[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2023028072A - Planar heat generating element - Google Patents

Planar heat generating element Download PDF

Info

Publication number
JP2023028072A
JP2023028072A JP2021133546A JP2021133546A JP2023028072A JP 2023028072 A JP2023028072 A JP 2023028072A JP 2021133546 A JP2021133546 A JP 2021133546A JP 2021133546 A JP2021133546 A JP 2021133546A JP 2023028072 A JP2023028072 A JP 2023028072A
Authority
JP
Japan
Prior art keywords
heating element
heat
heating
coating layer
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021133546A
Other languages
Japanese (ja)
Inventor
詠未 山森
Eimi Yamamori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakaguchi Dennetsu KK
Original Assignee
Sakaguchi Dennetsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakaguchi Dennetsu KK filed Critical Sakaguchi Dennetsu KK
Priority to JP2021133546A priority Critical patent/JP2023028072A/en
Publication of JP2023028072A publication Critical patent/JP2023028072A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Heating Bodies (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】安価で、故障しにくく、効率的な加熱が可能な面状発熱体を提供すること。【解決手段】ポリエチレンからなる第一および第二の絶縁層21,22と、前記第一および第二の絶縁層の間に封止された発熱体本体10と、を有し、前記発熱体本体が、紙基材11と該紙基材上に形成された抵抗発熱塗工層12とを備え、前記紙基材が、前記抵抗発熱塗工層の発熱領域と隣接する非発熱領域110を備える面状発熱体1。【選択図】図1[Problem] To provide a sheet heating element that is inexpensive, does not easily break down, and is capable of efficient heating. [Solution] A sheet heating element 1 having first and second insulating layers 21, 22 made of polyethylene and a heating element main body 10 sealed between the first and second insulating layers, the heating element main body comprising a paper substrate 11 and a resistive heating coating layer 12 formed on the paper substrate, the paper substrate comprising a heating region of the resistive heating coating layer and a non-heating region 110 adjacent thereto. [Selected Figure] Figure 1

Description

本発明は、面状発熱体に関する。 The present invention relates to a planar heating element.

カーボンブラック等の導電性粒子とバインダー樹脂とを含む発熱塗料が塗工されてなる抵抗発熱層を有する面状発熱体が、床暖房、除霜、階段融雪、配管ヒータ等の様々な分野で利用されている。例えば、本発明者らは、特許文献1において、加熱時の温度ムラが少なく安定した加熱を効率良く行える面状発熱体、特許文献2において、従来のものと比較して高温の発熱が可能な水性発熱塗料とこれを利用した面状発熱体を提案している。 A planar heating element with a resistance heating layer coated with heat-generating paint containing conductive particles such as carbon black and a binder resin is used in various fields such as floor heating, defrosting, snow melting on stairs, and pipe heaters. It is For example, the present inventors disclosed a planar heating element capable of efficiently performing stable heating with less temperature unevenness during heating in Patent Document 1, and disclosed a planar heating element capable of generating heat at a higher temperature than conventional ones in Patent Document 2. We are proposing a water-based heat-generating paint and a planar heat-generating element using this paint.

ここで、面状発熱体として、より安価なものが求められている。例えば、微生物やヒト由来細胞等の培養は、コンタミネーション(雑菌の混入・増殖による汚染)の発生を防ぐために、1回しか利用しない(シングルユース)容器を用いる場合が多い。これらの培養は、特定の温度域(例えば、ヒト由来細胞では37℃近傍であり、42℃以上となると細胞が破壊される)で行う必要があるが、加熱源として、効率的な加温が可能な投げ込み式でありながらも、コンタミネーションの起こりにくいシングルユースが可能である安価なものが求められている。 Here, a cheaper one is demanded as a planar heating element. For example, culture of microorganisms, human-derived cells, and the like often uses single-use containers in order to prevent contamination (contamination due to contamination and growth of various bacteria). These cultures need to be performed in a specific temperature range (for example, human-derived cells are around 37°C, and cells are destroyed at 42°C or higher), but efficient heating is required as a heating source. There is a demand for a low-cost product that can be used for single use and that is less likely to cause contamination, even though it is a drop-in type that can be used.

特開2016-110757号公報JP 2016-110757 A PCT/JP2021/014503PCT/JP2021/014503

安価で、故障しにくく、効率的な加熱が可能な面状発熱体を提供することを課題とする。 To provide a planar heating element which is inexpensive, resistant to failure, and capable of efficient heating.

本発明は上記の課題を解消するためのものであり、具体的な手段は以下の通りである。
1.ポリエチレンからなる第一および第二の絶縁層と、
前記第一および第二の絶縁層の間に封止された発熱体本体と、
を有し、
前記発熱体本体が、紙基材と該紙基材上に形成された抵抗発熱塗工層とを備え、
前記紙基材が、前記抵抗発熱塗工層の発熱領域と隣接する非発熱領域を備えることを特徴とする面状発熱体。
2.前記非発熱領域の少なくとも一部が、前記抵抗発熱塗工層が形成されていない非塗工領域であることを特徴とする1.に記載の面状発熱体。
3.前記非発熱領域が、前記紙基材の周縁の少なくとも一部であることを特徴とする1.または2.に記載の面状発熱体。
4.前記紙基材の坪量が、40g/m以上300g/m以下であることを特徴とする1.~3.のいずれかに記載の面状発熱体。
5.前記抵抗発熱塗工層が、水膨潤性合成マイカを含有することを特徴とする1.~4.のいずれかに記載の面状発熱体。
The present invention is intended to solve the above problems, and specific means are as follows.
1. first and second insulating layers made of polyethylene;
a heating element body sealed between the first and second insulating layers;
has
The heating element body comprises a paper substrate and a resistance heating coating layer formed on the paper substrate,
A planar heating element, wherein the paper substrate has a non-heating area adjacent to the heating area of the resistance heating coating layer.
2. 1. At least part of the non-heating area is a non-coating area where the resistance heating coating layer is not formed. The planar heating element according to .
3. 1. The non-heat generating area is at least part of the periphery of the paper substrate. or 2. The planar heating element according to .
4. 1. The basis weight of the paper substrate is 40 g/m 2 or more and 300 g/m 2 or less. ~3. The planar heating element according to any one of .
5. 1. The resistive heating coating layer contains water-swellable synthetic mica. ~ 4. The planar heating element according to any one of .

本発明の面状発熱体は、紙とポリエチレンを主要材料としているため、非常に安価である。ポリエチレンは他の材質と融着しにくい素材であるが紙とは融着可能である。本発明の面状発熱体は、ポリエチレンからなる絶縁層と紙基材を備える発熱体本体とが強固に融着しており層間剥離が生じにくい。ポリエチレンは加熱により変形が生じやすい材料であるが、本発明の面状発熱体は、紙基材が抵抗発熱塗工層の発熱領域と隣接する非発熱領域を備えており、この非発熱領域がポリエチレンの変形を抑える支持体として機能することにより、ポリエチレンの変形に伴う発熱体塗料の割れを抑えることができる。また、ポリエチレンが変形(収縮)して面状発熱体の加熱面を内側として丸くなることを防止することができるため、加熱面と接触する液体が十分に交換されて均一に加熱することができる。
本発明の面状発熱体は、ガンマ線照射による滅菌が可能である。そのため、微生物や細胞培養における投げ込みヒータとして好適に用いることができる。
The planar heating element of the present invention is very inexpensive because it uses paper and polyethylene as main materials. Polyethylene is a material that is difficult to fuse with other materials, but it can be fused with paper. In the planar heating element of the present invention, the insulating layer made of polyethylene and the heating element main body having the paper substrate are firmly fused together, and delamination is unlikely to occur. Polyethylene is a material that easily deforms when heated, but in the planar heating element of the present invention, the paper substrate has a non-heating region adjacent to the heat-generating region of the resistive heat-generating coating layer. By functioning as a support that suppresses deformation of polyethylene, it is possible to suppress cracking of the heating element paint that accompanies deformation of polyethylene. In addition, since the polyethylene can be prevented from being deformed (shrinked) and rounded with the heating surface of the planar heating element inside, the liquid in contact with the heating surface can be sufficiently exchanged and uniformly heated. .
The planar heating element of the present invention can be sterilized by gamma ray irradiation. Therefore, it can be suitably used as an immersion heater for culturing microorganisms or cells.

本発明の一実施態様例である面状発熱体の分解図。1 is an exploded view of a planar heating element that is an embodiment of the present invention; FIG. 本発明の面状発熱体における発熱体本体の変形例を示す図。FIG. 4 is a diagram showing a modification of the heating element main body in the planar heating element of the present invention; 本発明の面状発熱体における発熱体本体の変形例を示す図。FIG. 4 is a diagram showing a modification of the heating element main body in the planar heating element of the present invention; 本発明の面状発熱体における発熱体本体の変形例を示す図。FIG. 4 is a diagram showing a modification of the heating element main body in the planar heating element of the present invention; 本発明の面状発熱体における発熱体本体の変形例を示す図。FIG. 4 is a diagram showing a modification of the heating element main body in the planar heating element of the present invention; 本発明の面状発熱体における発熱体本体の変形例を示す図。FIG. 4 is a diagram showing a modification of the heating element main body in the planar heating element of the present invention; 本発明の面状発熱体における発熱体本体の変形例を示す図。FIG. 4 is a diagram showing a modification of the heating element main body in the planar heating element of the present invention; 実施例1、比較例1で得た面状発熱体の加熱後の抵抗値変化率と水温を示すグラフ。5 is a graph showing the rate of change in resistance value after heating and the water temperature of the planar heating elements obtained in Example 1 and Comparative Example 1. FIG. 実施例1、比較例1で得た面状発熱体の加熱前後の状態を示す図。FIG. 4 shows the states of the planar heating elements obtained in Example 1 and Comparative Example 1 before and after heating. 実施例2、比較例2で得た面状発熱体の加熱前後の状態を示す図。4A and 4B are diagrams showing states before and after heating of planar heating elements obtained in Example 2 and Comparative Example 2. FIG.

図1に、本発明の一実施態様例である面状発熱体の分解図を示す。なお、図1に示す面状発熱体は一実施態様に過ぎず、本発明の面状発熱体はこれに限定されない。
一実施態様である面状発熱体1は、ポリエチレンからなる第一および第二の絶縁層21、22と、紙基材11と紙基材11上に形成された抵抗発熱塗工層12とを備える発熱体本体10とを有する。発熱体本体10は、熱融着した第一及び第二の絶縁層21、22の間に封止される。
FIG. 1 shows an exploded view of a planar heating element which is one embodiment of the present invention. The planar heating element shown in FIG. 1 is merely one embodiment, and the planar heating element of the present invention is not limited to this.
A planar heating element 1, which is one embodiment, comprises first and second insulating layers 21 and 22 made of polyethylene, a paper substrate 11, and a resistance heating coating layer 12 formed on the paper substrate 11. and a heating element main body 10 provided. The heating element body 10 is sealed between the heat-sealed first and second insulating layers 21 and 22 .

・第一、第二の絶縁層
第一、第二の絶縁層21、22はポリエチレンからなる。ポリエチレンとしては、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)等を特に制限することなく使用することができる。絶縁層の厚さは、伝熱性の点から薄い方が好ましいが、薄くなりすぎると強度が低下して破れやすくなるため、100μm以上であることが好ましい。また、内部に存在する段差に対して薄すぎると、熱融着時にこの段差に追従できずに穴が開いてしまう場合があるため、絶縁層の厚さは熱融着して封止する際に内部に存在する段差の0.8倍以上であることが好ましく、1.0倍以上であることがより好ましく、1.2倍以上であることが更に好ましい。また、絶縁層は、部分ごとに異なる厚さとすることもでき、例えば、抵抗加熱塗工層を覆う絶縁層を他の部分よりも薄くすることもできる。さらに、絶縁層は、例えばポリエチレンからなる培養槽の壁面や底面と一体化することもできる。
- First and Second Insulating Layers The first and second insulating layers 21 and 22 are made of polyethylene. As polyethylene, high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and the like can be used without particular limitation. The thickness of the insulating layer is preferably as thin as possible from the viewpoint of heat transfer, but if it is too thin, the strength will decrease and the layer will be easily broken. In addition, if the thickness of the insulating layer is too thin for the step that exists inside, the step may not be followed at the time of heat sealing, and a hole may be formed. It is preferably 0.8 times or more, more preferably 1.0 times or more, and even more preferably 1.2 times or more the step difference existing inside. Also, the insulating layer may have a different thickness for each portion, for example, the insulating layer covering the resistive heating coating layer may be thinner than other portions. Furthermore, the insulating layer can also be integrated with the walls and bottom of the culture vessel, for example made of polyethylene.

・発熱体本体
発熱体本体10は、紙基材11と紙基材11上に形成された抵抗発熱塗工層12とを備える。抵抗発熱塗工層12上にはその両端に導電部13a、bが設けられており、導電部13a、bにはリード線14a、bが接続されている。紙基材11は抵抗発熱塗工層12の発熱領域と隣接し、抵抗発熱塗工層12が塗工されていない非塗工領域からなる非発熱領域110を備える。
· Heating Element Main Body The heating element main body 10 includes a paper substrate 11 and a resistance heating coating layer 12 formed on the paper substrate 11 . Conductive portions 13a and 13b are provided on both ends of the resistive heating coating layer 12, and lead wires 14a and 14b are connected to the conductive portions 13a and 13b. The paper substrate 11 is provided with a non-heat-generating region 110 which is adjacent to the heat-generating region of the resistive heat-generating coating layer 12 and which is a non-coated region where the resistive heat-generating coating layer 12 is not coated.

「紙基材」
紙基材11は、その面上に発熱塗料を塗工して均一な抵抗発熱塗工層12を形成できるものであれば特に制限することなく使用することができるが、抵抗発熱塗工層12、および絶縁層21、22との密着性に優れるため、非塗工紙が好ましい。また、紙基材11の坪量は、40g/m以上300g/m以下であることが好ましい。紙基材11の坪量が40g/m未満では発熱塗料の裏抜けが生じる場合があり、300g/mを超えると紙基材11が剛直になりすぎて、力が加わって屈曲等する際に紙基材11の端部で絶縁層21、22との剥離や絶縁層の破れが生じやすくなる場合がある。
"Paper substrate"
The paper base material 11 can be used without any particular limitation as long as it can form a uniform resistance heating coating layer 12 by applying a heat generating paint on its surface. , and the insulating layers 21 and 22, uncoated paper is preferable. Moreover, the basis weight of the paper substrate 11 is preferably 40 g/m 2 or more and 300 g/m 2 or less. If the basis weight of the paper base material 11 is less than 40 g/m 2 , the heat-generating paint may show through, and if it exceeds 300 g/m 2 , the paper base material 11 becomes too rigid and bends due to the application of force. In some cases, peeling from the insulating layers 21 and 22 and breakage of the insulating layers may easily occur at the edges of the paper substrate 11 .

「抵抗発熱塗工層」
抵抗発熱塗工層12は、少なくとも導電材、バインダー樹脂を含有する発熱塗料を紙基材11上に塗工し、乾燥することにより形成される。発熱塗料は、水系、有機溶媒系のいずれでも良いが、水性塗料であることが、作業者及び環境への負荷が小さく、また火災や爆発の危険性がなく安全性に優れているため好ましい。
"Resistive heating coating layer"
The resistive heat-generating coating layer 12 is formed by applying a heat-generating paint containing at least a conductive material and a binder resin onto the paper substrate 11 and drying it. The heat-generating paint may be either water-based or organic solvent-based, but water-based paints are preferable because they are less burdensome for workers and the environment, and have excellent safety with no risk of fire or explosion.

導電材としては、抵抗発熱塗工層に従来使用されているものを特に制限することなく使用することができ、例えば、カーボンブラック、グラファイト、カーボンナノチューブ、フラーレン、炭素繊維等の炭素系導電材、金、銀、銅、ニッケル等の金属系導電材、炭化タングステン、窒化チタン、窒化ジルコニウム、炭化チタン等のセラミック系導電材等を利用することができる。これらの中で、粒径が小さいものを安価で入手可能なため、炭素系導電材が好ましい。導電材は、1種または2種以上を混合して使用することができる。
導電材は、抵抗発熱塗工層の固形分100重量部に対して30重量部以上70重量部以下の割合で含有することが好ましい。
As the conductive material, those conventionally used in the resistive heating coating layer can be used without particular limitation. Metal-based conductive materials such as gold, silver, copper and nickel, ceramic-based conductive materials such as tungsten carbide, titanium nitride, zirconium nitride and titanium carbide can be used. Among these, carbon-based conductive materials are preferable because those having a small particle size can be obtained at a low cost. The conductive material can be used singly or in combination of two or more.
The conductive material is preferably contained at a ratio of 30 parts by weight or more and 70 parts by weight or less with respect to 100 parts by weight of the solid content of the resistance heating coating layer.

バインダー樹脂としては、発熱塗料中に溶解、または分散が可能なものであれば特に制限することなく使用することができ、例えば、ポリイミド樹脂、シリコーン樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、アクリル樹脂、ビニル系樹脂、エポキシ樹脂等の1種または2種以上を混合して使用することができる。これらの中で、耐熱性に優れるため、ポリイミド樹脂、シリコーン樹脂、ポリアミド樹脂のいずれか1種以上が好ましい。
バインダー樹脂は、抵抗発熱塗工層の固形分100重量部に対して15重量部以上50重量部以下の割合で含有することが好ましい。
Any binder resin can be used without particular limitation as long as it can be dissolved or dispersed in the heat-generating paint. Examples include polyimide resins, silicone resins, polyamide resins, polyurethane resins, polyester resins, and acrylic resins. , vinyl resins, epoxy resins, etc., or a mixture of two or more thereof. Among these resins, one or more of polyimide resin, silicone resin, and polyamide resin are preferable because of their excellent heat resistance.
The binder resin is preferably contained at a ratio of 15 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the solid content of the resistance heating coating layer.

発熱塗料が水性塗料である場合、水膨潤性合成マイカを含有することが好ましい。水膨潤性合成マイカは、その層間に水を取り込み膨潤する。そして、膨潤したマイカを含む水性塗料は、せん断応力が加わると粘度が低下し、応力が加わらなくなると粘度が高くなるチキソトロピー性を示す。そのため、水膨潤性合成マイカを含む水性発熱塗料は、塗布しやすく、塗布後に液垂れしにくいため、均一な抵抗発熱塗工層を形成することが容易となる。
水膨潤性合成マイカを含有する場合、水膨潤性合成マイカは、抵抗発熱塗工層の固形分100重量部に対して3重量部以上40重量部以下の割合で含有することが好ましい。
When the heat-generating paint is a water-based paint, it preferably contains water-swellable synthetic mica. Water-swellable synthetic mica takes in water between its layers and swells. A water-based paint containing swollen mica exhibits thixotropic properties in which the viscosity decreases when shear stress is applied and the viscosity increases when stress is no longer applied. Therefore, the water-based heat-generating paint containing water-swellable synthetic mica is easy to apply and does not drip easily after being applied, making it easy to form a uniform resistive heat-generating coating layer.
When the water-swellable synthetic mica is contained, the water-swellable synthetic mica is preferably contained at a ratio of 3 parts by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the solid content of the resistance heating coating layer.

水膨潤性合成マイカは、レーザー回折散乱法により測定される体積分布から導かれる平均粒子径(メディアン径)が、2μm以上20μm以下であることが好ましい。この平均粒子径が、上記範囲内であると、水性発熱塗料への分散性、塗工性に優れ、また、均一な塗膜(抵抗発熱塗工層)が形成されやすい。この平均粒子径は、2μm以上10μm以下であることがより好ましい。 The water-swellable synthetic mica preferably has an average particle size (median size) of 2 μm or more and 20 μm or less derived from a volume distribution measured by a laser diffraction scattering method. When the average particle size is within the above range, the dispersibility in the water-based heat-generating paint and the coatability are excellent, and a uniform coating film (resistive heat-generating coating layer) is easily formed. More preferably, the average particle size is 2 μm or more and 10 μm or less.

発熱塗料は、本発明の効果を阻害しない範囲内において、分散剤、レベリング剤、消泡剤、硬化剤等の添加剤を配合することができる。
発熱塗料は、その塗工方法等に適した粘度となるように、固形分濃度を調整する。固形分濃度としては、その塗工方法等により求める粘度等に応じ、例えば、5重量%以上50重量%以下程度とすることができる。
Additives such as a dispersant, a leveling agent, an antifoaming agent, and a curing agent may be added to the heat-generating paint as long as they do not impair the effects of the present invention.
The solid content concentration of the exothermic paint is adjusted so that the viscosity is suitable for the coating method and the like. The solid content concentration can be, for example, about 5% by weight or more and 50% by weight or less depending on the viscosity determined by the coating method or the like.

抵抗発熱塗工層12は、発熱塗料を紙基材11に塗布し、乾燥させることにより、形成することができる。抵抗発熱塗工層11は、単一の発熱塗料から形成してもよく、組成の異なる複数種類の発熱塗料を塗り分けて形成してもよい。また、単層または重ね塗りされた複数層であってもよい。抵抗発熱塗工層11を、組成の違う発熱塗料で塗り分ける、または、厚さを異ならせる等により、抵抗値の低い領域と抵抗値の高い領域とをパターン化し、発熱特性をパターン化することができる。 The resistive heating coating layer 12 can be formed by applying a heating paint to the paper substrate 11 and drying it. The resistive heat-generating coating layer 11 may be formed from a single heat-generating paint, or may be formed by separately coating a plurality of types of heat-generating paints having different compositions. Moreover, it may be a single layer or multiple layers that are overcoated. The resistive heat-generating coating layer 11 is patterned with heat-generating paints having different compositions or having different thicknesses to form regions with low resistance values and regions with high resistance values, thereby patterning the heat-generating properties. can be done.

抵抗発熱塗工層12は、通電により発熱するものであり、通電時に発熱する領域が発熱領域である。抵抗発熱塗工層12は、有線または無線により通電する必要がある。一実施態様である面状発熱体1は、抵抗発熱塗工層12の両端に導電性インク等からなる導電部13a、bを設け、この導電部13a、bに電源と繋がるリード線14a、bが導電性ペースト等により接続されている。導電性インク、導電性ペーストとしては、銅、銀等の導電性粒子を含むもののうち、求める塗布性、密着性、固定性等の性質を満足するものを使用することができる。リード線14a、bとしては、銅線、ニッケル線、銅めっきニッケル撚り線等の金属線、銅メッキアラミド繊維等を特に制限することなく利用することができるが、製造工程における熱融着時の圧力で潰れて平坦となることができるため、複数本の繊維の集合体であることが好ましい。なお、抵抗発熱塗工層12に通電するための方法はこれに限定されず、公知の方法を用いることができ、例えば、導電性ペーストに代えて導電性粘着テープを用いることもできる。
リード線14a、bは、面状発熱体1の外部へ異なる場所から導いてもよく、同一の場所から導いてもよい。また、面状発熱体1の内部に熱電対等の温度センサーを封止する場合、このセンサーのコードも異なる場所、同一の場所のどちらからも外部へ導くことができる。
The resistive heat-generating coating layer 12 generates heat when energized, and the region that generates heat when energized is the heat-generating region. The resistance heating coating layer 12 needs to be energized by wire or wirelessly. In the planar heating element 1 of one embodiment, conductive portions 13a and 13b made of conductive ink or the like are provided at both ends of a resistance heating coating layer 12, and lead wires 14a and 14b connected to a power source are provided to the conductive portions 13a and 13b. are connected by conductive paste or the like. As the conductive ink and conductive paste, among those containing conductive particles such as copper and silver, those that satisfy desired properties such as coatability, adhesion, and fixability can be used. As the lead wires 14a and 14b, copper wires, nickel wires, metal wires such as copper-plated nickel stranded wires, copper-plated aramid fibers, and the like can be used without particular limitation. An aggregate of a plurality of fibers is preferable because it can be flattened by being crushed by pressure. The method for energizing the resistance heating coating layer 12 is not limited to this, and a known method can be used. For example, a conductive adhesive tape can be used instead of the conductive paste.
The lead wires 14a and 14b may be led from different places to the outside of the planar heating element 1, or may be led from the same place. Further, when a temperature sensor such as a thermocouple is sealed inside the planar heating element 1, the cord of this sensor can be led to the outside either from a different location or from the same location.

・非発熱領域
一実施態様である面状発熱体1は、抵抗発熱塗工層12の発熱領域と隣接し、抵抗発熱塗工層12が塗工されていない非塗工領域からなる非発熱領域110を備える。絶縁層21、22の材質であるポリエチレンは、熱により膨張収縮等の変形が起こりやすい。面状発熱体1は、紙基材11に設けられた非発熱領域110が、ポリエチレンの変形を抑制する支持体として機能するため、ポリエチレンが変形しにくく、面状発熱体1の変形を抑えることができる。
これに対し、紙基材が非発熱領域を備えない場合は、ポリエチレンの変形に追従して抵抗発熱塗工層に割れが生じる場合や、発熱面を内側にして丸まる場合がある。そして、抵抗発熱塗工層に割れが生じると、その部分は電気が通ることができないため、一部に電気が集中して異常加熱が生じてポリエチレンの溶融やショート(短絡)が発生してしまう。また、発熱面を内側にして丸まると、投げ込みヒータとして液体に投入した場合に、加熱面と接触する液体が十分に交換されず、加熱ムラが生じてしまう。
Non-heat-generating region The planar heating element 1, which is one embodiment, is adjacent to the heat-generating region of the resistive heat-generating coating layer 12, and consists of a non-coating region where the resistive heat-generating coating layer 12 is not coated. 110. Polyethylene, which is the material of the insulating layers 21 and 22, is susceptible to deformation such as expansion and contraction due to heat. In the planar heating element 1, the non-heat generating region 110 provided on the paper substrate 11 functions as a support for suppressing deformation of the polyethylene. can be done.
On the other hand, if the paper substrate does not have a non-heat-generating region, the resistive heat-generating coating layer may crack or curl up with the heat-generating surface facing inward, following the deformation of the polyethylene. If a crack occurs in the resistive heat-generating coating layer, electricity cannot pass through that part, so the electricity concentrates in one part, causing abnormal heating and melting of the polyethylene or a short circuit. . In addition, if the heater is rolled with the heat generating surface facing inward, the liquid in contact with the heating surface is not sufficiently exchanged when the heater is thrown into a liquid as an immersion heater, resulting in uneven heating.

面状発熱体1において、非発熱領域110は、抵抗発熱塗工層12のリード線14a、bと接続される側の辺に設けられているが、本発明の面状発熱体における非発熱領域の位置はこれに限定されない。図2~7に、発熱体本体の変形例を示す。
図2に示す発熱体本体210は、抵抗発熱塗工層12のリード線14a、bと反対側の辺にも非塗工領域からなる非発熱領域110を備える。図3に示す発熱体本体310は、抵抗発熱塗工層12が分割されており、その間に非発熱領域110を備える。図4に示す発熱体本体410は、導電部13a、bが抵抗発熱塗工層12の一部にのみ設けられており、抵抗発熱塗工層の発熱しない領域からなる非発熱領域110(図4の点線の右側)を備える。図5に示す発熱体本体510は、導電部13a、bが抵抗発熱塗工層12の内側寄りに設けられており、導電部13a、bの外側に抵抗発熱塗工層の発熱しない領域からなる非発熱領域110を備える。図6に示す発熱体本体610は、導電部13a、bから伸びる櫛状電極131a、bを備え、導電部12と抵抗発熱塗工層12との間に非発熱領域110を備える。また、櫛状電極131aは非発熱領域でもある。図7に示す発熱体本体710は、導電部13a、b間に中間導電部132を備え、抵抗発熱塗工層12が四角格子型に設けられており、その間に非発熱領域110を備える。
図1~7に示すように、非発熱領域110が紙基材11の周縁の少なくとも一部であることが、変形をより抑制できるため好ましい。また、図3、7に示すように、非発熱領域110と抵抗発熱塗工層12とが交互に配置されていると、全体的に変形を抑制することができる。
In the planar heating element 1, the non-heating region 110 is provided on the side of the resistance heating coating layer 12 connected to the lead wires 14a and 14b. is not limited to this. 2 to 7 show modifications of the heating element body.
The heating element body 210 shown in FIG. 2 also has a non-heating region 110 on the opposite side of the resistance heating coating layer 12 from the lead wires 14a and 14b. A heating element main body 310 shown in FIG. 3 has a resistive heating coating layer 12 divided into non-heating regions 110 between them. In the heating element body 410 shown in FIG. 4, the conductive parts 13a and 13b are provided only in a part of the resistive heating coating layer 12, and the non-heating region 110 (see FIG. right side of the dotted line). In the heating element body 510 shown in FIG. 5, the conductive portions 13a and 13b are provided on the inner side of the resistive heating coating layer 12, and outside the conductive portions 13a and 13b, the resistive heating coating layer does not generate heat. A non-heat generating region 110 is provided. A heating element main body 610 shown in FIG. 6 includes comb-like electrodes 131a and 131b extending from the conductive portions 13a and 13b, and includes a non-heat generating region 110 between the conductive portion 12 and the resistive heating coating layer 12. As shown in FIG. Moreover, the comb-shaped electrode 131a is also a non-heat generating region. A heating element main body 710 shown in FIG. 7 includes an intermediate conductive portion 132 between the conductive portions 13a and 13b, a resistance heating coating layer 12 provided in a square lattice shape, and a non-heating region 110 provided therebetween.
As shown in FIGS. 1 to 7, it is preferable that the non-heat-generating region 110 is at least a part of the periphery of the paper base material 11 because deformation can be further suppressed. Further, as shown in FIGS. 3 and 7, if the non-heat generating regions 110 and the resistive heat generating coating layers 12 are alternately arranged, deformation can be suppressed as a whole.

本発明の面状発熱体は、発熱体本体を、ポリエチレンからなる第1、第2の絶縁層の間に挟み込んだ状態で圧力を加えながら加熱し、発熱体本体を熱融着した第一と第二の絶縁層の間に封止することにより製造することができる。ポリエチレンは、他の材料と融着が困難な素材であるが、紙とは熱融着することができる。そして、発熱体本体が紙基材を備えることにより、ポリエチレンからなる絶縁層と発熱体本体とを熱融着により密着することができる。この際、上記したように、例えば、抵抗発熱塗工層を覆う絶縁層を薄くして伝熱性を維持しながら、リード線を覆う絶縁層をより厚くして段差の大きな箇所でのポリエチレンが破れることを防止することもできる。 The planar heating element of the present invention is made by sandwiching the heating element main body between first and second insulating layers made of polyethylene, heating the heating element body while applying pressure, and heat-sealing the heating element main body to the first and second insulating layers. It can be manufactured by sealing between a second insulating layer. Polyethylene is a material that is difficult to fuse with other materials, but it can be thermally fused with paper. By providing the heat generating body with a paper substrate, the insulating layer made of polyethylene and the heat generating body can be brought into close contact with each other by thermal fusion. At this time, as described above, for example, while maintaining the heat conductivity by thinning the insulating layer covering the resistive heating coating layer, increasing the thickness of the insulating layer covering the lead wire causes the polyethylene to break at the place where the step is large. can also be prevented.

本発明の面状発熱体の用途は特に制限されないが、ポリエチレンの融点が95~140℃程度であるため、加熱温度がそれ以下の用途に用いることができ、例えば、液体の投げ込みヒータとして適している。さらに、本発明の面状ヒータは放射線照射により劣化しにくく、ガンマ線照射による滅菌処理が可能であるため、細胞や微生物の培養液を加熱する投げ込みヒータとして特に適している。 The application of the planar heating element of the present invention is not particularly limited, but since the melting point of polyethylene is about 95 to 140° C., it can be used for applications where the heating temperature is lower than that, for example, it is suitable as a liquid immersion heater. there is Furthermore, the planar heater of the present invention is not easily deteriorated by radiation irradiation and can be sterilized by gamma ray irradiation, so it is particularly suitable as an immersion heater for heating a culture solution of cells or microorganisms.

「実施例1」
カーボンブラックと、ポリイミド系樹脂を含む水性の発熱塗料に、水膨潤性合成マイカ(平均粒子径5μm以下)と脱イオン水を配合し、遊星式攪拌・脱泡装置(倉敷紡績株式会社製、マゼルスター KK-1000W)を用い、高粘度材料の標準的な攪拌脱泡のプログラムで6分間撹拌して、カーボンブラック37.2重量%、ポリイミド系樹脂33.9重量%、水膨潤性合成マイカ8.0重量%、水20.8重量%の水性発熱塗料を調製した。
調製した水性発熱塗料を、紙基材(菅公工業株式会社 ケント紙(非塗工紙) ベ051、坪量43g/m)に、ドクターブレードで幅150mm、長さ220mm、厚さ20μmで塗布し、200℃で1時間焼成した。次いで、長さ方向に80mm間隔で銀ペーストを幅5mmで塗布し、さらに130℃で1時間焼成して導電部を形成した。長さ方向の両端に導電部が位置するように長さ方向90mm、幅方向の端部に1cm幅で非塗工領域が位置するように幅方向90mmで裁断し、紙基材が、抵抗発熱塗工層の発熱領域と隣接する非塗工領域からなる非発熱領域を有する発熱体本体(90mm×90mm)を得た。
"Example 1"
Water-swelling synthetic mica (average particle size of 5 μm or less) and deionized water are blended in a water-based exothermic paint containing carbon black and polyimide resin, and a planetary stirring/defoaming device (manufactured by Kurashiki Boseki Co., Ltd., Mazerustar KK-1000W) and stirred for 6 minutes with a standard stirring and defoaming program for high-viscosity materials to obtain 37.2% by weight of carbon black, 33.9% by weight of polyimide resin, and water-swellable synthetic mica. A water-based exothermic paint was prepared with 0% by weight and 20.8% by weight water.
The prepared water-based heat-generating paint was applied to a paper substrate (Kent paper (non-coated paper) Be051, Kanko Kogyo Co., Ltd., basis weight 43 g/m 2 ) with a doctor blade to a width of 150 mm, a length of 220 mm, and a thickness of 20 μm. , and 200° C. for 1 hour. Then, a silver paste was applied with a width of 5 mm at intervals of 80 mm in the longitudinal direction, and further baked at 130° C. for 1 hour to form a conductive portion. Cut 90 mm in the length direction so that the conductive parts are located at both ends in the length direction, and 90 mm in the width direction so that the non-coated area is located at the end in the width direction with a width of 1 cm. A heating element main body (90 mm×90 mm) having a non-heat-generating region consisting of a heat-generating region of the coating layer and a non-coating region adjacent thereto was obtained.

発熱体本体の非発熱領域以外を厚さ200μmのポリエチレンで上下から挟み込み、シリコンラバースポンジの緩衝材を挟んで130℃10分間熱融着した。
熱融着後、露出している非発熱領域の導電部に、リード線をポリエチレンテープで固定するとともに、リード線先端と導電部とをAgペーストで接続した。また、非発熱領域にφ2.5の穴を開け、熱電対先端を穴と重ねてPEテープで固定した。
この非発熱領域を、700μmのポリエチレンで上下から挟み込み、シリコンラバースポンジの緩衝材を挟んで130℃10分間熱融着した。紙基材の端部から5mm以上離れた部分で裁断し、第一、第二の絶縁層のそれぞれの厚さがリード線等が封止された非発熱領域を含む部分が1400μm、抵抗発熱塗工層を含む部分が400μmである面状発熱体を得た。
The heating element main body except for the non-heat-generating region was sandwiched from above and below with polyethylene having a thickness of 200 μm, and heat-sealed at 130° C. for 10 minutes with a cushioning material of silicone rubber sponge sandwiched therebetween.
After heat-sealing, the lead wire was fixed to the exposed conductive portion of the non-heat-generating region with a polyethylene tape, and the tip of the lead wire and the conductive portion were connected with Ag paste. A hole of φ2.5 was made in the non-heat generating region, and the tip of the thermocouple was overlapped with the hole and fixed with a PE tape.
This non-heat-generating region was sandwiched between 700 μm polyethylene layers from above and below, and heat-sealed at 130° C. for 10 minutes with a cushioning material of silicone rubber sponge sandwiched therebetween. The paper substrate was cut at a distance of 5 mm or more from the edge, and the thickness of each of the first and second insulating layers was 1400 μm at the portion including the non-heating area where the lead wires and the like were sealed, and the resistance heating coating was applied. A planar heating element having a thickness of 400 μm including the layer was obtained.

「比較例1」
発熱体本体を裁断して形成する際に、非発熱領域を有さないように裁断した以外は実施例1と同様にして面状発熱体を得た。
"Comparative Example 1"
A planar heating element was obtained in the same manner as in Example 1, except that the heating element main body was cut so as not to have a non-heating region.

実施例1、比較例1で得られた面状発熱体を、それぞれ20℃の水300mlに沈め、0.2W/cm印加し、通電直後と比較した30分後の抵抗値変化率と、面状発熱体が有する熱電対で30分後の水温を測定した。その後、新たに20℃の水に取り替え、0.3W/cm、0.4W/cm、0.5W/cmのワット密度となるように印加した以外は同様にして、抵抗値変化率と、水温を測定した。結果を図8に示す。また、この実験による加熱前後の面状発熱体の状態を図9に示す。 Each of the planar heating elements obtained in Example 1 and Comparative Example 1 was submerged in 300 ml of water at 20° C., 0.2 W/cm 2 was applied, and the rate of change in resistance value after 30 minutes compared with immediately after energization, The water temperature was measured after 30 minutes with a thermocouple of the planar heating element. Thereafter, the water was replaced with water at 20° C., and the rate of change in resistance was repeated in the same manner except that the power was applied so that the watt densities were 0.3 W/cm 2 , 0.4 W/cm 2 and 0.5 W/cm 2 . and measured the water temperature. The results are shown in FIG. FIG. 9 shows the state of the planar heating element before and after heating in this experiment.

実施例1、比較例1で得られた面状発熱体は、いずれも良好な防水性と発熱特性を示した。
本発明である紙基材が非発熱領域を備える実施例1で得られた面状発熱体は、ポリエチレンの変形が抑えられ、加熱前後で形状にほとんど変化はなかった。
それに対し、紙基材が非発熱領域を備えない比較例1で得られた面状発熱体は、加熱後に加熱面を内側とする大きな反りが残った。本実験では、最大で0.5W/cmの印加で水温も50℃程度までしか昇温していないが、より高温に加熱した場合には、ポリエチレンの変形による抵抗発熱塗工層の割れや、加熱面を内側として丸まってしまうことが示唆された。
The planar heating elements obtained in Example 1 and Comparative Example 1 both exhibited good waterproof properties and heat-generating properties.
The planar heating element obtained in Example 1, in which the paper base material of the present invention has a non-heat-generating region, suppressed deformation of the polyethylene, and had almost no change in shape before and after heating.
On the other hand, the planar heating element obtained in Comparative Example 1, in which the paper base material did not have a non-heating region, left a large warp with the heating surface facing inward after heating. In this experiment, the water temperature was only raised to about 50°C by applying a maximum of 0.5 W/ cm2 . , it was suggested that the heated surface was curled inside.

「実施例2」
紙基材(菅公工業株式会社 ケント紙(非塗工紙) ベ051、坪量43g/m)に、10mm幅の粘着テープを10mm間隔で貼付した。実施例1で調製した水性発熱塗料を、この紙基材の粘着テープを貼付した面に、ドクターブレードで幅150mm、長さ220mm、厚さ20μmで塗布し、乾燥後粘着テープを剥離した後、200℃で1時間焼成した。次いで、幅方向に80mm間隔で銀ペーストを幅5mmで塗布し、さらに130℃で1時間焼成して導電部を形成した。長さ方向の両端に導電部が位置するように長さ方向110mm、幅方向90mmで裁断し、紙基材が、抵抗発熱塗工層の発熱領域と隣接する非塗工領域からなる非発熱領域を有する発熱体本体を得た。
この発熱体本体を用いた以外は、実施例1と同様にして面状発熱体を得た、
"Example 2"
Adhesive tapes with a width of 10 mm were attached to a paper substrate (Kent paper (non-coated paper) Be051, Kanko Kogyo Co., Ltd., basis weight 43 g/m 2 ) at intervals of 10 mm. The water-based exothermic paint prepared in Example 1 was applied with a doctor blade to the surface of the paper substrate to which the adhesive tape was attached in a width of 150 mm, length of 220 mm, and thickness of 20 μm. After drying, the adhesive tape was peeled off. It was calcined at 200° C. for 1 hour. Then, a silver paste was applied in a width of 5 mm at intervals of 80 mm in the width direction, and baked at 130° C. for 1 hour to form a conductive portion. The paper substrate is cut to 110 mm in the length direction and 90 mm in the width direction so that the conductive parts are located at both ends in the length direction, and the non-heating area consists of the non-coating area adjacent to the heat generating area of the resistance heating coating layer. was obtained.
A planar heating element was obtained in the same manner as in Example 1, except that this heating element main body was used.

「比較例2」
紙基材の抵抗発熱塗工層が形成されていない部分をくり抜いた以外は、実施例2と同様にして面状発熱体を得た。
"Comparative Example 2"
A planar heating element was obtained in the same manner as in Example 2, except that the portion of the paper substrate where the resistance heating coating layer was not formed was hollowed out.

実施例2、比較例2で得られた面状発熱体を、それぞれ20℃の水1000mlに沈め、0.2W/cm印加した。加熱前後の面状発熱体の状態を図10に示す。 本発明である紙基材が非発熱領域を備える実施例2で得られた面状発熱体は、ポリエチレンの変形が抑えられ、加熱前後で形状にほとんど変化はなかった。
それに対し、紙基材の非発熱領域がくり抜かれており、非発熱領域を備えない比較例2で得られた面状発熱体は、加熱前から内側に軽く反っており、第一、第二の絶縁層であるポリエチレンが熱融着工程で既に変形が生じていた。また、加熱後には、より反りが大きくなった。
The planar heating elements obtained in Example 2 and Comparative Example 2 were each immersed in 1000 ml of water at 20° C., and 0.2 W/cm 2 was applied. FIG. 10 shows the state of the planar heating element before and after heating. In the planar heating element obtained in Example 2, in which the paper substrate of the present invention has non-heat-generating regions, deformation of the polyethylene was suppressed, and there was almost no change in shape before and after heating.
On the other hand, the sheet heating element obtained in Comparative Example 2, in which the non-heat-generating region of the paper substrate is hollowed out and does not have a non-heat-generating region, is slightly warped inward before heating, and the first and second The polyethylene, which is the insulating layer of , had already been deformed in the heat-sealing process. Moreover, after heating, the warpage increased.

Claims (5)

ポリエチレンからなる第一および第二の絶縁層と、
前記第一および第二の絶縁層の間に封止された発熱体本体と、
を有し、
前記発熱体本体が、紙基材と該紙基材上に形成された抵抗発熱塗工層とを備え、
前記紙基材が、前記抵抗発熱塗工層の発熱領域と隣接する非発熱領域を備えることを特徴とする面状発熱体。
first and second insulating layers made of polyethylene;
a heating element body sealed between the first and second insulating layers;
has
The heating element body comprises a paper substrate and a resistance heating coating layer formed on the paper substrate,
A planar heating element, wherein the paper substrate has a non-heating area adjacent to the heating area of the resistance heating coating layer.
前記非発熱領域の少なくとも一部が、前記抵抗発熱塗工層が形成されていない非塗工領域であることを特徴とする請求項1に記載の面状発熱体。 2. The planar heating element according to claim 1, wherein at least a part of said non-heat-generating region is a non-coating region in which said resistance heating coating layer is not formed. 前記非発熱領域が、前記紙基材の周縁の少なくとも一部であることを特徴とする請求項1または2に記載の面状発熱体。 3. The planar heating element according to claim 1, wherein the non-heat-generating region is at least part of the periphery of the paper substrate. 前記紙基材の坪量が、40g/m以上300g/m以下であることを特徴とする請求項1~3のいずれかに記載の面状発熱体。 The planar heating element according to any one of claims 1 to 3, wherein the paper base material has a basis weight of 40 g/m 2 or more and 300 g/m 2 or less. 前記抵抗発熱塗工層が、水膨潤性合成マイカを含有することを特徴とする請求項1~4のいずれかに記載の面状発熱体。 The planar heating element according to any one of claims 1 to 4, wherein the resistance heating coating layer contains water-swellable synthetic mica.
JP2021133546A 2021-08-18 2021-08-18 Planar heat generating element Pending JP2023028072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021133546A JP2023028072A (en) 2021-08-18 2021-08-18 Planar heat generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021133546A JP2023028072A (en) 2021-08-18 2021-08-18 Planar heat generating element

Publications (1)

Publication Number Publication Date
JP2023028072A true JP2023028072A (en) 2023-03-03

Family

ID=85330740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021133546A Pending JP2023028072A (en) 2021-08-18 2021-08-18 Planar heat generating element

Country Status (1)

Country Link
JP (1) JP2023028072A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101991A (en) * 1984-10-23 1986-05-20 パネフリ工業株式会社 Heat generating mat
JPH11345681A (en) * 1998-06-03 1999-12-14 Co-Op Chem Co Ltd Planar heating element
JP2006351459A (en) * 2005-06-20 2006-12-28 Matsushita Electric Ind Co Ltd Sheet heating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101991A (en) * 1984-10-23 1986-05-20 パネフリ工業株式会社 Heat generating mat
JPH11345681A (en) * 1998-06-03 1999-12-14 Co-Op Chem Co Ltd Planar heating element
JP2006351459A (en) * 2005-06-20 2006-12-28 Matsushita Electric Ind Co Ltd Sheet heating device

Similar Documents

Publication Publication Date Title
US4330703A (en) Layered self-regulating heating article
US4654511A (en) Layered self-regulating heating article
US4543474A (en) Layered self-regulating heating article
CA1062755A (en) Layered self-regulating heating article
US4783587A (en) Self-regulating heating article having electrodes directly connected to a PTC layer
US11438971B2 (en) High-performance far-infrared surface heating element of carbon composite material and application thereof
CN208001380U (en) A kind of graphene heating film and the heating device for including the graphene heating film
EP2483896B1 (en) Positive temperature coefficient heating elements and their manufacturing
JP2010010599A (en) Heat diffusion sheet
BR112015001314B1 (en) COMPOSITE PANEL WITH ELECTRICAL CONTACT MEANS AND METHOD TO PRODUCE COMPOSITE PANEL
EP3930422A1 (en) Sheet-like heater
JP5421451B2 (en) Thermal diffusion sheet
CN112770422A (en) Self-temperature-control electric heating film and preparation method and application thereof
JP2012227034A (en) Planar heating element
JP2023028072A (en) Planar heat generating element
US20170238368A1 (en) Flexible resistive heating element
JP7678252B2 (en) Planar fluid heating device
KR102183876B1 (en) Heating element of plane form and heating sheet for vehicle employing the same
CN201252649Y (en) Basal membrane of electrothermal membrane
WO2023190281A1 (en) Planar heating device
CN216451560U (en) Graphene heating blanket for tank container
JPH01294393A (en) Method for bonding plane warmer
KR200354459Y1 (en) Face type heating element
JP3084197B2 (en) Planar heating element
EP4068905A2 (en) Segmented thermoresistive heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20241115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20241202

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20250212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20250610