[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2023029151A - Electromagnetic material evaluation method and device using magnetism - Google Patents

Electromagnetic material evaluation method and device using magnetism Download PDF

Info

Publication number
JP2023029151A
JP2023029151A JP2021153650A JP2021153650A JP2023029151A JP 2023029151 A JP2023029151 A JP 2023029151A JP 2021153650 A JP2021153650 A JP 2021153650A JP 2021153650 A JP2021153650 A JP 2021153650A JP 2023029151 A JP2023029151 A JP 2023029151A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
frequency
phase
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021153650A
Other languages
Japanese (ja)
Inventor
啓二 塚田
Keiji Tsukada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021153650A priority Critical patent/JP2023029151A/en
Publication of JP2023029151A publication Critical patent/JP2023029151A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

To provide a method and a device for evaluating local conductivity and permeability of metal regardless of a nonmagnetic body and a magnetic body.SOLUTION: In a method for inspecting electromagnetic characteristics of an inspected object, and in a nondestructive inspection device having a magnetic probe comprising an application coil for applying an AC magnetic field, and a magnetic sensor for detecting a magnetic field induced in an inspected object by the applied magnetic field, an AC constant current source for composing AC currents of at least two predetermined frequencies in the application coil or energizing them in time series, a detector for detecting signals of respective predetermined frequencies of output signals of the magnetic sensor, and an analyzer for analyzing output signals of the detector, two predetermined frequencies are determined on the basis of, plate thickness information of an inspected object, a phase component of a differential vector between a magnetic field vector with strength and a phase obtained by a first frequency by the detector as components and a second magnetic field vector obtained by a second frequency is detected, and conductivity and permeability of an inspected object are obtained from a relationship between the phase component and conductivity and permeability in each plate thickness.SELECTED DRAWING: Figure 1

Description

本発明は、非磁性体や磁性体の金属材料の電磁気的特性である導電率及び透磁率を磁気的かつ非破壊で評価するとともに、金属疲労や金属の熱処理による変態を評価する電磁気的材料評価方法と装置に関する。 The present invention magnetically and non-destructively evaluates the electrical conductivity and magnetic permeability, which are the electromagnetic properties of non-magnetic and magnetic metal materials, and evaluates metal fatigue and metal transformation due to heat treatment. It relates to a method and apparatus.

金属材料の電磁気的特性を評価する場合、その一つである導電率を測定する従来の方法では、検査対象に電流を流し込み、それによって生じる電圧を測定して導電率を求める方法が一般にとられている。しかしこの方法では検査対象である金属の形状により電流分布が異なるため、シミュレーションにより電流分布を推定して導電率を求める必要がある。このため、検査材料を一定の形状に切り出して計測する四端子法が最も正確な方法となる。従来の方法は、電流や電圧を接触式の電極で計測する必要があったが、これを非接触で検査する方法がいくつか開発されており、例えば電流分布を磁気センサにより計測し、電圧を静電容量センサで計測して導電率を計測する方法がある(特許文献1)。 When evaluating the electromagnetic properties of metal materials, one of the conventional methods for measuring electrical conductivity is to apply a current to the test object and measure the resulting voltage to obtain electrical conductivity. ing. However, in this method, the current distribution differs depending on the shape of the metal to be inspected, so it is necessary to estimate the current distribution by simulation and obtain the conductivity. For this reason, the most accurate method is the four-probe method, in which the test material is cut into a given shape and measured. In the conventional method, it was necessary to measure the current and voltage with contact electrodes, but some non-contact inspection methods have been developed. There is a method of measuring conductivity by measuring with a capacitance sensor (Patent Document 1).

電磁気的特性のもう一つのパラメーターである透磁率を測定する場合では、非磁性体における透磁率は真空の透磁率と同じであるため、測定する必要はない。一方、磁性体の透磁率は真空の透磁率より大きく、また一定値でなく印加磁場の強度によっても変化する。このため、印加磁界Hと金属材料の磁化Bの関係を示すH-B曲線は非線形でしかもヒステリシス曲線を描く。そのため検査対象を一定の形状に切り出して、大きな電磁石の間に検査対象を設置して、印加磁界を変化させて磁化を計測する方法による磁化測定装置が用いられている。 When measuring magnetic permeability, which is another parameter of electromagnetic properties, it is not necessary to measure it because the magnetic permeability in a non-magnetic material is the same as the magnetic permeability in a vacuum. On the other hand, the magnetic permeability of a magnetic material is greater than that of a vacuum, and it is not constant and varies depending on the strength of the applied magnetic field. Therefore, the HB curve showing the relationship between the applied magnetic field H and the magnetization B of the metal material is nonlinear and draws a hysteresis curve. For this reason, a magnetization measuring apparatus is used that measures the magnetization by cutting out an object to be inspected into a certain shape, placing the object to be inspected between large electromagnets, and varying the applied magnetic field.

基本的な金属材料の電磁気的特性を評価する方法は、一定の形状に切り出して検査することが行われており、材料開発においては重要な評価である。橋梁などのインフラ構造物や飛行機や鉄道などの輸送機などにおける金属構造物は疲労による劣化は大きな破断損傷に至らないように定期的に非破壊で検査する必要がある。これらの劣化は電磁気的特性と高い相関関係があり、導電率や透磁率の変化が発生する。このため、これら電磁気特性を非破壊で検査することにより劣化を検知することができる。また、自動車などに用いられている鋼板でできたパーツでは、衝突時の衝撃を減らすために鋼板の熱処理である焼き入れ焼きなまし処理により硬度を変化させている。特に部分的に熱処理して、一つの鋼板材料中の硬度の異なる個所を設ける部分焼き入れが広く行われている。熱処理による硬度は、ゆっくり焼き戻しした場合では鋼板の結晶構造であるフェライトやパーライトの組織になり硬度が低く、一方、急冷した場合にはマルテンサイトの組織になり硬度が高い組織が得られる。このように鋼材は熱処理によりこれらの組織や他の組織になり変態率を検査することは、製品として鉄鋼材の硬度などの機械的特性を保証するうえで重要となる。 A basic method for evaluating the electromagnetic properties of metal materials is to cut them into a certain shape and inspect them, which is an important evaluation in material development. Infrastructure structures such as bridges and metal structures such as transport aircraft such as airplanes and railways need to be periodically inspected non-destructively so that deterioration due to fatigue does not lead to large fracture damage. These deteriorations are highly correlated with the electromagnetic properties and cause changes in electrical conductivity and magnetic permeability. Therefore, deterioration can be detected by nondestructively inspecting these electromagnetic characteristics. In addition, parts made of steel plates used in automobiles and the like are changed in hardness by quenching and annealing, which is a heat treatment of steel plates, in order to reduce the impact in the event of a collision. In particular, partial quenching, in which portions of a single steel sheet material are heat-treated to provide locations with different hardnesses, is widely practiced. As for hardness due to heat treatment, if the steel is tempered slowly, it becomes a structure of ferrite or pearlite, which is the crystal structure of the steel sheet, and has low hardness. In this way, the steel material becomes these structures and other structures by heat treatment, and it is important to inspect the transformation rate in order to guarantee the mechanical properties such as hardness of the steel material as a product.

熱処理により求めた機械的特性が得られているかを検査する方法として、ビッカース硬さ検査が行われている。このビッカース硬さ検査は固い針状のものを検査対象に押し付け、発生したくぼみの大きさにより硬度を検査する方法である。この方法は表面に傷をつけるため、製品には適用できなく、サンプリングにより検査する方法がとられている。一方、機械的特性と透磁率や導電率は高い相関があることが知られているので、これらを磁気的に非破壊で検査する方法がいくつか開発されている。例えばUの字の磁化器を用いて、検査対象の鋼材に磁束を流し、鋼材の反対側で漏れ出ている磁束を磁気センサにより検出する方法などがある(特許文献2)。 A Vickers hardness test is performed as a method for checking whether the mechanical properties obtained by heat treatment are obtained. This Vickers hardness test is a method in which a hard needle-like object is pressed against an object to be inspected, and the hardness is inspected based on the size of the generated dent. Since this method damages the surface, it cannot be applied to products, and a method of inspection by sampling is adopted. On the other hand, since it is known that there is a high correlation between mechanical properties and magnetic permeability and electrical conductivity, several methods have been developed for magnetically inspecting them non-destructively. For example, there is a method in which a U-shaped magnetizer is used to pass magnetic flux through a steel material to be inspected, and a magnetic sensor detects magnetic flux leaking from the opposite side of the steel material (Patent Document 2).

磁気的な一般的な非破壊検査方法としては、交流磁場を印加して対象物に渦電流を発生させ渦電流が生成した磁場を検出する渦電流探傷法や、強い磁場をUの字の磁化器を用いて印加して漏れてくる磁場を検出する漏洩磁束探傷法が知られている。これらは金属構造物のき裂の検出に多く用いられている。腐食による鋼材の板厚変化を検出するものとして極低周波渦電流法がある(特許文献3)。
極低周波渦電流法は2つの周波数を用いて、それぞれの周波数で検出される磁場を磁気センサで計測し、得られた信号を強度と位相からなる磁場ベクトルとして解析し、差ベクトルを求め、その位相から板厚を推定するものである。これらの渦電流探傷法で電磁的特性を評価する方法は少なく、例えば、渦電流探傷法で導電率及び透磁率を測定する方法として、印加コイルのインピーダンス変化により、電磁解析によりあらかじめ求めておいたデータベースと比較して推定する方法が報告されている(特許文献4)。
General magnetic non-destructive inspection methods include eddy current testing, in which an alternating magnetic field is applied to an object to generate eddy currents and the magnetic field generated by the eddy currents is detected; There is known a leakage magnetic flux testing method in which a magnetic field is applied using a device and a leaking magnetic field is detected. These are often used to detect cracks in metal structures. There is an extremely low frequency eddy current method for detecting plate thickness changes in steel materials due to corrosion (Patent Document 3).
The extremely low frequency eddy current method uses two frequencies, measures the magnetic field detected at each frequency with a magnetic sensor, analyzes the obtained signal as a magnetic field vector consisting of strength and phase, obtains the difference vector, The plate thickness is estimated from the phase. There are few methods for evaluating electromagnetic properties by these eddy current testing methods. For example, as a method of measuring conductivity and magnetic permeability by eddy current testing, the A method of estimating by comparison with a database has been reported (Patent Document 4).

特開2002-156362JP 2002-156362 特開平5-126798Japanese Patent Laid-Open No. 5-126798 特許第6551885号Patent No. 6551885 特開平9-113488Japanese Patent Laid-Open No. 9-113488

電磁気特性を評価する方法として対象物に電極を接触させ電流を流す方法では、電極の接触状態を安定化させる必要があり、また、電流分布をあらかじめ解析しておく必要があり、形状が異なるものに対して正確に導電率を推定することは困難であった。また、透磁率として漏洩磁束探傷法を用いた場合、対象物の形状や厚みによって、検査結果が違ってくるため、これらの検査結果の変動を補償する必要があった。また探傷するプローブはUの字形で大きくなり、さらに反対側に検出部を設けているので、局所的な透磁率を検査することが困難であった。また漏洩磁束探傷法は非磁性体の金属には適応できない問題があった。渦電流探傷法では印加する磁場の周波数や検査対象の板厚による変化などが考慮されていなかった。また、板厚を測定する極低周波渦電流では板厚を測定する方法であり、対象物の電磁気的特性を解析する方法ではなく、さらに電磁気的特性による推定板厚による変動を考慮していなかった。 As a method of evaluating electromagnetic properties, it is necessary to stabilize the contact state of the electrodes and to analyze the current distribution in advance. It was difficult to estimate the conductivity accurately for In addition, when the leakage magnetic flux flaw detection method is used as the magnetic permeability, the inspection results differ depending on the shape and thickness of the object, so it is necessary to compensate for the fluctuations in these inspection results. In addition, since the probe for flaw detection is U-shaped and large, and the detection section is provided on the opposite side, it is difficult to inspect the local magnetic permeability. In addition, there is a problem that leakage magnetic flux testing cannot be applied to non-magnetic metals. In the eddy current flaw detection method, changes due to the frequency of the applied magnetic field and the plate thickness of the inspection target were not taken into consideration. In addition, the extremely low frequency eddy current used to measure the plate thickness is a method of measuring the plate thickness, not a method of analyzing the electromagnetic characteristics of the object, and furthermore, the variation due to the estimated plate thickness due to the electromagnetic characteristics is not considered. rice field.

本発明者は、このような現状に鑑み、非磁性体や磁性体など種類に関係なく金属の電磁気的特性である導電率および透磁率を評価できる方法の開発を行い、かつ局所的な電磁気的特性を評価できる方法と装置の開発を行って、本発明を成すに至ったものである。 In view of the current situation, the present inventor has developed a method that can evaluate the electrical conductivity and magnetic permeability, which are the electromagnetic properties of metals regardless of their types, such as non-magnetic materials and magnetic materials. The inventors have developed a method and an apparatus capable of evaluating characteristics, and have completed the present invention.

本発明の磁気を用いた電磁気的材料評価方法及び装置は、検査対象物の電磁的特性を検査する方法であって、検査対象物に交流磁場を印加する印加コイルと、印加コイルで印加した磁場により前記検査対象物に誘引された磁場を検出する磁気センサから構成される磁気プローブを設け、この印加コイルに少なくても所定の2つの周波数の交流磁場を合成させて印加、あるは時系列的に各周波数の交流電流を通電させる交流定電流源と、磁気センサの出力信号の所定の各周波数の信号を検波する検波器と、この検波器の出力信号を解析する解析器とを有する非破壊検査装置において、検査対象物のあらかじめ得られた板厚情報をもとに、所定の2つの周波数を決定して、検波器で第1の周波数で検波して得られた強度と位相を成分とする磁場ベクトルと、第2の周波数での検波により得られる強度と位相とを成分とする第2の磁場ベクトルとのベクトルの差として得られる差ベクトルの位相成分を検出して、この位相成分を用いて、各板厚における導電率及び透磁率と位相の関係のデータベースから、検査対象物の導電率及び透磁率を検査することを特徴とする。 An electromagnetic material evaluation method and apparatus using magnetism according to the present invention is a method for inspecting the electromagnetic properties of an object to be inspected, comprising an applying coil for applying an alternating magnetic field to the object to be inspected, and a magnetic field applied by the applying coil A magnetic probe composed of a magnetic sensor that detects the magnetic field induced to the inspection object by is provided, and an alternating magnetic field of at least two predetermined frequencies is synthesized and applied to this application coil, or time-sequentially a constant alternating current source for supplying alternating current of each frequency to the magnetic sensor, a detector for detecting the signal of each predetermined frequency of the output signal of the magnetic sensor, and an analyzer for analyzing the output signal of the detector. In the inspection device, two predetermined frequencies are determined based on the thickness information of the inspection object obtained in advance, and the intensity and phase obtained by detecting the first frequency with the detector are used as components. Detecting the phase component of the difference vector obtained as the vector difference between the magnetic field vector obtained by the detection at the second frequency and the second magnetic field vector having the components of the intensity and phase obtained by detection at the second frequency, and detecting the phase component is used to inspect the electrical conductivity and magnetic permeability of the object to be inspected from the database of the relationship between electrical conductivity and magnetic permeability for each plate thickness and the phase.

さらに局所的な電磁気特性の変化を検査するために、電磁気的材料評価装置において、印加コイルで印加する磁場として2つの周波数を合成させて印加して、計測した位置を判定するエンコーダーを設けて得られる位置情報と、差ベクトルの位相情報により検査対象物の導電率及び透磁率の分布を検査することを特徴とする。 Furthermore, in order to inspect changes in local electromagnetic properties, the electromagnetic material evaluation apparatus is provided with an encoder that determines the measured position by combining two frequencies as the magnetic field applied by the applying coil and applying it. It is characterized by inspecting the distribution of electrical conductivity and magnetic permeability of the object to be inspected based on the positional information obtained from the differential vector and the phase information of the difference vector.

本発明によれば、非破壊で非磁性体や磁性体の金属の導電率および透磁率の電磁気的特性を非破壊で評価することができる。これにより金属構造物の経年劣化や熱処理による鉄鋼材の変態などを評価することができる。 According to the present invention, it is possible to nondestructively evaluate the electrical conductivity and magnetic permeability of nonmagnetic and magnetic metals. This makes it possible to evaluate aging deterioration of metal structures and transformation of steel materials due to heat treatment.

本発明に係る電磁気的材料評価装置の構成図である。1 is a configuration diagram of an electromagnetic material evaluation apparatus according to the present invention; FIG. 第1の磁場ベクトルと第2の磁場ベクトルの差ベクトルから位相を求める方法を示した図である。FIG. 4 is a diagram showing a method of obtaining a phase from a difference vector between a first magnetic field vector and a second magnetic field vector; 板厚8mmの非磁性体における導電率と差ベクトルの位相の関係を求める時の、周波数の組み合わせを比較した図である。FIG. 10 is a diagram comparing combinations of frequencies when obtaining the relationship between the conductivity and the phase of the difference vector in a non-magnetic material with a plate thickness of 8 mm. 周波数200Hzと100Hzの差ベクトルによる板厚8mmの非磁性体の位相と導電率の関係を示した図である。ここで、試験体として8mmの板厚のアルミニウムと銅の導電率を判定した結果も図中に示している。FIG. 10 is a diagram showing the relationship between the phase and electrical conductivity of a non-magnetic material with a plate thickness of 8 mm using a difference vector between frequencies of 200 Hz and 100 Hz. Here, the result of judging the electrical conductivity of aluminum and copper having a plate thickness of 8 mm as specimens is also shown in the figure. 板厚8mmの磁性体における導電率と透磁率の積σμと差ベクトルの位相の関係を求める時の、周波数の組み合わせを比較した図である。FIG. 4 is a diagram comparing combinations of frequencies when obtaining the relationship between the product σμ of conductivity and permeability and the phase of the difference vector in a magnetic material having a thickness of 8 mm. 板厚16mmの磁性体における導電率と透磁率の積σμと差ベクトルの位相の関係を求める時の、周波数の組み合わせを比較した図である。FIG. 4 is a diagram comparing combinations of frequencies when obtaining the relationship between the product σμ of conductivity and permeability and the phase of the difference vector in a magnetic material with a plate thickness of 16 mm. 周波数200Hzと100Hzの差ベクトルによる板厚1.4mmの鋼板の位相と、導電率と透磁率の積σμの関係を示した図である。FIG. 4 is a diagram showing the relationship between the phase of a steel plate with a thickness of 1.4 mm and the product σμ of electrical conductivity and magnetic permeability based on a difference vector between frequencies of 200 Hz and 100 Hz. 図7に示した関係式を用いて、各温度で熱処理した鋼板の導電率と透磁率の積σμの変化を示した図である。FIG. 8 is a diagram showing changes in the product σμ of electrical conductivity and magnetic permeability of steel sheets heat-treated at each temperature using the relational expression shown in FIG. 7 ; 図7に示した関係式を用いて、部分焼き入れした板厚1.4mmの鋼板の位相をラインスキャンニングして求め、鋼板の導電率と透磁率の積σμの局所的な変化を検査した図である。Using the relational expression shown in FIG. 7, the phase of a partially quenched steel plate with a thickness of 1.4 mm was determined by line scanning, and local changes in the product σμ of the conductivity and permeability of the steel plate were examined. It is a diagram.

以下において、本発明の実施形態を、添付する図面を参照して詳細に説明する。同様の用途及び機能を有する部材には同符号を付してその説明を省略する。 In the following, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Members having similar uses and functions are denoted by the same reference numerals, and descriptions thereof are omitted.

第1の実施例は図1に示すように金属性の試験体1に、印加コイル2と磁気センサ3からなる磁気プローブ4を近づけ、あるいは接触させて計測している。印加コイル2により試験体に磁場を印加して,渦電流を発生させ,その渦電流が作る磁場を磁気センサ3として磁気抵抗素子(MR)で計測している。磁気センサとしてMRだけでなく、トンネル型抵抗素子(TMR)や、磁気インピーダンス素子(MI)、超伝導量子干渉素子(SQUID)など低周波から感度があるものであれば、なんでも使うことができる。一般的な渦電流探傷装置は印加コイルを交流の定電圧源で駆動していたが,図1に示す本発明の電磁気的材料評価装置では交流の定電流源5で印加コイル2を駆動して,対象物に一定の磁界を印加している。ここで所定の周波数を印加できるように、2つの交流周波数の合成あるいは時間で切り替えて周波数発振器6より発生させ、定電流源で印加コイルに電流を流す。ここで、所定の周波数はあらかじめマイクロゲージや超音波で板厚計測して得られた板厚情報をもとに最適な周波数が選択される。印加する周波数は選択された2つの周波数だけでなく、他の周波数を含んだ複数の周波数でもよく、解析の時に最適な2つの周波数を選択してもよい。また非常に多くの周波数を含んだ波形はパルス波であるので、このパルス波を用いてから解析の時に、最適な2つの周波数の信号を選んでもよい。合成各周波数における印加電流値は,試験体1に各周波数で同じ強度の磁界を印加させるため,交流で一定の振幅値とする必要がある。磁気センサ3のところには、印加コイルによる磁場が直接入ってこないようにキャンセルコイルを設けてもよい。磁気センサの計測回路7を通して信号が出力され,印加磁場の周波数と同じそれぞれの周波数で検波器8-1,8-2により参照信号と同位相である実数成分の信号と90°位相がずれた虚数成分の信号を検波している。検波により信号は強度と位相からなる、あるいは別の表記ではそれぞれの実数成分と虚数成分からなる磁場ベクトルを解析することができる。ここでは2つの周波数を用いたので、検波器を2台用いた。検波器8-1,8-2の出力をマルチプレクサ9で切り替えて,データ収録・解析装置10に取り込みデータ収録し解析して表示している。ここで、検波器を使わなくても、センサ回路の出力の時間波形をAD変換してデータ収録して、パソコンによりデジタル的に同相成分と90°位相成分を解析することもできる。この場合にはロックイン検波器が必要ないので、装置の小型化ができる。 In the first embodiment, as shown in FIG. 1, a magnetic probe 4 comprising an application coil 2 and a magnetic sensor 3 is brought close to or brought into contact with a metallic specimen 1 for measurement. A magnetic field is applied to the specimen by the application coil 2 to generate an eddy current, and the magnetic field generated by the eddy current is measured by a magnetoresistive element (MR) as a magnetic sensor 3 . As a magnetic sensor, not only MR but also tunnel type resistance element (TMR), magnetoimpedance element (MI), superconducting quantum interference device (SQUID), etc. can be used as long as they are sensitive from low frequencies. In a general eddy current flaw detector, the applied coil is driven by an alternating current constant voltage source, but in the electromagnetic material evaluation apparatus of the present invention shown in FIG. , a constant magnetic field is applied to the object. Here, in order to apply a predetermined frequency, two AC frequencies are synthesized or switched over time to be generated by the frequency oscillator 6, and current is passed through the application coil by a constant current source. Here, as the predetermined frequency, an optimum frequency is selected based on plate thickness information obtained by measuring the plate thickness with a microgauge or ultrasonic waves in advance. The frequencies to be applied are not limited to the selected two frequencies, but may be a plurality of frequencies including other frequencies, and the two optimum frequencies may be selected at the time of analysis. Also, since a waveform containing a very large number of frequencies is a pulse wave, it is also possible to select two optimal frequency signals at the time of analysis after using this pulse wave. The applied current value at each synthesized frequency must be a constant alternating current amplitude value in order to apply a magnetic field of the same strength to the specimen 1 at each frequency. A canceling coil may be provided at the magnetic sensor 3 so that the magnetic field generated by the applying coil does not enter directly. A signal is output through the measurement circuit 7 of the magnetic sensor, and the signal of the real component that is in phase with the reference signal is shifted by 90° from the detectors 8-1 and 8-2 at the same frequencies as the frequency of the applied magnetic field. It detects imaginary component signals. Upon detection, the signal can be analyzed into magnetic field vectors consisting of magnitude and phase, or in another notation, each real and imaginary component. Since two frequencies were used here, two detectors were used. The outputs of the detectors 8-1 and 8-2 are switched by the multiplexer 9, and the data is taken into the data recording/analyzing device 10, recorded, analyzed, and displayed. Here, even without using a detector, it is possible to AD-convert the output time waveform of the sensor circuit, record the data, and digitally analyze the in-phase component and the 90° phase component using a personal computer. In this case, a lock-in detector is not required, so the size of the device can be reduced.

2つの周波数fとfの磁場を印加し、検波することによって得られた第1の磁場ベクトルと第2の磁場ベクトルを図2のように示すことができる。第1の磁場ベクトルと第2の磁場ベクトルの差である差ベクトルの位相をθが得られる。金属の電磁気的特性として導電率σと透磁率μがある。本発明ではθから導電率σと透磁率μの積σμの値が得られる。アルミニウムや銅等の非磁性体では透磁率は真空の透磁率と同じであるので、σμの値から導電率σを得ることができる。また、鉄鋼材のように磁性体では導電率と透磁率を切りわけることができないが、どちらかのパラメーターがあらかじめ分かっている場合は当然もう一つのパラメーターを決定することができる。また、熱処理による変態や、経年劣化など機械的特性変化は導電率と透磁率の両方つまりσμと相関があるため、両者の積であるσμが重要となる。A first magnetic field vector and a second magnetic field vector obtained by applying and detecting two magnetic fields of frequencies f1 and f2 can be shown as in FIG. θ is obtained as the phase of the difference vector, which is the difference between the first magnetic field vector and the second magnetic field vector. Electrical conductivity σ and magnetic permeability μ are the electromagnetic properties of metals. In the present invention, the value of the product σμ of the conductivity σ and the magnetic permeability μ is obtained from θ. Since the magnetic permeability of a non-magnetic material such as aluminum or copper is the same as the magnetic permeability of a vacuum, the conductivity σ can be obtained from the value of σμ. Also, in the case of magnetic materials such as iron and steel materials, conductivity and permeability cannot be separated, but if either parameter is known in advance, the other parameter can naturally be determined. In addition, since changes in mechanical properties such as transformation due to heat treatment and deterioration over time are correlated with both conductivity and magnetic permeability, that is, σμ, σμ, which is the product of the two, is important.

非磁性体である金属の板厚8mmにおける2つの周波数の最適化を図3に示す。非磁性体であるので透磁率は真空の透磁率である4π×10-7H/mと同じで一定であるので、σμは導電率σのグラフとして表せる。2つの周波数の組み合わせを変化させたときの導電率σと位相の関係を示している。周波数として第1の周波数を30Hzとして、第2の周波数を50Hzとして得られた差ベクトルの位相のグラフは線形性がなく、位相から導電率を推定することができないことが分かる。一方、周波数を高くして、周波数として第1の周波数を100Hz、第2の周波数を200Hzとして得られた差ベクトルの位相θのグラフが最も線形性が良いことが分かる。よって、板厚8mmの非磁性体ではこの位相θと導電率σの関係式を用いれば、試験体の導電率を評価することができることが分かる。 FIG. 3 shows the optimization of two frequencies for a metal plate thickness of 8 mm, which is a non-magnetic material. Since it is a non-magnetic material, its magnetic permeability is the same as 4π×10 −7 H/m, which is the magnetic permeability of a vacuum, and is constant. Therefore, σμ can be expressed as a graph of conductivity σ. It shows the relationship between conductivity σ and phase when the combination of two frequencies is changed. The graph of the phase of the difference vector obtained by setting the first frequency to 30 Hz and the second frequency to 50 Hz has no linearity, and it can be seen that the conductivity cannot be estimated from the phase. On the other hand, it can be seen that the graph of the phase θ of the difference vector obtained by increasing the frequency and setting the first frequency to 100 Hz and the second frequency to 200 Hz has the best linearity. Therefore, it can be seen that the electrical conductivity of the specimen can be evaluated by using the relational expression between the phase θ and the electrical conductivity σ in the case of a non-magnetic material having a plate thickness of 8 mm.

試験体としてマイクロゲージで測定して8mmだった銅とアルミニウムの板を第1の周波数を100Hz、第2の周波数を200Hzとして、計測して求めた位相を、図4に示す位相θと導電率σのキャリブレーション式に入力したところ、銅の導電率は5.9×10S/m、アルミニウムの導電率は3.7×10S/mが得られ、これらの値は金属材料の物性値として知られている値と一致した。As a test piece, a copper and aluminum plate that was 8 mm measured with a microgauge was measured with a first frequency of 100 Hz and a second frequency of 200 Hz. Inputting into the calibration equation for σ yields a conductivity of 5.9×10 7 S/m for copper and 3.7×10 7 S/m for aluminum, which values are comparable to those of metallic materials. It matched the value known as the physical property value.

次に磁性体である鉄鋼材の2つの周波数の最適化を図5に示す。8mmにおける2つの周波数の組み合わせを変化させたときの導電率と透磁率の積σμと位相θの関係を示している。周波数として第1の周波数を1Hzとして、第2の周波数を3Hzとして得られた差ベクトルの位相のグラフは線形性が悪い。一方、周波数として、第1の周波数を5Hz、第2の周波数を20Hzとして得られた差ベクトルの位相θのグラフが最も線形性が良く、また感度が大きいことが分かる。板厚が厚くなると選択する周波数は低くなり、例えば8mmの時に線形性が良かった周波数の組み合わせ5Hzと20Hzは、図6に示すように板厚16mmでは線形性がやや悪くなる。一方、周波数の組み合わせ1Hzと3Hzにすると線形性が良くなっている。この様に板厚が厚いと周波数は低くする必要があり、反対に薄くなると周波数を高くする必要がある。 Next, FIG. 5 shows the optimization of two frequencies of steel material which is a magnetic material. It shows the relationship between the product σμ of conductivity and permeability and the phase θ when the combination of two frequencies at 8 mm is changed. The graph of the phase of the difference vector obtained by setting the first frequency to 1 Hz and the second frequency to 3 Hz has poor linearity. On the other hand, it can be seen that the graph of the phase θ of the difference vector obtained when the first frequency is 5 Hz and the second frequency is 20 Hz has the best linearity and the highest sensitivity. As the plate thickness increases, the frequency to be selected becomes lower. For example, the combination of frequencies of 5 Hz and 20 Hz, which had good linearity when the plate thickness was 8 mm, has slightly poor linearity when the plate thickness is 16 mm, as shown in FIG. On the other hand, when the frequencies are combined to 1 Hz and 3 Hz, the linearity is improved. In this way, the thicker the plate, the lower the frequency, and the thinner the plate, the higher the frequency.

熱処理による鋼板の電磁気特性を評価した結果を図7と図8に示す。熱処理により硬度を変化させることは自動車や機械部品などで行われている。この例では板厚1.4mmの鋼板を熱処理した時の電磁気特性の処理温度の違いを示している。板厚1.4mmでは板厚が薄くなるので周波数は高くなり、最適周波数は第1の周波数を100Hzとして、第2の周波数を200Hzとした。図7に示すように位相に対する電磁気特性であるσμは線形性が良い。このグラフのキャリブレーション式を用いて、各温度で処理した鋼板のσμを図8に示す。温度700℃で処理した鋼板のσμは大きく、温度が上がるにつれ小さくなり900℃以上で飽和した。鋼板の組織は700℃ではフェライトとパーライトの組織であり、900℃以上ではフェライトとマルテンサイトの組織に変化していた。マルテンサイトはパーライトに比べ透磁率が小さくなることが分かっており、本発明の位相θから組織が変化した変態率を評価できることが分かった。 Figures 7 and 8 show the results of evaluation of the electromagnetic properties of the heat-treated steel sheets. Changing the hardness by heat treatment is performed in automobiles, machine parts, and the like. This example shows the difference in the treatment temperature of the electromagnetic properties when a steel plate with a thickness of 1.4 mm is heat-treated. When the plate thickness is 1.4 mm, the plate thickness becomes thin, so the frequency becomes high. As shown in FIG. 7, σμ, which is the electromagnetic characteristic with respect to the phase, has good linearity. FIG. 8 shows σμ of the steel sheets processed at each temperature using the calibration formula of this graph. The σμ of the steel sheet treated at a temperature of 700°C was large, decreased as the temperature increased, and was saturated at 900°C or higher. The structure of the steel sheet was a structure of ferrite and pearlite at 700°C, and changed to a structure of ferrite and martensite at 900°C or higher. Martensite is known to have a smaller magnetic permeability than pearlite, and it was found that the transformation rate at which the structure changed can be evaluated from the phase θ of the present invention.

自動車等では一つのパーツで部分的に硬度を変えるために部分焼き入れが施されている。目的の個所が必要な硬度に達成しているか検査する必要するために、本発明では、磁気プローブにエンコーダーを取り付けて、位相の計測と同時に位置情報をデータとして取り込んだ。また、磁気プローブをラインスキャンニングしながら計測できるように、印加磁場も2つの周波数を合成して同時にかつ連続して印加した。図9は部分焼き入れした板厚1.4mmの鋼板の位相をラインスキャンニングして求め、鋼板の導電率と透磁率の積σμの局所的な変化を検査した図である。このように局所的に焼き入れした個所がどこまでか、また十分焼き入れが達成しているかを評価できた。 Partial quenching is applied to partially change the hardness of a single part in automobiles and the like. In the present invention, an encoder is attached to the magnetic probe, and positional information is taken in as data at the same time as the phase is measured, in order to inspect whether the target portion has achieved the required hardness. In addition, the applied magnetic field was applied simultaneously and continuously by synthesizing two frequencies so that measurement could be performed while line-scanning the magnetic probe. FIG. 9 shows the phase of a partially quenched steel plate with a thickness of 1.4 mm obtained by line scanning, and a local change in the product σμ of the electrical conductivity and magnetic permeability of the steel plate. In this way, it was possible to evaluate to what extent local hardening was performed and whether sufficient hardening was achieved.

他の利用としては、金属構造物の劣化である機械的特性は電磁気的特性と相関があることが分かっている。このため、金属構造物の評価個所の厚みをマイクロゲージや超音波板厚計により計測した後、電磁気的特性評価により劣化も診断できる。 As another use, it has been found that mechanical properties, which are the deterioration of metal structures, are correlated with electromagnetic properties. Therefore, after measuring the thickness of the evaluation point of the metal structure with a microgauge or an ultrasonic plate thickness gauge, deterioration can also be diagnosed by electromagnetic characteristic evaluation.

1 試験体
2 印加コイル
3 磁気センサ
4 磁気プローブ
5 定電流源
6 周波数発振器
7 計測回路
8-1 検波器
8-1 検波器
9 マルチプレクサ
10 データ収録・解析装置
1 Specimen 2 Applied Coil 3 Magnetic Sensor 4 Magnetic Probe 5 Constant Current Source 6 Frequency Oscillator 7 Measurement Circuit 8-1 Detector 8-1 Detector 9 Multiplexer 10 Data Recording/Analyzing Device

Claims (2)

検査対象物の電磁的特性を検査する方法であって、検査対象物に交流磁場を印加する印加コイルと、前記印加コイルで印加した磁場により前記検査対象物に誘引された磁場を検出する磁気センサから構成される磁気プローブを設け、
前記印加コイルに少なくても所定の2つ以上の交流磁場を合成させて印加、あるは時系列的に各周波数の周波数の交流電流を通電させる交流定電流源と、前記磁気センサの出力信号の所定の各周波数の信号を検波する検波器と、前記検波器の出力信号を解析する解析器とを有する非破壊検査装置において、
検査対象物のあらかじめ得られた板厚情報をもとに、所定の2つの周波数を決定して、第1の周波数で検波して得られた強度と位相を成分とする磁場ベクトルと、第2の周波数での検波により得られる強度と位相とを成分とする第2の磁場ベクトルの差として得られる差ベクトルの位相成分を検出して、この位相成分を用いて、各板厚における導電率及び透磁率と位相の関係のデータベースから、前記検査対象物の導電率及び透磁率を検査することを特徴とする電磁的材料評価方法。
A method for inspecting electromagnetic characteristics of an object to be inspected, comprising: an applying coil for applying an alternating magnetic field to the object to be inspected; and a magnetic sensor for detecting a magnetic field induced to the object by the magnetic field applied by the applying coil. Provide a magnetic probe consisting of
an alternating current constant current source for synthesizing at least two or more predetermined alternating magnetic fields to the applying coil, or applying an alternating current of each frequency in time series; In a non-destructive inspection device having a detector that detects signals of each predetermined frequency and an analyzer that analyzes the output signal of the detector,
Two predetermined frequencies are determined based on plate thickness information of the object to be inspected, and the magnetic field vector having the strength and phase components obtained by detecting at the first frequency and the second Detecting the phase component of the difference vector obtained as the difference between the second magnetic field vector whose components are the intensity and phase obtained by detection at the frequency of , and using this phase component to determine the conductivity and An electromagnetic material evaluation method, comprising inspecting the electrical conductivity and magnetic permeability of the inspection object from a database of the relationship between magnetic permeability and phase.
前記非破壊検査装置において、印加コイルで印加する磁場として2つの周波数を合成させて印加して、計測した位置を判定するエンコーダーを設けて得られる位置情報と、前記差ベクトルの位相情報により前記検査対象物の導電率及び透磁率の分布を検査することを特徴とする電磁的材料評価方法。 In the non-destructive inspection apparatus, position information obtained by combining two frequencies as a magnetic field applied by the applying coil and applying an encoder for determining the measured position and phase information of the difference vector are used for the inspection. An electromagnetic material evaluation method characterized by inspecting the distribution of electrical conductivity and magnetic permeability of an object.
JP2021153650A 2021-08-19 2021-08-19 Electromagnetic material evaluation method and device using magnetism Pending JP2023029151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021153650A JP2023029151A (en) 2021-08-19 2021-08-19 Electromagnetic material evaluation method and device using magnetism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021153650A JP2023029151A (en) 2021-08-19 2021-08-19 Electromagnetic material evaluation method and device using magnetism

Publications (1)

Publication Number Publication Date
JP2023029151A true JP2023029151A (en) 2023-03-03

Family

ID=85331277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021153650A Pending JP2023029151A (en) 2021-08-19 2021-08-19 Electromagnetic material evaluation method and device using magnetism

Country Status (1)

Country Link
JP (1) JP2023029151A (en)

Similar Documents

Publication Publication Date Title
Yu et al. An approach to reduce lift-off noise in pulsed eddy current nondestructive technology
Tsukada et al. Detection of inner corrosion of steel construction using magnetic resistance sensor and magnetic spectroscopy analysis
EP2707705B1 (en) Surface property inspection device and surface property inspection method
Edwards et al. Dual EMAT and PEC non-contact probe: applications to defect testing
Ricci et al. Evaluation of the lift-off robustness of eddy current imaging techniques
Kostin et al. Magnetic and magnetoacoustic testing parameters of the stressed–strained state of carbon steels that were subjected to a cold plastic deformation and annealing
JPWO2012057224A1 (en) Hardening depth measuring method and quenching depth measuring device
Li et al. Estimation method of yield strength of ferromagnetic materials based on pulsed eddy current testing
US20060076952A9 (en) Segmented field sensors
Pavlyuchenko et al. Differential background of electric signal read from an induction magnetic head
Artetxe et al. Analysis of the voltage drop across the excitation coil for magnetic characterization of skin passed steel samples
Zhang et al. Mechanism study for directivity of TR probe when applying Eddy current testing to ferro-magnetic structural materials
Janousek et al. Decline in ambiguity of partially conductive cracks' depth evaluation from eddy current testing signals
Ibrahim et al. Pulsed Magnetic Flux Leakage Measurement using Magnetic Head and Tunnelling Magnetoresistance for Defect Detection
JP6551885B2 (en) Nondestructive inspection device and nondestructive inspection method
Pavlyuchenko et al. Testing for defects in pulsed magnetic field transmitted through metal
JP2023029151A (en) Electromagnetic material evaluation method and device using magnetism
JP5857649B2 (en) Method for measuring the amount of retained austenite
Kiwa et al. Magnetic thickness gauge using a Fourier transformed eddy current technique
Liu et al. Effect of microstructure and residual stress on the magnetic Barkhausen noise signal
Dalal Radia et al. Detection of Defects Using GMR and Inductive Probes
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
Yoshinaga et al. Proposed method for simultaneous inspection of lift-off and surface-hardened depth in induction-hardened steel plate using electromagnetic properties
Dherbécourt et al. Investigation of the correlation between MBN signatures of low carbon content martensitic steels and their tensile properties
Chady et al. Fusion of electromagnetic inspection methods for evaluation of stress-loaded steel samples