JP2023164783A - Solid electrolyte and solid electrolyte bonded body - Google Patents
Solid electrolyte and solid electrolyte bonded body Download PDFInfo
- Publication number
- JP2023164783A JP2023164783A JP2023110730A JP2023110730A JP2023164783A JP 2023164783 A JP2023164783 A JP 2023164783A JP 2023110730 A JP2023110730 A JP 2023110730A JP 2023110730 A JP2023110730 A JP 2023110730A JP 2023164783 A JP2023164783 A JP 2023164783A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- intermediate layer
- oxide
- layer
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 134
- 239000002131 composite material Substances 0.000 claims abstract description 40
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 26
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 13
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 11
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 11
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 9
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 8
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 8
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 7
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 7
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims abstract description 7
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 7
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims abstract description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 229910052732 germanium Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910052712 strontium Inorganic materials 0.000 claims description 5
- 239000000446 fuel Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 3
- 229910052691 Erbium Inorganic materials 0.000 claims description 3
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 239000011533 mixed conductor Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910052693 Europium Inorganic materials 0.000 claims description 2
- 229910052689 Holmium Inorganic materials 0.000 claims description 2
- 229910052765 Lutetium Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 2
- 229910052771 Terbium Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910052790 beryllium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 229910052706 scandium Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 description 25
- 238000000034 method Methods 0.000 description 22
- 239000000463 material Substances 0.000 description 21
- 239000002184 metal Substances 0.000 description 20
- 239000013078 crystal Substances 0.000 description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 239000010408 film Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical class [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 10
- 229910052586 apatite Inorganic materials 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 229910001882 dioxygen Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000004549 pulsed laser deposition Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- MSBGPEACXKBQSX-UHFFFAOYSA-N (4-fluorophenyl) carbonochloridate Chemical compound FC1=CC=C(OC(Cl)=O)C=C1 MSBGPEACXKBQSX-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- CJJMLLCUQDSZIZ-UHFFFAOYSA-N oxobismuth Chemical class [Bi]=O CJJMLLCUQDSZIZ-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Fuel Cell (AREA)
- Conductive Materials (AREA)
- Laminated Bodies (AREA)
- Primary Cells (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は固体電解質及び固体電解質接合体に関する。本発明の固体電解質及び固体電解質接合体は、その酸化物イオン伝導性を利用した様々な分野に利用される。 The present invention relates to a solid electrolyte and a solid electrolyte assembly. The solid electrolyte and solid electrolyte assembly of the present invention are used in various fields utilizing their oxide ion conductivity.
酸化物イオン伝導性の固体電解質が種々知られている。かかる固体電解質は、例えば酸素透過素子、燃料電池の電解質、及びガスセンサなどとして様々な分野で用いられている。例えば特許文献1には、アノード側電極とカソード側電極との間にアパタイト型複合酸化物からなる固体電解質が介装された電解質・電極接合体が記載されている。カソード側電極と固体電解質との間には、酸化物イオン伝導が等方性を示す中間層が介装されている。中間層は、サマリウム、イットリウム、ガドリニウム又はランタンがドープされた酸化セリウムからなる。固体電解質は、LaxSi6O1.5X+12(8≦X≦10)からなる。この電解質・電極接合体によれば、固体酸化物形燃料電池の発電性能が向上すると、同文献には記載されている。 Various oxide ion conductive solid electrolytes are known. Such solid electrolytes are used in various fields, such as oxygen permeable elements, fuel cell electrolytes, and gas sensors. For example, Patent Document 1 describes an electrolyte-electrode assembly in which a solid electrolyte made of an apatite-type composite oxide is interposed between an anode side electrode and a cathode side electrode. An intermediate layer exhibiting isotropic oxide ion conduction is interposed between the cathode side electrode and the solid electrolyte. The intermediate layer consists of cerium oxide doped with samarium, yttrium, gadolinium or lanthanum. The solid electrolyte consists of La x Si 6 O 1.5X+12 (8≦X≦10). This document states that this electrolyte/electrode assembly improves the power generation performance of a solid oxide fuel cell.
特許文献1に記載のとおり、酸化物イオン伝導性の固体電解質を利用したデバイスは種々提案されているものの、デバイス全体で評価した場合、固体電解質が本来的に有している酸化物イオン伝導性を十分に引き出しているとは言えなかった。特に、固体電解質自体の酸化物イオン伝導性が高い場合であっても、固体電解質と電極との界面における電気抵抗が高くなってしまい、デバイス全体としての電気抵抗が高くなる場合がある。 As described in Patent Document 1, various devices using solid electrolytes with oxide ion conductivity have been proposed, but when evaluating the entire device, the inherent oxide ion conductivity of the solid electrolyte is I couldn't say that I was bringing out the full potential. In particular, even if the solid electrolyte itself has high oxide ion conductivity, the electrical resistance at the interface between the solid electrolyte and the electrode may become high, and the electrical resistance of the device as a whole may become high.
したがって本発明の課題は、固体電解質を備えたデバイスの電気抵抗を低減し得る固体電解質及び該固体電解質を備えた固体電解質接合体を提供することにある。 Therefore, an object of the present invention is to provide a solid electrolyte that can reduce the electrical resistance of a device that includes a solid electrolyte, and a solid electrolyte assembly that includes the solid electrolyte.
前記の課題を解決すべく本発明者は鋭意検討した結果、特定の結晶構造を有するアパタイト型複合酸化物を固体電解質として用いることで、前記の課題が解決されることを知見した。本発明はこの知見に基づきなされたものであり、酸化物イオン伝導性を有するアパタイト型複合酸化物からなり、X線回折測定によって得られる004のピーク強度I004に対する002のピーク強度I002の比であるI002/I004の値が0.3以上0.8以下である固体電解質を提供することにより前記の課題を解決したものである。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention found that the above-mentioned problems can be solved by using an apatite-type composite oxide having a specific crystal structure as a solid electrolyte. The present invention was made based on this knowledge, and is composed of an apatite-type composite oxide having oxide ion conductivity, and the ratio of the peak intensity I 002 of 002 to the peak intensity I 004 of 004 obtained by X-ray diffraction measurement. The above problem has been solved by providing a solid electrolyte in which the value of I 002 /I 004 is 0.3 or more and 0.8 or less.
また本発明は、前記の固体電解質と、金属酸化物の中間層又は金属電極層とが接合されてなる固体電解質接合体を提供するものである。 The present invention also provides a solid electrolyte assembly in which the solid electrolyte described above is joined to a metal oxide intermediate layer or a metal electrode layer.
以下本発明を、その好ましい実施形態に基づき説明する。本発明の固体電解質は酸化物イオン伝導性を有するアパタイト型複合酸化物からなる。固体電解質は、酸化物イオンがキャリアとなる導電体である。 The present invention will be described below based on its preferred embodiments. The solid electrolyte of the present invention is made of an apatite-type composite oxide having oxide ion conductivity. A solid electrolyte is a conductor in which oxide ions serve as carriers.
アパタイト型複合酸化物としては、例えばランタン及びケイ素を含む複合酸化物が挙げられる。このアパタイト型複合酸化物としては、三価元素であるランタン(La)と、四価元素であるケイ素(Si)と、酸素(O)とを含有し、その組成がLaxSi6O1.5x+12(xは8以上10以下の数を表す。)で表されるものが、酸化物イオン伝導性が高い点から好ましい。このアパタイト型複合酸化物の最も好ましい組成は、La9.33Si6O26である。この複合酸化物は、例えば特開2013-51101号公報に記載の方法に従い製造することができる。 Examples of the apatite-type complex oxide include complex oxides containing lanthanum and silicon. This apatite-type composite oxide contains lanthanum (La), which is a trivalent element, silicon (Si), which is a tetravalent element, and oxygen (O), and has a composition of La x Si 6 O 1. 5x+12 (x represents a number from 8 to 10) is preferable from the viewpoint of high oxide ion conductivity. The most preferable composition of this apatite type composite oxide is La 9.33 Si 6 O 26 . This composite oxide can be produced, for example, according to the method described in JP-A No. 2013-51101.
アパタイト型複合酸化物の別の例として、一般式(1):A9.33+x[T6.00-yMy]O26.0+zで表される複合酸化物が挙げられる。この複合酸化物もアパタイト型構造を有するものである。式中のAは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu、Be、Mg、Ca、Sr及びBaからなる群から選ばれた一種又は二種以上の元素である。式中のTは、Si若しくはGe又はその両方を含む元素である。式中のMは、Mg、Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Ga、Zr、Ta、Nb、B、Ge、Zn、Sn、W及びMoからなる群から選ばれた一種又は二種以上の元素である。c軸配向性を高める観点から、MはB、Ge及びZnからなる群から選ばれる一種又は二種以上の元素であることが好ましい。 Another example of the apatite-type composite oxide is a composite oxide represented by the general formula (1): A 9.33+x [T 6.00-y M y ]O 26.0+z . This composite oxide also has an apatite structure. A in the formula was selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Be, Mg, Ca, Sr and Ba. One or more elements. T in the formula is an element containing Si or Ge or both. M in the formula is selected from the group consisting of Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Ga, Zr, Ta, Nb, B, Ge, Zn, Sn, W and Mo. One or more elements. From the viewpoint of improving c-axis orientation, M is preferably one or more elements selected from the group consisting of B, Ge, and Zn.
式中のxは、配向度及び酸化物イオン伝導性を高める観点から、-1.33以上1.50以下であることが好ましく、0.00以上0.70以下であることが更に好ましく、0.45以上0.65以下であることが一層好ましい。式中のyは、アパタイト型結晶格子におけるT元素位置を埋める観点から、0.00以上3.00以下であることが好ましく、0.40以上2.00以下であることが更に好ましく、0.40以上1.00以下であることが一層好ましい。式中のzは、アパタイト型結晶格子内での電気的中性を保つという観点から、-5.00以上5.20以下であることが好ましく、-2.00以上1.50以下であることが更に好ましく、-1.00以上1.00以下であることが一層好ましい。 From the viewpoint of increasing the degree of orientation and oxide ion conductivity, x in the formula is preferably -1.33 or more and 1.50 or less, more preferably 0.00 or more and 0.70 or less, and 0. More preferably, it is .45 or more and 0.65 or less. From the viewpoint of filling the T element position in the apatite crystal lattice, y in the formula is preferably 0.00 or more and 3.00 or less, more preferably 0.40 or more and 2.00 or less, and 0. More preferably, it is 40 or more and 1.00 or less. From the viewpoint of maintaining electrical neutrality within the apatite crystal lattice, z in the formula is preferably -5.00 or more and 5.20 or less, and -2.00 or more and 1.50 or less. is more preferable, and even more preferably -1.00 or more and 1.00 or less.
前記式中、Tのモル数に対するAのモル数の比率、言い換えれば前記式における(9.33+x)/(6.00-y)は、アパタイト型結晶格子における空間的な占有率を保つ観点から、1.33以上3.61以下であることが好ましく、1.40以上3.00以下であることが更に好ましく、1.50以上2.00以下であることが一層好ましい。 In the above formula, the ratio of the number of moles of A to the number of moles of T, in other words, (9.33+x)/(6.00-y) in the above formula is determined from the viewpoint of maintaining the spatial occupation rate in the apatite crystal lattice. , is preferably 1.33 or more and 3.61 or less, more preferably 1.40 or more and 3.00 or less, and even more preferably 1.50 or more and 2.00 or less.
前記の一般式(1)で表される複合酸化物のうち、Aがランタンである複合酸化物、すなわちLa9.33+x[T6.00-yMy]O26.0+zで表される複合酸化物を用いると、酸化物イオン伝導性が一層高くなる観点から好ましい。La9.33+x[T6.00-yMy]O26.0+zで表される複合酸化物の具体例としては、La9.33+x(Si4.70B1.30)O26.0+z、La9.33+x(Si4.70Ge1.30)O26.0+z、La9.33+x(Si4.70Zn1.30)O26.0+z、La9.33+x(Si4.70W1.30)O26.0+z、La9.33+x(Si4.70Sn1.30)O26.0+x、La9.33+x(Ge4.70B1.30)O26.0+zなどを挙げることができる。前記の一般式(1)で表される複合酸化物は、例えばUS2018/183068A1に記載の方法に従い製造することができる。 Among the complex oxides represented by the above general formula (1), the complex oxide in which A is lanthanum, that is, the complex oxide represented by La 9.33+x [T 6.00-y M y ]O 26.0+z If used, it is preferable from the viewpoint of further increasing oxide ion conductivity. Specific examples of complex oxides represented by La 9.33+x [T 6.00-y M y ]O 26.0+z include La 9.33+x (Si 4.70 B 1.30 ) O 26.0+z and La 9.33+x (Si 4.70 Ge 1.30 ) O 26.0+z , La 9.33+x (Si 4.70 Zn 1.30 ) O 26.0+z , La 9.33+x (Si 4.70 W 1.30 ) O 26.0 +z , La 9.33+x (Si 4.70 Sn 1.30 ) O 26.0 +x , La 9.33+x (Ge 4.70 B 1.30 )O 26.0+z , and the like. The composite oxide represented by the above general formula (1) can be produced, for example, according to the method described in US2018/183068A1.
アパタイト型複合酸化物として、上述したいずれのものを用いる場合であっても、該複合酸化物はランタンを含むものであることが、本発明の固体電解質を含むデバイスの電気抵抗を効果的に低減させ得る点から好ましい。また、いずれのアパタイト型複合酸化物を用いる場合であっても、該複合酸化物はc軸に配向していることが好ましい。c軸に配向しているとは、アパタイト型複合酸化物が多結晶体である場合、結晶軸がc軸に沿って揃っているという意味である。更にアパタイト型複合酸化物が単結晶で存在するときには、そのc軸方向がデバイスにおける酸化物イオンの伝導方向と一致させることが可能となる。 Even when using any of the above-mentioned apatite-type composite oxides, the composite oxide containing lanthanum can effectively reduce the electrical resistance of the device containing the solid electrolyte of the present invention. Preferable from this point of view. Further, no matter which apatite type composite oxide is used, it is preferable that the composite oxide is oriented along the c-axis. Oriented along the c-axis means that when the apatite-type composite oxide is a polycrystalline substance, the crystal axes are aligned along the c-axis. Furthermore, when the apatite-type composite oxide exists in the form of a single crystal, its c-axis direction can be made to coincide with the conduction direction of oxide ions in the device.
アパタイト型複合酸化物は、これをX線回折測定したときに、該測定によって得られる004のピーク強度I004に対する002のピーク強度I002の比であるI002/I004の値が0.3以上0.8以下である点に特徴の1つを有する。これまで、c軸に強く配向したアパタイト型複合酸化物は、これをX線回折測定すると、00x(xは2以上の偶数を示す。)以外の回折ピーク強度が非常に小さく、定量的な解析が難しいという課題があった。しかし、本発明者は、002及び004の回折ピークの強度比が欠損部位の量を強く反映するという知見を得、更にその強度比が特定の範囲にあるアパタイト型複合酸化物は電極層との界面抵抗が低くなり、デバイス全体としての電気抵抗を低下させるものであることを見出した。特にアパタイト型複合酸化物がランタンを含むものである場合、該複合酸化物がアパタイト型の結晶構造を維持しつつランタンが欠損すると、電荷のバランスを保つようにするために構造中の酸素も欠損する。酸素欠損が生じると、酸化物イオンが移動しやすくなり酸化物イオンの伝導性が向上し、ひいては該複合酸化物と電極層との界面抵抗が一層低くなると本発明者は考えている。また、ランタン以外のAについても、アパタイト型複合酸化物中においてランタンと同じ結晶サイトに入り易いため、上述と同様の機構が発現すると考えられる。このように本発明は、固体電解質と接合される中間層や電極層に起因するのではなく、固体電解質そのものの結晶構造に起因して酸化物イオン伝導性を高めようとするものである。 When an apatite-type composite oxide is subjected to X-ray diffraction measurement, the value of I 002 /I 004 , which is the ratio of the peak intensity I 002 of 002 to the peak intensity I 004 of 004 obtained by the measurement, is 0.3. One of the characteristics is that it is 0.8 or less. Until now, when apatite-type composite oxides strongly oriented along the c-axis were measured by X-ray diffraction, the diffraction peak intensities other than 00x (x is an even number of 2 or more) were extremely small, and quantitative analysis was difficult. The problem was that it was difficult. However, the present inventor has found that the intensity ratio of the diffraction peaks of 002 and 004 strongly reflects the amount of defective sites, and furthermore, an apatite-type composite oxide whose intensity ratio is within a specific range has a strong relationship with the electrode layer. It has been found that the interfacial resistance is lowered and the electrical resistance of the device as a whole is lowered. In particular, when the apatite-type composite oxide contains lanthanum, if the composite oxide loses lanthanum while maintaining the apatite-type crystal structure, oxygen in the structure is also deleted in order to maintain the charge balance. The present inventor believes that when oxygen vacancies occur, the oxide ions move more easily, the conductivity of the oxide ions improves, and the interfacial resistance between the composite oxide and the electrode layer further decreases. Furthermore, since A other than lanthanum easily enters the same crystal site as lanthanum in the apatite-type composite oxide, it is thought that the same mechanism as described above occurs. In this manner, the present invention aims to improve oxide ion conductivity not due to the intermediate layer or electrode layer bonded to the solid electrolyte, but due to the crystal structure of the solid electrolyte itself.
アパタイト型複合酸化物における欠損部位の量が多いほど、I004に対するI002の比の値は小さくなり、アパタイト型複合酸化物と電極層との界面抵抗が低くなる。この観点から、I004に対するI002の比の値は0.5以上0.8以下であることが好ましく、0.5以上0.75以下であることが更に好ましい。 As the amount of defect sites in the apatite-type composite oxide increases, the value of the ratio of I 002 to I 004 decreases, and the interfacial resistance between the apatite-type composite oxide and the electrode layer decreases. From this viewpoint, the value of the ratio of I 002 to I 004 is preferably 0.5 or more and 0.8 or less, and more preferably 0.5 or more and 0.75 or less.
I002及びI004の値は、X線回折法を用いて測定される。詳細には、点収束型のX線集光ミラー(CMF光学系)、及び0次元検出器を用いて測定することができる。本発明でいうX線回折のピーク強度とは積分強度のことである。 The values of I 002 and I 004 are determined using X-ray diffraction. Specifically, the measurement can be performed using a point converging X-ray condensing mirror (CMF optical system) and a zero-dimensional detector. The peak intensity of X-ray diffraction in the present invention refers to an integrated intensity.
このX線回折のピーク強度については、アパタイト型結晶構造中における欠損部位の量をより正確に測定するために、より高いX線回折強度が得られる002と004とのピーク強度比を指標として選定することとした。なお、アパタイト型結晶構造における002と004のX線回折のピーク位置は、公知の結晶データベース等から一意に決めることができる。 Regarding the peak intensity of this X-ray diffraction, in order to more accurately measure the amount of defect sites in the apatite crystal structure, the peak intensity ratio of 002 and 004, which gives a higher X-ray diffraction intensity, was selected as an index. It was decided to. Note that the X-ray diffraction peak positions of 002 and 004 in the apatite crystal structure can be uniquely determined from a known crystal database or the like.
I004に対するI002の比の値が上述した範囲を満たすようにするためには、アパタイト型複合酸化物に欠損部位を形成することが好ましい。欠損部位を形成するためには、例えばアパタイト型複合酸化物に隣接する異なる組成の膜を形成し、該膜をアニールすることよって結晶構造から構成元素、特にランタンを除去することが有利であることが本発明者の検討の結果判明した。この場合、アパタイト型の結晶構造を保持した状態で、ランタン等の構成元素を除去する必要がある。この目的のために、ランタンが拡散できるか又はランタンを固溶できる膜(以下「La吸収膜」ともいう。)を、アパタイト型複合酸化物の表面に積層する。そして、700℃以上の高温でアニールすることによって、アパタイト型複合酸化物中のランタンをLa吸収膜に拡散又は固溶させて、ランタンを欠損させたアパタイト型複合酸化物を得ることが好ましい。La吸収膜は、その後、所定の手段によって除去してもよい。 In order to make the value of the ratio of I 002 to I 004 satisfy the above-mentioned range, it is preferable to form a defect site in the apatite-type composite oxide. In order to form a defect site, it is advantageous to form a film of a different composition adjacent to the apatite-type composite oxide, for example, and to remove constituent elements, particularly lanthanum, from the crystal structure by annealing the film. was found as a result of the inventor's study. In this case, it is necessary to remove constituent elements such as lanthanum while maintaining the apatite crystal structure. For this purpose, a film (hereinafter also referred to as "La absorption film") that allows lanthanum to diffuse or solidly dissolve lanthanum is laminated on the surface of the apatite-type composite oxide. Then, it is preferable that lanthanum in the apatite-type composite oxide is diffused or solid-dissolved in the La absorption film by annealing at a high temperature of 700° C. or higher to obtain an apatite-type composite oxide lacking lanthanum. The La absorption film may then be removed by a predetermined means.
本発明の固体電解質は、その具体的な用途に応じ、そのままの状態で用いることができ、あるいは他の部材と組み合わせたデバイスの状態で用いることができる。図1にはそのようなデバイスの一例が示されている。図1に示すデバイスは、本発明の固体電解質を備えた固体電解質接合体10である。以下、この固体電解質接合体10について説明する。 The solid electrolyte of the present invention can be used as is or in the form of a device in combination with other members, depending on its specific use. An example of such a device is shown in FIG. The device shown in FIG. 1 is a solid electrolyte assembly 10 including the solid electrolyte of the present invention. This solid electrolyte assembly 10 will be explained below.
図1に示すとおり、固体電解質接合体10は、上述した固体電解質からなる層(以下「固体電解質層」という。)11を備えている。固体電解質層11の一面には、該固体電解質層11に接して積層された中間層12が接合されている。図1に示す実施形態においては、固体電解質層11と中間層12が直接接しており、両者間に他の層は介在していない。中間層12は、酸化物イオン伝導性及び電子伝導性を有する材料からなる。
As shown in FIG. 1, the solid electrolyte assembly 10 includes a
固体電解質層11の厚みは、固体電解質接合体10の電気抵抗を効果的に低下させる観点から、10nm以上1000μm以下であることが好ましく、50nm以上700μm以下であることが更に好ましく、100nm以上500μm以下であることが一層好ましい。この固体電解質層11の厚みは、例えば触針式段差計、ノギス又は電子顕微鏡を用いて測定することができる。
From the viewpoint of effectively reducing the electrical resistance of the solid electrolyte assembly 10, the thickness of the
固体電解質接合体10は、図1に示すとおり、固体電解質層11の2つの面のうち、中間層12が配置されている面と反対側の面に接合された金属電極層13を有していてもよい。固体電解質層11、中間層12及び金属電極層13がこのような順序で配置されていることにより、固体電解質接合体10からなるデバイス20が構成される。図1に示す実施形態においては、固体電解質層11と金属電極層13とは直接に接しており、両者間に他の層は介在していない。
As shown in FIG. 1, the solid electrolyte assembly 10 has a
中間層12は金属酸化物を含んで構成されている。中間層12は、金属酸化物のみからなるか、又は金属酸化物及びその他の物質を含むものである。中間層12は固体電解質層11との間での酸化物イオンの授受を円滑に行う目的で形成されている。本実施形態によれば、固体電解質層11として上述した特定の結晶構造を有する固体電解質を用いていることに起因して、中間層12の種類によらず固体電解質層11と中間層12との間での界面抵抗を低下させることができ、酸化物イオンの授受を一層円滑に行うことができる。
The
中間層12としては、金属酸化物からなり、且つ酸化物イオン伝導性を有するものが好適に用いられる。中間層12として、例えばサマリウム、イットリウム、ガドリニウム及びランタンからなる群から選ばれる一種又は二種以上の元素(以下、これらの元素のことを便宜的に「ドープ元素」ともいう。)を含む酸化セリウムを用いることができる。この場合、ドープ元素の含有量は、M/(M+Ce)×100で表して(Mはドープ元素のモル数を表す。)0.1モル%以上0.5モル%以下であることが好ましく、0.15モル%以上0.4モル%以下であることが更に好ましく、0.2モル%以上0.3モル%以下であることが一層好ましい。
The
中間層12としてビスマスの酸化物を用いることもできる。ビスマスの酸化物としては例えば酸化ビスマス(III)やビスマスと他の金属元素との複合酸化物が挙げられる。他の金属元素としては、例えば一種以上の希土類元素が挙げられる。希土類元素としては、例えばランタン、ガドリニウム、イットリウム、エルビウム、イッテルビウム、ジスプロシウムなどが挙げられる。特に中間層12は、ビスマスと、ランタン、ガドリニウム又はイットリウムとの複合酸化物を含んで構成されることが、固体電解質層11と中間層12との間での電気抵抗を効果的に低下させ得る観点から好ましい。更にこの複合酸化物は、(LnmBin)2O3で表されることが好ましい。式中、Lnは希土類元素を表す。mとnの和は1であり、n>0である。また、mは0.1以上0.4以下であることが好ましい。
Bismuth oxide can also be used as the
中間層12として、酸化物イオン伝導性及び電子伝導性を有する混合伝導体を用いることもできる。混合伝導体とは、酸化物イオン伝導性及び電子伝導性の2つの伝導性、すなわち混合伝導性を有する物質のことである。特に、固体電解質層11と中間層12との界面において、配向方向に対して直交する面の格子整合を図る観点から、中間層12を構成する材料はペロブスカイト型酸化物であることが好ましい。特に、固体電解質層11を構成する材料が上述した一般式(1)で表されるものである場合に、中間層12を構成する材料がペロブスカイト型酸化物であると、前記の格子整合を首尾よく図ることができる。
A mixed conductor having oxide ion conductivity and electronic conductivity can also be used as the
特に、中間層12を構成する材料として、一般式(2):ABO3で表されるものを用いることが、酸化物イオン伝導性の更に一層の向上の観点から好ましい。式中、Aは、例えばLa、Sr、Ba及びCaから選択される一種又は二種以上の金属元素を用いることが好ましく、特に好ましい金属元素はLa及びSrのうちの少なくとも一種である。Bは遷移金属元素であり、Co、Ni、Mn、Cr、Ti、Fe、Cuから選択される一種又は二種以上の金属元素を用いることが好ましく、特に好ましい金属元素はCo及びNiのうちの少なくとも一種である。とりわけ一般式(2)で表される材料は、La、Sr、Co及びNiを含む複合酸化物であることが好ましい。
In particular, it is preferable to use a material represented by the general formula (2): ABO 3 as the material constituting the
一般式(2)で表される複合酸化物のうち、特に好ましいものは、La0.6Sr0.4Co0.9Ni0.1O3-δで表されるものである。 Among the complex oxides represented by general formula (2), particularly preferred are those represented by La 0.6 Sr 0.4 Co 0.9 Ni 0.1 O 3-δ .
一般式(2)で表される複合酸化物からなる中間層12は、例えば種々の薄膜形成法を用いて固体電解質層11の一面に形成することができる。薄膜形成法としては、物理気相蒸着法や化学気相蒸着法などが挙げられ、これらのうち物理気相蒸着法を用いると中間層12を一層首尾よく形成することができる。物理気相蒸着法のうち、特にPLD(Pulsed Laser Deposition)法を用いることが好ましい。
The
中間層12を構成する材料が上述したもののいずれであっても、固体電解質層11を構成する材料と、中間層12を構成する材料とが、いずれも、固体電解質層11と中間層12との積層方向に沿って一軸配向していることが、界面抵抗を低下させる観点から有効である。固体電解質層11を構成する材料と、中間層12を構成する材料を、前記積層方向に沿っていずれも一軸配向させるためには、例えば、基板となる固体電解質層11を所定温度に加熱しながら、酸素分圧をコントロールした雰囲気で、物理気相蒸着法や化学気相蒸着法など利用し、固体電解質層11上に中間層12の薄膜を形成し、局所的にエピタキシャル成長させればよい。また、原子層堆積法(ALD)を用い、固体電解質層11上に、中間層12の一軸配向薄膜を形成することもできる。ただし、これらの手法に限定されるものではない。
No matter which of the materials that constitute the
固体電解質層11を構成する材料と、中間層12を構成する材料とが、いずれも一軸配向しているか否かは、接合界面のTEM(透過型電子顕微鏡)による断面観察から判断することができる。固体電解質層11及び中間層12の格子定数や面間隔は、搖動させながらX線回折測定を行うことで得られる回折パターンから算出することができる。
Whether or not the material constituting the
中間層12を構成する材料が上述したもののいずれであっても、中間層12は、所定の厚みを有すれば固体電解質層11との間での電気抵抗を効果的に低下させることができる。詳細には、固体電解質層11に接合している中間層12の積層方向に沿う厚みは80nm以上であることが好ましく、100nm以上であることが更に好ましく、100nm以上1000nm以下であることが一層好ましい。中間層12の厚みは触針式段差計や電子顕微鏡によって測定することができる。
No matter which of the materials mentioned above is used for forming the
固体電解質層11を挟んで中間層12と反対側に形成される金属電極層13は、形成が容易であり、且つ触媒活性が高い等の利点があることから、白金族の元素を含んで構成されることが好ましい。白金族の元素としては、例えば白金、ルテニウム、ロジウム、パラジウム、オスミウム及びイリジウム等が挙げられる。これらの元素は一種を単独で、又は二種以上を組み合わせて用いることができる。また、金属電極層13として、白金族の元素を含むサーメットを用いることもできる。
The
図1に示す実施形態の固体電解質接合体10及びデバイス20は、例えば以下に述べる方法で好適に製造することができる。まず、公知の方法で固体電解質層11を製造する。製造には、例えば特開2013-51101号公報やUS2018/183068A1に記載の方法を採用することができる。
The solid electrolyte assembly 10 and
次いで固体電解質層11における2つの面のうちの一方に、中間層12を形成する。中間層12の形成には、種々の薄膜形成法を用いることができる。薄膜形成法の1つとして、例えば先に述べたPLD法を用いることができる。具体的には、固体電解質層11を構成する材料と、中間層12を構成する材料とを、いずれも、該固体電解質層11と中間層12との積層方向に沿って一軸配向させるために、先に述べたPLD法を用い、固体電解質層11の一面に中間層12を形成するときに、該固体電解質層11を所定温度に加熱すればよい。加熱温度は、例えば600℃以上700℃以下に設定することが、一層首尾よく一軸配向させられる点から好ましい。
Next,
このようにして中間層12を形成したら、固体電解質層11における中間層12の形成面と反対側の面に金属電極層13を形成する。金属電極層13の形成には、例えば白金族の金属の粒子を含むペーストを用いる。該ペーストを固体電解質層11の表面に塗布して塗膜を形成し、該塗膜を焼成することで多孔質体からなる電極が形成される。焼成条件は、温度600℃以上、時間30分以上120分以下とすることができる。雰囲気は、大気等の酸素含有雰囲気とすることができる。
After forming the
以上の方法で目的とする固体電解質接合体10及びデバイス20が得られる。このようにして得られたデバイス20は、その高い酸化物イオン伝導性を利用して例えば酸素透過素子、酸素センサを始めとする各種のガスセンサ、水蒸気電解又は固体電解質形燃料電池などとして好適に用いられる。デバイス20をどのような用途に用いる場合にも、中間層12をカソードとして、すなわち酸素ガスの還元反応が起こる極として用いることが有利である。例えばデバイス20を酸素透過素子として使用する場合には、金属電極層13を直流電源のアノードに接続するとともに、中間層12を直流電源のカソードに接続して、中間層12と金属電極層13との間に所定の直流電圧を印加する。それによって、中間層12側において酸素が電子を受け取り酸化物イオンが生成する。生成した酸化物イオンは固体電解質層11中を移動して金属電極層13に達する。金属電極層13に達した酸化物イオンは電子を放出して酸素ガスとなる。このような反応によって、固体電解質層11は、中間層12側の雰囲気中に含まれる酸素ガスを、固体電解質層11を通じて金属電極層13側に透過させることが可能になっている。なお、必要に応じ、中間層12の表面及び金属電極層13の表面の少なくとも一方に、白金等の導電性材料からなる集電層を形成してもよい。
The desired solid electrolyte assembly 10 and
印加する電圧は、酸素ガスの透過量を高める観点から、0.1V以上4.0V以下に設定することが好ましい。両極間に電圧を印加するときには、固体電解質層11の酸化物イオン伝導性が十分に高くなっていることが好ましい。例えば酸化物イオン伝導性が、伝導率で表して1.0×10-3S/cm以上になっていることが好ましい。この目的のために、固体電解質層11を、又はデバイス20の全体を所定温度に保持することが好ましい。この保持温度は、固体電解質層11の材質にもよるが、一般に300℃以上600℃以下の範囲に設定することが好ましい。この条件下でデバイス20を使用することで、中間層12側の雰囲気中に含まれる酸素ガスを、固体電解質層11を通じて金属電極層13側に透過させることができる。
The applied voltage is preferably set to 0.1 V or more and 4.0 V or less from the viewpoint of increasing the amount of oxygen gas permeation. When applying a voltage between the two electrodes, it is preferable that the oxide ion conductivity of the
デバイス20を限界電流式酸素センサとしても使用する場合には、中間層12側で生成した酸化物イオンが、固体電解質層11を経由して金属電極層13側に移動することに起因して電流が生じる。電流値は中間層12側の酸素ガス濃度に依存するので、電流値を測定することで、中間層12側の酸素ガス濃度を測定することができる。
When the
以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記実施形態においては、固体電解質層11の一面にのみ中間層12を配したが、これに代えて、図2に示すとおり、固体電解質層11について中間層12と対向する面に、別途の中間層12’を配してもよい。固体電解質層11について中間層12と対向する面に別途の中間層12’を配する場合には、各中間層12,12’は同一のものであってもよく、あるいは異なるものであってもよい。この場合、固体電解質層11を構成する材料と、一方の中間層12を構成する材料と、他方の中間層12’を構成する材料とが、いずれも、それらの積層方向に沿って一軸配向していることが好ましい。
Although the present invention has been described above based on its preferred embodiments, the present invention is not limited to the above embodiments. For example, in the embodiment, the
また、固体電解質層11の各面に中間層12,12’を形成することに代えて、図3に示すとおり、金属電極層13,13’を形成してもよい。この場合であっても、デバイス20全体の電気抵抗を低下させることができる。各金属電極層13,13’は同一のものであってもよく、あるいは異なるものであってもよい。
Further, instead of forming the
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。 Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the scope of the invention is not limited to such examples. Unless otherwise specified, "%" means "% by mass".
〔実施例1〕
La2O3の粉体とSiO2の粉体とをモル比で1:1となるように配合し、エタノールを加えてボールミルで混合した。この混合物を乾燥させ、乳鉢で粉砕し、白金るつぼを使用して大気雰囲気下に1650℃で3時間にわたり焼成した。この焼成物にエタノールを加え、ボールミルで粉砕して焼成粉を得た。この焼成粉を、20mmφの成形器に入れて一方向から加圧して一軸成形した。更に700MPaで1分間冷間等方圧加圧(CIP)を行ってペレットを成形した。このペレット状成形体を、大気中、1600℃で3時間にわたり加熱してペレット状焼結体を得た。この焼結体を粉末X線回折測定及び化学分析に付したところ、アパタイト型の結晶構造を有するLa2SiO5の構造であることが確認された。
[Example 1]
La 2 O 3 powder and SiO 2 powder were blended at a molar ratio of 1:1, ethanol was added, and the mixture was mixed in a ball mill. The mixture was dried, ground in a mortar, and calcined at 1650° C. for 3 hours in an air atmosphere using a platinum crucible. Ethanol was added to this baked product, and it was ground in a ball mill to obtain a baked powder. This fired powder was placed in a 20 mmφ molding machine and uniaxially molded by applying pressure from one direction. Further, cold isostatic pressing (CIP) was performed at 700 MPa for 1 minute to form pellets. This pellet-shaped molded body was heated in the atmosphere at 1600° C. for 3 hours to obtain a pellet-shaped sintered body. When this sintered body was subjected to powder X-ray diffraction measurement and chemical analysis, it was confirmed that it had a La 2 SiO 5 structure having an apatite type crystal structure.
得られたペレット800mgと、B2O3粉末140mgとを、蓋付き匣鉢内に入れた。電気炉を用い、このペレット及びB2O3粉末を大気中にて1550℃(炉内雰囲気温度)で50時間にわたり加熱した。この加熱によって、匣鉢内にB2O3蒸気を発生させるとともにB2O3蒸気とペレットとを反応させ、目的とする固体電解質層11を得た。この固体電解質層11は、La9.33+x[Si6.00-yBy]O26.0+zにおいて、x=0.50、y=1.17、z=0.16であり、LaとSiのモル比は2.04であった。また、ノギスによって測定した厚みは350μmであった。以下、この化合物を「LSBO」と略称する。
800 mg of the obtained pellets and 140 mg of B 2 O 3 powder were placed in a sagger with a lid. The pellets and B 2 O 3 powder were heated in the air at 1550° C. (furnace atmosphere temperature) for 50 hours using an electric furnace. By this heating, B 2 O 3 vapor was generated in the sagger, and the B 2 O 3 vapor was caused to react with the pellets, thereby obtaining the intended
〔La吸収膜の製造〕
Bi2O3の粉体を、50mmφの成形器に入れて一方向から加圧して一軸成形し、引き続きホットプレス焼結を行った。焼結の条件は、窒素ガス雰囲気、圧力30MPa、温度600℃、3時間とし、スパッタリング用のターゲットを得た。このターゲットを用いて高周波スパッタリング法によって、LSBOからなる固体電解質層11の両面に300nmの厚みでスパッタリングを行った。スパッタリングの条件は、RF出力が30W、アルゴンガスの圧力が0.8Paであった。スパッタリングの完了後、大気中、750℃で1時間にわたりアニーリングを行った。このアニーリングによって、固体電解質中のLaがBi2O3層(La吸収層)側へ拡散し、La欠損LSBOが形成された。次に、この固体電解質からLaを吸収させた層を除去する操作を行った。詳細には、精密研磨装置を用いて、Laを吸収させたBi2O3層を完全に除去した。その後ノギスによって測定したLa欠損LSBOの厚みは340μmであった。
[Manufacture of La absorption film]
The Bi 2 O 3 powder was placed in a 50 mmφ molding machine and uniaxially molded by applying pressure from one direction, followed by hot press sintering. The sintering conditions were a nitrogen gas atmosphere, a pressure of 30 MPa, a temperature of 600° C., and a duration of 3 hours to obtain a target for sputtering. Using this target, sputtering was performed on both sides of the
〔実施例2〕
実施例1において、La吸収層を800℃で1時間にわたりアニーリングした以外は、実施例1と同様にしてLa欠損LSBOを製造した。
[Example 2]
A La-deficient LSBO was produced in the same manner as in Example 1, except that the La absorption layer was annealed at 800° C. for 1 hour.
〔実施例3〕
実施例1において、La吸収層を850℃で1時間にわたりアニーリングした以外は、実施例1と同様にしてLa欠損LSBOを製造した。
[Example 3]
A La-deficient LSBO was produced in the same manner as in Example 1, except that the La absorption layer was annealed at 850° C. for 1 hour.
〔比較例1〕
実施例1において、La吸収層を形成せず、したがってアニーリングを行なかった以外は、実施例1と同様にして固体電解質を製造した。
[Comparative example 1]
A solid electrolyte was produced in the same manner as in Example 1, except that the La absorption layer was not formed and therefore annealing was not performed.
〔評価1〕
実施例及び比較例で得られた固体電解質について、以下に述べる方法でXRD測定を行いI002/I004の値を求めた。また、以下に述べる方法で酸化物イオンの伝導率を測定した。それらの結果を以下の表1に示す。
[Rating 1]
The solid electrolytes obtained in Examples and Comparative Examples were subjected to XRD measurement using the method described below to determine the value of I 002 /I 004 . Further, the conductivity of oxide ions was measured by the method described below. The results are shown in Table 1 below.
〔XRD測定〕
株式会社リガクの全自動多目的X線回折装置SmartLabを用いて以下の条件にて測定した。
管電圧:40kV
管電流:30mA
X線源:CuKα
入射光学素子:コンフォーカルミラー(CMF)
入射側スリット構成:コリメータサイズ1.4mm×1.4mm
受光側スリット構成:平行スリットアナライザ0.114deg、受光スリット20mm
検出器:シンチレーションカウンター
測定範囲:2θ=20~60deg
ステップ幅:0.01deg
スキャンスピード:1deg/分
解析は、株式会社リガクのPDXL2を用いた。バックグラウンドに端点を結ぶ直線、ピーク形状に分割型擬Voigt関数を選択し、プロファイルフィッティングすることで、002及び004のピーク強度(積分強度)を得た。002のピーク及び004のピークは、前述のとおり、c軸配向しているので、他の面のピークと重ならない独立したピークである。デバイスとして多層構成にした場合に想定される、別相由来のピークとの重なりがあった場合には、一般的なXRDデータ解析と同様にピーク分解できるので、002及び004のみのピーク強度を得ることができる。
[XRD measurement]
Measurement was performed under the following conditions using a fully automatic multi-purpose X-ray diffraction device SmartLab manufactured by Rigaku Corporation.
Tube voltage: 40kV
Tube current: 30mA
X-ray source: CuKα
Input optical element: confocal mirror (CMF)
Incidence side slit configuration: Collimator size 1.4mm x 1.4mm
Light receiving side slit configuration: Parallel slit analyzer 0.114deg, light receiving slit 20mm
Detector: Scintillation counter Measurement range: 2θ=20~60deg
Step width: 0.01deg
Scan speed: 1 deg/min Analysis was performed using Rigaku Co., Ltd.'s PDXL2. The peak intensities (integrated intensities) of 002 and 004 were obtained by selecting a straight line connecting the end points to the background and a segmented pseudo-Voigt function for the peak shape, and performing profile fitting. As described above, the 002 peak and the 004 peak are c-axis oriented, and therefore are independent peaks that do not overlap with peaks on other planes. If there is an overlap with a peak derived from another phase, which is expected when the device has a multilayer structure, the peak intensity can be resolved in the same way as general XRD data analysis, so only the peak intensities of 002 and 004 can be obtained. be able to.
〔酸化物イオンの伝導率の測定〕
固体電解質の両面にスパッタリング法を用いて150nm厚の白金膜を製膜して電極を形成した。この固体電解質を加熱炉中に載置し、加熱炉の温度を変化させて固体電解質の複素インピーダンス解析を行った。解析にはインピーダンス測定装置を用い、周波数は0.1Hz~32MHzとした。全抵抗成分(粒内抵抗+粒界抵抗)から酸化物イオン伝導率(S/cm)を求めた。600℃での酸化物イオン伝導率を表1に示した。
[Measurement of oxide ion conductivity]
Electrodes were formed by forming platinum films with a thickness of 150 nm on both sides of the solid electrolyte using a sputtering method. This solid electrolyte was placed in a heating furnace, and complex impedance analysis of the solid electrolyte was performed while changing the temperature of the heating furnace. An impedance measuring device was used for the analysis, and the frequency was set at 0.1 Hz to 32 MHz. Oxide ion conductivity (S/cm) was determined from the total resistance component (intragrain resistance + grain boundary resistance). Table 1 shows the oxide ion conductivity at 600°C.
表1に示す結果から明らかなとおり、I002/I004の値が特定の範囲である各実施例で得られた固体電解質は、比較例の固体電解質に比べて伝導率が約5倍以上も高く、酸化物イオン伝導性の向上効果が高いことが判る。 As is clear from the results shown in Table 1, the solid electrolytes obtained in each example in which the value of I 002 /I 004 was within a specific range had a conductivity about 5 times or more compared to the solid electrolyte of the comparative example. It can be seen that the effect of improving oxide ion conductivity is high.
〔実施例4〕
実施例1で得られた固体電解質の両面に、イットリウムを含むBi2O3からなる中間層12を形成した。中間層12の形成には、以下の方法で製造されたターゲットを用いた。このターゲットを用いて固体電解質の両面にスパッタリングを行い、中間層を形成した。中間層の形成後、700℃1時間にわたり加熱を行い、固体電解質接合体10を製造した。
[Example 4]
〔ターゲットの製造〕
Y2O3粉体とBi2O3の粉体とを所定量配合し、エタノールを加えてボールミルで混合した。この混合物を乾燥させ、乳鉢で粉砕し、アルミナるつぼを使用して大気雰囲気下700℃で3時間にわたり焼成した。この焼成物にエタノールを加えて遊星ボールミルで粉砕し、焼成粉末を得た。この焼成粉末を、50mmφの成形器に入れて一方向から加圧して一軸成形し、引き続きホットプレス焼結を行った。焼結の条件は、窒素ガス雰囲気、圧力30MPa、温度600℃、3時間とした。このようにしてスパッタリング用のターゲットを得た。
[Manufacture of targets]
Predetermined amounts of Y 2 O 3 powder and Bi 2 O 3 powder were blended, ethanol was added, and they were mixed in a ball mill. The mixture was dried, ground in a mortar, and calcined in an alumina crucible at 700° C. for 3 hours in an air atmosphere. Ethanol was added to this fired product and the mixture was ground in a planetary ball mill to obtain a fired powder. This fired powder was placed in a 50 mm diameter molding machine and uniaxially molded by applying pressure from one direction, followed by hot press sintering. The sintering conditions were a nitrogen gas atmosphere, a pressure of 30 MPa, a temperature of 600° C., and 3 hours. In this way, a target for sputtering was obtained.
〔実施例5〕
実施例4において用いたターゲットに代えて、サマリウムを含む酸化セリウムからなるターゲットを用いた。このターゲットは、実施例4において用いたターゲットと同様の方法で製造した。このターゲットを用い、実施例4と同様の方法によって、サマリウムを含む酸化セリウムからなる中間層12を製造した。このようにして固体電解質接合体10を製造した。
[Example 5]
In place of the target used in Example 4, a target made of cerium oxide containing samarium was used. This target was manufactured in the same manner as the target used in Example 4. Using this target, an
〔比較例2〕
比較例1で得られた固体電解質の両面に、サマリウムを含む酸化セリウムからなる中間層を形成した。中間層の形成は実施例5と同様にした。
[Comparative example 2]
An intermediate layer made of cerium oxide containing samarium was formed on both sides of the solid electrolyte obtained in Comparative Example 1. The intermediate layer was formed in the same manner as in Example 5.
〔電流密度の測定〕
実施例4及び5並びに比較例2で得られた固体電解質接合体について、電気抵抗を測定した。測定は600℃で行った。大気中で中間層間に直流電圧1Vを印加し、得られた電流値から電流密度を算出した。この結果を表2に示す。
[Measurement of current density]
The electrical resistance of the solid electrolyte assemblies obtained in Examples 4 and 5 and Comparative Example 2 was measured. Measurements were performed at 600°C. A DC voltage of 1 V was applied between the intermediate layers in the atmosphere, and the current density was calculated from the obtained current value. The results are shown in Table 2.
表2に示す結果から明らかなとおり、I002/I004の値が特定の範囲である固体電解質に中間層を設けた固体電解質接合体は、比較例の固体電解質接合体に比べて約7倍以上もの高い電流密度値が得られることが判る。 As is clear from the results shown in Table 2, the solid electrolyte assembly in which the intermediate layer is provided in the solid electrolyte whose I 002 /I 004 value falls within a specific range is about 7 times as strong as the solid electrolyte assembly of the comparative example. It can be seen that higher current density values can be obtained.
本発明によれば、固体電解質を備えたデバイスの電気抵抗を低減し得る固体電解質が提供される。また本発明によれば、電気抵抗の低い固体電解質接合体が提供される。 According to the present invention, a solid electrolyte that can reduce the electrical resistance of a device provided with a solid electrolyte is provided. Further, according to the present invention, a solid electrolyte assembly with low electrical resistance is provided.
Claims (7)
前記複合酸化物が、一般式:A9.33+x[T6.00-yMy]O26.0+z(式中のAは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu、Be、Mg、Ca、Sr及びBaからなる群から選ばれた一種又は二種以上の元素である。式中のTは、Si若しくはGe又はその両方を含む元素である。式中のMは、Mg、Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Ga、Y、Zr、Ta、Nb、B、Ge、Zn、Sn、W及びMoからなる群から選ばれた一種又は二種以上の元素である。)で表され、式中のxは-1.33以上1.50以下の数であり、式中のyは0.00以上2.00以下の数であり、式中のzは-5.00以上5.20以下の数であり、Tのモル数に対するAのモル数の比率が1.33以上3.61以下である複合酸化物を含む、固体電解質接合体。 It is made of an apatite-type composite oxide having oxide ion conductivity, and the value of I 002 /I 004 , which is the ratio of the peak intensity I 002 of 002 to the peak intensity I 004 of 004 obtained by X-ray diffraction measurement, is 0.3. A solid electrolyte assembly formed by joining a solid electrolyte having a particle diameter of 0.8 or less and an intermediate layer of a metal oxide,
The composite oxide has the general formula: A 9.33+x [T 6.00-y M y ]O 26.0+z (A in the formula is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, One or more elements selected from the group consisting of Tb, Dy, Ho, Er, Yb, Lu, Be, Mg, Ca, Sr and Ba.T in the formula is Si or Ge or both. M in the formula is Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Ga, Y, Zr, Ta, Nb, B, Ge, Zn, Sn, One or more elements selected from the group consisting of W and Mo.), x in the formula is a number from -1.33 to 1.50, and y in the formula is 0. is a number of .00 or more and 2.00 or less, z in the formula is a number of -5.00 or more and 5.20 or less, and the ratio of the number of moles of A to the number of moles of T is 1.33 or more and 3.61 A solid electrolyte assembly containing the following composite oxide.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018110030 | 2018-06-08 | ||
JP2018110030 | 2018-06-08 | ||
JP2020523077A JP7309702B2 (en) | 2018-06-08 | 2019-05-31 | Solid electrolyte and solid electrolyte junction |
PCT/JP2019/021765 WO2019235383A1 (en) | 2018-06-08 | 2019-05-31 | Solid electrolyte and solid electrolyte bonded body |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020523077A Division JP7309702B2 (en) | 2018-06-08 | 2019-05-31 | Solid electrolyte and solid electrolyte junction |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023164783A true JP2023164783A (en) | 2023-11-14 |
Family
ID=68770299
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020523077A Active JP7309702B2 (en) | 2018-06-08 | 2019-05-31 | Solid electrolyte and solid electrolyte junction |
JP2023110730A Pending JP2023164783A (en) | 2018-06-08 | 2023-07-05 | Solid electrolyte and solid electrolyte bonded body |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020523077A Active JP7309702B2 (en) | 2018-06-08 | 2019-05-31 | Solid electrolyte and solid electrolyte junction |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP7309702B2 (en) |
TW (2) | TW202340117A (en) |
WO (1) | WO2019235383A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022209399A1 (en) * | 2021-03-31 | 2022-10-06 | 三井金属鉱業株式会社 | Multilayer body |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4029321B2 (en) * | 2002-01-16 | 2008-01-09 | 日産自動車株式会社 | Porous oxide film, method for producing the same, and fuel cell using the same |
JP2004244282A (en) | 2003-02-14 | 2004-09-02 | Honda Motor Co Ltd | Oxide ion conductor and its manufacturing process |
US8399147B2 (en) * | 2007-12-28 | 2013-03-19 | Honda Motor Co., Ltd. | Electrolyte-electrode assembly comprising an apatite-type oxide electrolyte and method for manufacturing the same |
EP2722920B1 (en) | 2011-06-20 | 2018-08-08 | Santoku Corporation | Solid electrolyte, solid electrolyte membrane, fuel battery cell, and fuel battery |
JP2014148443A (en) | 2013-02-01 | 2014-08-21 | Nagoya Institute Of Technology | Apatite-type lanthanum silicate polycrystal and method for manufacturing the same, oxide ion conductor, and solid electrolyte |
US10774012B2 (en) | 2015-07-30 | 2020-09-15 | Mitsui Mining & Smelting Co., Ltd. | Substrate/oriented apatite-type composite oxide film complex and method for producing same |
-
2019
- 2019-05-31 JP JP2020523077A patent/JP7309702B2/en active Active
- 2019-05-31 WO PCT/JP2019/021765 patent/WO2019235383A1/en active Application Filing
- 2019-06-05 TW TW112123673A patent/TW202340117A/en unknown
- 2019-06-05 TW TW108119471A patent/TWI809118B/en active
-
2023
- 2023-07-05 JP JP2023110730A patent/JP2023164783A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2019235383A1 (en) | 2019-12-12 |
TW202340117A (en) | 2023-10-16 |
JP7309702B2 (en) | 2023-07-18 |
TWI809118B (en) | 2023-07-21 |
JPWO2019235383A1 (en) | 2021-07-08 |
TW202000628A (en) | 2020-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107709603B (en) | Substrate/oriented apatite composite oxide film composite and method for producing same | |
JP7278266B2 (en) | Solid electrolyte junction with intermediate layer | |
EP1864955B1 (en) | Ion conductor | |
JP7291031B2 (en) | Solid electrolyte junction | |
JP2023164783A (en) | Solid electrolyte and solid electrolyte bonded body | |
US7625653B2 (en) | Ionic conductor | |
JP7123078B2 (en) | Oxygen permeable element and sputtering target material | |
JP7265538B2 (en) | Solid electrolyte junction | |
Liu et al. | Preparation and characterization of La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ thin film on the porous cathode for SOFC | |
US7419736B2 (en) | Mixed ion conductor | |
JP2021021711A (en) | Solid electrolyte conjugate and electrochemical element | |
Yang et al. | Yb Doping Effects on Structure and Performance of BaCo0. 7Fe0. 3-xYbxO3-δ Perovskite | |
WO2022209399A1 (en) | Multilayer body | |
JP7291057B2 (en) | Oxygen sensor element for exhaust gas | |
JP7300440B2 (en) | Solid electrolyte junction | |
JP2022170723A (en) | laminate | |
WO2022270448A1 (en) | Carbon monoxide gas sensor | |
JP7504129B2 (en) | Carbon Dioxide Sensor | |
JPH11273451A (en) | Oxide ion conductor, its manufacture and solid electrolyte fuel cell | |
JP2022130974A (en) | Solid electrolyte assembly and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240805 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240903 |