[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2023143794A - Production method of catalyst - Google Patents

Production method of catalyst Download PDF

Info

Publication number
JP2023143794A
JP2023143794A JP2023040361A JP2023040361A JP2023143794A JP 2023143794 A JP2023143794 A JP 2023143794A JP 2023040361 A JP2023040361 A JP 2023040361A JP 2023040361 A JP2023040361 A JP 2023040361A JP 2023143794 A JP2023143794 A JP 2023143794A
Authority
JP
Japan
Prior art keywords
nitrate
catalyst
dissolved
added
aqueous liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023040361A
Other languages
Japanese (ja)
Inventor
宏透 伊藤
Hiroyuki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2023143794A publication Critical patent/JP2023143794A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To efficiently provide a catalyst having a high raw material conversion rate and an excellent product yield as a catalyst to be used for a gas phase catalytic oxidation reaction for producing from olefin such as propylene or t-butanol, unsaturated aldehyde such as acrolein and methacrolein, and unsaturated carboxylic acid such as acrylic acid and methacrylic acid.SOLUTION: A method for producing a catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid includes a liquid preparing step of adding a feed source compound of a plurality of catalyst active elements to an aqueous liquid and dissolving or dispersing the product to bring to a prepared solution, wherein the liquid preparing step includes a process of adding nitride as the feed source compound or an aqueous liquid in which the nitride is dissolved or dispersed to an aqueous liquid in which the other feed source compound is dissolved or dispersed followed by dissolving or dispersing the product, an amount of the nitride to be added or a content of nitride contained in an aqueous liquid in which the added nitride is dissolved or dispersed is 2 kg or more, and an addition rate of the added nitride or the aqueous liquid in which the nitride is dissolved or dispersed is 40 kg or less per minute.SELECTED DRAWING: None

Description

この発明は、プロピレン等のオレフィン又はターシャリーブタノールを気相接触酸化し
、アクロレイン又はメタクロレイン等の不飽和アルデヒド及び、アクリル酸又はメタクリ
ル酸等の不飽和カルボン酸を製造する際に用いられる触媒の製造方法に関する。
This invention relates to a catalyst used in the gas phase catalytic oxidation of olefins such as propylene or tertiary butanol to produce unsaturated aldehydes such as acrolein or methacrolein, and unsaturated carboxylic acids such as acrylic acid or methacrylic acid. Regarding the manufacturing method.

オレフィン又はターシャリーブタノールを気相接触酸化し、アクロレイン又はメタクロ
レイン等の不飽和アルデヒド及び、アクリル酸又はメタクリル酸等の不飽和カルボン酸を
製造する際に用いられる触媒としてモリブデン系触媒が有用であることはよく知られてお
り、工業的にも広く実用化されている。
Molybdenum-based catalysts are useful as catalysts used when producing unsaturated aldehydes such as acrolein or methacrolein and unsaturated carboxylic acids such as acrylic acid or methacrylic acid by gas phase catalytic oxidation of olefins or tertiary butanol. This is well known and has been widely put into practical use industrially.

これら各種反応におけるモリブデン系触媒の組成及び製造方法に関する特許文献として
は、特許文献1等が知られている。特許文献1では、触媒原料を温水等により混合してな
る、原料スラリーの調製において、スラリー温度を制御することにより、原料スラリーが
均一となり、触媒組成が均質化されるとしている。
Patent documents such as Patent Document 1 are known regarding the composition and manufacturing method of molybdenum-based catalysts in these various reactions. Patent Document 1 states that in preparing a raw material slurry by mixing catalyst raw materials with hot water or the like, by controlling the slurry temperature, the raw material slurry becomes uniform and the catalyst composition is homogenized.

特開2018-140326号公報Japanese Patent Application Publication No. 2018-140326

しかしながら、これら従前知られた製造方法では触媒原料が溶解又は分散した後のスラ
リー温度しか制御しておらず、製造された触媒では、原料転化率が不十分であり、収率が
満足いくものではなかった。特に、調液工程により得られる調製液の量が増えるにつれて
原料転化率の低下、収率の低下が顕著であった。
However, these previously known production methods only control the temperature of the slurry after the catalyst raw materials have been dissolved or dispersed, and the produced catalysts have insufficient raw material conversion rates and unsatisfactory yields. There wasn't. In particular, as the amount of the prepared liquid obtained in the liquid preparation step increased, the raw material conversion rate and the yield decreased significantly.

そこで、本発明は、プロピレン等のオレフィン又はターシャリーブタノールから、アク
ロレイン又はメタクロレイン等の不飽和アルデヒド及び、アクリル酸又はメタクリル酸等
の不飽和カルボン酸を製造する気相接触酸化反応に用いられる触媒として、原料転化率が
高く、生成物収率が優れる触媒を効率よく提供することを目的とする。
Therefore, the present invention provides a catalyst for use in a gas phase catalytic oxidation reaction for producing unsaturated aldehydes such as acrolein or methacrolein and unsaturated carboxylic acids such as acrylic acid or methacrylic acid from olefins such as propylene or tertiary butanol. The purpose of this invention is to efficiently provide a catalyst with a high raw material conversion rate and an excellent product yield.

本発明者らが検討を行った結果、複数の触媒活性元素の供給源化合物を水系液体に添加
し、溶解又は分散して調製液とする調液工程を含む、不飽和アルデヒド及び不飽和カルボ
ン酸製造用触媒を製造する方法であって、該調液工程は、該供給源化合物である硝酸塩又
は硝酸塩が溶解若しくは分散した水系液体を、他の供給源化合物が溶解又は分散した水系
液体に添加し、溶解又は分散する過程を含み、添加する該硝酸塩の量、又は該硝酸塩が溶
解若しくは分散した水系液体に含まれる硝酸塩の含有量が特定範囲であり、且つ添加する
該硝酸塩又は該硝酸塩が溶解若しくは分散した水系液体の添加速度を特定範囲とすること
により、前記課題を解決することができることを見出し、本発明を完成させた。
即ち、本発明は以下を要旨とする。
As a result of studies conducted by the present inventors, unsaturated aldehydes and unsaturated carboxylic acids, which include a liquid preparation process in which a plurality of catalytically active element source compounds are added to an aqueous liquid and dissolved or dispersed to prepare a prepared liquid, A method for producing a catalyst for production, in which the liquid preparation step includes adding a nitrate as the source compound or an aqueous liquid in which the nitrate is dissolved or dispersed to an aqueous liquid in which another source compound is dissolved or dispersed. , including the process of dissolving or dispersing, the amount of the nitrate to be added, or the content of the nitrate contained in the aqueous liquid in which the nitrate is dissolved or dispersed, is within a specific range, and the nitrate to be added or the nitrate is dissolved or dispersed. The inventors have discovered that the above problem can be solved by adjusting the addition rate of the dispersed aqueous liquid within a specific range, and have completed the present invention.
That is, the gist of the present invention is as follows.

[1]複数の触媒活性元素の供給源化合物を水系液体に添加し、溶解又は分散して調製液
とする調液工程を含む、不飽和アルデヒド及び不飽和カルボン酸製造用触媒を製造する方
法であって、該調液工程は、該供給源化合物である硝酸塩又は該硝酸塩が溶解若しくは分
散した水系液体を、他の供給源化合物が溶解又は分散した水系液体に添加し、溶解又は分
散する過程を含み、添加する該硝酸塩の量、又は添加する該硝酸塩が溶解若しくは分散し
た水系液体に含まれる硝酸塩の含有量が2kg以上であり、且つ添加する該硝酸塩又は該
硝酸塩が溶解若しくは分散した水系液体の添加速度を1分あたり40kg以下とする触媒
の製造方法。
[2]前記硝酸塩が溶解又は分散した水系液体における、硝酸塩の濃度が50g/L以上
2000g/L以下の範囲内である、[1]に記載の触媒の製造方法。
[3]前記硝酸塩が硝酸ビスマス、硝酸鉄、硝酸コバルト及び硝酸ニッケルからなる群よ
り選ばれた少なくとも一つの化合物である、[1]又は[2]に記載の触媒の製造方法。
[1] A method for producing a catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids, which includes a liquid preparation step in which a plurality of source compounds of catalytically active elements are added to an aqueous liquid and dissolved or dispersed to obtain a prepared liquid. The liquid preparation step is a process of adding the source compound nitrate or an aqueous liquid in which the nitrate is dissolved or dispersed to an aqueous liquid in which another source compound is dissolved or dispersed, and dissolving or dispersing it. The amount of the nitrate contained or added, or the content of the nitrate contained in the aqueous liquid in which the nitrate to be added is dissolved or dispersed is 2 kg or more, and the nitrate to be added or the aqueous liquid in which the nitrate is dissolved or dispersed is 2 kg or more. A method for producing a catalyst in which the addition rate is 40 kg or less per minute.
[2] The method for producing a catalyst according to [1], wherein the concentration of nitrate in the aqueous liquid in which the nitrate is dissolved or dispersed is in the range of 50 g/L or more and 2000 g/L or less.
[3] The method for producing a catalyst according to [1] or [2], wherein the nitrate is at least one compound selected from the group consisting of bismuth nitrate, iron nitrate, cobalt nitrate, and nickel nitrate.

[4]前記触媒の触媒成分元素が下記式(1)で表される、[1]乃至[3]のいずれかに記
載の触媒の製造方法。
Mo12BiFeCoNiSi (1)
(式(1)中、XはNa、K、Rb、Cs及びTlからなる群より選ばれた少なくとも一
種の元素を示し、YはMg、Ca、Sr、Ba、Mn及びZnからなる群より選ばれた少
なくとも一種の元素を示し、ZはF、Cl、B,P、As、W及びNbからなる群より選
ばれた少なくとも一種の元素を示す。a~iはそれぞれの元素の原子比を示し、0.5≦
a≦7、0≦b≦5、0≦c≦10、0≦d≦10、0≦e≦2、0≦f≦5、0≦g≦
5、0≦h≦500の範囲にあり、iは他の元素の酸化状態を満足させる値である。)
[5][1]乃至[4]のいずれかに記載の触媒の製造方法により製造された触媒の存在下、
プロピレンと酸素含有ガスを含む混合ガスを気相接触酸化するアクロレイン及びアクリル
酸の製造方法。
[4] The method for producing a catalyst according to any one of [1] to [3], wherein the catalyst component element of the catalyst is represented by the following formula (1).
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g Si h O i (1)
(In formula (1), X represents at least one element selected from the group consisting of Na, K, Rb, Cs and Tl, and Y is selected from the group consisting of Mg, Ca, Sr, Ba, Mn and Zn. Z represents at least one element selected from the group consisting of F, Cl, B, P, As, W and Nb. a to i represent the atomic ratio of each element. , 0.5≦
a≦7, 0≦b≦5, 0≦c≦10, 0≦d≦10, 0≦e≦2, 0≦f≦5, 0≦g≦
5, 0≦h≦500, where i is a value that satisfies the oxidation states of other elements. )
[5] In the presence of a catalyst produced by the method for producing a catalyst according to any one of [1] to [4],
A method for producing acrolein and acrylic acid by gas phase catalytic oxidation of a mixed gas containing propylene and an oxygen-containing gas.

本発明によれば、プロピレン等のオレフィン又はターシャリーブタノールから、アクロ
レイン又はメタクロレイン等の不飽和アルデヒド及び、アクリル酸又はメタクリル酸等の
不飽和カルボン酸を製造する気相接触酸化反応に用いられる、原料転化率が高く、生成物
収率が優れる触媒を効率よく提供することができる。
According to the present invention, used in a gas phase catalytic oxidation reaction for producing unsaturated aldehydes such as acrolein or methacrolein and unsaturated carboxylic acids such as acrylic acid or methacrylic acid from olefins such as propylene or tertiary butanol. A catalyst with a high raw material conversion rate and an excellent product yield can be efficiently provided.

本発明に係る不飽和アルデヒド及び不飽和カルボン酸製造用の触媒(以下「触媒」と称
する場合がある。)の製造方法について詳細に説明する。
触媒は、プロピレン等のオレフィン又はターシャリーブタノールを原料とし、酸素含有
ガスにより気相接触酸化して、アクロレイン又はメタクロレイン等の不飽和アルデヒド及
び、アクリル酸又はメタクリル酸等の不飽和カルボン酸を製造する、不飽和アルデヒド及
び不飽和カルボン酸製造用の触媒である。
The method for producing the catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids (hereinafter sometimes referred to as "catalyst") according to the present invention will be described in detail.
The catalyst uses olefins such as propylene or tertiary butanol as a raw material, and performs gas phase catalytic oxidation using oxygen-containing gas to produce unsaturated aldehydes such as acrolein or methacrolein, and unsaturated carboxylic acids such as acrylic acid or methacrylic acid. It is a catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids.

[触媒の製造方法]
本発明の触媒の製造は、触媒を構成する各成分として、その成分たる元素(以下、「触
媒成分元素」と称する場合がある。)を有する所定の化合物を、触媒の供給源となる化合
物(以下、「供給源化合物」と称する場合がある。)として用い、この触媒成分元素の供
給源化合物を水性液体に溶解又は分散して調製液とすること(調液工程)を含む。
尚、該調製液を乾燥処理して粉体とし(乾燥工程)、次いで、該粉体を成型して触媒前
駆体とし(成型工程)、そして、該触媒前駆体を焼成すること(焼成工程)をさらに含み
、製造することができる。
[Catalyst manufacturing method]
In the production of the catalyst of the present invention, as each component constituting the catalyst, a predetermined compound having an element (hereinafter sometimes referred to as a "catalyst component element") is added to a compound (which is a supply source of the catalyst). Hereinafter, it may be referred to as a "source compound"), and includes dissolving or dispersing the source compound of the catalyst component element in an aqueous liquid to prepare a liquid (liquid preparation step).
Note that the prepared liquid is dried to form a powder (drying process), then the powder is molded to form a catalyst precursor (molding process), and the catalyst precursor is fired (calcination process). It can further include and be manufactured.

[調液工程]
前記調液工程は、前記触媒成分元素の供給源化合物を水性液体に溶解又は分散して調製
液を得る工程である。
前記水性液体とは、水及び水と相溶性を有する有機溶媒を含む液体であり、さらに無機
酸、無機塩基、無機塩が溶解していてもよい。水性液体中の水の含有量は好ましくは40
質量%以上、より好ましくは70質量%以上、さらに好ましくは100質量%である。水
と相溶性を有する有機溶媒とはメタノール、エタノール、グリセリン、(ポリ)アミン類
など、又はこれらの混合物が挙げられる。
[Liquid preparation process]
The liquid preparation step is a step of dissolving or dispersing the source compound of the catalyst component element in an aqueous liquid to obtain a preparation liquid.
The aqueous liquid is a liquid containing water and an organic solvent that is compatible with water, and may further dissolve an inorganic acid, an inorganic base, or an inorganic salt. The water content in the aqueous liquid is preferably 40
It is at least 70% by mass, more preferably at least 70% by mass, and even more preferably at least 100% by mass. Examples of organic solvents that are compatible with water include methanol, ethanol, glycerin, (poly)amines, and mixtures thereof.

本発明の触媒製造における調液工程は、複数の触媒活性元素の供給源化合物を水系液体
に添加し、溶解又は分散して調製液とする工程であり、供給源化合物である硝酸塩又は硝
酸塩が溶解若しくは分散した水系液体を、他の供給源化合物が溶解又は分散した水系液体
(以下「水系液体」と称する場合がある)に添加し、溶解又は分散する過程を含み、添加
する該硝酸塩の量又は該硝酸塩が溶解若しくは分散した水系液体に含まれる硝酸塩の含有
量が2kg以上であり、且つ添加する該硝酸塩又は該硝酸塩が溶解若しくは分散した水系
液体の添加速度(以下「添加速度」と称する場合がある)を1分あたり40kg以下とす
る。硝酸塩の量又は硝酸塩が溶解若しくは分解した水系液体に含まれる硝酸塩の含有量は
、5kg以上であることがより好ましく、10kg以上であることがさらに好ましい。上
限は特に制限はないが、1000kgであることが好ましく、500kgであることがよ
り好ましい。前記範囲内であることにより、一度に大量の調製液とすることができ、原料
転化率が高く、生成物収率が優れる触媒を効率よく提供することができる。該添加速度は
1分あたり37kg以下が好ましく、35kg以下がより好ましく、25kg以下がさら
に好ましい。該添加速度の1分あたりの下限量は特に制限はないが、1kg以上が好まし
く、2kg以上がより好ましく、3kg以上がさらに好ましい。前記添加速度で硝酸塩又
は硝酸塩が溶解若しくは分散した水系液体を添加することにより、硝酸塩の形態で添加さ
れた触媒成分元素と、水性液体中に存在する他の触媒成分元素との分散性が促進され、製
造された触媒は原料転化率が高く、生成物収率が優れた触媒とすることができる。
The liquid preparation process in the production of the catalyst of the present invention is a process in which source compounds of a plurality of catalytically active elements are added to an aqueous liquid and dissolved or dispersed to obtain a prepared liquid, and the source compound nitrate or nitrate is dissolved. or the dispersed aqueous liquid is added to an aqueous liquid in which other source compounds are dissolved or dispersed (hereinafter sometimes referred to as "aqueous liquid"), and the amount of the nitrate to be added or The content of nitrate contained in the aqueous liquid in which the nitrate is dissolved or dispersed is 2 kg or more, and the rate of addition of the nitrate to be added or the aqueous liquid in which the nitrate is dissolved or dispersed (hereinafter referred to as "addition rate") 40 kg or less per minute. The amount of nitrate or the content of nitrate contained in the aqueous liquid in which nitrate is dissolved or decomposed is more preferably 5 kg or more, and even more preferably 10 kg or more. The upper limit is not particularly limited, but is preferably 1000 kg, more preferably 500 kg. By being within the above range, a large amount of the preparation liquid can be prepared at once, and a catalyst with a high raw material conversion rate and an excellent product yield can be efficiently provided. The addition rate is preferably 37 kg or less, more preferably 35 kg or less, and even more preferably 25 kg or less per minute. The lower limit of the addition rate per minute is not particularly limited, but is preferably 1 kg or more, more preferably 2 kg or more, and even more preferably 3 kg or more. By adding the nitrate or the aqueous liquid in which the nitrate is dissolved or dispersed at the above-mentioned addition rate, the dispersibility of the catalyst component element added in the form of nitrate and other catalyst component elements present in the aqueous liquid is promoted. The catalyst thus produced can have a high raw material conversion rate and an excellent product yield.

また、硝酸塩が溶解又は分散した水系液体における、硝酸塩の濃度は50g/L以上2
000g/L以下が好ましく、下限は100g/Lがより好ましく、200g/Lがさら
に好ましく、300g/Lが特に好ましい。上限は1700g/Lがより好ましく、13
00g/Lがさらに好ましく、1000g/Lが特に好ましい。硝酸塩の濃度を前記範囲
内とすることにより、硝酸塩の形態で添加された触媒成分元素と、水性液体中に存在する
他の触媒成分元素との分散性が促進され、製造された触媒は原料転化率が高く、生成物収
率が優れた触媒とすることができる。
In addition, the concentration of nitrate in the aqueous liquid in which nitrate is dissolved or dispersed is 50 g/L or more2.
000 g/L or less, the lower limit is more preferably 100 g/L, even more preferably 200 g/L, particularly preferably 300 g/L. The upper limit is more preferably 1700 g/L, and 13
00 g/L is more preferable, and 1000 g/L is particularly preferable. By setting the concentration of nitrate within the above range, the dispersibility of the catalyst component element added in the form of nitrate and other catalyst component elements present in the aqueous liquid is promoted, and the produced catalyst is used for raw material conversion. It is possible to produce a catalyst with high yield and excellent product yield.

該水系液体の重量は好ましくは10kg以上、より好ましくは30kg以上、さらに好
ましくは50kg以上である。又該水系液体の重量は好ましくは5000kg以下、より
好ましくは1000kg以下、さらに好ましくは500kg以下である。前記範囲内とす
ることにより、硝酸塩の形態で添加された触媒成分元素と、水性液体中に存在する他の触
媒成分元素との分散性が促進され、製造された触媒は原料転化率が高く、生成物収率が優
れた触媒とすることができる。
The weight of the aqueous liquid is preferably 10 kg or more, more preferably 30 kg or more, even more preferably 50 kg or more. Further, the weight of the aqueous liquid is preferably 5000 kg or less, more preferably 1000 kg or less, still more preferably 500 kg or less. By setting it within the above range, the dispersibility of the catalyst component element added in the form of nitrate and other catalyst component elements present in the aqueous liquid is promoted, and the produced catalyst has a high raw material conversion rate, A catalyst with excellent product yield can be obtained.

尚、硝酸塩又は硝酸塩が溶解若しくは分散した水系液体を、他の供給源化合物が溶解又
は分散した水系液体に添加する方法は、所望の量を連続的に添加しても、間欠的に添加し
てもよい。添加物が硝酸塩の場合、添加速度は、添加された硝酸塩の量を添加時間で除し
て求めることができる。また添加物が硝酸塩が溶解若しくは分散した水系液体の場合、添
加速度は、添加された硝酸塩が溶解若しくは分散した水系液体の量を添加時間で除して求
めることができる。
In addition, the method of adding nitrate or an aqueous liquid in which nitrate is dissolved or dispersed to an aqueous liquid in which other source compounds are dissolved or dispersed can be carried out either by adding the desired amount continuously or by adding it intermittently. Good too. If the additive is a nitrate, the rate of addition can be determined by dividing the amount of nitrate added by the time of addition. Further, when the additive is an aqueous liquid in which nitrate is dissolved or dispersed, the addition rate can be determined by dividing the amount of the aqueous liquid in which the added nitrate is dissolved or dispersed by the addition time.

前記硝酸塩の量又は前記硝酸塩が溶解若しくは分散した水系液体の含有量を特定範囲と
し、且つ、前記添加速度を制御する必要性は以下と考えている。触媒の製造は、近年、高
い触媒性能を有する触媒を均一に大量生産することが求められている。大量生産では、複
数の小型の製造装置を使用して製造された触媒を合算するケースがあるが、製造装置の差
異に起因する製造された触媒の不均一性の発生を抑えることは困難であった。一方、大型
の製造装置により、触媒の大量製造が試みられたが、均一に高い触媒性能を有する触媒を
大量に得ることができなかった。本発明者らは大型の製造装置による触媒の大量製造にお
ける問題を鋭意検討したところ、調液工程において、硝酸塩又は硝酸塩が溶解若しくは分
散した水系液体の添加速度が大きい場合、添加後の水系液体内部において、硝酸塩が高濃
度で存在する部位と硝酸塩が低濃度で存在する部位との混合に時間を要し、水系液体内で
濃度のムラ、すなわち不均一な状態が存在する時間が長く、硝酸塩の形態で添加された触
媒成分元素と、水性液体内部に存在していた触媒成分元素との分散性に悪影響を及ぼし、
製造された触媒の不均一化の原因であることを明らかにした。本発明は触媒を大量に生産
する場合において、添加速度を制御することにより、触媒の局所的な不均一化を抑制し、
硝酸塩の形態で添加された触媒成分元素と、水性液体中に存在する他の触媒成分元素との
分散性が促進され、製造された触媒は原料転化率が高く、生成物収率が優れた触媒とする
ことができる。
It is considered necessary to set the amount of the nitrate or the content of the aqueous liquid in which the nitrate is dissolved or dispersed within a specific range, and to control the addition rate as follows. In the production of catalysts, in recent years there has been a demand for uniform mass production of catalysts having high catalytic performance. In mass production, there are cases where catalysts manufactured using multiple small-sized manufacturing equipment are combined, but it is difficult to suppress the occurrence of non-uniformity in the manufactured catalysts due to differences in manufacturing equipment. Ta. On the other hand, attempts have been made to mass-produce catalysts using large-scale production equipment, but it has not been possible to obtain a large quantity of catalysts having uniformly high catalytic performance. The present inventors have intensively investigated the problems in mass production of catalysts using large-scale production equipment, and found that in the liquid preparation process, if the addition rate of nitrate or an aqueous liquid in which nitrate is dissolved or dispersed is high, the inside of the aqueous liquid after addition , it takes time to mix the areas where nitrates are present in high concentrations with the areas where nitrates are present at low concentrations, and there is a long period of time when the concentration is uneven in the aqueous liquid, that is, a non-uniform state exists, and the nitrates are This adversely affects the dispersibility of the catalyst component elements added in the form of catalyst components and the catalyst component elements existing inside the aqueous liquid.
It was revealed that this was the cause of the non-uniformity of the produced catalyst. The present invention suppresses local non-uniformity of the catalyst by controlling the addition rate when producing a large amount of catalyst,
The dispersibility of the catalyst component element added in the form of nitrate with other catalyst component elements present in the aqueous liquid is promoted, and the produced catalyst has a high raw material conversion rate and an excellent product yield. It can be done.

尚、該硝酸塩又は該硝酸塩が溶解若しくは分散した水系液体の水系液体への添加は、所
望の硝酸塩全量を連続的に添加しても間欠的に添加しても構わない。いずれの場合でも、
添加速度は、時間当たりの添加量の増減に関わりなく、全添加量を添加時間で除した値で
ある。又、該硝酸塩が複数箇所に分かれて水系液体に添加されていても添加量は各箇所で
添加した総量で算出する。
前記した通り、硝酸塩の水系液体への溶解は吸熱を伴うことから、溶解して調製液とす
るための装置(以下「調液装置」と称する場合がある。)として、吸熱を補うための加熱
を効率的に行える付帯設備を具備することが好ましい。
The nitrate or the aqueous liquid in which the nitrate is dissolved or dispersed may be added to the aqueous liquid by adding the desired total amount of the nitrate continuously or intermittently. In any case,
The addition rate is the value obtained by dividing the total addition amount by the addition time, regardless of the increase or decrease in the addition amount per hour. Furthermore, even if the nitrate is added to the aqueous liquid at multiple locations, the amount added is calculated based on the total amount added at each location.
As mentioned above, dissolving nitrate in an aqueous liquid is accompanied by endotherm, so a device for dissolving nitrate into a prepared liquid (hereinafter sometimes referred to as a "liquid preparation device") uses heating to compensate for endotherm. It is preferable to have ancillary equipment that can efficiently perform this.

[供給源化合物]
触媒は、触媒成分元素としてモリブデン(Mo)、ビスマス(Bi)を含有することが
好ましく、それ以外の触媒成分元素として、鉄(Fe)、コバルト(Co)、ニッケル(
Ni)を含有することがより好ましく、さらに、ナトリウム(Na),カリウム(K)、
ルビジウム(Rb)、セシウム(Cs)、チタン(Ti)、マグネシウム(Mg)、カル
シウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、マンガン(Mn)、亜鉛
(Zn)、フッ素(F)、塩素(Cl)、ホウ素(B)、リン(P)、ヒ素(As)、タ
ングステン(W)、ニオブ(Nb)、ケイ素(Si)等の成分を1種又は複数種含有して
もよい。
[Source compound]
The catalyst preferably contains molybdenum (Mo) and bismuth (Bi) as catalyst component elements, and other catalyst component elements such as iron (Fe), cobalt (Co), and nickel (
It is more preferable to contain Ni), and further preferably contains sodium (Na), potassium (K),
Rubidium (Rb), cesium (Cs), titanium (Ti), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), manganese (Mn), zinc (Zn), fluorine (F), It may contain one or more components such as chlorine (Cl), boron (B), phosphorus (P), arsenic (As), tungsten (W), niobium (Nb), and silicon (Si).

前記モリブデン(Mo)の供給源化合物としては、パラモリブデン酸アンモニウム、三
酸化モリブデン、モリブデン酸、リンモリブデン酸アンモニウム、リンモリブデン酸等が
挙げられる。
Examples of the molybdenum (Mo) source compound include ammonium paramolybdate, molybdenum trioxide, molybdic acid, ammonium phosphomolybdate, phosphomolybdic acid, and the like.

前記ビスマス(Bi)の供給源化合物としては、塩化ビスマス、硝酸ビスマス、酸化ビ
スマス、次炭酸ビスマス等が挙げられる。ビスマスの添加量は、触媒成分元素の原子数比
として、モリブデン原子を12としたとき、0.5以上7以下となるように添加すること
が好ましく、より好ましくは0.5以上5以下、更に好ましくは0.5以上4以下、特に
好ましくは0.5以上3以下となるように添加する。この範囲内であることにより原料転
化率が高く、高収率で不飽和アルデヒド及び不飽和カルボン酸を製造することができる触
媒とすることができる。
Examples of the bismuth (Bi) source compound include bismuth chloride, bismuth nitrate, bismuth oxide, bismuth subcarbonate, and the like. The amount of bismuth added is preferably such that the atomic ratio of the catalyst component elements is 0.5 or more and 7 or less, more preferably 0.5 or more and 5 or less, and more preferably 0.5 or more and 5 or less, when molybdenum atoms are 12. It is preferably added in an amount of 0.5 or more and 4 or less, particularly preferably 0.5 or more and 3 or less. By falling within this range, the catalyst can have a high raw material conversion rate and can produce unsaturated aldehydes and unsaturated carboxylic acids in high yields.

前記鉄(Fe)の供給源化合物としては、硝酸第二鉄、硫酸第二鉄、塩化第二鉄、酢酸
第二鉄等が挙げられる。鉄の添加量は、触媒成分元素の原子数比として、モリブデン原子
を12としたとき、0以上5以下となるように添加することが好ましく、より好ましくは
0.1以上4以下、更に好ましくは0.2以上3以下、特に好ましくは0.3以上3以下
となるように添加する。この範囲内であることにより原料転化率が高く、高収率で不飽和
アルデヒド及び不飽和カルボン酸を製造することができる触媒とすることができる。
Examples of the iron (Fe) source compound include ferric nitrate, ferric sulfate, ferric chloride, and ferric acetate. The amount of iron added is preferably such that the atomic ratio of the catalyst component elements is from 0 to 5, more preferably from 0.1 to 4, even more preferably from 0.1 to 4. It is added in an amount of 0.2 or more and 3 or less, particularly preferably 0.3 or more and 3 or less. By falling within this range, the catalyst can have a high raw material conversion rate and can produce unsaturated aldehydes and unsaturated carboxylic acids in high yields.

前記コバルト(Co)の供給源化合物としては、硝酸コバルト、硫酸コバルト、塩化コ
バルト、炭酸コバルト、酢酸コバルト等が挙げられる。コバルトの添加量は、触媒成分元
素の原子数比として、モリブデン原子を12としたとき、0以上10以下となるように添
加することが好ましく、より好ましくは0.5以上9以下、更に好ましくは1以上8以下
、特に好ましくは2以上7以下となるように添加する。この範囲内であることにより原料
転化率が高く、高収率で不飽和アルデヒド及び不飽和カルボン酸を製造することができる
触媒とすることができる。
Examples of the source compound of cobalt (Co) include cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt carbonate, and cobalt acetate. The amount of cobalt added is preferably such that the atomic ratio of the catalyst component elements is 0 or more and 10 or less, more preferably 0.5 or more and 9 or less, and even more preferably 0.5 or more and 9 or less, when molybdenum atoms are 12. It is added in an amount of 1 or more and 8 or less, particularly preferably 2 or more and 7 or less. By falling within this range, the catalyst can have a high raw material conversion rate and can produce unsaturated aldehydes and unsaturated carboxylic acids in high yields.

前記ニッケル(Ni)の供給源化合物としては、硝酸ニッケル、硫酸ニッケル、塩化ニ
ッケル、炭酸ニッケル、酢酸ニッケル等が挙げられる。ニッケルの添加量は、触媒成分元
素の原子数比として、モリブデン原子を12としたとき、0以上10以下となるように添
加することが好ましく、より好ましくは0.5以上9以下、更に好ましくは1以上8以下
、特に好ましくは2以上7以下となるように添加する。この範囲内であることにより原料
転化率が高く、高収率で不飽和アルデヒド及び不飽和カルボン酸を製造することができる
触媒とすることができる。
Examples of the nickel (Ni) source compound include nickel nitrate, nickel sulfate, nickel chloride, nickel carbonate, and nickel acetate. The amount of nickel added is preferably 0 or more and 10 or less, more preferably 0.5 or more and 9 or less, and even more preferably 0.5 or more and 9 or less, as the atomic ratio of the catalyst component elements when molybdenum atoms are 12. It is added in an amount of 1 or more and 8 or less, particularly preferably 2 or more and 7 or less. By falling within this range, the catalyst can have a high raw material conversion rate and can produce unsaturated aldehydes and unsaturated carboxylic acids in high yields.

前記ナトリウム(Na)の供給源化合物としては、塩化ナトリウム、炭酸ナトリウム、
硝酸ナトリウム、硫酸ナトリウム、酢酸ナトリウム、ホウ酸ナトリウム等が挙げられる。
前記カリウム(K)の供給源化合物としては、硝酸カリウム、硫酸カリウム、塩化カリウ
ム、炭酸カリウム、酢酸カリウム等が挙げられる。前記ルビジウム(Rb)の供給源化合
物としては、硝酸ルビジウム、硫酸ルビジウム、塩化ルビジウム、炭酸ルビジウム、酢酸
ルビジウム等を挙げられる。前記セシウム(Cs)の供給源化合物としては、硝酸セシウ
ム、硫酸セシウム、塩化セシウム、炭酸セシウム、酢酸セシウム等を挙げられる。前記チ
タン(Ti)の供給源化合物としては、酸化チタン、塩化チタン等が挙げられる。
The sodium (Na) source compounds include sodium chloride, sodium carbonate,
Examples include sodium nitrate, sodium sulfate, sodium acetate, and sodium borate.
Examples of the potassium (K) source compound include potassium nitrate, potassium sulfate, potassium chloride, potassium carbonate, potassium acetate, and the like. Examples of the rubidium (Rb) source compound include rubidium nitrate, rubidium sulfate, rubidium chloride, rubidium carbonate, rubidium acetate, and the like. Examples of the cesium (Cs) source compound include cesium nitrate, cesium sulfate, cesium chloride, cesium carbonate, and cesium acetate. Examples of the titanium (Ti) source compound include titanium oxide, titanium chloride, and the like.

ナトリウム、カリウム、ルビジウム、セシウム及びチタンから選ばれる少なくとも一種
の元素の添加量は、モリブデンが12のとき、0以上2以下となるように添加することが
好ましく、より好ましくは0.01以上2以下、更に好ましくは0.02以上2以下とな
るように添加する。この範囲内であることにより原料転化率が高く、高収率で不飽和アル
デヒド及び不飽和カルボン酸を製造することができる触媒とすることができる。
The amount of at least one element selected from sodium, potassium, rubidium, cesium, and titanium added is preferably 0 or more and 2 or less when molybdenum is 12, more preferably 0.01 or more and 2 or less. , more preferably in a range of 0.02 or more and 2 or less. By falling within this range, the catalyst can have a high raw material conversion rate and can produce unsaturated aldehydes and unsaturated carboxylic acids in high yields.

前記マグネシウム(Mg)の供給源化合物としては、酸化マグネシウム、炭酸マグネシ
ウム、または硫酸マグネシウム等が挙げられる。前記カルシウム(Ca)の供給源化合物
としては、酸化カルシウム、炭酸カルシウム、または水酸化カルシウム等が挙げられる。
前記ストロンチウム(Sr)の供給源化合物としては、酸化ストロンチウム、炭酸ストロ
ンチウム、水酸化ストロンチウム、または硝酸ストロンチウム等が挙げられる。前記バリ
ウム(Ba)の供給源化合物としては、酸化バリウム、炭酸バリウム、硝酸バリウム、酢
酸バリウム、または硫酸バリウム等が挙げられる。前記マンガン(Mn)の供給源化合物
としては、二酸化マンガン、炭酸マンガン等が挙げられる。前記亜鉛(Zn)の供給源化
合物としては、酸化亜鉛、炭酸亜鉛、水酸化亜鉛、または硝酸亜鉛等が挙げられる。
Examples of the magnesium (Mg) source compound include magnesium oxide, magnesium carbonate, and magnesium sulfate. Examples of the calcium (Ca) source compound include calcium oxide, calcium carbonate, and calcium hydroxide.
Examples of the strontium (Sr) source compound include strontium oxide, strontium carbonate, strontium hydroxide, and strontium nitrate. Examples of the barium (Ba) source compound include barium oxide, barium carbonate, barium nitrate, barium acetate, and barium sulfate. Examples of the manganese (Mn) source compound include manganese dioxide, manganese carbonate, and the like. Examples of the zinc (Zn) source compound include zinc oxide, zinc carbonate, zinc hydroxide, and zinc nitrate.

マグネシウム、カルシウム、ストロンチウム、バリウム、マンガン及び亜鉛からなる群
より選ばれる少なくとも一種の元素の添加量は、触媒成分元素の原子数比として、モリブ
デンが12のとき、0以上5以下となるように添加することが好ましく、より好ましくは
0以上4以下、更に好ましくは0以上3以下となるように添加する。この範囲内であるこ
とにより原料転化率が高く、高収率で不飽和アルデヒド及び不飽和カルボン酸を製造する
ことができる触媒とすることができる。
The amount of at least one element selected from the group consisting of magnesium, calcium, strontium, barium, manganese, and zinc is added such that the atomic ratio of the catalyst component elements is 0 or more and 5 or less when molybdenum is 12. It is preferable to add the amount, more preferably 0 or more and 4 or less, and even more preferably 0 or more and 3 or less. By falling within this range, the catalyst can have a high raw material conversion rate and can produce unsaturated aldehydes and unsaturated carboxylic acids in high yields.

前記フッ素(F)の供給源化合物としては、フッ化カルシウム、フッ化ナトリウム等が
挙げられる。前記塩素(Cl)の供給源化合物としては、塩化ナトリウム、塩化アンモニ
ウム等が挙げられる。前記ホウ素(B)の供給源化合物としては、ホウ砂、ホウ酸アンモ
ニウム及びホウ酸等が挙げられる。前記リン(P)の供給源化合物としては、リンモリブ
デン酸アンモニウム、リン酸アンモニウム、リン酸及び五酸化リン等が挙げられる。ヒ素
(As)の供給源化合物としては、ジアルセノ十八モリブデン酸アンモニウム及びジアル
セノ十八タングステン酸アンモニウム等が挙げられる。前記タングステン(W)の供給源
化合物としては、タングステン酸、またはその塩等が挙げられる。前記ニオブ(Nb)の
供給源化合物としては、水酸化ニオブ等が挙げられる。
Examples of the fluorine (F) source compound include calcium fluoride, sodium fluoride, and the like. Examples of the chlorine (Cl) source compound include sodium chloride, ammonium chloride, and the like. Examples of the boron (B) source compound include borax, ammonium borate, and boric acid. Examples of the phosphorus (P) source compound include ammonium phosphomolybdate, ammonium phosphate, phosphoric acid, and phosphorus pentoxide. Examples of source compounds for arsenic (As) include ammonium dialseno-18 molybdate and ammonium dialseno-18 tungstate. Examples of the tungsten (W) source compound include tungstic acid, a salt thereof, and the like. Examples of the niobium (Nb) source compound include niobium hydroxide.

フッ素、塩素、ホウ素、リン、ヒ素、タングステン及びニオブから選ばれる少なくとも
一種の元素の添加量は、モリブデンが12のとき、0以上5以下となるように添加するこ
とが好ましく、より好ましくは0以上4以下、更に好ましくは0以上3以下となるように
添加する。この範囲内であることにより原料転化率が高く、高収率で不飽和アルデヒド及
び不飽和カルボン酸を製造することができる触媒とすることができる。
When molybdenum is 12, the amount of at least one element selected from fluorine, chlorine, boron, phosphorus, arsenic, tungsten, and niobium is preferably 0 or more and 5 or less, more preferably 0 or more. It is added so that the number is 4 or less, more preferably 0 or more and 3 or less. By falling within this range, the catalyst can have a high raw material conversion rate and can produce unsaturated aldehydes and unsaturated carboxylic acids in high yields.

前記ケイ素(Si)の供給源化合物としては、シリカ、粒状シリカ、コロイダルシリカ
、ヒュームドシリカ等が挙げられる。ケイ素の添加量は、触媒成分元素の原子数比として
、モリブデン原子を12としたとき、0以上500以下となるように添加することが好ま
しく、より好ましくは0以上400以下、更に好ましくは0以上300以下となるように
添加する。この範囲内であることにより原料転化率が高く、高収率で不飽和アルデヒド及
び不飽和カルボン酸を製造することができる触媒とすることができる。
Examples of the silicon (Si) source compound include silica, granular silica, colloidal silica, fumed silica, and the like. The amount of silicon added is preferably such that the atomic ratio of the catalyst component elements is 0 or more and 500 or less, more preferably 0 or more and 400 or less, and even more preferably 0 or more. Add so that it becomes 300 or less. By falling within this range, the catalyst can have a high raw material conversion rate and can produce unsaturated aldehydes and unsaturated carboxylic acids in high yields.

本発明の触媒の製造方法において、前記供給源化合物は硝酸塩を含み、硝酸塩としては
硝酸ビスマス、硝酸鉄、硝酸コバルト及び硝酸ニッケルからなる群より選ばれた少なくと
も一つの化合物であることが好ましく、硝酸鉄、硝酸コバルト及び硝酸ニッケルからなる
群より選ばれた少なくとも一つの化合物であることがより好ましい。前記硝酸塩を使用す
ることにより、原料転化率が高く、高収率で不飽和アルデヒド及び不飽和カルボン酸を製
造することができる触媒とすることができる。
In the method for producing a catalyst of the present invention, the source compound contains a nitrate, and the nitrate is preferably at least one compound selected from the group consisting of bismuth nitrate, iron nitrate, cobalt nitrate, and nickel nitrate; More preferably, it is at least one compound selected from the group consisting of iron, cobalt nitrate, and nickel nitrate. By using the nitrate, it is possible to obtain a catalyst that has a high raw material conversion rate and can produce unsaturated aldehydes and unsaturated carboxylic acids in high yields.

[供給源化合物の添加方法]
前記の調液工程において、各供給源化合物の全てを1つの調製液としてもよく、各供給
源化合物をそれぞれ単独で又はいくつかのグループに分けて複数の調製液とし、該複数の
調製液を一度に、若しくは順番に混合して1つの調製液としてもよく、また、1つ若しく
は複数の調製液を乾燥、さらには焼成して固形物とし、該固形物を残りの供給源化合物に
よる調製液に添加し、新たな調製液としてもよい。
[Method of adding source compound]
In the liquid preparation step, all of the source compounds may be made into one preparation liquid, or each source compound may be made into a plurality of preparation liquids individually or divided into several groups, and the plurality of preparation liquids may be made into a plurality of preparation liquids. It may be mixed all at once or sequentially to form a single preparation, or one or more preparations may be dried or even calcined to form a solid, which is then mixed into a preparation with the remaining source compounds. It is also possible to add it to a new preparation solution.

[乾燥工程]
得られた調製液は、乾燥工程にて乾燥処理することにより、粉体が得られる。この乾燥
工程における乾燥処理方法については特に限定はなく、例えば、通常のスプレードライヤ
ー、スラリードライヤー、ドラムドライヤー等を用いて粉体を得てもよい。尚、粉体は適
宜、粉砕処理を施してもよい。
[Drying process]
The obtained preparation liquid is dried in a drying process to obtain a powder. There are no particular limitations on the drying method in this drying step, and for example, a powder may be obtained using an ordinary spray dryer, slurry dryer, drum dryer, or the like. Incidentally, the powder may be appropriately pulverized.

前記乾燥処理で得られた粉体は、必要に応じて、さらに加熱処理をしてもよい。この加
熱処理は、空気中で好ましくは200℃~470℃、より好ましくは250℃~450℃
の温度域で短時間に行われる処理である。その方法については特に限定はなく、例えば、
通常の箱型加熱炉、トンネル型加熱炉等を用いて粉体を固定した状態で加熱してもよいし
、また、ロータリーキルン等を用いて粉体を流動させながら加熱してもよい。
尚、該乾燥工程により得られた粉体はモリブデン及びビスマスを含有することが好まし
く、なかでも、下記の一般式(1)で表される粉体であることがより好ましい。
The powder obtained by the drying treatment may be further subjected to a heat treatment, if necessary. This heat treatment is preferably carried out in air from 200°C to 470°C, more preferably from 250°C to 450°C.
This process is carried out in a short period of time in a temperature range of There are no particular limitations on the method; for example,
The powder may be heated in a fixed state using an ordinary box-type heating furnace, tunnel-type heating furnace, etc., or may be heated while flowing the powder using a rotary kiln or the like.
In addition, it is preferable that the powder obtained by this drying process contains molybdenum and bismuth, and it is especially preferable that it is the powder represented by the following general formula (1).

Mo12BiFeCoNiSi (1)
(式(1)中、XはNa、K、Rb、Cs及びTlからなる群より選ばれた少なくとも一
種の元素を示し、YはMg、Ca、Sr、Ba、Mn及びZnからなる群より選ばれた少
なくとも一種の元素を示し、ZはF、Cl、B,P、As、W及びNbからなる群より選
ばれた少なくとも一種の元素を示す。a~iはそれぞれの元素の原子比を示し、0.5≦
a≦7、0≦b≦5、0≦c≦10、0≦d≦10、0≦e≦2、0≦f≦5、0≦g≦
5、0≦h≦500の範囲にあり、iは他の元素の酸化状態を満足させる値である。)
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g Si h O i (1)
(In formula (1), X represents at least one element selected from the group consisting of Na, K, Rb, Cs and Tl, and Y is selected from the group consisting of Mg, Ca, Sr, Ba, Mn and Zn. Z represents at least one element selected from the group consisting of F, Cl, B, P, As, W and Nb. a to i represent the atomic ratio of each element. , 0.5≦
a≦7, 0≦b≦5, 0≦c≦10, 0≦d≦10, 0≦e≦2, 0≦f≦5, 0≦g≦
5, 0≦h≦500, where i is a value that satisfies the oxidation states of other elements. )

[成型工程]
成型工程は前記の乾燥工程で得られた粉体を成型し、触媒前駆体とする工程である。成
型方法は、従前知られるいかなる方法でも構わないが、例えば、以下2通りの方法がある
。一つが不飽和アルデヒド及び不飽和カルボン酸製造反応には不活性である担体を流動さ
せながら、該粉体を流動している担体に供給し、担体の表面に該粉体を担持させ、造粒し
て成型し触媒前駆体とする方法(以下「転動造粒法」と称する場合がある。)。もう一つ
が該粉体を型枠に入れ機械的に圧力をかけて造粒して成型し、触媒前駆体とする方法(以
下「打錠成型法」と称する場合がある。)であるが、転動造粒法が好ましい。
[Molding process]
The molding step is a step in which the powder obtained in the drying step is molded into a catalyst precursor. The molding method may be any conventionally known method; for example, there are the following two methods. While a carrier, one of which is inert to the reaction for producing unsaturated aldehydes and unsaturated carboxylic acids, is fluidized, the powder is supplied to the fluidized carrier, the powder is supported on the surface of the carrier, and the powder is granulated. A method of molding and forming a catalyst precursor (hereinafter sometimes referred to as "rolling granulation method"). Another method is to place the powder in a mold and apply mechanical pressure to granulate it and mold it into a catalyst precursor (hereinafter sometimes referred to as "tablet molding method"). A rolling granulation method is preferred.

転動造粒法に用いる担体は、シリカ、炭化珪素、アルミナ、ムライト、アランダム等の
長軸径が好ましくは2.5mm~10mm、更に好ましくは2.5mm~6mmの球形担
体等が挙げられる。これらのうち、担体の気孔率は、好ましくは20%~60%、より好
ましくは30%~57%、更に好ましくは40%~55%である。また、担体の吸水率は
、好ましくは10%~60%、より好ましくは12%~50%、更に好ましくは15%~
40%である。担体の気孔率及び吸水率を前記範囲内とすることで、触媒成分元素を含む
粉体を容易に担体に担持することができる。
Examples of the carrier used in the rolling granulation method include spherical carriers having a long axis diameter of preferably 2.5 mm to 10 mm, more preferably 2.5 mm to 6 mm, such as silica, silicon carbide, alumina, mullite, and alundum. . Among these, the porosity of the carrier is preferably 20% to 60%, more preferably 30% to 57%, even more preferably 40% to 55%. Further, the water absorption rate of the carrier is preferably 10% to 60%, more preferably 12% to 50%, even more preferably 15% to 60%.
It is 40%. By setting the porosity and water absorption rate of the carrier within the above range, the powder containing the catalyst component element can be easily supported on the carrier.

前記転動造粒法とは、例えば固定容器内の底部に、平らな又は凹凸のある円盤を有する
造粒機中で、円盤を高速で回転することにより、容器内の担体を自転運動と公転運動の繰
り返しにより激しく撹拌させ、ここに触媒成分元素を含む粉体、及び添加物を添加するこ
とにより該粉体を担体に担持する方法である。添加物の添加方法としては、(1)前記触
媒成分元素を含む粉体等と添加物とを混合して均一混合物を準備し、該均一混合物を造粒
機に投入して攪拌する方法、(2)触媒成分元素を含む粉体等及び添加物を同時に造粒機
に投入して攪拌する方法、(3)触媒成分元素を含む粉体等を造粒機内で撹拌した後、該
造粒機に添加物を投入し、更に撹拌する方法、(4)触媒成分元素を含む粉体等に添加物
を添加して不均一混合物を準備し、該不均一混合物を造粒機に投入して攪拌する方法、(
5)触媒成分元素を含む粉体等と添加物をそれぞれ分割して同時、交互又は順不同で造粒
機に投入しながら攪拌する方法が挙げられる。(1)~(5)を適宜組み合わせて全量添
加する等の方法が任意に採用しうる。このうち(5)においては、例えば触媒成分元素を
含む粉体等の固定容器壁への付着、触媒成分元素を含む粉体同士の凝集がなく担体上に所
定量が担持されるようオートフィーダー等を用いて添加速度を調節して行うのが好ましい
The rolling granulation method is, for example, in a granulator that has a flat or uneven disk at the bottom of a fixed container, and by rotating the disk at high speed, the carrier in the container is rotated and revolved. In this method, the powder is stirred vigorously by repeated motions, and the powder containing the catalyst component elements and additives are added thereto, thereby supporting the powder on the carrier. Methods for adding additives include (1) a method of preparing a homogeneous mixture by mixing the powder etc. containing the catalyst component element and the additive, and charging the homogeneous mixture into a granulator and stirring; 2) A method in which powder, etc. containing catalyst component elements and additives are simultaneously charged into a granulator and stirred; (3) Powder, etc. containing catalyst component elements are stirred in a granulator, and then the powder, etc. (4) Prepare a heterogeneous mixture by adding additives to powder containing catalyst component elements, and then add the heterogeneous mixture to a granulator and stir. how to,(
5) A method may be mentioned in which the powder containing the catalytic component element and the additive are divided into separate parts and simultaneously, alternately, or in random order, and are charged into a granulator while being stirred. A method such as adding the entire amount of a suitable combination of (1) to (5) can be arbitrarily adopted. For (5), for example, an auto feeder or the like is used to ensure that a predetermined amount of powder containing catalyst elements is supported on the carrier without adhesion to the walls of fixed containers or aggregation of powders containing catalyst elements. It is preferable to adjust the addition rate by using

成型工程において、有機化合物を添加して成型することが成形体の強度を向上させる観
点で好ましい。有機化合物としては、エチレングリコール、グリセリン、プロピオン酸、
マレイン酸、ベンジルアルコール、プロピルアルコール、ブチルアルコール、セルロース
、メチルセルロース、でんぷん、ポリビニルアルコール、ステアリン酸またはフェノール
等が挙げられるが、原料転化率、生成物収率が優れることから、グリセリンがより好まし
い。前記有機化合物の添加量は前記粉体100重量部に対し、0.3重量部以上15重量
部以下が好ましい。下限はより好ましくは0.4重量部、さらに好ましくは0.5重量部
、特に好ましくは0.6重量部である。上限はより好ましくは13重量部、さらに好まし
くは11重量部、特に好ましくは9重量部である。有機化合物の添加量が前記範囲内であ
ることにより、原料転化率が高く、生成物収率が良好となる可能性がある。添加する有機
化合物の形態は、水溶液であることが好ましく、濃度は、2重量%以上40重量%以下が
好ましい。下限は3重量%がより好ましい。上限は30重量%がより好ましい。前記範囲
であることにより溶液に対して有機化合物を良好に分散することができる。
In the molding step, it is preferable to add an organic compound and mold the molded product from the viewpoint of improving the strength of the molded product. Organic compounds include ethylene glycol, glycerin, propionic acid,
Examples include maleic acid, benzyl alcohol, propyl alcohol, butyl alcohol, cellulose, methyl cellulose, starch, polyvinyl alcohol, stearic acid, and phenol, but glycerin is more preferable because it has excellent raw material conversion rate and product yield. The amount of the organic compound added is preferably 0.3 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the powder. The lower limit is more preferably 0.4 parts by weight, still more preferably 0.5 parts by weight, particularly preferably 0.6 parts by weight. The upper limit is more preferably 13 parts by weight, still more preferably 11 parts by weight, and particularly preferably 9 parts by weight. When the amount of the organic compound added is within the above range, the raw material conversion rate may be high and the product yield may be good. The organic compound added is preferably in the form of an aqueous solution, and its concentration is preferably 2% by weight or more and 40% by weight or less. The lower limit is more preferably 3% by weight. The upper limit is more preferably 30% by weight. By being within the above range, the organic compound can be well dispersed in the solution.

尚、成型工程において、前記有機化合物以外の成型助剤を添加してもよい。前記有機化
合物以外の成型助剤としては例えば、シリカ、アルミナ、ガラス繊維、炭化珪素、窒化珪
素、グラファイトなどが挙げられる。
In addition, in the molding process, a molding aid other than the above-mentioned organic compound may be added. Examples of molding aids other than the organic compounds include silica, alumina, glass fiber, silicon carbide, silicon nitride, and graphite.

[焼成工程]
前記触媒前駆体を、好ましくは300℃~600℃、より好ましくは350℃~550
℃の温度条件にて1時間~16時間程度、焼成する。焼成方法としては、前記加熱処理で
用いられる方法を採用することができる。
以上のようにして、高活性な触媒が得られる。
得られた触媒の触媒を構成する触媒成分元素は下記一般式(2)で表されることが好ま
しい。
[Firing process]
The catalyst precursor is preferably heated at a temperature of 300°C to 600°C, more preferably 350°C to 550°C.
It is baked for about 1 hour to 16 hours at a temperature of ℃. As the firing method, the method used in the heat treatment described above can be adopted.
In the manner described above, a highly active catalyst can be obtained.
The catalyst component elements constituting the catalyst of the obtained catalyst are preferably represented by the following general formula (2).

Mo12BiFeCoNiSi (1)
(式(1)中、XはNa、K、Rb、Cs及びTlからなる群より選ばれた少なくとも一
種の元素を示し、YはMg、Ca、Sr、Ba、Mn及びZnからなる群より選ばれた少
なくとも一種の元素を示し、ZはF、Cl、B,P、As、W及びNbからなる群より選
ばれた少なくとも一種の元素を示す。a~iはそれぞれの元素の原子比を示し、0.5≦
a≦7、0≦b≦5、0≦c≦10、0≦d≦10、0≦e≦2、0≦f≦5、0≦g≦
5、0≦h≦500の範囲にあり、iは他の元素の酸化状態を満足させる値である。)
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g Si h O i (1)
(In formula (1), X represents at least one element selected from the group consisting of Na, K, Rb, Cs and Tl, and Y is selected from the group consisting of Mg, Ca, Sr, Ba, Mn and Zn. Z represents at least one element selected from the group consisting of F, Cl, B, P, As, W and Nb. a to i represent the atomic ratio of each element. , 0.5≦
a≦7, 0≦b≦5, 0≦c≦10, 0≦d≦10, 0≦e≦2, 0≦f≦5, 0≦g≦
5, 0≦h≦500, where i is a value that satisfies the oxidation states of other elements. )

[用途]
本発明の製造方法により製造された触媒を用いることにより、原料転化率が高く、生成
物収率が優れた結果を得ることができ、プロピレン等のオレフィン又はターシャリーブタ
ノールを酸素含有ガスにより気相接触酸化して、対応するアクロレイン又はメタクロレイ
ン等の不飽和アルデヒド及び、アクリル酸又はメタクリル酸等の不飽和カルボン酸を高収
率で製造することができる。
[Application]
By using the catalyst produced by the production method of the present invention, it is possible to obtain high raw material conversion rates and excellent product yields, and to convert olefins such as propylene or tertiary butanol into a gas phase using an oxygen-containing gas. Catalytic oxidation can produce the corresponding unsaturated aldehydes such as acrolein or methacrolein and unsaturated carboxylic acids such as acrylic acid or methacrylic acid in high yields.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない
限り、以下の実施例に何ら限定されるものではない。
The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

<担持率の測定>
触媒を30粒採取し、合計重量を測定した(重量A)。担体を30粒採取し、合計重量
を測定した(重量B)。以下の式により担持率を算出した。
担持率(%)=(重量A-重量B)/重量A×100
<Measurement of loading rate>
Thirty catalyst particles were collected and the total weight was measured (weight A). Thirty particles of carrier were collected and the total weight was measured (weight B). The loading rate was calculated using the following formula.
Support rate (%) = (weight A - weight B) / weight A x 100

<転化率、選択率、収率>
プロピレン転化率、(アクロレイン+アクリル酸)選択率、(アクロレイン+アクリル
酸)収率の定義は、各々下記の通りである。
・プロピレン転化率(モル%)=(反応したプロピレンのモル数/供給したプロピレンの
モル数)×100
・(アクロレイン+アクリル酸)選択率(モル%)=((生成したアクロレインのモル数
+生成したアクリル酸のモル数)/反応したプロピレンのモル数)×100
・(アクロレイン+アクリル酸)収率(モル%)=(アクロレイン+アクリル酸)転化率
×(アクロレイン+アクリル酸)選択率/100
<Conversion rate, selectivity, yield>
The definitions of propylene conversion rate, (acrolein + acrylic acid) selectivity, and (acrolein + acrylic acid) yield are as follows.
・Propylene conversion rate (mol%) = (number of moles of propylene reacted/number of moles of propylene supplied) x 100
・(Acrolein + acrylic acid) selectivity (mol%) = ((number of moles of acrolein produced + number of moles of acrylic acid produced) / number of moles of reacted propylene) x 100
・(Acrolein + acrylic acid) yield (mol%) = (acrolein + acrylic acid) conversion rate x (acrolein + acrylic acid) selectivity/100

<プロピレンの気相接触酸化反応>
各実施例及び比較例で得られた触媒を用いて、以下の通りの条件でプロピレンの気相接
触酸化反応を行った。
ナイターを入れたジャケット付き反応管(内径21mm)に、前記触媒40mlと直径
5mmのムライトポール52mlとを混合した混合物を充填した。原料ガス(プ口ピレン
10容量%、スチーム17容量%、空気73容量%)を導入し、ゲージ圧70kPaにて
、プ口ピレンの酸化反応を実施した。プロピレンの空間速度は100/hであった。尚、
反応管はナイタ-浴で加熱しており、浴温は320℃であった。反応生成物の分析は、反
応管出口より反応生成物を回収し、ガスクロマ卜グラフイーにより実施した。
<Gas-phase catalytic oxidation reaction of propylene>
Using the catalysts obtained in each example and comparative example, a gas phase catalytic oxidation reaction of propylene was carried out under the following conditions.
A jacketed reaction tube (inner diameter 21 mm) containing a nighter was filled with a mixture of 40 ml of the catalyst and 52 ml of mullite poles having a diameter of 5 mm. Raw material gases (10% by volume of pyrene, 17% by volume of steam, 73% by volume of air) were introduced, and an oxidation reaction of pyrene was carried out at a gauge pressure of 70 kPa. The space velocity of propylene was 100/h. still,
The reaction tube was heated with a nighter bath, and the bath temperature was 320°C. The reaction product was collected from the outlet of the reaction tube and analyzed by gas chromatography.

(実施例1)
<触媒の調製>
温度を測定できる温度センサを底部に具備したジャケット(80℃)付き容器(1)に
、80℃の温水400kgを入れた。次いで、パラモリブデン酸アンモニウム四水和物6
3.8kgを加えて溶解させ溶液とした。溶解後、液温が78℃となったが、ほどなく8
0℃に戻った。次いで、該溶液にヒュームドシリカ水分散液109.8kgを加え、撹拌
して懸濁液とし、A液を得た。尚、該ヒュームドシリカ水分散液は、ヒュームドシリカ3
0kg(比表面積200m/g)をイオン交換水120kgに加えてヒュームドシリカ
懸濁液とした後に、該ヒュームドシリカ懸濁液を、ホモジナイザーであるULTRA-TURRAX T
115KT(IKA社製)により、60分間分散処理を行い、水分散液としたものであり、ケ
イ素の供給源化合物である。
(Example 1)
<Preparation of catalyst>
400 kg of 80° C. hot water was placed in a container (1) with a jacket (80° C.) equipped with a temperature sensor at the bottom to measure the temperature. Then, ammonium paramolybdate tetrahydrate 6
3.8 kg was added and dissolved to form a solution. After dissolution, the liquid temperature reached 78℃, but it soon became 8℃.
The temperature returned to 0°C. Next, 109.8 kg of an aqueous fumed silica dispersion was added to the solution and stirred to form a suspension, thereby obtaining Solution A. The fumed silica aqueous dispersion is fumed silica 3.
After adding 0 kg (specific surface area 200 m 2 /g) to 120 kg of ion-exchanged water to make a fumed silica suspension, the fumed silica suspension was passed through a homogenizer, ULTRA-TURRAX T.
115KT (manufactured by IKA) for 60 minutes to form an aqueous dispersion, which is a silicon source compound.

温度を測定できる温度センサを底部に具備したジャケット付き容器(2)に純水98.
3kgを入れた。液温が80℃となった後に、硝酸鉄九水和物12.9kgを添加して溶
解した。溶解後、液温が80℃に戻った後に、硝酸コバルト六水和物38.8kgを、1
分間当たり約16kgの添加速度で連続的に添加して溶解した。硝酸コバルトが完全に溶
解し、液温が80℃に戻った後に、さらに、硝酸ニッケル六水和物39.5kgを、1分
間当たり約16kgの添加速度で連続的に添加して溶解し、B液を得た。
次いで該B液を、1分間当たり約35kgの添加速度で、80℃に加温した該A液に連
続的に添加して混合し、均一になるように攪拌してスラリーであるC液を得た。C液の液
温は約80℃であった。その後、温度を維持しつつ、約5時間攪拌した。該C液を加熱に
より水分を除去し、乾燥物Aとし、次いで該乾燥物Aを粉砕し、粉体Aを得た。
Pour 98% pure water into a jacketed container (2) equipped with a temperature sensor at the bottom to measure the temperature.
I put 3 kg. After the liquid temperature reached 80° C., 12.9 kg of iron nitrate nonahydrate was added and dissolved. After dissolution, after the liquid temperature returned to 80°C, 38.8 kg of cobalt nitrate hexahydrate was added to 1
Dissolution was achieved by continuous addition at an addition rate of approximately 16 kg per minute. After the cobalt nitrate has completely dissolved and the liquid temperature has returned to 80°C, 39.5 kg of nickel nitrate hexahydrate is further added continuously at a rate of about 16 kg per minute to dissolve B. I got the liquid.
Next, the B solution was continuously added to the A solution heated to 80° C. at an addition rate of about 35 kg per minute, mixed, and stirred uniformly to obtain a slurry C solution. Ta. The temperature of liquid C was about 80°C. Thereafter, the mixture was stirred for about 5 hours while maintaining the temperature. Water was removed from the liquid C by heating to obtain a dry product A, and the dry product A was then ground to obtain a powder A.

温度を測定できる温度センサを底部に具備したジャケット付きの容器(3)に純水21
6kgを入れ、液温を30℃とした。次いでアンモニア水8.2kg、パラモリブデン酸
アンモニウム四水和物16.4kgを順次添加して溶解し、さらに、炭酸ナトリウム0.
37kg、炭酸カリウム0.31kgを添加して溶解してD液とした。
該D液へ粉体Aを79.2kg添加して懸濁させ、E液とした。次いでE液に、Naを
0.53%固溶した次炭酸ビスマス24.3kgを添加して30分間混合し、触媒成分元
素を含む混合物とした。
Pure water 21 is placed in a jacketed container (3) equipped with a temperature sensor at the bottom that can measure the temperature.
6 kg was added, and the liquid temperature was set to 30°C. Next, 8.2 kg of aqueous ammonia and 16.4 kg of ammonium paramolybdate tetrahydrate were sequentially added and dissolved, and further, 0.0 kg of sodium carbonate was added.
37 kg and 0.31 kg of potassium carbonate were added and dissolved to obtain Solution D.
79.2 kg of powder A was added to the D solution and suspended to obtain a solution E. Next, 24.3 kg of bismuth subcarbonate containing 0.53% Na as a solid solution was added to Solution E and mixed for 30 minutes to obtain a mixture containing catalyst component elements.

該触媒成分元素を含む混合物を加熱して水分を除去し、乾燥物Bとし、次いで該乾燥物
Bを粉砕し、粉体Bを得た。
粉体Bに、粉体Bに対して5重量%に相当する結晶セルロースを添加し、混合物とした
。該混合物、30%グリセリン水溶液、アルミナ及びシリカを主成分とする球状の担体を
用いて、転動造粒法により、担持成形体を調製した。尚、該担持成形体の直径は5mmで
あった。該担持成型体を空気雰囲気下、515℃で2時間、焼成を行い、触媒Aを得た。
触媒Aは球状であり直径は5mmであり、担持率は50%であった。また、触媒Aの触媒
成分元素の組成比(モル比)は以下の通りであった。
Mo/Bi/Co/Ni/Fe=12/2.9/3.4/3.4/0.8
The mixture containing the catalytic component elements was heated to remove moisture to obtain a dried product B, and then the dried product B was pulverized to obtain a powder B.
Crystalline cellulose corresponding to 5% by weight based on powder B was added to powder B to form a mixture. A supported molded body was prepared by a rolling granulation method using a spherical carrier containing the mixture, a 30% aqueous glycerin solution, alumina, and silica as main components. Incidentally, the diameter of the supporting molded body was 5 mm. The supported molded body was fired at 515° C. for 2 hours in an air atmosphere to obtain catalyst A.
Catalyst A was spherical, had a diameter of 5 mm, and had a supporting rate of 50%. Further, the composition ratio (molar ratio) of catalyst component elements of catalyst A was as follows.
Mo/Bi/Co/Ni/Fe=12/2.9/3.4/3.4/0.8

(比較例1)
<触媒の調製>
温度を測定できる温度センサを底部に具備したジャケット(80℃)付き容器(1)に
、80℃の温水480kgを入れた。次いで、パラモリブデン酸アンモニウム四水和物7
6.6kgを加えて溶解させ、溶液とした。溶解後、液温が77℃となったが、ほどなく
80℃に戻った。次いで、該溶液にヒュームドシリカ水分散液132kgを加え、撹拌し
て懸濁液とし、F液を得た。尚、ヒュームドシリカ水分散液は、ヒュームドシリカ30k
g(比表面積200m/g)をイオン交換水120kgに加えてヒュームドシリカ懸濁
液とした後に、該ヒュームドシリカ懸濁液を、ホモジナイザーであるULTRA-TURRAX T115K
T(IKA社製)により、60分間分散処理を行い、水分散液としたものであり、ケイ素
の供給源化合物である。
(Comparative example 1)
<Preparation of catalyst>
480 kg of 80° C. hot water was placed in a container (1) with a jacket (80° C.) equipped with a temperature sensor at the bottom to measure the temperature. Then, ammonium paramolybdate tetrahydrate 7
6.6 kg was added and dissolved to form a solution. After dissolution, the liquid temperature reached 77°C, but soon returned to 80°C. Next, 132 kg of a fumed silica aqueous dispersion was added to the solution and stirred to form a suspension, thereby obtaining Solution F. In addition, the fumed silica aqueous dispersion is fumed silica 30k.
g (specific surface area 200 m 2 /g) to 120 kg of ion-exchanged water to make a fumed silica suspension.
This is an aqueous dispersion obtained by performing a dispersion treatment using T (manufactured by IKA) for 60 minutes, and is a silicon source compound.

温度を測定できる温度センサを底部に具備したジャケット付き容器(2)に純水118
kgを入れた。液温が80℃となった後に、硝酸鉄九水和物15.5kgを添加して溶解
した。溶解後、液温が80℃に戻った後に、硝酸コバルト六水和物46.6kgを約1分
間かけて連続的に添加して溶解した。硝酸コバルトが完全に溶解し、液温が80℃に戻っ
た後に、さらに、硝酸ニッケル六水和物47.4kgを約1分間かけて添加して溶解し、
G液を得た。
次いで該G液を、80℃に加温した前記F液に約1分間かけて添加し、均一になるよう
に攪拌してスラリーであるH液を得た。H液の液温は約80℃であった。その後、温度を
維持しつつ、約5時間攪拌した。該H液を加熱により水分を除去し、乾燥物Cとし、次い
で該乾燥物Cを粉砕し、粉体Cを得た。
Pure water 118 is placed in a jacketed container (2) equipped with a temperature sensor at the bottom that can measure the temperature.
I put kg. After the liquid temperature reached 80° C., 15.5 kg of iron nitrate nonahydrate was added and dissolved. After the solution temperature returned to 80° C., 46.6 kg of cobalt nitrate hexahydrate was continuously added over about 1 minute to dissolve the solution. After the cobalt nitrate was completely dissolved and the liquid temperature returned to 80 ° C., 47.4 kg of nickel nitrate hexahydrate was further added and dissolved over about 1 minute,
Liquid G was obtained.
Next, the G solution was added to the F solution heated to 80° C. over about 1 minute, and the mixture was stirred uniformly to obtain a slurry H solution. The temperature of the H solution was about 80°C. Thereafter, the mixture was stirred for about 5 hours while maintaining the temperature. Water was removed from the H solution by heating to obtain a dry product C, and the dry product C was then ground to obtain a powder C.

温度を測定できる温度センサを底部に具備したジャケット付きの容器(3)に純水25
9kgを入れ、液温を30℃とした。次いでアンモニア水9.8kg、パラモリブデン酸
アンモニウム四水和物19.7kgを順次添加して溶解し、さらに、炭酸ナトリウム0.
44kg、炭酸カリウム0.37kgを添加して溶解してI液とした。
該I液へ粉体Cを95.0kg添加して懸濁させ、J液とした。次いでJ液に、Naを
0.53%固溶した次炭酸ビスマス29.1kgを添加して30分間混合し、触媒成分元
素を含む混合物とした。
Add 25 liters of pure water to a jacketed container (3) equipped with a temperature sensor at the bottom to measure the temperature.
9 kg was added, and the liquid temperature was set to 30°C. Next, 9.8 kg of aqueous ammonia and 19.7 kg of ammonium paramolybdate tetrahydrate were sequentially added and dissolved, and further, 0.0 kg of sodium carbonate was added.
44 kg and 0.37 kg of potassium carbonate were added and dissolved to obtain liquid I.
95.0 kg of Powder C was added to the I solution and suspended to obtain a J solution. Next, 29.1 kg of bismuth subcarbonate containing 0.53% Na as a solid solution was added to Solution J and mixed for 30 minutes to obtain a mixture containing catalyst component elements.

該触媒成分元素を含む混合物を加熱して水分を除去し、乾燥物Dとし、次いで該乾燥物
Dを粉砕し、粉体Dを得た。
粉体Dに、粉体Dに対して5重量%に相当する結晶セルロースを添加し、混合物とした
。該混合物、30%グリセリン水溶液、アルミナ及びシリカを主成分とする球状の担体を
用いて、転動造粒法により、担持成形体を調製した。尚、該担持成形体の直径は5mmで
あった。該担持成型体を空気雰囲気下、515℃で2時間、焼成を行い、触媒Bを得た。
触媒Bは球状であり直径は5mmであり、担持率は50%であった。また、触媒Bの触媒
成分元素の組成比(モル比)は以下の通りであった。
Mo/Bi/Co/Ni/Fe=12/2.9/3.4/3.4/0.8
The mixture containing the catalyst component elements was heated to remove water to obtain a dry product D, and then the dry product D was pulverized to obtain a powder D.
Crystalline cellulose corresponding to 5% by weight of powder D was added to powder D to form a mixture. A supported molded body was prepared by a rolling granulation method using a spherical carrier containing the mixture, a 30% aqueous glycerin solution, alumina, and silica as main components. Incidentally, the diameter of the supporting molded body was 5 mm. The supported molded body was fired at 515° C. for 2 hours in an air atmosphere to obtain catalyst B.
Catalyst B was spherical, had a diameter of 5 mm, and had a supporting rate of 50%. Further, the composition ratio (molar ratio) of the catalyst component elements of catalyst B was as follows.
Mo/Bi/Co/Ni/Fe=12/2.9/3.4/3.4/0.8

(実施例2)
<触媒の調製>
温度を測定できる温度センサを底部に具備したジャケット(80℃)付き容器(1)に
、80℃の温水400kgを入れた。次いで、パラモリブデン酸アンモニウム四水和物6
3.8kgを加えて溶解させ溶液とした。溶解後、液温が74℃となったが、ほどなく8
0℃に戻った。次いで、該溶液にヒュームドシリカ水分散液109.8kgを加え、撹拌
して懸濁液とし、K液を得た。尚、該ヒュームドシリカ水分散液は、ヒュームドシリカ3
0kg(比表面積200m2/g)をイオン交換水120kgに加えてヒュームドシリカ
懸濁液とした後に、該ヒュームドシリカ懸濁液を、ホモジナイザーであるULTRA-TURRAX T
115KT(IKA社製)により、60分間分散処理を行い、水分散液としたものであり、ケ
イ素の供給源化合物である。
(Example 2)
<Preparation of catalyst>
400 kg of 80° C. hot water was placed in a container (1) with a jacket (80° C.) equipped with a temperature sensor at the bottom to measure the temperature. Then, ammonium paramolybdate tetrahydrate 6
3.8 kg was added and dissolved to form a solution. After dissolution, the liquid temperature reached 74℃, but it soon became 8℃.
The temperature returned to 0°C. Next, 109.8 kg of an aqueous fumed silica dispersion was added to the solution and stirred to form a suspension to obtain liquid K. The fumed silica aqueous dispersion is fumed silica 3.
After adding 0 kg (specific surface area 200 m2/g) to 120 kg of ion-exchanged water to make a fumed silica suspension, the fumed silica suspension was passed through a homogenizer, ULTRA-TURRAX T.
115KT (manufactured by IKA) for 60 minutes to form an aqueous dispersion, which is a silicon source compound.

温度を測定できる温度センサを底部に具備したジャケット付き容器(2)に純水13.
6kgを入れた。液温が80℃となった後に、硝酸鉄九水和物12.9kgを添加して溶
解し、水溶液とした。該水溶液の液温が再び80℃となった後、該水溶液に、硝酸コバル
ト六水和物38.8kgを純水42.4kgに溶解して液温を80℃とした硝酸コバルト
水溶液を、1分間当たり約22kgの添加速度で連続的に添加して混合した。添加完了直
後には液温が78℃となった。混合後の該水溶液の液温が再び80℃となった後に、硝酸
ニッケル六水和物39.5kgを純水43.3kgに溶解して液温を80℃とした硝酸ニ
ッケル水溶液を、1分間当たり約22kgの添加速度で連続的に添加して混合した。添加
完了直後には液温が79℃となった。混合後の該水溶液の液温が再び80℃となり、L液
を得た。
次いで該L液を、1分間当たり約25kgの添加速度で、80℃に加温した該K液に連
続的に添加し、均一になるように攪拌してスラリーであるM液を得た。M液の液温は約8
0℃であった。その後、温度を維持しつつ、約5時間攪拌した。該M液を加熱により水分
を除去し、乾燥物Eとし、次いで該乾燥物Eを粉砕し、粉体Eを得た。
Pure water 13. is placed in a jacketed container (2) equipped with a temperature sensor at the bottom that can measure the temperature.
I put 6 kg. After the liquid temperature reached 80° C., 12.9 kg of iron nitrate nonahydrate was added and dissolved to form an aqueous solution. After the temperature of the aqueous solution reached 80°C again, 1 liter of cobalt nitrate aqueous solution was added to the aqueous solution by dissolving 38.8 kg of cobalt nitrate hexahydrate in 42.4 kg of pure water to bring the temperature to 80°C. Continuous addition and mixing was performed at an addition rate of approximately 22 kg per minute. Immediately after the addition was completed, the liquid temperature reached 78°C. After the temperature of the aqueous solution after mixing reached 80°C again, 39.5 kg of nickel nitrate hexahydrate was dissolved in 43.3 kg of pure water to bring the temperature to 80°C, and the nickel nitrate aqueous solution was heated for 1 minute. It was continuously added and mixed at an addition rate of about 22 kg/kg. Immediately after the addition was completed, the liquid temperature reached 79°C. After mixing, the temperature of the aqueous solution became 80° C. again, and L solution was obtained.
Next, the L solution was continuously added to the K solution heated to 80° C. at an addition rate of about 25 kg per minute, and the mixture was stirred uniformly to obtain a slurry M solution. The liquid temperature of M liquid is about 8
It was 0°C. Thereafter, the mixture was stirred for about 5 hours while maintaining the temperature. Water was removed from the liquid M by heating to obtain a dry product E, and the dry product E was then ground to obtain a powder E.

温度を測定できる温度センサを底部に具備したジャケット付きの容器(3)に純水21
6kgを入れ、液温を30℃とした。次いでアンモニア水8.2kg、パラモリブデン酸
アンモニウム四水和物16.4kgを順次添加して溶解し、さらに、炭酸ナトリウム0.
37kg、炭酸カリウム0.31kgを添加して溶解してN液とした。
該N液へ粉体Eを79.2kg添加して懸濁させ、O液とした。次いでO液に、Naを
0.53%固溶した次炭酸ビスマス24.3kgを添加して30分間混合し、触媒成分元
素を含む混合物とした。
Pure water 21 is placed in a jacketed container (3) equipped with a temperature sensor at the bottom that can measure the temperature.
6 kg was added, and the liquid temperature was set to 30°C. Next, 8.2 kg of aqueous ammonia and 16.4 kg of ammonium paramolybdate tetrahydrate were sequentially added and dissolved, and further, 0.0 kg of sodium carbonate was added.
37 kg and 0.31 kg of potassium carbonate were added and dissolved to obtain an N solution.
79.2 kg of Powder E was added to the N solution and suspended to obtain an O solution. Next, 24.3 kg of bismuth subcarbonate containing 0.53% Na as a solid solution was added to the O solution and mixed for 30 minutes to obtain a mixture containing catalyst component elements.

該触媒成分元素を含む混合物を加熱して水分を除去し、乾燥物Fとし、次いで該乾燥物
Fを粉砕し、粉体Fを得た。
粉体Fに、粉体Fに対して5重量%に相当する結晶セルロースを添加し、混合物とした
。該混合物、30%グリセリン水溶液、アルミナ及びシリカを主成分とする球状の担体を
用いて、転動造粒法により、担持成形体を調製した。尚、該担持成形体の直径は5mmで
あった。該担持成型体を空気雰囲気下、515℃で2時間、焼成を行い、触媒Cを得た。
触媒Cは球状であり直径は5mmであり、担持率は50%であった。また、触媒Cの触媒
成分元素の組成比(モル比)は以下の通りであった。
Mo/Bi/Co/Ni/Fe=12/2.9/3.4/3.4/0.8
The mixture containing the catalyst component elements was heated to remove water to obtain a dry product F, and then the dry product F was pulverized to obtain a powder F.
Crystalline cellulose corresponding to 5% by weight based on powder F was added to powder F to form a mixture. A supported molded body was prepared by a rolling granulation method using a spherical carrier containing the mixture, a 30% aqueous glycerin solution, alumina, and silica as main components. Incidentally, the diameter of the supporting molded body was 5 mm. The supported molded body was fired at 515° C. for 2 hours in an air atmosphere to obtain catalyst C.
Catalyst C was spherical, had a diameter of 5 mm, and had a supporting ratio of 50%. Further, the composition ratio (molar ratio) of the catalyst component elements of catalyst C was as follows.
Mo/Bi/Co/Ni/Fe=12/2.9/3.4/3.4/0.8

Figure 2023143794000001
Figure 2023143794000001

以上より、本発明の触媒の製造方法により得られた触媒は、該触媒を用いてプロピレン
を酸素含有ガスと気相接触酸化させると、プロピレンの転化率に優れ、アクロレイン及び
アクリル酸の合計選択率が高く、高収率でアクロレイン及びアクリル酸を製造できること
が分かる。また、最終生成物であるアクリル酸の選択率が高い特徴も認められる。
From the above, the catalyst obtained by the catalyst production method of the present invention has an excellent conversion rate of propylene and a total selectivity of acrolein and acrylic acid when the catalyst is used to oxidize propylene with an oxygen-containing gas in a gas phase. It can be seen that acrolein and acrylic acid can be produced in high yield. Furthermore, the selectivity of the final product, acrylic acid, is high.

Claims (5)

複数の触媒活性元素の供給源化合物を水系液体に添加し、溶解又は分散して調製液とす
る調液工程を含む、不飽和アルデヒド及び不飽和カルボン酸製造用触媒を製造する方法で
あって、
該調液工程は、該供給源化合物である硝酸塩又は該硝酸塩が溶解若しくは分散した水系
液体を、他の供給源化合物が溶解又は分散した水系液体に添加し、溶解又は分散する過程
を含み、添加する該硝酸塩の量、又は添加する該硝酸塩が溶解若しくは分散した水系液体
に含まれる硝酸塩の含有量が2kg以上であり、且つ添加する該硝酸塩又は該硝酸塩が溶
解若しくは分散した水系液体の添加速度を1分あたり40kg以下とする触媒の製造方法
A method for producing a catalyst for producing an unsaturated aldehyde and an unsaturated carboxylic acid, comprising a liquid preparation step of adding a plurality of source compounds of catalytically active elements to an aqueous liquid and dissolving or dispersing them to obtain a prepared liquid, the method comprising:
The liquid preparation step includes a process of adding the source compound nitrate or an aqueous liquid in which the nitrate is dissolved or dispersed to an aqueous liquid in which another source compound is dissolved or dispersed. The amount of the nitrate to be added, or the content of the nitrate contained in the aqueous liquid in which the nitrate is dissolved or dispersed is 2 kg or more, and the rate of addition of the nitrate to be added or the aqueous liquid in which the nitrate is dissolved or dispersed is A method for producing a catalyst that produces 40 kg or less per minute.
前記硝酸塩が溶解又は分散した水系液体における、硝酸塩の濃度が50g/L以上20
00g/L以下の範囲内である、請求項1に記載の触媒の製造方法。
The concentration of nitrate in the aqueous liquid in which the nitrate is dissolved or dispersed is 50 g/L or more.
The method for producing a catalyst according to claim 1, wherein the amount is within the range of 00 g/L or less.
前記硝酸塩が硝酸ビスマス、硝酸鉄、硝酸コバルト及び硝酸ニッケルからなる群より選
ばれた少なくとも一つの化合物である、請求項1又は2に記載の触媒の製造方法。
3. The method for producing a catalyst according to claim 1, wherein the nitrate is at least one compound selected from the group consisting of bismuth nitrate, iron nitrate, cobalt nitrate, and nickel nitrate.
前記触媒の触媒成分元素が下記式(1)で表される、請求項1又は2に記載の触媒の製
造方法。
Mo12BiFeCoNiSi (1)
(式(1)中、XはNa、K、Rb、Cs及びTlからなる群より選ばれた少なくとも一
種の元素を示し、YはMg、Ca、Sr、Ba、Mn及びZnからなる群より選ばれた少
なくとも一種の元素を示し、ZはF、Cl、B,P、As、W及びNbからなる群より選
ばれた少なくとも一種の元素を示す。a~iはそれぞれの元素の原子比を示し、0.5≦
a≦7、0≦b≦5、0≦c≦10、0≦d≦10、0≦e≦2、0≦f≦5、0≦g≦
5、0≦h≦500の範囲にあり、iは他の元素の酸化状態を満足させる値である。)
The method for producing a catalyst according to claim 1 or 2, wherein a catalyst component element of the catalyst is represented by the following formula (1).
Mo 12 Bi a Fe b Co c Ni d X e Y f Z g Si h O i (1)
(In formula (1), X represents at least one element selected from the group consisting of Na, K, Rb, Cs and Tl, and Y is selected from the group consisting of Mg, Ca, Sr, Ba, Mn and Zn. Z represents at least one element selected from the group consisting of F, Cl, B, P, As, W and Nb. a to i represent the atomic ratio of each element. , 0.5≦
a≦7, 0≦b≦5, 0≦c≦10, 0≦d≦10, 0≦e≦2, 0≦f≦5, 0≦g≦
5, 0≦h≦500, where i is a value that satisfies the oxidation states of other elements. )
請求項1又は2に記載の触媒の製造方法により製造された触媒の存在下、プロピレンと
酸素含有ガスを含む混合ガスを気相接触酸化するアクロレイン及びアクリル酸の製造方法
A method for producing acrolein and acrylic acid, which comprises subjecting a mixed gas containing propylene and an oxygen-containing gas to gas phase catalytic oxidation in the presence of a catalyst produced by the method for producing a catalyst according to claim 1 or 2.
JP2023040361A 2022-03-23 2023-03-15 Production method of catalyst Pending JP2023143794A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022046779 2022-03-23
JP2022046779 2022-03-23

Publications (1)

Publication Number Publication Date
JP2023143794A true JP2023143794A (en) 2023-10-06

Family

ID=88219683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023040361A Pending JP2023143794A (en) 2022-03-23 2023-03-15 Production method of catalyst

Country Status (1)

Country Link
JP (1) JP2023143794A (en)

Similar Documents

Publication Publication Date Title
KR100764758B1 (en) Catalyst
JPH08299797A (en) Catalyst and its production
US8716523B2 (en) Catalyst for use in production of methacrylic acid and method for manufacturing the same
JP2018111720A (en) Method for producing unsaturated carboxylic acid and supported catalyst
JPH0570502B2 (en)
US20180029018A1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JP2018043197A (en) Catalyst for manufacturing acrylic acid
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
JP5680373B2 (en) Catalyst and method for producing acrylic acid
WO2017010159A1 (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
KR20030003028A (en) Catalyst useful for producing methacrylic acid
JP2023143794A (en) Production method of catalyst
CN113710362B (en) Catalyst molded body and method for producing methacrolein and/or methacrylic acid
JP2024115586A (en) Method for producing catalyst
JP2004160342A (en) Catalyst and method for producing acrylic acid
JP7468291B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468290B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7480671B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468292B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7480672B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7459589B2 (en) Method for producing catalyst for acrylic acid synthesis
RU2818248C1 (en) Method of producing catalyst and method of producing acrylic acid
US20220347659A1 (en) Method for producing catalyst, and method for producing acrylic acid
JP7375638B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7347282B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis