JP2023021492A - Method for producing 1-chloro-2,2-difluoroethylene - Google Patents
Method for producing 1-chloro-2,2-difluoroethylene Download PDFInfo
- Publication number
- JP2023021492A JP2023021492A JP2021126382A JP2021126382A JP2023021492A JP 2023021492 A JP2023021492 A JP 2023021492A JP 2021126382 A JP2021126382 A JP 2021126382A JP 2021126382 A JP2021126382 A JP 2021126382A JP 2023021492 A JP2023021492 A JP 2023021492A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- activated carbon
- chloro
- difluoroethylene
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HTHNTJCVPNKCPZ-UHFFFAOYSA-N 2-chloro-1,1-difluoroethene Chemical group FC(F)=CCl HTHNTJCVPNKCPZ-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 238000006243 chemical reaction Methods 0.000 claims abstract description 114
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 108
- SKDFWEPBABSFMG-UHFFFAOYSA-N 1,2-dichloro-1,1-difluoroethane Chemical compound FC(F)(Cl)CCl SKDFWEPBABSFMG-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000126 substance Substances 0.000 claims abstract description 19
- 239000011949 solid catalyst Substances 0.000 claims abstract description 18
- 239000012299 nitrogen atmosphere Substances 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 229920000877 Melamine resin Polymers 0.000 claims description 19
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical group NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 19
- 239000007789 gas Substances 0.000 claims description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 8
- 229910021529 ammonia Inorganic materials 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 3
- 208000012839 conversion disease Diseases 0.000 abstract description 10
- 239000002994 raw material Substances 0.000 abstract description 9
- 239000012808 vapor phase Substances 0.000 abstract 1
- 239000003054 catalyst Substances 0.000 description 37
- 238000000034 method Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 229910052792 caesium Inorganic materials 0.000 description 10
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 10
- 238000004817 gas chromatography Methods 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 7
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 7
- 230000009257 reactivity Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- WFLOTYSKFUPZQB-UHFFFAOYSA-N 1,2-difluoroethene Chemical group FC=CF WFLOTYSKFUPZQB-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 239000003905 agrochemical Substances 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 1
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- -1 amine salts Chemical class 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229960002415 trichloroethylene Drugs 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は1,2-ジクロロ-1,1-ジフルオロエタンを原料とし、1-クロロ-2,2-ジフルオロエチレンを製造する方法に関する。1-クロロ-2,2-ジフルオロエチレンは、電子材料や医・農薬の製造中間体として有用な化合物である。 The present invention relates to a method for producing 1-chloro-2,2-difluoroethylene using 1,2-dichloro-1,1-difluoroethane as a raw material. 1-Chloro-2,2-difluoroethylene is a useful compound as an intermediate in the production of electronic materials and medicines and agricultural chemicals.
従来より、1,2-ジクロロ-1,1-ジフルオロエタンを原料とし、1-クロロ-2,2-ジフルオロエチレンを製造する方法としては、化学量論量以上の水酸化ナトリウムを用い、液相で1,2-ジクロロ-1,1-ジフルオロエタンを反応させる方法(例えば、特許文献1、特許文献2参照)、ニッケル製反応管を用い、500℃~600℃で1,2-ジクロロ-1,1-ジフルオロエタンをガスとして流通させる方法(例えば特許文献3参照)、並びに800℃~1,000℃で熱分解により製造する方法が知られている(例えば特許文献4参照)。
Conventionally, as a method for producing 1-chloro-2,2-difluoroethylene using 1,2-dichloro-1,1-difluoroethane as a raw material, a stoichiometric amount or more of sodium hydroxide is used in a liquid phase. A method of reacting 1,2-dichloro-1,1-difluoroethane (see, for example,
従来の特許文献1または2に記載の方法では、液相での水酸化ナトリウムとの反応のため、多量の廃液が発生するという課題がある。一方、特許文献3及び4に記載の方法は、600℃以上の高温での反応が必要という課題がある。
The conventional method described in
これに対して特許文献5には固体触媒を用いて250℃~550℃という比較的低い温度条件下、気相で1,2-ジクロロ-1,1-ジフルオロエタンを反応させる方法が提案されている。しかしながらこの方法も、比較的低い温度条件で、長時間反応を実施した際の触媒の寿命(反応転化率の低下)をさらに延ばすことが望まれており、比較的低い温度条件で、且つ長時間製造しても反応が安定している工業的に実施可能な方法が望まれていた。
具体的に特許文献5の段落0037~0039の実施例1では、活性炭を用い、原料中酸素0.0容量%条件下での1-クロロ-2,2-ジフルオロエチレンの製造例が記載されている。また段落0049~0050の実施例2では、5.0重量%の塩化セシウムを担持した活性炭を用い、原料中酸素0.0容量%条件下での1-クロロ-2,2-ジフルオロエチレンの製造例が記載されている。これら実施例1、実施例2ではいずれも反応温度は350℃であり、反応開始時から反応継続60分後までの転化率及び選択率は変化なく維持されているものの、そののちまで反応を継続させた場合に維持できるかは不明である。また反応を効率的にするため350℃にて行っているものの、装置コストを低減し、かつエネルギー消費を抑制しながら、工業的規模で実用的な製造方法としては、触媒作用をより長く維持するにはできるだけ低い温度であることが望ましく、より低温側でも十分な反応性(転化率)を有する触媒が望まれていた。
On the other hand, Patent Document 5 proposes a method of reacting 1,2-dichloro-1,1-difluoroethane in a gas phase under relatively low temperature conditions of 250° C. to 550° C. using a solid catalyst. . However, in this method as well, it is desired to further extend the life of the catalyst (decrease in reaction conversion rate) when the reaction is carried out for a long time under relatively low temperature conditions. There has been a demand for an industrially practicable method in which the reaction is stable even after production.
Specifically, in Example 1 of paragraphs 0037 to 0039 of Patent Document 5, an example of producing 1-chloro-2,2-difluoroethylene using activated carbon under conditions of 0.0% by volume of oxygen in the raw material is described. there is In addition, in Example 2 of paragraphs 0049 to 0050, 1-chloro-2,2-difluoroethylene is produced using activated carbon supporting 5.0% by weight of cesium chloride under conditions of 0.0% by volume of oxygen in the raw material. Examples are given. In both Examples 1 and 2, the reaction temperature was 350° C., and although the conversion and selectivity remained unchanged from the start of the reaction until 60 minutes after the reaction was continued, the reaction was continued thereafter. It is unknown if it can be maintained if In addition, although the reaction is carried out at 350 ° C. in order to make it efficient, it is possible to maintain the catalytic action for a longer time as a practical production method on an industrial scale while reducing the equipment cost and suppressing energy consumption. It is desirable that the temperature be as low as possible for the reaction, and a catalyst that has sufficient reactivity (conversion rate) even at lower temperatures has been desired.
本発明の目的は、これら従来技術を鑑み、1,2-ジクロロ-1,1-ジフルオロエタンを原料とし、1-クロロ-2,2-ジフルオロエチレンを気相反応により製造する際、比較的低い温度条件で十分な速度で1-クロロ-2,2-ジフルオロエチレンを製造することが可能であり、且つ長時間製造を実施した場合においても反応効率が維持される、実用的な製造方法を提供することにある。 In view of these prior arts, it is an object of the present invention to produce 1-chloro-2,2-difluoroethylene by a gas phase reaction using 1,2-dichloro-1,1-difluoroethane as a raw material. To provide a practical production method capable of producing 1-chloro-2,2-difluoroethylene at a sufficient rate under conditions and maintaining reaction efficiency even when the production is carried out for a long time. That's what it is.
そこで本発明者らは、1,2-ジクロロ-1,1-ジフルオロエタンを、固体触媒存在下、気相で反応させる1-クロロ-2,2-ジフルオロエチレンの製造方法について鋭意検討した結果、活性炭に塩基性物質を接触させた後、該活性炭を、窒素雰囲気下で加熱処理してなる固体触媒を用いて反応させることにより、比較的低い温度で、1-クロロ-2,2-ジフルオロエチレンの製造が可能であり、且つ長時間製造を実施した場合においても反応転化率の低下が極めて少ない、より工業的に実施可能な1-クロロ-2,2-ジフルオロエチレンの製造方法を見出し、本発明を完成させるに至った。即ち、本発明は下記の要旨に係わるものである。 Therefore, the present inventors have extensively studied a method for producing 1-chloro-2,2-difluoroethylene by reacting 1,2-dichloro-1,1-difluoroethane in the presence of a solid catalyst in the gas phase. After contacting with a basic substance, the activated carbon is reacted using a solid catalyst heat-treated in a nitrogen atmosphere at a relatively low temperature to produce 1-chloro-2,2-difluoroethylene. The present invention finds a more industrially practicable method for producing 1-chloro-2,2-difluoroethylene, which is possible to produce and exhibits extremely little decrease in reaction conversion even when the production is carried out for a long time. was completed. That is, the present invention relates to the following gists.
(1)1,2-ジクロロ-1,1-ジフルオロエタンを、活性炭に塩基性物質を接触させた後、該活性炭を、窒素雰囲気下で加熱処理してなる固体触媒の存在下、気相で反応させる、1-クロロ-2,2-ジフルオロエチレンの製造方法。 (1) 1,2-dichloro-1,1-difluoroethane is reacted in the gas phase in the presence of a solid catalyst obtained by contacting activated carbon with a basic substance and then heat-treating the activated carbon in a nitrogen atmosphere. A method for producing 1-chloro-2,2-difluoroethylene.
(2)前記塩基性物質が、有機アミンまたはアンモニアである、上記(1)に記載の1-クロロ-2,2-ジフルオロエチレンの製造方法。
(3)前記塩基性物質が、メラミンである、上記(1)に記載の1-クロロ-2,2-ジフルオロエチレンの製造方法。
(2) The method for producing 1-chloro-2,2-difluoroethylene according to (1) above, wherein the basic substance is an organic amine or ammonia.
(3) The method for producing 1-chloro-2,2-difluoroethylene according to (1) above, wherein the basic substance is melamine.
(4)反応温度が、250℃~550℃であることを特徴とする上記(1)~(3)のいずれか1項に記載の1-クロロ-2,2-ジフルオロエチレンの製造方法。 (4) The method for producing 1-chloro-2,2-difluoroethylene according to any one of (1) to (3) above, wherein the reaction temperature is 250°C to 550°C.
本発明の方法により、比較的低い温度条件にて反応が可能で、且つ長時間製造を継続実施した場合においても反応転化率及び選択率の低下が極めて少ない、1-クロロ-2,2-ジフルオロエチレンのより工業的に実施可能な製造方法を提供できる。 According to the method of the present invention, 1-chloro-2,2-difluoro, which can be reacted under relatively low temperature conditions and has extremely little decrease in reaction conversion rate and selectivity even when the production is continued for a long time. A more industrially feasible production method for ethylene can be provided.
以下、本発明を詳細に説明する。本発明は、その要旨を超えない限り、以下の態様に限定されるものではなく、種々変形して実施することができる。 The present invention will be described in detail below. The present invention is not limited to the following embodiments, and can be modified in various ways as long as it does not exceed the gist of the invention.
本発明に用いられる原料の1,2-ジクロロ-1,1-ジフルオロエタンは、1,1,2-トリクロロエチレンとフッ化水素の反応により容易に調製される。
The
<活性炭>
本発明に適用可能な活性炭の種類としては、木炭、石炭、ヤシ殻等から調製された活性炭等が挙げられる。
<Activated carbon>
Types of activated carbon applicable to the present invention include activated carbon prepared from charcoal, coal, coconut shells, and the like.
活性炭の比表面積は特に限定されず、通常10m2/g~4000m2/gであることが好ましく、50m2/g~3000m2/gがより好ましく、100m2/g~2000m2/gがさらに好ましい。活性炭の比表面積が10m2/gより小さいと十分な反応転化率及び選択率が得られない場合がある。逆に4000m2/gを超えた場合でも比表面積に応じた十分な反応転化率及び選択率の増大は得られにくく、また副反応が起こりやすくなることがある。活性炭の比表面積は、BET法に準拠した方法で測定される。 The specific surface area of the activated carbon is not particularly limited, and is generally preferably 10 m 2 /g to 4000 m 2 /g, more preferably 50 m 2 /g to 3000 m 2 /g, further preferably 100 m 2 /g to 2000 m 2 /g. preferable. If the specific surface area of the activated carbon is less than 10 m 2 /g, sufficient reaction conversion and selectivity may not be obtained. Conversely, even if it exceeds 4000 m 2 /g, it is difficult to obtain a sufficient increase in reaction conversion rate and selectivity according to the specific surface area, and side reactions may easily occur. The specific surface area of activated carbon is measured by a method conforming to the BET method.
上記活性炭は、必要に応じて高温処理されていてもよい。高温処理方法は特に限定されないが、不活性ガス中で400℃~1000℃で1時間~3時間熱処理すること等が挙げられる。
不活性ガスとしては、アルゴン、ヘリウム、窒素等が挙げられる。
The activated carbon may be subjected to a high temperature treatment, if necessary. The high-temperature treatment method is not particularly limited, but includes heat treatment at 400° C. to 1000° C. for 1 hour to 3 hours in an inert gas.
Argon, helium, nitrogen, etc. are mentioned as an inert gas.
本発明に用いられる固体触媒としては、上記活性炭に、塩基性物質を接触させ、その後窒素雰囲気下で加熱処理する工程により得ることができる。 The solid catalyst used in the present invention can be obtained by a step of contacting the activated carbon with a basic substance and then heat-treating in a nitrogen atmosphere.
塩基性物質として、具体的には、炭酸アンモニウムや炭酸水素アンモニウム等の熱分解性のアミン塩や、メチルアミン、エチルアミン、プロピルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、トリメチルアミン、トリエチルアミン、メラミン等の有機アミンや、アンモニアなどの塩基性物質が挙げられる。これらの塩基性物質は、単独で用いても、メラミンとアンモニアなど2種以上を組み合わせて用いてもよい。 Specific examples of basic substances include thermally decomposable amine salts such as ammonium carbonate and ammonium hydrogen carbonate, and methylamine, ethylamine, propylamine, dimethylamine, diethylamine, dipropylamine, trimethylamine, triethylamine, melamine, and the like. Examples include organic amines and basic substances such as ammonia. These basic substances may be used alone or in combination of two or more such as melamine and ammonia.
上記塩基性物質は、溶媒に溶解させた溶液を用いて接触させてもよい。用いる溶媒として、例えば、水や、メタノール、エタノール等のアルコール類が挙げられる。これらの溶媒は、単独で用いても、2種以上組み合わせて用いてもよい。 The basic substance may be brought into contact using a solution dissolved in a solvent. Examples of the solvent to be used include water and alcohols such as methanol and ethanol. These solvents may be used alone or in combination of two or more.
上記塩基性物質の使用量は、活性炭に対して、0.01質量比~100質量比が好ましく、0.1質量比~50質量比がより好ましく、1質量比~30質量比がさらに好ましい。塩基性物質の使用量が活性炭に対して、0.01質量比より少ないと十分な反応効率が得られない場合があり、逆に100質量比を超えて使用しても、反応効率の増大は得られにくく、また副反応が起こりやすくなることがある。 The amount of the basic substance used is preferably 0.01 to 100 mass ratios, more preferably 0.1 to 50 mass ratios, and even more preferably 1 to 30 mass ratios relative to activated carbon. If the amount of the basic substance used is less than 0.01 mass ratio with respect to the activated carbon, sufficient reaction efficiency may not be obtained. It is difficult to obtain, and side reactions may occur easily.
加熱処理方法は特に限定されないが、例えば、上記塩基性物質を接触させた活性炭を、窒素雰囲気下で温度300℃~1200℃の範囲に調整し、処理時間1分間~5時間熱処理する等が挙げられる。 The heat treatment method is not particularly limited, but for example, the activated carbon contacted with the basic substance is adjusted to a temperature in the range of 300° C. to 1200° C. in a nitrogen atmosphere, and heat treated for a treatment time of 1 minute to 5 hours. be done.
本発明に用いる固体触媒は、反応装置の大きさにもよるが、通常、粉末または1mm~30mmの成形体として用いられる。 The solid catalyst used in the present invention is usually used in the form of powder or compacts of 1 mm to 30 mm, depending on the size of the reactor.
本発明の反応方法は、通常、石英、パイレックス(登録商標)ガラス、鉄、ニッケル製の反応管を用い、反応管内に固体触媒を充填し、所定の温度に加熱の後、窒素、ヘリウム、またはアルゴンで希釈した1,2-ジクロロ-1,1-ジフルオロエタンをガス状態で供給し、反応を行う。 The reaction method of the present invention usually uses a reaction tube made of quartz, Pyrex (registered trademark) glass, iron, or nickel, fills the reaction tube with a solid catalyst, heats it to a predetermined temperature, and then 1,2-dichloro-1,1-difluoroethane diluted with argon is fed in gaseous state to carry out the reaction.
本発明に適用可能な希釈された1,2-ジクロロ-1,1-ジフルオロエタンの濃度としては、5.0体積%~50.0体積%の濃度範囲である。 The concentration of diluted 1,2-dichloro-1,1-difluoroethane applicable to the present invention ranges from 5.0% by volume to 50.0% by volume.
本発明の反応温度としては、固体触媒の種類にもよるが、250℃~550℃が好ましい。反応温度が250℃より低い場合、十分な反応転化率が得られない場合がある。反応温度が550℃を超えても、反応転化率及び選択率の増大は得られにくく、また副反応が起こりやすくなるおそれがある。高い選択率を得るためには、反応温度は250℃~400℃がより好ましく、250℃~350℃がさらに好ましい。 The reaction temperature in the present invention is preferably 250° C. to 550° C., depending on the type of solid catalyst. If the reaction temperature is lower than 250°C, a sufficient reaction conversion rate may not be obtained. Even if the reaction temperature exceeds 550° C., it is difficult to obtain an increase in reaction conversion rate and selectivity, and side reactions may easily occur. In order to obtain a high selectivity, the reaction temperature is more preferably 250°C to 400°C, more preferably 250°C to 350°C.
本発明の反応時間(触媒との接触時間)は、原料の転化率と、生成物の選択率を制御するために、反応温度が高ければ反応時間を短く、反応温度が低ければ反応時間を長くすることができるが、0.05秒~20秒が好ましく、0.1秒~10秒がより好ましく、0.2秒~5秒がさらに好ましい。反応時間が0.05秒より短いと十分な反応転化率及び選択率が得られない場合があり、逆に20秒を超えても、反応転化率及び選択率の増大は得られにくく、また副反応が起こりやすくなるおそれがある。 In the present invention, the reaction time (contact time with the catalyst) is shortened when the reaction temperature is high and lengthened when the reaction temperature is low in order to control the conversion rate of the raw material and the selectivity of the product. 0.05 seconds to 20 seconds is preferred, 0.1 seconds to 10 seconds is more preferred, and 0.2 seconds to 5 seconds is even more preferred. If the reaction time is shorter than 0.05 seconds, sufficient reaction conversion and selectivity may not be obtained. A reaction may occur easily.
本発明の反応後の後処理としては、特に制約はないが、一般的には、生成物を冷却し液化の後、常圧または加圧条件下で蒸留精製することにより、精製1-クロロ-2,2-ジフルオロエチレンを得る。 The post-treatment after the reaction of the present invention is not particularly limited, but in general, the product is cooled and liquefied, and then purified by distillation under normal or pressurized conditions to obtain purified 1-chloro- 2,2-difluoroethylene is obtained.
以下、本発明を実施例により更に説明する。但し、本発明は実施例に示す態様に限定されるものではない。 EXAMPLES The present invention will be further described below with reference to examples. However, the present invention is not limited to the embodiments shown in the examples.
[触媒調製例1]
活性炭を窒素雰囲気中300℃で1時間処理した。得られた活性炭1gにメラミン(C3H6N6)0.0798g、エタノール30mL加えて1時間撹拌した後、35kPa、65℃で減圧乾燥した。この操作を1回行った。その後、窒素雰囲気下700℃で5時間加熱処理を行い、メラミン担持活性炭を得た(触媒1-1)。
上記の活性炭にメラミン、エタノール加えて撹拌した後、減圧乾燥する操作を2回繰り返した。その後、窒素雰囲気下700℃で5時間加熱処理を行い、メラミン担持活性炭を得た(触媒1-2)。
上記の活性炭にメラミン、エタノール加えて撹拌した後、減圧乾燥する操作を3回繰り返した。その後、窒素雰囲気下700℃で5時間加熱処理を行い、メラミン担持活性炭を得た(触媒1-3)。
以上の触媒1-1、触媒1-2および触媒1-3について、1-クロロ-2,2-ジフルオロエチレンの製造のための反応を行なった(実施例1-1~実施例3-3)。
[Catalyst Preparation Example 1]
The activated carbon was treated at 300° C. for 1 hour in a nitrogen atmosphere. After adding 0.0798 g of melamine (C 3 H 6 N 6 ) and 30 mL of ethanol to 1 g of the obtained activated carbon and stirring for 1 hour, the mixture was dried under reduced pressure at 35 kPa and 65°C. This operation was performed once. Thereafter, heat treatment was performed at 700° C. for 5 hours in a nitrogen atmosphere to obtain melamine-supported activated carbon (catalyst 1-1).
After adding melamine and ethanol to the above activated carbon and stirring, the operation of drying under reduced pressure was repeated twice. Thereafter, heat treatment was performed at 700° C. for 5 hours in a nitrogen atmosphere to obtain melamine-supported activated carbon (catalyst 1-2).
After adding melamine and ethanol to the above activated carbon and stirring, the operation of drying under reduced pressure was repeated three times. Thereafter, heat treatment was performed at 700° C. for 5 hours in a nitrogen atmosphere to obtain melamine-supported activated carbon (catalyst 1-3).
Reactions for producing 1-chloro-2,2-difluoroethylene were carried out using the above catalysts 1-1, 1-2 and 1-3 (Examples 1-1 to 3-3). .
[触媒調製例2]
活性炭を窒素雰囲気中300℃で1時間処理した(触媒2)。
触媒2について、以下に示す通り、そのまま1-クロロ-2,2-ジフルオロエチレンの製造のための反応を行なった(比較例1)。
[Catalyst Preparation Example 2]
Activated carbon was treated at 300° C. for 1 hour in a nitrogen atmosphere (catalyst 2).
Catalyst 2 was directly subjected to a reaction for producing 1-chloro-2,2-difluoroethylene as shown below (Comparative Example 1).
[実施例1-1~実施例1-3] 固体触媒として触媒1-1(実施例1-1)、触媒1-2(実施例1-2)または触媒1-3(実施例1-3)を用い、反応温度を300℃とした1-クロロ-2,2-ジフルオロエチレンの製造
内径6.0mm石英製反応管に、上記触媒1-1、触媒1-2または触媒1-3を0.4g充填(充填長さ8.0mm)し、窒素を12mL/min流通下、300℃で1時間乾燥の後、触媒層の温度を300℃に保持し、窒素で1,2-ジクロロ-1,1-ジフルオロエタン濃度13.7容量%に希釈したガスを反応管に13.9mL/minの速度で供給し、反応を行った。
[Examples 1-1 to 1-3] As solid catalysts, catalyst 1-1 (Example 1-1), catalyst 1-2 (Example 1-2) or catalyst 1-3 (Example 1-3 ) to produce 1-chloro-2,2-difluoroethylene at a reaction temperature of 300°C. After drying at 300° C. for 1 hour under nitrogen flow at 12 mL/min, the temperature of the catalyst layer was maintained at 300° C. and 1,2-dichloro-1 was added with nitrogen. ,1-difluoroethane concentration of 13.7% by volume was supplied to the reaction tube at a rate of 13.9 mL/min to carry out the reaction.
反応実施直後に反応管から流出するガスをガスクロマトグラフィーで分析した結果、1,2-ジクロロ-1,1-ジフルオロエタンの転化率、および目的物の1-クロロ-2,2-ジフルオロエチレンの選択率は、それぞれ、触媒1-1では30%および91%、触媒1-2では36%および96%、および触媒1-3では63%および88%であった。 As a result of gas chromatography analysis of the gas flowing out of the reaction tube immediately after the reaction, the conversion rate of 1,2-dichloro-1,1-difluoroethane and the selection of the target 1-chloro-2,2-difluoroethylene The rates were 30% and 91% for catalyst 1-1, 36% and 96% for catalyst 1-2, and 63% and 88% for catalyst 1-3, respectively.
[比較例1] 触媒2を用い、反応温度を300℃とした1-クロロ-2,2-ジフルオロエチレンの製造
固体触媒を触媒2とした以外は、実施例1と同様の方法にて反応を行った。
[Comparative Example 1] Production of 1-chloro-2,2-difluoroethylene using Catalyst 2 at a reaction temperature of 300°C The reaction was carried out in the same manner as in Example 1 except that Catalyst 2 was used as the solid catalyst. gone.
反応実施直後に反応管から流出するガスをガスクロマトグラフィーで分析した結果、1,2-ジクロロ-1,1-ジフルオロエタンの転化率は3%で、目的物の1-クロロ-2,2-ジフルオロエチレンの選択率は63%であった。 As a result of gas chromatography analysis of the gas flowing out of the reaction tube immediately after the reaction, the conversion rate of 1,2-dichloro-1,1-difluoroethane was 3%, and the desired product, 1-chloro-2,2-difluoro. Ethylene selectivity was 63%.
[比較例2] 5.0質量%塩化セシウム担持活性炭を用い、反応温度を300℃とした1-クロロ-2,2-ジフルオロエチレンの製造
固体触媒を5.0質量%塩化セシウム担持活性炭とした以外は、実施例1と同様の方法にて反応を行った。
なお、5.0質量%塩化セシウム担持活性炭は以下の通りにて製造した。
活性炭を窒素雰囲気中300℃で1時間処理した。得られた活性炭2gに塩化セシウム水溶液(CsCl 0.1g、水20ml)を加え30分撹拌後、35kPa、80℃で減圧乾燥を行った。その後、窒素雰囲気下450℃、3時間加熱処理を行い、5.0質量%塩化セシウム担持活性炭を得た。
[Comparative Example 2] Production of 1-chloro-2,2-difluoroethylene using 5.0% by mass of cesium chloride-supported activated carbon at a reaction temperature of 300° C. Using 5.0% by mass of cesium chloride-supported activated carbon as a solid catalyst Except for this, the reaction was carried out in the same manner as in Example 1.
5.0% by mass of cesium chloride-supported activated carbon was produced as follows.
The activated carbon was treated at 300° C. for 1 hour in a nitrogen atmosphere. An aqueous solution of cesium chloride (0.1 g of CsCl, 20 ml of water) was added to 2 g of the obtained activated carbon, and the mixture was stirred for 30 minutes and then dried under reduced pressure at 35 kPa and 80°C. Thereafter, heat treatment was performed at 450° C. for 3 hours in a nitrogen atmosphere to obtain 5.0 mass % cesium chloride-supported activated carbon.
反応実施直後に反応管から流出するガスをガスクロマトグラフィーで分析した結果、1,2-ジクロロ-1,1-ジフルオロエタンの転化率は22.7%で、目的物の1-クロロ-2,2-ジフルオロエチレンの選択率は95%であった。 As a result of gas chromatography analysis of the gas flowing out of the reaction tube immediately after the reaction, the conversion rate of 1,2-dichloro-1,1-difluoroethane was 22.7%, and the desired product, 1-chloro-2,2 - The selectivity for difluoroethylene was 95%.
以上の比較例1、実施例1-1~実施例1-3、および比較例2の結果を、表1に示した。また、以上の結果を、図1にも示した。 The results of Comparative Example 1, Examples 1-1 to 1-3, and Comparative Example 2 are shown in Table 1. The above results are also shown in FIG.
表1及び図1から、活性炭に塩基性物質の一つであるメラミンを担持させない場合(比較例1)に対し、一回の担持処理(実施例1-1)から、2回の担持処理(実施例1-2)、3回の担持処理(実施例1-3)と、メラミン担持量が増加するにつれて、反応温度300℃の条件では反応性を示す転化率が徐々に高くなっていることが分かる。このことは、活性炭単独でメラミンが担持されなくとも反応は進行するものの、メラミンを担持させることで反応が加速され、担持量が多くなるほど反応が加速することになることが分かる。
一方、反応の選択率は、一般に、反応が早くなるほど、つまり激しくなるほど選択率が低下するとされることが多い。上記表1の結果では、実施例1-2と実施例1-3とを対比すると、メラミン担持量が増加すると転化率、つまり反応速度は高まるものの、選択率が若干低下していた。このため、適正な反応速度を設定することで、選択率も高水準を維持できることが分かる。
From Table 1 and FIG. 1, for the case where melamine, which is one of the basic substances, is not supported on activated carbon (Comparative Example 1), from one supporting treatment (Example 1-1) to two supporting treatments ( Example 1-2), 3 times of supporting treatment (Example 1-3), and as the amount of melamine supported increased, the conversion rate indicating reactivity gradually increased under the condition of a reaction temperature of 300 ° C. I understand. This indicates that the reaction proceeds even if melamine is not supported by activated carbon alone, but the reaction is accelerated by supporting melamine, and the reaction accelerates as the supported amount increases.
On the other hand, it is generally believed that the selectivity of the reaction decreases as the reaction becomes faster, that is, as the reaction becomes more intense. According to the results in Table 1 above, comparing Examples 1-2 and 1-3, the conversion rate, that is, the reaction rate increased as the amount of melamine supported increased, but the selectivity decreased slightly. Therefore, it can be seen that a high level of selectivity can be maintained by setting an appropriate reaction rate.
また表1及び図1について、比較例2の塩化セシウムを担持した活性炭と、実施例1-1~実施例1-3のメラミンを担持した活性炭との触媒活性を比較した場合、少なくとも300℃の反応条件ではメラミンを担持した活性炭の方が転化率、すなわち反応速度が高いことが分かる。さらに具体的に両者の比較に選択率を加味した場合、選択率が95%の設定では、メラミン担持活性炭の方が塩化セシウム担持活性炭よりも反応触媒として効率的であることを意味すると解される。 Further, in Table 1 and FIG. 1, when comparing the catalytic activity of the cesium chloride-supported activated carbon of Comparative Example 2 and the melamine-supported activated carbon of Examples 1-1 to 1-3, the catalytic activity was at least 300°C. Under the reaction conditions, it can be seen that the activated carbon carrying melamine has a higher conversion rate, that is, a higher reaction rate. More specifically, when the selectivity is added to the comparison between the two, it is understood that the melamine-supported activated carbon is more efficient as a reaction catalyst than the cesium chloride-supported activated carbon when the selectivity is set to 95%. .
[実施例2-1~実施例2-3] 固体触媒として触媒1-1(実施例2-1)、触媒1-2(実施例2-2)または触媒2-3(実施例1-3)を用い、反応温度を350℃とした1-クロロ-2,2-ジフルオロエチレンの製造
触媒層の温度を350℃とした以外は、実施例1と同様の方法にて反応を行った。
[Examples 2-1 to 2-3] As solid catalysts, catalyst 1-1 (Example 2-1), catalyst 1-2 (Example 2-2) or catalyst 2-3 (Example 1-3 ) was used to produce 1-chloro-2,2-difluoroethylene at a reaction temperature of 350°C.
反応実施直後に反応管から流出するガスをガスクロマトグラフィーで分析した結果、1,2-ジクロロ-1,1-ジフルオロエタンの転化率、および目的物の1-クロロ-2,2-ジフルオロエチレンの選択率は、それぞれ、触媒2-1では36%および95%、触媒2-2では52%および97%、および触媒2-3では95%および55%であった。 As a result of gas chromatography analysis of the gas flowing out of the reaction tube immediately after the reaction, the conversion rate of 1,2-dichloro-1,1-difluoroethane and the selection of the target 1-chloro-2,2-difluoroethylene The rates were 36% and 95% for catalyst 2-1, 52% and 97% for catalyst 2-2, and 95% and 55% for catalyst 2-3, respectively.
[実施例3-1~実施例3-3] 固体触媒として触媒1-1(実施例3-1)、触媒1-2(実施例3-2)または触媒2-3(実施例3-3)を用い、反応温度を400℃とした1-クロロ-2,2-ジフルオロエチレンの製造
触媒層の温度を400℃とした以外は、実施例1と同様の方法にて反応を行った。
[Examples 3-1 to 3-3] As solid catalysts, catalyst 1-1 (Example 3-1), catalyst 1-2 (Example 3-2) or catalyst 2-3 (Example 3-3 ) was used to produce 1-chloro-2,2-difluoroethylene at a reaction temperature of 400°C.
反応実施直後に反応管から流出するガスをガスクロマトグラフィーで分析した結果、1,2-ジクロロ-1,1-ジフルオロエタンの転化率、および目的物の1-クロロ-2,2-ジフルオロエチレンの選択率は、それぞれ、触媒3-1では80%および84%、触媒3-2では88%および92%、および触媒3-3では98%および35%であった。 As a result of gas chromatography analysis of the gas flowing out of the reaction tube immediately after the reaction, the conversion rate of 1,2-dichloro-1,1-difluoroethane and the selection of the target 1-chloro-2,2-difluoroethylene The rates were 80% and 84% for catalyst 3-1, 88% and 92% for catalyst 3-2, and 98% and 35% for catalyst 3-3, respectively.
以上の実施例1-1~実施例1-3、実施例2-1~実施例2-3、および実施例3-1~実施例3-3の結果を、表2に示した。実施例1-1~実施例1-3の結果は表1と同じである。
表2から、活性炭に塩基性物質の一つであるメラミンを一回の担持処理(実施例1-1)から、2回の担持処理(実施例1-2)、3回の担持処理(実施例1-3)と、メラミン担持量が増加するにつれて、反応温度300℃、350℃および400℃のいずれの条件でも、反応性を示す転化率が徐々に高くなっていることが分かる。このことは、活性炭に担持されるメラミンの量が増えると共に反応はより速く進行することが分かる。
一方、反応の選択率は、一般に、反応が早くなるほど、つまり激しくなるほど選択率が低下するとされることが多い。上記表2の結果では、反応温度が300℃から400℃へと高温になれば反応性(転化率)は高くなるものの、選択率はその逆に、反応温度が300℃から400℃へと高温になれば低下していた。
これらのことから、本発明に係る反応条件は単に反応性が高いことだけではなく、選択率が高レベルに維持されている条件で行うことが実用的には重要である。このため、反応温度を比較的低めとした条件であっても反応性(転化率)が高く、かつその状態を維持できることが効率的な反応として実用的なものとなる。
From Table 2, melamine, which is one of the basic substances, was supported on activated carbon once (Example 1-1), twice (Example 1-2), and three times (implementation). Example 1-3) shows that as the amount of melamine supported increases, the conversion rate, which indicates reactivity, gradually increases under all conditions of reaction temperatures of 300°C, 350°C and 400°C. This indicates that the reaction proceeds faster as the amount of melamine supported on the activated carbon increases.
On the other hand, it is generally believed that the selectivity of the reaction decreases as the reaction becomes faster, that is, as the reaction becomes more intense. According to the results in Table 2 above, the reactivity (conversion rate) increases as the reaction temperature increases from 300°C to 400°C, but the selectivity increases as the reaction temperature increases from 300°C to 400°C. It was declining when it became
From these facts, it is practically important that the reaction conditions according to the present invention are not only high in reactivity but also under conditions in which the selectivity is maintained at a high level. Therefore, high reactivity (conversion rate) even under conditions of relatively low reaction temperature and the ability to maintain that state are practical as efficient reactions.
[実施例4] 固体触媒として、活性炭にメラミン、エタノール加えて撹拌した後、減圧乾燥する操作を3回繰り返した触媒1-3を用い、反応温度を280℃とした1-クロロ-2,2-ジフルオロエチレンの製造 [Example 4] 1-Chloro-2,2 was used as a solid catalyst, and catalyst 1-3 was prepared by adding melamine and ethanol to activated carbon, stirring, and then drying under reduced pressure three times. - manufacture of difluoroethylene
触媒層の温度を280℃とした以外は、実施例1と同様の方法にて反応を行った。 A reaction was carried out in the same manner as in Example 1, except that the temperature of the catalyst layer was 280°C.
反応実施直後に反応管から流出するガスをガスクロマトグラフィーで分析した結果、1,2-ジクロロ-1,1-ジフルオロエタンの転化率は35%で、目的物の1-クロロ-2,2-ジフルオロエチレンの選択率は80%であった。 As a result of gas chromatography analysis of the gas flowing out of the reaction tube immediately after the reaction, the conversion rate of 1,2-dichloro-1,1-difluoroethane was 35%, and the desired product, 1-chloro-2,2-difluoro Ethylene selectivity was 80%.
さらに反応を継続実施360分後に反応管から流出するガスをガスクロマトグラフィーで分析した結果、1,2-ジクロロ-1,1-ジフルオロエタンの転化率は35%で、目的物の1-クロロ-2,2-ジフルオロエチレンの選択率は80%であった。 After 360 minutes of continuing the reaction, the gas flowing out of the reaction tube was analyzed by gas chromatography. , 2-difluoroethylene selectivity was 80%.
[比較例3] 5.0質量%塩化セシウム担持活性炭を用い、反応温度を350℃とした1-クロロ-2,2-ジフルオロエチレンの製造 [Comparative Example 3] Production of 1-chloro-2,2-difluoroethylene using 5.0 mass% cesium chloride-supported activated carbon at a reaction temperature of 350°C
固体触媒を5.0質量%塩化セシウム担持活性炭とし、反応温度を350℃とした以外は、実施例1と同様の方法にて反応を行った。 A reaction was carried out in the same manner as in Example 1 except that the solid catalyst was 5.0 mass % cesium chloride-supported activated carbon and the reaction temperature was 350°C.
反応実施直後に反応管から流出するガスをガスクロマトグラフィーで分析した結果、1,2-ジクロロ-1,1-ジフルオロエタンの転化率は38%で、目的物の1-クロロ-2,2-ジフルオロエチレンの選択率は98%であった。 As a result of gas chromatography analysis of the gas flowing out of the reaction tube immediately after the reaction, the conversion rate of 1,2-dichloro-1,1-difluoroethane was 38%, and the desired product, 1-chloro-2,2-difluoro Ethylene selectivity was 98%.
さらに反応を継続実施360分後に反応管から流出するガスをガスクロマトグラフィーで分析した結果、1,2-ジクロロ-1,1-ジフルオロエタンの転化率は30%で、目的物の1-クロロ-2,2-ジフルオロエチレンの選択率は98%であった。 After 360 minutes of continuing the reaction, the gas flowing out of the reaction tube was analyzed by gas chromatography. , 2-difluoroethylene selectivity was 98%.
以上の結果を表3に示した。 Table 3 shows the above results.
表3では、活性炭に塩基性物質の一つであるメラミンを3回の担持処理(実施例4)と塩化セシウムを担持した活性炭(比較例3)とを対比している。但し、メラミン担持活性炭と塩化セシウム担持活性炭との反応性(転化率)を同程度と設定するため、反応温度を前者では280℃、後者を350℃としている。
この条件で反応を継続した場合、表3の結果から分かるように、反応開始時では転化率と選択率はほぼ同程度であった。その後の、反応継続360分後では、メラミンを3回の担持処理(実施例4)では転化率と選択率のいずれも変化なく維持されていた。これに対し塩化セシウムを担持した活性炭(比較例3)では転化率が38%から30%へと低下していた。この両者の相違としては種々考えられ、反応温度が高温度側の後者では触媒としての機能が劣化しやすいことが考えられる。あるいは反応中に触媒として機能する塩化セシウムが活性炭から抜け出てしまうことも考えられる。これらの原因は不明なものの、少なくとも、メラミン担持活性炭による触媒機能は、塩化セシウム担持活性炭による触媒機能よりも安定して機能を発揮できることは明らかであり、実用的な触媒である。
Table 3 compares the treatment of supporting melamine, which is one of the basic substances, on activated carbon three times (Example 4) and the activated carbon supporting cesium chloride (Comparative Example 3). However, in order to set the reactivity (conversion rate) of the melamine-supported activated carbon and the cesium chloride-supported activated carbon to be about the same, the reaction temperature was set to 280° C. for the former and 350° C. for the latter.
When the reaction was continued under these conditions, as can be seen from the results in Table 3, the conversion rate and the selectivity were almost the same at the start of the reaction. After 360 minutes of continuous reaction, both the conversion rate and the selectivity were maintained without change in the melamine loading treatment (Example 4) three times. On the other hand, with activated carbon supporting cesium chloride (Comparative Example 3), the conversion rate decreased from 38% to 30%. There are various possible differences between the two, and it is conceivable that the latter, where the reaction temperature is on the high temperature side, tends to deteriorate its function as a catalyst. Alternatively, it is conceivable that cesium chloride, which functions as a catalyst during the reaction, escapes from the activated carbon. Although the cause of these problems is unknown, at least it is clear that the catalytic function of melamine-supported activated carbon can exhibit its catalytic function more stably than that of cesium chloride-supported activated carbon, and it is a practical catalyst.
本発明により、比較的低い温度条件において反応が進行し、且つ、長時間反応を継続実施した場合においても反応転化率及び選択率の低下が極めて少ない1-クロロ-2,2-ジフルオロエチレンの工業的な製造が可能となった。本発明の方法で得られる1-クロロ-2,2-ジフルオロエチレンは各種、医農薬、電子材料の合成原料として利用可能である。 According to the present invention, the reaction proceeds under relatively low temperature conditions, and even when the reaction is continued for a long time, the decrease in reaction conversion rate and selectivity is extremely small. production became possible. 1-Chloro-2,2-difluoroethylene obtained by the method of the present invention can be used as a raw material for synthesizing various medicines, agricultural chemicals, and electronic materials.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021126382A JP7403504B2 (en) | 2021-08-02 | 2021-08-02 | Method for producing 1-chloro-2,2-difluoroethylene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021126382A JP7403504B2 (en) | 2021-08-02 | 2021-08-02 | Method for producing 1-chloro-2,2-difluoroethylene |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023021492A true JP2023021492A (en) | 2023-02-14 |
JP7403504B2 JP7403504B2 (en) | 2023-12-22 |
Family
ID=85201263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021126382A Active JP7403504B2 (en) | 2021-08-02 | 2021-08-02 | Method for producing 1-chloro-2,2-difluoroethylene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7403504B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2709181A (en) * | 1952-04-08 | 1955-05-24 | Goodrich Co B F | Process for preparing chlorofluoroethylenes |
JPS5559118A (en) * | 1978-10-27 | 1980-05-02 | Bayer Ag | Manufacture of 1*11difluoroo22chloroethylene |
JP2006193437A (en) * | 2005-01-11 | 2006-07-27 | Central Glass Co Ltd | Method for producing 1,1,3,3,3-pentafluoropropene |
JP2020125271A (en) * | 2019-02-06 | 2020-08-20 | 学校法人 関西大学 | Method for producing 1-chloro-2,2-difluoroethylene |
JP2020125272A (en) * | 2019-02-06 | 2020-08-20 | 学校法人 関西大学 | Method for producing 1-chloro-2,2-difluoroethylene |
-
2021
- 2021-08-02 JP JP2021126382A patent/JP7403504B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2709181A (en) * | 1952-04-08 | 1955-05-24 | Goodrich Co B F | Process for preparing chlorofluoroethylenes |
JPS5559118A (en) * | 1978-10-27 | 1980-05-02 | Bayer Ag | Manufacture of 1*11difluoroo22chloroethylene |
JP2006193437A (en) * | 2005-01-11 | 2006-07-27 | Central Glass Co Ltd | Method for producing 1,1,3,3,3-pentafluoropropene |
JP2020125271A (en) * | 2019-02-06 | 2020-08-20 | 学校法人 関西大学 | Method for producing 1-chloro-2,2-difluoroethylene |
JP2020125272A (en) * | 2019-02-06 | 2020-08-20 | 学校法人 関西大学 | Method for producing 1-chloro-2,2-difluoroethylene |
Also Published As
Publication number | Publication date |
---|---|
JP7403504B2 (en) | 2023-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3792237B1 (en) | Method for producing fluoroolefin | |
US4600571A (en) | Catalysts and their use in ammonia production | |
US4873381A (en) | Hydrodehalogenation of CF3 CHClF in the presence of supported Pd | |
CA2823676A1 (en) | Hydrogenation catalyst comprising nickel on carbon | |
US2328275A (en) | Catalytic process for purifying ethylene | |
US5399549A (en) | Process for the manufacture of pentafluoroethane | |
US5345014A (en) | Process for preparing pentafluoroethane by dismutation of tetrafluorochloroethane | |
CN101028990B (en) | Method for producing 1,1,1-trifluoro-ethane | |
US3865885A (en) | Catalytic chlorofluorination of isopropyl fluoride to 1,1,2-trichlorotrifluoropropene-1 | |
JPH0120134B2 (en) | ||
JP7403504B2 (en) | Method for producing 1-chloro-2,2-difluoroethylene | |
WO2022191185A1 (en) | Method for preparing 1,1,2-trifluoroethane | |
JP7219625B2 (en) | Method for producing 1-chloro-2,2-difluoroethylene | |
JPWO2019017399A1 (en) | Ammonia synthesis catalyst | |
CN115093306B (en) | Method for producing 2-chloro-3, 3-trifluoropropene with prolonged catalyst life | |
US3278575A (en) | Method for the manufacture of aliphatic nitriles | |
EP0133778B1 (en) | Methanol conversion process | |
JP3788172B2 (en) | Method for producing ammonia synthesis catalyst and method for ammonia synthesis | |
US6963016B1 (en) | Process for the synthesis of highly active modified carbon supported palladium catalyst | |
CN109331864B (en) | Hydrogenation coupling catalyst, preparation method thereof and method for preparing 1,1,1,4,4, 4-hexafluoro-2-butene | |
JP7252771B2 (en) | Method for producing 1-chloro-2,2-difluoroethylene | |
CN115403443B (en) | Preparation method of fluorine-containing olefin | |
US2805244A (en) | Production of acrylonitrile | |
CN117624110B (en) | Synthetic method of fluoroethylene carbonate | |
JPS5892630A (en) | Preparation of methanol and formaldehyde by partial oxidation of methane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220601 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230712 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7403504 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |