付加製造装置のノズル10を最下層の繊維補強コンクリート体AC1の外周部上方で周回させ、ノズル10から、繊維入りコンクリートFCを最下層の繊維補強コンクリート体AC1に当接させつつ、最下層の繊維補強コンクリート体AC1の全周に押し出し、Z方向の最下層の繊維補強コンクリート体AC2を施工する。その後、繊維補強コンクリート部材M3の製造方法における繊維補強コンクリート体AC1の積層工程と同様に、繊維補強コンクリート体AC2をZ方向に積層する。 When manufacturing the fiber-reinforced concrete member M4, after completing the above-described manufacturing method for the fiber-reinforced concrete member M3, the nozzle 10 of the additive manufacturing device is rotated above the outer periphery of the lowermost fiber-reinforced concrete body AC1, and the nozzle 10 From there, the fiber-filled concrete FC is brought into contact with the lowermost fiber-reinforced concrete body AC1 and extruded around the entire circumference of the lowermost fiber-reinforced concrete body AC1 to construct the lowermost fiber-reinforced concrete body AC2 in the Z direction. Thereafter, fiber-reinforced concrete bodies AC2 are laminated in the Z direction in the same manner as in the layering process of fiber-reinforced concrete bodies AC1 in the method for manufacturing fiber-reinforced concrete members M3.

続いて、ノズル10を繊維補強コンクリート体AC2の外周部上方で周回させ、複数の繊維補強コンクリート体AC2の製造工程と同様に、繊維補強コンクリート体AC2と当接させつつ繊維補強コンクリート体AC2の外周部に複数の繊維補強コンクリート体AC3を積層する。このように繊維補強コンクリート体ACの配置及び積層を繰り返し、最後に、ノズル10を繊維補強コンクリート体AC(X-1)の外周部上方で周回させ、繊維補強コンクリート体AC(X-1)と当接させつつ、繊維補強コンクリート体AC(X-1)の外周部に繊維補強コンクリート体ACXを施工する。これらの工程によって、繊維補強コンクリート部材M4が完成する。 Subsequently, the nozzle 10 is rotated above the outer periphery of the fiber-reinforced concrete body AC2, and as in the manufacturing process of a plurality of fiber-reinforced concrete bodies AC2, the nozzle 10 is brought into contact with the fiber-reinforced concrete body AC2 and rotates around the outer periphery of the fiber-reinforced concrete body AC2. A plurality of fiber-reinforced concrete bodies AC3 are laminated in the section. In this way, the arrangement and stacking of the fiber-reinforced concrete body AC is repeated, and finally, the nozzle 10 is circulated above the outer periphery of the fiber-reinforced concrete body AC (X-1), and the fiber-reinforced concrete body AC (X-1) is Fiber-reinforced concrete body ACX is constructed around the outer periphery of fiber-reinforced concrete body AC (X-1) while making contact with it. Through these steps, the fiber-reinforced concrete member M4 is completed.

上述の繊維補強コンクリート部材M4の製造方法によれば、型枠等を用いることなく、繊維補強コンクリート部材M3の製造時と共通のノズル10から繊維入りコンクリートFCを押し出すだけで、それぞれの繊維Fの長手方向を基部L0の外周面に沿った造形方向、すなわちプリント方向Tと平行に配向させ、かつ複数の繊維Fを容易に整列させることができる。図7に示すように、繊維補強コンクリート体AC1,AC2,AC3,・・・,ACXのそれぞれの幅や高さを適度に調整し、従来のように型枠を用いた施工では困難な曲面(図7の二点鎖線)に沿うような形状の繊維補強コンクリート部材M4を施工できる。すなわち、本実施形態のように付加製造技術に基づいて、力学的に最適な構造(繊維補強コンクリート部材)を施工できる。また、既設の柱Lの基部L0の靭性を補強し、繊維補強コンクリート部材M3とは形状の異なる繊維補強コンクリート部材M4であっても容易に製造できる。なお、繊維補強コンクリート部材M3,M4の製造方法で用いるノズル10は互いに異なっていても構わない。 According to the method for manufacturing the fiber-reinforced concrete member M4 described above, each fiber F is produced by simply extruding the fiber-filled concrete FC from the same nozzle 10 used when manufacturing the fiber-reinforced concrete member M3, without using a formwork or the like. The longitudinal direction can be oriented parallel to the modeling direction along the outer peripheral surface of the base L0, that is, the printing direction T, and the plurality of fibers F can be easily aligned. As shown in Fig. 7, the width and height of each fiber-reinforced concrete body AC1, AC2, AC3, ..., ACX are adjusted appropriately, and curved surfaces ( A fiber-reinforced concrete member M4 having a shape along the two-dot chain line in FIG. 7 can be constructed. That is, a mechanically optimal structure (fiber-reinforced concrete member) can be constructed based on additive manufacturing technology as in this embodiment. Moreover, the toughness of the base L0 of the existing column L is reinforced, and even a fiber-reinforced concrete member M4 having a different shape from the fiber-reinforced concrete member M3 can be easily manufactured. Note that the nozzles 10 used in the manufacturing method of the fiber-reinforced concrete members M3 and M4 may be different from each other.

[第3例]
第1例の繊維補強コンクリート部材M3の変形例として、図8に示す繊維補強コンクリート部材M5が挙げられる。なお、繊維補強コンクリート部材M4の構成のうち、繊維補強コンクリート部材M3と共通する構成には、繊維補強コンクリート部材M3と同じ符号を付し、その説明を省略する。
[Third example]
A fiber-reinforced concrete member M5 shown in FIG. 8 is a modification of the fiber-reinforced concrete member M3 of the first example. In addition, among the configurations of the fiber-reinforced concrete member M4, the same components as those of the fiber-reinforced concrete member M3 are given the same reference numerals as those of the fiber-reinforced concrete member M3, and the explanation thereof will be omitted.

図8に示すように、繊維補強コンクリート部材M5では、複数の繊維補強コンクリート体AC1は、X方向又はY方向において柱Lの基部L0に対して間隔をあけて施工されている。基部L0と繊維補強コンクリート部材M5との間の領域Rには、繋ぎ筋LB2が鉛直方向に沿ってフーチングSの上方からフーチングSの内部に埋まるように設けられている。繋ぎ筋LB2は、略直線状の鉄筋であり、柱Lの外表面から所定の間隔をおいて、柱Lの外周を取り囲むようにして環状に設置される。繋ぎ筋LB2は、必ずしもフーチングSに埋込まれる必要はなく、フーチングSの上に配置されるだけでもよい。フーチングGより上方の繋ぎ筋LB2の長さは、繊維補強コンクリート部材M5と略同等である。鉄筋LB2を芯として、不図示かつ繊維Fを含まないコンクリート材料、あるいは繊維入りコンクリートFCが領域Rに打ち込まれる。 As shown in FIG. 8, in the fiber-reinforced concrete member M5, a plurality of fiber-reinforced concrete bodies AC1 are constructed at intervals with respect to the base L0 of the column L in the X direction or the Y direction. In the region R between the base L0 and the fiber-reinforced concrete member M5, a connecting bar LB2 is provided so as to be buried in the footing S from above the footing S along the vertical direction. The connecting bar LB2 is a substantially linear reinforcing bar, and is installed in an annular manner so as to surround the outer periphery of the column L at a predetermined interval from the outer surface of the column L. The tether LB2 does not necessarily need to be embedded in the footing S, and may just be placed on the footing S. The length of the connecting bar LB2 above the footing G is approximately the same as that of the fiber-reinforced concrete member M5. A concrete material (not shown) that does not contain fibers F or fiber-containing concrete FC is poured into region R around reinforcing bar LB2.

繊維補強コンクリート部材M5は、繊維入りコンクリートFCを基部L0に当接させずにX方向又はY方向において基部L0と間隔をあけること以外は、繊維補強コンクリート部材M3と同様の製造工程によって製造できる。また、柱Lを除く図8に示す構造物を製造する際には、領域Rに繋ぎ筋LB2を埋設あるいは配置し、繊維補強コンクリート部材M5の製造後に、領域Rに繊維Fを含まないコンクリート、あるいは繊維入りコンクリートFCを打ち込み、硬化させる。なお、繋ぎ筋LB2の配置は、繊維補強コンクリート部材M5の製造前、製造と同時、製造後のいずれで行っても構わない。繋ぎ筋LB2をフーチングSの内部に埋め込む場合は、繋ぎ筋LB2の配置を繊維補強コンクリート部材M5の製造前に行うと、やり易い。 The fiber-reinforced concrete member M5 can be manufactured by the same manufacturing process as the fiber-reinforced concrete member M3, except that the fiber-reinforced concrete FC is not brought into contact with the base L0 and is spaced apart from the base L0 in the X direction or the Y direction. In addition, when manufacturing the structure shown in FIG. 8 excluding the columns L, connecting bars LB2 are buried or arranged in the region R, and after manufacturing the fiber reinforced concrete member M5, concrete not containing fibers F in the region R, Alternatively, concrete FC containing fibers is poured and hardened. Note that the connecting bars LB2 may be arranged before, at the same time as, or after the fiber-reinforced concrete member M5 is manufactured. When embedding the connecting bars LB2 inside the footing S, it is easier to arrange the connecting bars LB2 before manufacturing the fiber-reinforced concrete member M5.

上述の繊維補強コンクリート部材M5の製造方法によれば、繊維補強コンクリート部材M3と同様に、繊維Fの配向を容易に制御し、既存の柱Lの靭性を補強する繊維補強コンクリート部材M5を製造できる。また、このような製造方法は、繊維補強コンクリート部材M5の製造前、製造と同時及び製造後に、繋ぎ筋LB2や繊維Fを含まないコンクリート材料の打ち込み工程と組み合わせて容易に実施できる。 According to the method for manufacturing the fiber-reinforced concrete member M5 described above, it is possible to easily control the orientation of the fibers F and manufacture the fiber-reinforced concrete member M5 that reinforces the toughness of the existing column L, similarly to the fiber-reinforced concrete member M3. . Further, such a manufacturing method can be easily implemented in combination with a step of pouring concrete material that does not include the connecting reinforcement LB2 or the fibers F before, simultaneously with, or after manufacturing the fiber-reinforced concrete member M5.

なお、繋ぎ筋LB2は、領域Rに施工されるコンクリート部材の曲げ耐力を向上させる目的で施工されるものであり、前述の目的が不要である場合は省略できる。 Note that the connecting bars LB2 are constructed for the purpose of improving the bending strength of the concrete member constructed in the region R, and can be omitted if the above-mentioned purpose is unnecessary.

以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications may be made within the scope of the gist of the present invention described within the scope of the claims. Changes are possible.

例えば、ノズル10の押出口18の形状(すなわち、押出方向Pに沿って見たときの形状)は、略矩形に限らず、円形、5以上の多角形等であってもよい。押出口18の形状は、押出口18から押し出される繊維入りコンクリートFCや繊維補強コンクリート体ACの形状に反映されるので、繊維入りコンクリートFCや繊維補強コンクリート体ACの形状に合わせて適宜変更される。また、ノズル10は、小径部14が大径部12に対して着脱可能であってもよく、前述のように繊維入りコンクリートFCや繊維補強コンクリート体ACの形状に合わせて形状の異なる複数の小径部14を交換取り付け可能であってもよい。 For example, the shape of the extrusion port 18 of the nozzle 10 (that is, the shape when viewed along the extrusion direction P) is not limited to a substantially rectangular shape, but may be a circle, a polygon of five or more, or the like. The shape of the extrusion port 18 is reflected in the shape of the fiber-filled concrete FC and fiber-reinforced concrete body AC extruded from the extrusion port 18, so it is changed as appropriate according to the shape of the fiber-filled concrete FC and fiber-reinforced concrete body AC. . Further, the nozzle 10 may have a small diameter portion 14 that is detachable from the large diameter portion 12, and as described above, the nozzle 10 has a plurality of small diameter portions with different shapes depending on the shape of the fiber-filled concrete FC or the fiber-reinforced concrete body AC. The portion 14 may be replaceable.

また、繊維補強コンクリート部材M3において、プリント方向T1,T2が平面視で互いに90°で交差している必要はなく、任意の角度で交差していてもよい。プリント方向T1,T2が互いに交差する角度を変えることによって、繊維補強コンクリート体ACの力学的性質を調整できる。 Furthermore, in the fiber-reinforced concrete member M3, the printing directions T1 and T2 do not need to intersect with each other at 90° in plan view, and may intersect with each other at any angle. By changing the angle at which the printing directions T1 and T2 intersect with each other, the mechanical properties of the fiber-reinforced concrete body AC can be adjusted.

さらに、繊維補強コンクリート部材M4において、繊維補強コンクリート体AC1,AC2,AC3,・・・,ACXのそれぞれのZ方向の層数は、基部L0から離間するにしたがって減少しているが、繊維補強コンクリート体AC1,AC2,AC3,・・・,ACXの層数は特に限定されない。上述の実施形態の繊維補強コンクリート部材の製造方法では、繊維補強コンクリート体の層数、配置は自在に設定及び変更できる。 Furthermore, in the fiber-reinforced concrete member M4, the number of layers in the Z direction of each of the fiber-reinforced concrete bodies AC1, AC2, AC3, ..., ACX decreases as the distance from the base L0 increases; The number of layers of the bodies AC1, AC2, AC3, . . . , ACX is not particularly limited. In the method for manufacturing a fiber-reinforced concrete member according to the embodiment described above, the number of layers and arrangement of the fiber-reinforced concrete body can be freely set and changed.

10 ノズル
18 押出口
F 繊維
FC 繊維入りコンクリート
AC,AC1,AC2,AC3,AC(X-1),ACX 繊維補強コンクリート体
M1,M2,M3,M4,M5 繊維補強コンクリート部材
10 Nozzle 18 Extrusion port F Fiber FC Fiber reinforced concrete AC, AC1, AC2, AC3, AC (X-1), ACX Fiber reinforced concrete body M1, M2, M3, M4, M5 Fiber reinforced concrete member

本発明の繊維補強コンクリート部材の製造方法は、未硬化状態のコンクリート又はモルタルに複数の繊維を混入させ繊維入りコンクリートを付加製造装置のノズルから所定の位置に押し出して繊維補強コンクリート体を施工する繊維補強コンクリート体施工工程を有し前記ノズルは、大径部と、該大径部の押出方向の先端に設けられた小径部と、を備え、前記小径部の前記押出方向の先端に押出口が形成されており、前記ノズルの前記小径部の長さは、前記複数の繊維の平均長さより長いことを特徴とする。 The method for producing a fiber-reinforced concrete member of the present invention involves extruding fiber-reinforced concrete made by mixing a plurality of fibers into uncured concrete or mortar to a predetermined position from a nozzle of an additive manufacturing device to construct a fiber-reinforced concrete body. The nozzle includes a large diameter part and a small diameter part provided at the tip of the large diameter part in the extrusion direction, and the nozzle has a small diameter part provided at the tip of the small diameter part in the extrusion direction. An extrusion port is formed, and the length of the small diameter portion of the nozzle is longer than the average length of the plurality of fibers.

本発明の繊維補強コンクリート部材の製造方法では、柱の外周に前記繊維補強コンクリート体を施工することが好ましい。 In the method for manufacturing a fiber-reinforced concrete member of the present invention, it is preferable to construct the fiber-reinforced concrete body around the outer periphery of a column .

Claims (2)

未硬化状態のコンクリート又はモルタルに複数の繊維を混入させて繊維入りコンクリートを生成する繊維入りコンクリート生成工程と、
前記繊維入りコンクリートを付加製造装置のノズルから所定の位置に押し出して繊維補強コンクリート体を施工する繊維補強コンクリート体施工工程と、
を備えることを特徴とする繊維補強コンクリート部材の製造方法。
A fiber-filled concrete production step of mixing a plurality of fibers into uncured concrete or mortar to produce fiber-filled concrete;
a fiber-reinforced concrete body construction step of extruding the fiber-filled concrete from a nozzle of an additive manufacturing device to a predetermined position to construct a fiber-reinforced concrete body;
A method for producing a fiber-reinforced concrete member, comprising:
前記ノズルの押出口の大きさは、前記複数の繊維の平均長さより短い、
請求項1に記載の繊維補強コンクリート部材の製造方法。
The size of the extrusion opening of the nozzle is shorter than the average length of the plurality of fibers.
A method for manufacturing a fiber-reinforced concrete member according to claim 1.
JP2023143682A 2018-07-02 2023-09-05 Manufacturing method of fiber reinforced concrete member Pending JP2023169221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023143682A JP2023169221A (en) 2018-07-02 2023-09-05 Manufacturing method of fiber reinforced concrete member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018125910A JP7244225B2 (en) 2018-07-02 2018-07-02 METHOD FOR MANUFACTURING FIBER REINFORCED CONCRETE MEMBER
JP2022184871A JP7375148B2 (en) 2018-07-02 2022-11-18 Manufacturing method for fiber-reinforced concrete members
JP2023143682A JP2023169221A (en) 2018-07-02 2023-09-05 Manufacturing method of fiber reinforced concrete member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022184871A Division JP7375148B2 (en) 2018-07-02 2022-11-18 Manufacturing method for fiber-reinforced concrete members

Publications (1)

Publication Number Publication Date
JP2023169221A true JP2023169221A (en) 2023-11-29

Family

ID=69099395

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018125910A Active JP7244225B2 (en) 2018-07-02 2018-07-02 METHOD FOR MANUFACTURING FIBER REINFORCED CONCRETE MEMBER
JP2022184871A Active JP7375148B2 (en) 2018-07-02 2022-11-18 Manufacturing method for fiber-reinforced concrete members
JP2023143682A Pending JP2023169221A (en) 2018-07-02 2023-09-05 Manufacturing method of fiber reinforced concrete member

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2018125910A Active JP7244225B2 (en) 2018-07-02 2018-07-02 METHOD FOR MANUFACTURING FIBER REINFORCED CONCRETE MEMBER
JP2022184871A Active JP7375148B2 (en) 2018-07-02 2022-11-18 Manufacturing method for fiber-reinforced concrete members

Country Status (1)

Country Link
JP (3) JP7244225B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111941A (en) * 2019-01-10 2020-07-27 清水建設株式会社 Construction method of concrete structure
JP7225327B2 (en) * 2021-07-28 2023-02-20 裕一 平野 Concrete 3D printing discharge device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819446B2 (en) * 1974-10-17 1983-04-18 株式会社クボタ Mukishitsekisobannoseizohouhou
JPS62236705A (en) * 1986-04-08 1987-10-16 日本板硝子株式会社 Manufacture of premixing fiber reinforced cement product
JP3258569B2 (en) * 1995-09-01 2002-02-18 株式会社熊谷組 Method and structure for reinforcing the periphery of hole in concrete beam
JP2002047799A (en) * 2000-08-04 2002-02-15 Taisei Corp Constructing method of concrete structure
JP3799053B1 (en) * 2005-08-25 2006-07-19 大成建設株式会社 Floor slab structure and method for reinforcing steel slab
JP6177559B2 (en) * 2013-03-27 2017-08-09 株式会社安藤・間 Mixing apparatus and mixing method for mixing short fibers with bubbles
JP6030185B2 (en) * 2014-05-14 2016-11-24 ソク−ムン,キム 3D printing apparatus and method, and construction method of steel concrete structure using the same
DE102014015335B4 (en) * 2014-10-17 2016-08-04 Theodor Trautmann GmbH Bauunternehmen und Beton- und Stahlbetonbaubetrieb Generative manufacturing device and manufacturing process for the layered construction of structures
JP2017185645A (en) * 2016-04-01 2017-10-12 太平洋セメント株式会社 Addition manufacturing system for molding cement mixed article
JP6051497B1 (en) * 2016-06-08 2016-12-27 株式会社サンブリッジ Inorganic material construction method
JP6993794B2 (en) * 2017-05-26 2022-01-14 大成建設株式会社 Laminated structure construction method, laminated structure and laminated structure construction equipment

Also Published As

Publication number Publication date
JP7375148B2 (en) 2023-11-07
JP7244225B2 (en) 2023-03-22
JP2020002744A (en) 2020-01-09
JP2023014154A (en) 2023-01-26

Similar Documents

Publication Publication Date Title
JP2023169221A (en) Manufacturing method of fiber reinforced concrete member
US20230330891A1 (en) 4-dimensional printing of reinforced concrete
US10458118B2 (en) Fiber ring reinforcement structures
CN105908977A (en) Joint bar construction structure and method
JP2020111941A (en) Construction method of concrete structure
KR20150144503A (en) Concrete structure and method for manufacturing the same using 3d printing
CN104763103B (en) A kind of construction method of prefabricated concrete collar tie beam
JP2021102867A (en) Construction method of concrete structure and concrete structure
JP2008519924A (en) Modular system for construction of overhead wire supports and / or support pile foundations
US973165A (en) Concrete-slab construction.
JP3308664B2 (en) Centrifugally formed steel tube concrete column and its manufacturing method
EA023958B1 (en) Reinforcement mesh made of composite material
JP7286441B2 (en) Hollow structure construction method
JP7257919B2 (en) How to build structures
JP7300951B2 (en) How to build structures
Kovářík et al. Limits and Potential of 3D Printing Technologies for Construction of concrete shells
WO2008017105A1 (en) Insulating building block
CN210216880U (en) Arc-shaped brick for improving compression resistance of brick masonry
RU2728080C1 (en) Method of making reinforced concrete article on 3d printer
KR101670630B1 (en) Reinforced fiber with line groove, mortar and ascon mixed with the reinforced fiber
US20240139996A1 (en) Method of additively manufacturing a component, load transfer element, reinforcement for use within a component, and actively manufactured component
JP7473122B2 (en) Concrete structure construction method
FI130787B1 (en) Method for manufacturing building elements
JP7337714B2 (en) Structure construction method
JP7583576B2 (en) Reinforcement materials and structures

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240919

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241105