JP2023007221A - High-precision gear processing method - Google Patents
High-precision gear processing method Download PDFInfo
- Publication number
- JP2023007221A JP2023007221A JP2021110330A JP2021110330A JP2023007221A JP 2023007221 A JP2023007221 A JP 2023007221A JP 2021110330 A JP2021110330 A JP 2021110330A JP 2021110330 A JP2021110330 A JP 2021110330A JP 2023007221 A JP2023007221 A JP 2023007221A
- Authority
- JP
- Japan
- Prior art keywords
- gear
- tooth
- blasting
- precision
- elastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003672 processing method Methods 0.000 title abstract description 10
- 239000006061 abrasive grain Substances 0.000 claims abstract description 55
- 238000012545 processing Methods 0.000 claims abstract description 27
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 238000005498 polishing Methods 0.000 claims abstract description 21
- 238000005520 cutting process Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 80
- 238000005422 blasting Methods 0.000 claims description 67
- 238000003754 machining Methods 0.000 claims description 30
- 239000003082 abrasive agent Substances 0.000 claims description 12
- 230000001186 cumulative effect Effects 0.000 claims description 9
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 230000001154 acute effect Effects 0.000 claims description 5
- 230000001788 irregular Effects 0.000 claims description 2
- 230000003746 surface roughness Effects 0.000 abstract description 16
- 239000000463 material Substances 0.000 abstract description 13
- 230000007423 decrease Effects 0.000 abstract description 3
- 238000005461 lubrication Methods 0.000 abstract description 2
- 230000001050 lubricating effect Effects 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000005480 shot peening Methods 0.000 description 7
- 238000007514 turning Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000005255 carburizing Methods 0.000 description 5
- 238000007517 polishing process Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000013013 elastic material Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 241001312219 Amorphophallus konjac Species 0.000 description 1
- 235000001206 Amorphophallus rivieri Nutrition 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 229920002752 Konjac Polymers 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005111 flow chemistry technique Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 235000010485 konjac Nutrition 0.000 description 1
- 239000000252 konjac Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 239000003190 viscoelastic substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/14—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass gear parts, e.g. gear wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23F—MAKING GEARS OR TOOTHED RACKS
- B23F19/00—Finishing gear teeth by other tools than those used for manufacturing gear teeth
- B23F19/02—Lapping gear teeth
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gears, Cams (AREA)
- Gear Processing (AREA)
- Turning (AREA)
Abstract
Description
本発明は高精度歯車の加工方法に関し,より詳細には,高い加工精度で仕上げられたものでありながら,歯面に油溜まりとなる凹部と,頂部が平坦化された凸部から成るプラトー構造の表面を有する歯車を得ることを可能とした,高精度歯車の加工方法に関する。 The present invention relates to a method for machining high-precision gears, and more specifically, a plateau structure that is finished with high machining accuracy and consists of concave portions that serve as oil reservoirs on the tooth surface and convex portions with flattened tops. It relates to a method of machining a high-precision gear that makes it possible to obtain a gear with a surface of
近年,電気自動車やロボット産業など多くの先端産業の分野において,歯車に高い静粛性が求められるようになっており,歯車の加工には以前にも増して高い加工精度が要求されている。 In recent years, in many cutting-edge industrial fields such as electric vehicles and robotics, gears have come to be required to have a high degree of quietness.
このような高精度化の要求に従い,歯車の加工方法についての見直しが行われている。 In response to such demands for higher precision, gear machining methods are being reviewed.
一例として従来の歯車加工では,図5(A)に示すように素材を旋削後,ボブ盤などで歯切加工された歯車は,必要に応じて熱処理前にシェービング加工等により歯面形状の修正が行われた後,熱処理され,その後は,仕上げ加工としてハードターニング加工等が行われるのみで,熱処理後の歯面に対する更なる加工が行われないのが一般的である。 As an example, in conventional gear processing, as shown in Fig. 5(A), after turning the material, the gear is gear-cut with a bob machine or the like. After the heat treatment, heat treatment is performed, and after that, only hard turning is performed as finish machining, and it is general that no further machining is performed on the tooth flank after heat treatment.
これに対し,高精度化の要求に応じた近年の歯車加工では,図5(B)に示すように,熱処理後,ハードターニング加工に続き,更に歯面研削(図中の「歯研」)やギヤホーニング(図中の「ホーニング」)等の歯面に対する加工が実施され,歯面の粗さや寸法精度を更に高精度に加工する工程が実施されるようになっている(非特許文献1参照)。
On the other hand, in recent years, in gear processing to meet the demand for higher precision, as shown in Fig. 5 (B), after heat treatment, hard turning is performed, followed by tooth surface grinding ("Gear grinding" in the figure). and gear honing ("honing" in the figure), etc., are performed on the tooth surface, and the process of processing the roughness and dimensional accuracy of the tooth surface with higher precision is now being implemented (Non-Patent
一方,歯車の伝達効率は組み合わさる歯面の潤滑性に左右され,このような潤滑性を向上させるために,歯面をプラトー構造の表面に加工することが有効であることが古くから知られている。 On the other hand, the transmission efficiency of gears depends on the lubricity of the gear tooth flanks, and it has long been known that it is effective to process the tooth flanks into a plateau structure surface in order to improve such lubricity. ing.
ここでプラトー構造の表面とは,一例として図6(C)に示すように頂部が平坦に均されて相手歯面との接触抵抗を減らした凸部と,油溜まりとして機能する凹部から成る凹凸形状を有する表面であり,このようなプラトー構造の表面は,摺動面の構造として工業的に重要であることから,その評価法がJIS B 0671:2002に規定されている。 Here, the surface of the plateau structure is, for example, as shown in FIG. It is a surface having a shape, and the surface of such a plateau structure is industrially important as the structure of the sliding surface.
このようなプラトー構造の表面を歯車の歯面に形成する方法として,後掲の特許文献1は,ブラスト加工により形成する方法を開示する。
As a method of forming such a plateau structure surface on the tooth flank of a gear,
具体的には,特許文献1では,このようなプラトー構造の表面を形成する方法として,図7(A)~(C)に示す,下記の3つの方法を提案する。
Specifically,
第1の方法は,「歯切り加工」が行われた歯車に対し,鋼球等からなるショットを投射材として投射する「ショットピーニング加工」を実施してディンプルを形成した後に,熱処理として「浸炭処理」を行い,その後,砥粒と粘性流体の混合物の流れ中に歯車を置いて研磨する「砥粒流動加工」によって,ショットピーニングの際にディンプルとディンプルの間に生じた尖端部を除去することでプラトー面を形成する〔図7(A)〕。 The first method is to perform "shot peening" to form dimples by projecting shots made of steel balls etc. as a projection material to the gear that has undergone "tooth cutting", and then perform "carburizing" as a heat treatment. After that, remove the sharp points generated between the dimples during shot peening by "abrasive flow processing" in which the gear is placed in the flow of the mixture of abrasive grains and viscous fluid and polished. Thus, a plateau surface is formed [FIG. 7(A)].
第2の方法は,「歯切り加工」が行われた歯車に対し,弾性と粘着性を有するコアの周りに砥粒を付着させた投射材を投射する「鏡面ショットピーニング加工」を実施してディンプルを形成した後,「浸炭処理」を行い,その後,再度「鏡面ショットピーニング加工」を実施して,ディンプルとディンプルの間に生じた尖端部を研磨により除去することでプラトー面を形成する〔図7(B)〕。 The second method is to perform "mirror surface shot peening", which shoots a blast material with abrasive grains attached around the elastic and sticky core to the gear that has undergone "tooth cutting". After forming the dimples, "carburizing treatment" is performed, and then "mirror shot peening" is performed again, and the sharp edges generated between the dimples are removed by polishing to form a plateau surface [ FIG. 7(B)].
第3の方法は,「歯切り加工」が行われた歯車に対し,前述した「ショットピーニング加工」を実施してディンプルを形成した後,「浸炭処理」を行い,その後,前述した「鏡面ショットピーニング加工」を実施して,ショットピーニング加工の際にディンプルとディンプルの間に生じた尖端部を研磨して除去することでプラトー面を形成する〔図7(C)〕。 The third method is to apply the above-mentioned "shot peening" to the gear that has been subjected to "tooth cutting" to form dimples, then perform the "carburizing treatment", and then perform the above-mentioned "mirror surface shot." A plateau surface is formed by polishing and removing sharp edges generated between dimples during the shot peening process [Fig. 7(C)].
前述したように,静粛性の要求から歯車を高精度に加工することが要求される一方,歯車の潤滑には,歯面をプラトー構造の表面とすることが有効であり,高精度の加工状態を維持しながら,歯車の歯面にプラトー構造の表面を形成することができれば,静粛性と潤滑性が両立された歯車を得ることができる。 As mentioned above, it is necessary to machine gears with high precision due to the need for quietness. If a plateau structure surface can be formed on the tooth flank of the gear while maintaining
しかし,歯車の歯面を前述したプラトー構造の表面とする加工は,油溜まりとなる凹部を形成して表面を凹凸形状に加工するものであり,このような加工を行えば,歯車の歯面の表面粗さが増大し,また,寸法や形状の変化による加工精度の低下が起こる。 However, processing the tooth flank of the gear to form the surface of the plateau structure described above involves forming recesses that serve as oil reservoirs and processing the surface into an uneven shape. The surface roughness increases, and the machining accuracy decreases due to changes in dimensions and shape.
特に,前掲の特許文献1に記載の方法では,ボブ盤などによって歯切り加工が終了した後の,鋭利な山と谷が形成された歯面〔図6(A)〕に対し,鋼球等から成るショットを衝突させる等して谷の部分を広げることにより開口幅の広いディンプルを形成し〔図6(B)〕,その後,表面研磨によって尖端部を除去することで歯面を図6(C)に示すようなプラトー構造の表面としている(特許文献1の[0019])。
In particular, in the method described in
その結果,特許文献1に記載の方法でプラトー構造の表面を形成する場合,図6(C)に示すように比較的開口幅の広いディンプルが形成される結果,最終的に得られる歯面の表面粗さが大きなものとなると共に,寸法精度は低いものとなり,近年の高精度化の要求には対応し得ない。
As a result, when forming the surface of the plateau structure by the method described in
また,特許文献1に記載の方法では,図6(A),(B)に示すように,鋼球等から成るショットの衝突によって,一部の凸部を押し潰すなどして凹凸の谷の部分(凹部)を大きく拡大してディンプルを形成するものであることから,ディンプルの形成は,歯車の歯面の形状を大きく変化させる。
Further, in the method described in
これらの点から,特許文献1に記載の方法ではディンプルの形成を,熱処理(表面硬化処理工程)の前に行うことを必須(特許文献1の請求項5他)としたものと考えられる。
From these points, it is considered that the method described in
すなわち,特許文献1で行っているように大きな塑性変形を伴うディンプルの形成を行うためには,熱処理前の,歯車の母材硬度が低い状態(従って塑性変形し易い状態)で行う必要があると共に,歯車の加工精度を得るためには,ディンプルの形成によって大きく変形した歯面の形状や寸法の変化を,熱処理後に行われるハードターニング〔図5(A),(B)参照〕等で調整する必要がある。
That is, in order to form dimples accompanied by large plastic deformation as in
このように,特許文献1に記載の方法では,熱処理前のディンプル形成を必須とするため,必ず歯車の製造工程中に組み込んで実施する必要があり,熱処理と仕上げ加工が既に完了している歯車,例えば,歯車として完成し,一旦,部品等として自動車等に組み込まれた歯車を処理対象とし,この歯車の歯面に事後的にプラトー構造の表面を形成することはできない。
As described above, the method described in
このように,特許文献1に記載されている加工方法では,比較的広い開口幅を有するディンプルを形成するものであるため,歯車の歯面にプラトー構造の表面を形成することができたとしても,得られた歯車の歯面は,表面粗さが大きく,かつ,加工精度の低いものとなる。
In this way, the processing method described in
また,特許文献1に記載された加工方法では,熱処理前にディンプルを形成することを必須とすると共に,ディンプル形成により歯面を大きく変形させてしまうことから,熱処理及び高精度の仕上げ加工が行われた歯車,例えば自動車等に一旦部品として組み込まれた歯車に対し,事後的にプラトー構造の潤滑面を形成することもできない。
In addition, in the processing method described in
ここで,ブラスト加工により油溜まりとなる凹部を形成する場合,前掲の特許文献1のように比較的開口幅の狭い半円弧状の凹部である「ディンプル」を形成することが一般的に行われてきた。
Here, in the case of forming recesses that will become oil reservoirs by blasting, it is common practice to form "dimples", which are semicircular recesses with relatively narrow opening widths, as in
しかしながら,本発明の発明者らは,この点を再度見直し,このような「ディンプル」に比較して開口幅の狭い凹部を形成した場合であっても,凹部の深さが確保されていれば,油溜まりとしての機能を発揮し得るはずであり,必ずしも特許文献1のように開口部の幅の広いディンプルを形成する必要はないのではないかと推察した。さらに,深さが確保された凹部は必要以上に高密度に設ける必要はないと推察した。
However, the inventors of the present invention reviewed this point again, and even if a recess with a narrow opening width compared to such a "dimple" is formed, as long as the depth of the recess is secured, , it should be possible to exhibit the function as an oil reservoir, and it was surmised that it is not necessarily necessary to form dimples with wide openings as in
そして,このような開口幅の狭く深い凹部を低密度に形成することにより歯面に潤滑性を付与することができるのであれば,歯車の歯面に対しより少ない変形量でプラトー構造の表面を形成することができ,前掲の特許文献1のように開口幅の広いディンプルを形成する場合に比較して,表面粗さの増大や,寸法精度の低下を抑制しつつ,プラトー構造の表面の形成を行うことができるはずである。
If it is possible to impart lubricity to the tooth flank by forming such narrow and deep recesses at a low density, the surface of the plateau structure can be formed with a smaller amount of deformation on the tooth flank of the gear. Formation of a surface with a plateau structure while suppressing an increase in surface roughness and a decrease in dimensional accuracy compared to the case of forming dimples with a wide opening width as in the above-mentioned
その一方で,熱処理によって硬度が増した歯車に対し,開口幅が狭い凹部を形成するために,開口幅に見合った微小な粒径の砥粒を単純に噴射して衝突させただけでは,砥粒1粒の質量が小さく,衝突エネルギが小さいために,衝突部分に開口幅の狭い凹部を形成できたとしても,深さが深い凹部を形成することができず,油溜まりとしての機能が得られないおそれがあり,このような問題を解消するための工夫が必要となる。 On the other hand, in order to form recesses with narrow opening widths on gears that have been hardened by heat treatment, simply injecting and colliding abrasive grains with a fine particle size corresponding to the opening width is not enough. Since the mass of each grain is small and the collision energy is small, even if a narrow recess can be formed in the collision part, a deep recess cannot be formed, and the function as an oil pool is obtained. Therefore, it is necessary to devise ways to solve such problems.
この問題を解決する一つの方法として,砥粒を高速で噴射してその衝突エネルギを大きくする方法があるが,そのような能力は全てのブラスト噴射装置に備わっているわけではない。 One method for solving this problem is to inject abrasive grains at a high speed to increase the impact energy, but not all blasting devices have such a capability.
また,開口幅に見合った微小な粒径の砥粒を高速で噴射できたとしても,それが万遍なく歯面に当たると,その一面に渡って深い凹部が隣り合うように高密度で形成されると同時に,凹部と凹部の間にはその深さに対応した高い尖端部が形成される〔図2(B’)参照〕。 In addition, even if fine abrasive grains corresponding to the opening width can be jetted at high speed, if the abrasive grains hit the tooth flank evenly, deep recesses are formed at high density so that they are adjacent to each other over the entire surface. At the same time, a high point corresponding to the depth is formed between the recesses [see FIG. 2(B')].
その結果,その後の工程において,高密度に形成された尖端部を研磨,除去してできるプラトー構造の歯面は,研磨,除去される体積が大きくなることから,寸法や形状が大きく変化することになる〔図2(C’)参照〕。 As a result, in subsequent processes, the tooth flank with a plateau structure, which is created by grinding and removing the high-density cusps, is subject to large changes in size and shape due to the increased volume of grinding and removal. becomes [see FIG. 2(C')].
しかし,油溜まりとなる深い凹部は,隣り合うほど高密度に設ける必要なく,適当な間隔をおいて低密度に設ければ十分であり,そうすれば,プラトー構造形成後の寸法および形状変化を小さく抑えられる。即ち,深い凹部を低密度に形成する工夫も必要となる。 However, it is not necessary to provide the deep recesses that become oil reservoirs adjacent to each other at a high density. can be kept small. In other words, it is necessary to devise ways to form deep concave portions at a low density.
本発明は,このような発明者らの発想の下に成されたもので,高精度に仕上げられた歯車の高精度の加工状態を維持しつつ,歯面に比較的開口幅が狭く深さの深い凹部が低密度に形成されたプラトー構造の潤滑面を形成することのできる,高精度歯車の加工方法を提供することを目的とする。 The present invention was made based on the idea of the inventors. The present invention maintains the high-precision machined state of the gear finished with high precision, and has a relatively narrow opening width and depth on the tooth flank. It is an object of the present invention to provide a machining method for a high-precision gear capable of forming a lubricating surface having a plateau structure in which deep concave portions are formed at a low density.
以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本発明の技術的範囲の解釈に制限的に用いられるものではない。 Means for solving the problems are described below together with the symbols used in the mode for carrying out the invention. This code is for clarifying the correspondence between the description of the claims and the description of the mode for carrying out the invention, and needless to say, it is used restrictively to interpret the technical scope of the present invention. not a thing
上記目的を達成するための,本発明の高精度歯車の加工方法は,
ボブ盤等による歯切,及び浸炭処理等の熱処理を行った後,更に歯面研磨やギヤホーニング等の仕上げ加工を行って,JIS B 1702-1:1998で規定するN5級の精度等級以上の精度で,かつ,表面の算術平均粗さRaが0.2μm以下となるように高精度に仕上げられた歯車を処理対象とし,
角を有する不定形な形状の,例えばセラミックスやダイヤモンドなどの硬質砥粒を弾性体の表面に付着させ,又は弾性体に練り込んでなる弾性研磨材を,前記歯車の歯面に対し略垂直に噴射して,前記歯面に微細な凹凸を形成するブラスト処理(第1ブラスト処理)と,
前記ブラスト処理(第1ブラスト処理)後の前記歯面を研磨して,前記凹凸の凸部の頂部を除去して平坦化する研磨処理を行い,
前記歯面に,前記ブラスト処理前に形成されていた凹凸の凹部に比較して開口幅が狭く,かつ,深さが深い凹部であるガウジと,前記ガウジ間に形成された,上端が平坦化された凸部を有する,プラトー構造の表面を形成すると共に,
前記ブラスト処理(第1ブラスト処理)前の前記歯車の歯面に対し,前記研磨処理後の前記歯車の歯面の算術平均粗さRa,単一ピッチ誤差fpt,累積ピッチ誤差Fp,全歯形誤差Fα,及び全歯すじ誤差Fβの上昇をいずれも30%以下に抑えたことを特徴とする(請求項1)。
In order to achieve the above object, the method of machining a high-precision gear according to the present invention comprises:
After gear cutting with a bobbing machine and heat treatment such as carburizing, finish processing such as tooth surface polishing and gear honing is performed to achieve an accuracy grade of N5 or higher specified in JIS B 1702-1:1998. Gears that have been finished with precision and have a surface arithmetic mean roughness Ra of 0.2 μm or less are targeted for processing,
An irregular shape with corners, for example, hard abrasive grains such as ceramics and diamonds are attached to the surface of the elastic body, or an elastic abrasive material that is kneaded into the elastic body is applied almost perpendicularly to the tooth surface of the gear. A blasting treatment (first blasting treatment) for forming fine irregularities on the tooth surface by jetting;
polishing the tooth surface after the blasting treatment (first blasting treatment) to remove the tops of the convexes of the unevenness and flatten it;
A gouge, which is a concave portion having a narrower opening width and a deeper depth than the uneven concave portion formed before the blasting treatment on the tooth surface, and a flattened upper end formed between the gouge. forming a plateau-structured surface with ridges;
Arithmetic mean roughness Ra, single pitch error fpt, cumulative pitch error Fp, total tooth profile error It is characterized in that increases in both Fα and total tooth trace error Fβ are suppressed to 30% or less (claim 1).
ここで,
算術平均粗さRaとは,粗さ曲線からその平均線の方向に基準長さ(l)だけ抜き取り,この抜き取り部分の平均線から測定曲線までの偏差の絶対値を合計し,更に平均した値であり,JIS B 0601:2001に規定されている。
here,
Arithmetic mean roughness Ra is extracted from the roughness curve by the reference length (l) in the direction of the average line, summed the absolute value of the deviation from the average line of this extracted part to the measurement curve, and averaged and specified in JIS B 0601:2001.
また,JIS B 1702-1:1998における単一ピッチ誤差fpt,累積ピッチ誤差Fp,全歯形誤差Fα,及び全歯すじ誤差Fβとは,それぞれ,以下の通りである。
単一ピッチ誤差fpt:隣り合った同じ側の歯面のピッチ円上における実際のピッチと,理論ピッチとの差。
累積ピッチ誤差Fp:歯車全歯面領域での最大累積ピッチ誤差であり,累積ピッチ誤差曲線の全振幅で表現される。
全歯形誤差Fα:決められた歯形検査範囲で,実歯形を挟む設計歯形線図間の距離。
全歯すじ誤差Fβ:決められた歯すじ検査範囲で,実歯すじを挟む二つの設計歯すじ間の距離。
Further, the single pitch error fpt, cumulative pitch error Fp, total tooth profile error Fα, and total tooth trace error Fβ in JIS B 1702-1:1998 are as follows.
Single pitch error fpt: The difference between the actual pitch and the theoretical pitch on the pitch circle of adjacent tooth flanks on the same side.
Cumulative pitch error Fp: The maximum cumulative pitch error in the entire tooth flank area of the gear, expressed by the total amplitude of the cumulative pitch error curve.
Total tooth profile error Fα: Distance between design tooth profile diagrams sandwiching the actual tooth profile within the determined tooth profile inspection range.
Total tooth trace error Fβ: The distance between two design tooth traces sandwiching the actual tooth trace within the determined tooth trace inspection range.
前述のブラスト処理(第1ブラスト処理)は,前記弾性体のメディアン径が0.1~2.0mmであり,前記砥粒のメディアン径が10~500μmである弾性研磨材を使用して,噴射圧力0.2~0.5MPaで行うことができる(請求項2)。 In the blasting treatment (first blasting treatment) described above, the median diameter of the elastic body is 0.1 to 2.0 mm, and the median diameter of the abrasive grains is 10 to 500 μm. It can be performed at a pressure of 0.2 to 0.5 MPa (claim 2).
また,前記研磨処理を,砥粒を弾性体の表面に付着させ,又は弾性体に練り込んでなる弾性研磨材を,前記歯面に対し鋭角に噴射する第2ブラスト処理によって行うものとしても良い(請求項3)。 Further, the polishing treatment may be performed by a second blasting treatment in which abrasive grains are adhered to the surface of an elastic body or an elastic abrasive material kneaded into an elastic body is jetted at an acute angle to the tooth surface. (Claim 3).
この場合,前記第2ブラスト処理を,前記弾性体のメディアン径が0.1~2.0mmであり,前記砥粒のメディアン径が20μm以下である弾性研磨材を使用して,噴射圧力0.1~0.3MPaで行うことができる(請求項4)。 In this case, the second blasting treatment is carried out using an elastic abrasive having a median diameter of 0.1 to 2.0 mm for the elastic body and a median diameter of 20 μm or less for the abrasive grains, at a jet pressure of 0.1 mm. It can be performed at 1 to 0.3 MPa (claim 4).
前記第2ブラスト処理は,好ましくは歯面に対し20~60°,より好ましくは25~35°の傾斜角θで行うことができる(請求項5)。 The second blasting can be performed at an inclination angle θ of preferably 20 to 60°, more preferably 25 to 35° with respect to the tooth surface (claim 5).
以上で説明した本発明の構成により,本発明の高精度歯車の加工方法で加工された歯車は,歯面にプラトー構造の表面が形成されたものでありながら,表面粗さが小さく,かつ,高精度の加工状態で加工されたものであるという,相反する構造を同時に備えたものとすることができた。 Due to the configuration of the present invention described above, the gear machined by the high-precision gear machining method of the present invention has a plateau structure surface formed on the tooth flank, but the surface roughness is small and It was possible to have a contradictory structure at the same time that it was machined in a highly accurate machining state.
その結果,本発明の方法で加工された歯車は,高い加工精度で加工されていることにより作動音が小さく静粛性が実現されると共に,プラトー構造の潤滑面が形成されていることで,歯面の潤滑性が向上することで伝達効率を改善することができた。 As a result, the gears machined by the method of the present invention are machined with high machining accuracy, so that the operating noise is small and quietness is realized. The transmission efficiency could be improved by improving the lubricity of the surface.
すなわち,本発明の方法では,油溜まりとして形成する凹部を,比較的開口幅が狭く,深さが深い凹部である前述の「ガウジ」として形成したことで,油溜まりとしての機能を確保しつつ,ガウジの低密度な形成により歯面に生じる変形量を小さくすることで,歯車を高精度の加工状態に維持することができる。 That is, in the method of the present invention, the concave portion formed as the oil reservoir is formed as the above-mentioned "gouge" which is a concave portion having a relatively narrow opening width and a large depth, thereby ensuring the function as an oil reservoir. By reducing the amount of deformation that occurs on the tooth flank due to the low-density formation of gouges, the gear can be maintained in a highly-precise machined state.
一方,熱処理によって硬化した歯車の歯面は変形が生じ難い状態となっていることから,1粒あたりの質量が小さい微細な砥粒のみを単独で噴射しても,歯面に深い凹部を形成することができない。 On the other hand, since the gear tooth flank hardened by heat treatment is in a state where it is difficult for deformation to occur, even if only fine abrasive grains with a small mass per grain are sprayed alone, deep recesses can be formed on the tooth flank. Can not do it.
しかし,本発明の方法では,砥粒を弾性体の表面に付着させ又は練り込んで成る弾性研磨材を噴射する構成を採用したことで,歯面に砥粒が衝突した際,砥粒には,砥粒の質量だけでなく,弾性体の質量分の衝突エネルギが加算されることで,砥粒の衝突部分の歯面に,開口幅が狭く,かつ,深さの深い凹部を形成できるものとなっている。 However, in the method of the present invention, by adopting a configuration in which an elastic abrasive material made by adhering abrasive grains to the surface of an elastic body or kneading it is ejected, when abrasive grains collide with the tooth surface, the abrasive grains , By adding not only the mass of the abrasive grains but also the collision energy corresponding to the mass of the elastic body, it is possible to form a narrow and deep recess on the tooth surface where the abrasive grains collide. It has become.
さらに,弾性研磨材の表面から突き出る砥粒の長さは,寸法にばらつきがある。その結果,長く突き出た砥粒が歯面と衝突すればガウジを形成するが,短く突き出た砥粒が衝突した個所では浅い凹部が形成する。 Furthermore, the length of the abrasive grains protruding from the surface of the elastic abrasive material varies in size. As a result, when long protruding grains collide with the tooth surface, gouges are formed, but shallow recesses are formed where short protruding grains collide.
従って,上記弾性研磨材の衝突によるガウジの形成は低密度となり,ガウジに対応して形成される尖端部も少なくなり,プラトー構造形成において研磨,除去する体積も小さくなる〔図2(B),(C)参照〕。 Therefore, the gouge formed by the collision of the elastic abrasive material has a low density, the number of pointed ends corresponding to the gouge is reduced, and the volume to be polished and removed in the formation of the plateau structure is also small [Fig. 2 (B), See (C)].
その結果,熱処理を経て高精度に加工された歯車に対しても事後的にプラトー構造の表面を形成することができると共に,プラトー構造の表面を形成した後においても,高精度に加工された元の表面の表面粗さや加工誤差の増大を,30%以下の範囲に抑制することが可能となっている。 As a result, it is possible to form the surface of the plateau structure after the gear is machined with high precision through heat treatment, and even after the surface of the plateau structure is formed, the original machined with high precision can be obtained. It is possible to suppress the increase in the surface roughness of the surface and the processing error in the range of 30% or less.
次に,本発明の実施形態につき添付図面を参照しながら以下説明する。 Next, embodiments of the present invention will be described below with reference to the accompanying drawings.
〔処理対象〕
本発明の高精度歯車の加工方法は,図1に示すように,浸炭焼き入れや高周波焼入れ等の「熱処理」を行った後,「ハードターニング」,歯面研磨(図中の「歯研」)及び/又はギヤホーニング(図中の「ホーニング」)等の高精度の仕上げ処理が施されて,JIS B 1702-1:1998で規定するN5級の精度等級以上の精度で,かつ,歯面表面の算術平均粗さRaが0.2μm以下の高精度に仕上げられた歯車を処理対象とする。
〔Processing object〕
As shown in Fig. 1, the high-precision gear machining method of the present invention includes "heat treatment" such as carburizing and induction hardening, followed by "hard turning" and tooth surface polishing ("grinding" in the figure). ) and/or gear honing ("Honing" in the figure), etc., are subjected to high-precision finishing, and the accuracy is equal to or higher than the N5 grade accuracy specified in JIS B 1702-1: 1998, and the tooth surface Gears finished with high accuracy and having an arithmetic mean surface roughness Ra of 0.2 μm or less are targeted for processing.
このような歯車を処理対象とするものであれば,本発明の処理方法は,製造工程の最終段階の歯車に対し行うものとしても良く,あるいは,一旦,自動車等の部品として取り付けられ,使用されていた歯車に対し,事後的に本発明の処理方法を実施するものであっても良い。 As long as such gears are to be treated, the treatment method of the present invention may be applied to gears in the final stage of the manufacturing process, or may be applied to gears once installed as parts of automobiles and the like and used. The processing method of the present invention may be implemented afterward for the gears that have been removed.
本発明で処理対象とする高精度歯車としては,浸炭焼入鋼,機械構造用炭素鋼,クロムモリブテン鋼の他,歯車の材質として既知の各種材質のものを処理対象とすることができる。 High-precision gears to be processed in the present invention include carburized hardened steel, carbon steel for machine structural use, chromium molybdenum steel, and various materials known as materials for gears.
前述した精度等級以上で,かつ,前述した表面粗さ以下の高精度歯車は,一例として,図1に「高精度歯車の加工」として示した工程により製造することができる。 A high-precision gear having a precision grade equal to or higher than the above-mentioned accuracy class and having a surface roughness equal to or lower than the above-mentioned surface roughness can be manufactured by, for example, the process shown as "machining of high-precision gear" in FIG.
図1に示す工程中の「素材」とは,前述した鋼材を個々の歯車の製造に適した大きさに切り出したもので,この素材を,形成する歯車の大凡の外形形状に「旋削」し,その後,ボブ盤等を使用して「歯切」を行う。 The "material" in the process shown in Fig. 1 is the above-mentioned steel material cut to a size suitable for manufacturing individual gears. , After that, "gear cutting" is performed using a bobbing machine or the like.
「歯切」後の状態で歯面に粗さが残る場合,必要に応じて「シェービング」等の加工を行い歯面粗さの改善を行った後,浸炭焼き入れ,高周波焼入れ等の「熱処理」を行う。 If roughness remains on the tooth surface after gear cutting, perform processing such as shaving as necessary to improve the roughness of the tooth surface. "I do.
熱処理後,「ハードターニング」などの加工,歯面研磨(図中の「歯研」)及び/又はギヤホーニング(図中の「ホーニング」)を行うことにより,前述した精度等級以上で,かつ,表面の算術平均粗さRaを0.2μm以下の高精度に仕上げた歯車を得ることができる。 After heat treatment, processing such as "hard turning", tooth surface polishing ("grinding" in the figure) and / or gear honing ("honing" in the figure) are performed to achieve the above-mentioned accuracy grade or higher, and It is possible to obtain a gear whose surface is finished with high accuracy such that the arithmetic mean roughness Ra is 0.2 μm or less.
このようにして高精度に仕上げられた歯車の歯面の表面断面形状を図2(A)に示す。 FIG. 2(A) shows the surface cross-sectional shape of the tooth flank of the gear finished with high precision in this way.
図2(A)に示すように,高精度に仕上げられた歯車の歯面は,比較的開口幅の広い凹部が形成されたなだらかな形状の凹凸となっている。 As shown in FIG. 2(A), the tooth flanks of a gear that has been finished with high precision have concave and convex portions with relatively wide openings and concave and convex shapes.
なお,本発明で処理対象とする高精度歯車の加工工程は,図1に記載した例に限定されず,例えば,熱処理後に歯面研磨(歯研)を行う場合には,熱処理前のシェービングを省略するものとしても良く,逆に,熱処理前のシェービングを行う場合には,熱処理後の歯面研磨(歯研)を省略する等しても良く,前述した精度等級以上で,かつ,前述した表面粗さ以下の高精度に仕上げることができるものであれば,工程の一部を省略し,あるいは他の工程に置き換えても良い。 In addition, the machining process of the high-precision gear to be processed in the present invention is not limited to the example shown in FIG. It may be omitted, and conversely, when performing shaving before heat treatment, tooth surface polishing (grinding) after heat treatment may be omitted. Some of the processes may be omitted or replaced with other processes as long as they can be finished with a high precision equal to or less than the surface roughness.
このように,高精度に仕上げられた歯車に対し,本発明では,後述するように,弾性研磨材を噴射して歯面に凹凸を形成する「ブラスト処理(第1ブラスト処理)」と,該ブラスト処理により形成された凹凸の凸部の尖端を研磨,除去して平坦化する「研磨処理」から成る,本発明の加工方法を実行する。 In the present invention, for gears that have been finished with high precision in this way, as will be described later, a "blasting process (first blasting process)" in which an elastic abrasive is jetted to form unevenness on the tooth surface; The processing method of the present invention is performed, which consists of a "polishing process" for polishing and removing the peaks of the projections of the unevenness formed by the blasting process to flatten the surface.
〔ブラスト処理(第1ブラスト処理)〕
前述したように,熱処理後,高精度の仕上げ加工がされた歯車の歯面に対し,歯車の歯面に油溜まりとなる凹部を形成するためのブラスト処理(第1のブラスト処理)が行われる。
[Blasting (first blasting)]
As described above, after the heat treatment, blasting (first blasting) is performed on the gear tooth flanks that have undergone high-precision finish machining to form recesses that will serve as oil reservoirs on the gear tooth flanks. .
このブラスト処理(第1ブラスト処理)では,図3(A)に示すように核となる弾性体の表面に硬質砥粒を付着させ,又は練り込んだ弾性研磨材を,処理対象とする歯車の歯面に対し,噴射方向を略垂直として噴射する。 In this blasting process (first blasting process), as shown in Fig. 3(A), hard abrasive grains are attached to the surface of the core elastic material, or an elastic abrasive material kneaded is applied to the gear to be processed. The injection direction is almost perpendicular to the tooth surface.
弾性研磨材に使用する弾性体としては,ゴムや熱可塑性樹脂のエラストマーなどであって低弾性率の弾性体,樹脂の発泡体,その他の粘弾性体(例えば破砕した植物の根茎,こんにゃくやゼラチン)等を使用することができる。 Elastic materials used for elastic abrasives include low modulus elastic materials such as rubber and thermoplastic elastomers, resin foams, and other viscoelastic materials (e.g. crushed plant rhizomes, konjac and gelatin). ) etc. can be used.
また,硬質砥粒は,弾性体の表面に付着させる場合は,その粒径のばらつきが大きい方がよい。そうすることによって,弾性体の表面からの硬質砥粒の突き出し長さにばらつきが生じ,突き出し長さの長い硬質砥粒との衝突部分の歯面に開口幅が狭く,かつ,深さが深い凹部(ガウジ)を低密度に形成することができる。一方,硬質砥粒を弾性体に練りこむ場合は,その粒径に大きなばらつきは必要ない。なぜなら,練りこまれた砥粒は弾性体に埋まっているがその深さはランダムなので,粒径のばらつきが小さい場合でも,突き出し量(弾性体の表面からの突き出し長さ)のばらつきは大きくなるため,同様に低密度でガウジを形成することができるからである。尚,硬質砥粒の適切なばらつきの程度は,弾性体の表面に付着する場合も,また,弾性体に練りこむ場合でも,弾性体の直径と硬質砥粒の粒径の組み合わせによって変わる。 Further, when the hard abrasive grains are attached to the surface of the elastic body, it is preferable that the variation in grain size is large. By doing so, the protrusion length of the hard abrasive grains from the surface of the elastic body varies, and the opening width is narrow and deep on the tooth surface of the collision part with the hard abrasive grains with a long protrusion length. Recesses (gouges) can be formed at a low density. On the other hand, when hard abrasive grains are kneaded into an elastic body, there is no need for large variations in grain size. The reason is that the kneaded abrasive grains are embedded in the elastic body, but the depth is random, so even if the variation in grain size is small, the amount of protrusion (the length of protrusion from the surface of the elastic body) varies greatly. Therefore, it is possible to form a gouge with a low density as well. The appropriate degree of dispersion of the hard abrasive grains varies depending on the combination of the diameter of the elastic body and the grain size of the hard abrasive grains, whether they are attached to the surface of the elastic body or kneaded into the elastic body.
このような砥粒の材質としては,熱処理後の硬化した歯面に対し前述した凹部を形成することができるよう,アルミナやSiC等のセラミックスやダイヤモンド等の硬質のものを選択する。 As the material of such abrasive grains, a hard material such as ceramics such as alumina or SiC or diamond is selected so that the above-mentioned recesses can be formed on the hardened tooth flank after heat treatment.
ここで,歯車の歯面に前述したサイズの硬質砥粒を直接投射する一般的なサンドブラストによっても歯面に凹部を形成することは可能であるが,この場合,砥粒が歯面に衝突した際の衝突エネルギは,砥粒1粒分の質量に応じたものとなることから,形成される凹部は,開口幅に対し深さが浅いものとなり,油溜まりとして十分に機能しない。 Here, it is possible to form recesses on the tooth flank by general sandblasting, in which hard abrasive grains of the size mentioned above are directly blasted onto the gear tooth flank. Since the collision energy at the time corresponds to the mass of one abrasive grain, the depth of the recess formed is shallow with respect to the width of the opening and does not sufficiently function as an oil reservoir.
一方,噴射能力の高いサンドブラスト装置を使用すれば,砥粒の高速噴射が可能となり,衝突エネルギを高くすることで深い凹部(ガウジ)の形成が可能であるが〔図2(B’)参照〕,高速噴射した砥粒を歯面に万遍なく当てると,ガウジを必要以上に高密度に形成することになり,プラトー構造形成後に歯面に生じる寸法と形状の変化を大きくしてしまう〔図2(C’)参照〕。 On the other hand, if a sandblasting machine with a high jetting capacity is used, it becomes possible to jet abrasive grains at high speed, and by increasing the impact energy, it is possible to form deep recesses (gouges) [see Fig. 2 (B')]. However, if the high-speed jetted abrasive grains are evenly applied to the tooth surface, the gouge will be formed with a higher density than necessary, which will increase the size and shape changes that occur on the tooth surface after the plateau structure is formed [Fig. 2 (C')].
これに対し,前述した弾性研磨材を噴射して凹部(ガウジ)を形成する場合,砥粒との衝突部分における歯面には,砥粒の粒径に対応した比較的狭い開口幅を有する凹部が形成される一方,砥粒との衝突部分における歯面には,砥粒の質量と共に,弾性担体を含む弾性研磨材全体の質量が加わって衝突エネルギが集中して加わることで,比較的深い凹部を形成することができる。 On the other hand, when forming recesses (gouges) by spraying the elastic abrasive described above, the recesses having relatively narrow opening widths corresponding to the grain size of the abrasive grains are formed on the tooth flank where the abrasive grains collide. On the other hand, the mass of the entire elastic abrasive including the elastic carrier is added to the tooth flank where it collides with the abrasive grains. A recess can be formed.
また,前述したように本発明でブラスト処理(第1ブラスト処理)に使用する弾性研磨材は,前述のように弾性体の表面から突き出る砥粒の長さにはばらつきがあり,その結果,弾性体の表面より長く突き出た砥粒が衝突すれば元の凹部よりも開口幅が狭く深いガウジを形成するが,弾性体の表面より短く突き出た砥粒と衝突した個所では浅い凹部を形成し〔図2(B)参照〕,結果的に,研磨工程後のガウジの形成密度を低く抑えることができる〔図2(C)参照〕。 In addition, as described above, the elastic abrasive used in the blasting treatment (first blasting treatment) in the present invention has variations in the length of the abrasive grains protruding from the surface of the elastic body as described above. When abrasive grains protruding longer than the surface of the body collide, a gouge with a narrower opening width and deeper than the original recess is formed, but a shallow recess is formed where the abrasive grains protruding shorter than the surface of the elastic body collide. See FIG. 2(B)], and as a result, the formation density of gouges after the polishing process can be kept low [see FIG. 2(C)].
このように,本発明で採用するブラスト処理(第1ブラスト処理)では,弾性体は,歯面に対する砥粒の衝突時,砥粒に弾性担体の質量を乗せて砥粒を歯面に押し込むための錘としての機能を有するものであり,かかる観点から,前述の弾性体として,メディアン径0.1~2.0mmものを使用すると共に,このような砥粒と弾性体から成る弾性研磨材を,噴射圧力0.2~0.5MPaで噴射する。 Thus, in the blasting treatment (first blasting treatment) adopted in the present invention, when the abrasive grains collide with the tooth surface, the elastic body puts the mass of the elastic carrier on the abrasive grains and pushes the abrasive grains into the tooth surface. From this point of view, as the elastic body mentioned above, one with a median diameter of 0.1 to 2.0 mm is used, and an elastic abrasive composed of such abrasive grains and an elastic body is used. , injection pressure 0.2~0.5MPa.
これらの条件は,処理対象とする歯車の歯寸法,材質等に基づいて,加工効率を勘案して前述の数値範囲内のものから最適な条件を選ぶことが好ましい。 As for these conditions, it is preferable to select the optimum conditions from those within the above-described numerical ranges in consideration of the machining efficiency based on the tooth size, material, etc. of the gear to be processed.
このように,ブラスト処理(第1ブラスト処理)で弾性研磨材を噴射することにより,未処理の状態では図2(A)に示す状態にあった歯車の歯面には,図2(B)に示すように,前記のブラスト処理(第1ブラスト処理)前の歯面に形成されていた凹凸の凹部に比較して,開口幅が狭く,かつ,深さが深い凹部(ガウジ)が形成される。 In this way, by injecting the elastic abrasive in the blasting process (first blasting process), the tooth surface of the gear, which was in the state shown in Fig. 2(A) in the untreated state, was changed to the state shown in Fig. 2(B). As shown in , compared to the uneven recesses formed on the tooth flank before the blasting (first blasting), recesses (gouges) with narrower opening widths and deeper depths are formed. be.
〔研磨処理(第2ブラスト処理)〕
前述したブラスト処理(第1ブラスト処理)により凹凸を形成した歯車の歯面では,図2(B)を参照して説明したように,開口幅が比較的狭く,かつ,深さの深い凹部(ガウジ)が形成されるが,隣接する凹部(ガウジ)間には,尖鋭な形状を有する凸部が形成される。
[Polishing treatment (second blasting treatment)]
On the tooth flank of the gear on which the unevenness is formed by the above-described blasting process (first blasting process), as described with reference to FIG. A gouge is formed, but a convex portion having a sharp shape is formed between adjacent concave portions (gouges).
そのため,本発明の加工方法では,ブラスト処理(第1ブラスト処理)後,研磨処理(第2ブラスト処理)を実施して,この凸部の尖端を研磨,除去して平坦な形状とすることにより,凸部の上端に平坦なプラトー面を形成している。 Therefore, in the processing method of the present invention, after the blasting treatment (first blasting treatment), the polishing treatment (second blasting treatment) is performed to polish and remove the apex of the projections to form a flat shape. , a flat plateau surface is formed at the upper end of the convex portion.
このような研磨方法は特に限定されず,既知の各種の方法で実施可能であるが,本実施形態では,このような研磨方法として,図3(B)に示すように弾性研磨材を歯面に対し鋭角(θ)で噴射する第2のブラスト加工を行っている。 Such a polishing method is not particularly limited, and various known methods can be used. A second blasting process is performed by injecting at an acute angle (θ) to the
第2のブラスト加工に使用する弾性研磨材も,弾性体の表面に砥粒を付着させ,又は弾性体に砥粒を練り込んだもので,弾性体の材質としては,前述した第1ブラスト処理で使用した弾性研磨材と同様のものが使用可能である。 The elastic abrasive used in the second blasting process is also made by attaching abrasive grains to the surface of the elastic body or kneading abrasive grains into the elastic body. It is possible to use the same elastic abrasive as used in .
第1ブラスト処理では,弾性体は砥粒を歯面に押し込むための錘としての機能を有するものであったが,第2ブラスト処理に使用する弾性研磨材の弾性体にはこのような錘としての機能はなく,弾性体の寸法に特に制限はなく,各種の寸法の範囲より選択可能である。 In the first blasting process, the elastic body functions as a weight for pressing the abrasive grains into the tooth surface. There is no function, and there is no particular limitation on the dimensions of the elastic body, and it is possible to select from a range of various dimensions.
本実施形態では,第1ブラスト処理と第2ブラスト処理を,共通のブラスト加工装置を使用して実行できるよう,第1ブラスト処理と同様,第2ブラスト処理で使用する弾性研磨材についてもメディアン径が0.1~2.0mmの弾性体を使用した。 In the present embodiment, the median diameter of the elastic abrasive used in the second blasting is set to An elastic body with a thickness of 0.1 to 2.0 mm was used.
弾性研磨材に使用する砥粒の材質や形状等は,特に限定されず,歯車の歯面を研磨して凸部の先端を平坦化し得るものであれば既知の各種のものが使用可能である。 The material and shape of the abrasive grains used for the elastic abrasive are not particularly limited, and various known abrasives can be used as long as they can grind the tooth surface of the gear and flatten the tip of the convex part. .
また,砥粒の粒径についても,第1のブラスト処理で形成された凹凸の凹部を残しつつ,凸部の先端部分を除去して平坦化し得るものであれば特に限定されないが,好ましくは第1のブラスト処理で使用した弾性研磨材の砥粒の粒径よりも小さな粒径の砥粒を使用し,本実施形態では,一例として,メディアン径が20μm以下の砥粒を使用した。 In addition, the particle size of the abrasive grains is not particularly limited as long as it can be flattened by removing the tip of the protrusion while leaving the recesses of the unevenness formed in the first blasting process. Abrasive grains having a grain size smaller than that of the elastic abrasive used in the blasting process of No. 1 are used, and in this embodiment, as an example, grains having a median diameter of 20 μm or less are used.
なお,図3では,図3(B)に図示した研磨処理(第2ブラスト処理)用の弾性研磨材を,図3(A)に示したブラスト処理(第1ブラスト処理)用の弾性研磨材と同様,弾性体の表面より突き出る砥粒の長さにばらつきのある弾性研磨材として図示したが,研磨処理(第2ブラスト処理)用の弾性研磨材に使用する砥粒は,必ずしも砥粒の突き出し長さにばらつきがあるものを使用する必要はなく,突き出し長さが揃ったもの使用するものとしても良い。 In FIG. 3, the elastic abrasive for polishing (second blasting) shown in FIG. 3(B) is replaced with the elastic abrasive for blasting (first blasting) shown in FIG. Similar to , the figure shows an elastic abrasive material with variations in the length of the abrasive grains protruding from the surface of the elastic body, but the abrasive grains used for the elastic abrasive material for the polishing process (second blasting process) are not necessarily the same as the abrasive grains. It is not necessary to use those with different protrusion lengths, and it is also possible to use those with uniform protrusion lengths.
以上で説明した弾性研磨材を歯車の歯面に対し鋭角に噴射する。 The elastic abrasive described above is jetted at an acute angle to the tooth flank of the gear.
歯面に対する噴射角θ〔図3(B)参照〕は,好ましくは20°~60°で,より好ましくは25°~35°である。 The injection angle θ with respect to the tooth surface (see FIG. 3B) is preferably 20° to 60°, more preferably 25° to 35°.
このように,図3(B)中に矢印で示すように歯面に対し弾性研磨材を鋭角に噴射することで,噴射された弾性研磨材は,歯面に衝突した後,歯面の表面に沿って水平に滑動することで,第1ブラスト処理の際に形成された凹凸の凸部の先端が研磨,除去されて平坦化される。 In this way, by spraying the elastic abrasive against the tooth surface at an acute angle as indicated by the arrow in Fig. 3(B), the injected elastic abrasive collides with the tooth surface, and then the surface of the tooth surface. By sliding horizontally along the , the tips of the uneven protrusions formed during the first blasting process are polished and removed to be flattened.
このようにして第2ブラスト処理が行われた後の歯面には,図2(C)に示すように,開口幅が比較的狭く,深い凹部(ガウジ)が油溜まりとして形成されると共に,隣接する凹部(ガウジ)間には平坦化された頂面(プラトー面)を有する凸部が形成された,プラトー構造の潤滑面を形成することができる。 As shown in FIG. 2(C), after the second blasting process is performed in this way, the tooth flank has a relatively narrow opening width and a deep concave portion (gouge) formed as an oil reservoir. It is possible to form a lubricating surface with a plateau structure in which convex portions having flattened top surfaces (plateau surfaces) are formed between adjacent concave portions (gouges).
このように,高精度に仕上げられた歯車に対し,本発明の加工方法を適用することで元の歯面の算術平均粗さRa,及び加工精度を大幅に低下させることなく,プラトー構造の潤滑面を形成することが可能である。 In this way, by applying the machining method of the present invention to the gear finished with high precision, the lubrication of the plateau structure can be achieved without significantly reducing the arithmetic mean roughness Ra of the original tooth flank and the machining accuracy. It is possible to form a plane.
その結果,高精度の仕上げによる静粛性と,プラトー構造の潤滑面の形成による潤滑性の向上という効果が同時に得られる歯車を得ることができた。 As a result, we were able to obtain a gear that simultaneously achieves quietness due to high-precision finishing and improved lubricity due to the formation of a lubricating surface with a plateau structure.
本発明の加工方法で高精度歯車の加工を行った試験結果を以下に示す。 The test results of machining high-precision gears by the machining method of the present invention are shown below.
〔試験の目的〕
本発明の方法で加工された高精度歯車の歯面に形成されたプラトー構造の潤滑面の表面構造を確認すると共に,表面粗さや加工精度の低下が,抑制できていることを確認する。
[Purpose of the test]
The surface structure of the lubricating surface of the plateau structure formed on the tooth surface of the high-precision gear machined by the method of the present invention is confirmed, and it is confirmed that the deterioration of surface roughness and machining accuracy can be suppressed.
〔試験方法〕
JIS B 1702-1:1998で規定するN5級の加工精度に仕上げ加工された歯車を処理対象として,本発明の加工方法によりプラトー構造の潤滑面を形成した。
〔Test method〕
A lubricating surface with a plateau structure was formed by the processing method of the present invention on a gear finished to the N5 grade processing accuracy specified in JIS B 1702-1:1998.
比較例として,同様の処理対象に対し,ショットピーニングによるディンプルの形成後,研磨工程を実施してプラトー構造の潤滑面を形成した。 As a comparative example, a lubricating surface with a plateau structure was formed by performing a polishing process after forming dimples by shot peening on the same treated object.
実施例及び比較例の処理条件をそれぞれ下記の表1に示す。 The processing conditions for Examples and Comparative Examples are shown in Table 1 below.
なお,第1ブラスト処理及び第2ブラスト処理共に,弾性研磨材として弾性体に砥粒を練りこんだ構造のものを使用した。 In both the first blasting treatment and the second blasting treatment, an elastic abrasive having a structure in which abrasive grains were kneaded into an elastic body was used.
また,ブラスト加工装置としては,市販のエア式のブラスト加工装置(不二製作所製)を使用した。 As the blasting device, a commercially available air-type blasting device (manufactured by Fuji Seisakusho) was used.
〔試験結果〕
未処理の歯車,及び上記の条件で処理した後の実施例及び比較例の歯車の表面状態をそれぞれ下記の表2に示す。
〔Test results〕
Table 2 below shows the surface conditions of the untreated gears and the gears of Examples and Comparative Examples after treatment under the above conditions.
また,未処理の歯車の歯面の歯形方向の粗さ曲線を図4(A)に,実施例の歯車の歯形方向の粗さ曲線を図4(B)にそれぞれ示す。 FIG. 4(A) shows the roughness curve in the tooth profile direction of the tooth surface of the untreated gear, and FIG. 4(B) shows the roughness curve in the tooth profile direction of the gear of the example.
〔考察〕
(1)表面粗さの比較
加工前後の表面粗さパラメータを比較すると,算術平均粗さRaは未処理の数値に対し実施例の数値は僅かに増加(約26%増)を示した程度であり,大きな変化は見られず,本発明の方法によればプラトー構造の潤滑面の形成によっても,表面粗さの増大を抑制できていることが確認された。
[Discussion]
(1) Comparison of surface roughness Comparing the surface roughness parameters before and after processing, the arithmetic mean roughness Ra of the example shows a slight increase (approximately 26% increase) compared to the untreated value. There was no significant change, and it was confirmed that according to the method of the present invention, an increase in surface roughness could be suppressed even by forming a lubricating surface with a plateau structure.
これに対し,比較例の方法で処理した歯車の歯面では,未処理の状態に比較して,算術平均粗さRaが大幅に増大(640%増)しており,プラトー構造の潤滑面の形成と引き換えに表面粗さが増大していることが確認されており,第1ブラスト処理に,弾性研磨材を使用する本発明の加工方法が,加工精度を維持しつつプラトー構造の潤滑面を形成する上で有効であることが確認された。 On the other hand, on the tooth flank of the gear treated by the method of the comparative example, the arithmetic mean roughness Ra was greatly increased (640% increase) compared to the untreated state, and the lubricating surface of the plateau structure It has been confirmed that the surface roughness increases in exchange for the formation, and the processing method of the present invention that uses an elastic abrasive in the first blasting process improves the lubricating surface of the plateau structure while maintaining processing accuracy. It was confirmed that it is effective in forming.
(2)凹凸形状の比較
実施例の方法で処理された歯車の歯面では,未処理のものに対しスキューネスRskの値がマイナス側に大きく増加(約15倍)していること,また,未処理の表面に対し突出谷部深さRvkが約2.5倍に増大している。
(2) Comparison of Concavo-convex Shape In the tooth flanks of the gears treated by the method of the example, the value of skewness Rsk greatly increased (approximately 15 times) on the negative side compared to the untreated gears. The protruding valley depth Rvk is increased about 2.5 times with respect to the treated surface.
これらの数値より,実施例の方法で処理された歯車では,未処理の歯車の歯面に生じていた凹凸の凹部よりも開口幅が狭く深さの深い凹部が形成されていることが判り,このことは,図4(A)に示した未処理の歯面における粗さ曲線と,図4(B)に示した実施例の条件で処理した後の歯面の粗さ曲線の比較によっても確認することができる。 From these numerical values, it can be seen that in the gears treated by the method of the example, recesses with narrower opening widths and deeper recesses were formed than the uneven recesses that occurred on the tooth flanks of untreated gears. This is also confirmed by comparing the roughness curve of the untreated tooth flank shown in FIG. 4(A) and the roughness curve of the tooth flank after treatment under the conditions shown in FIG. can be confirmed.
更に,実施例の歯車では,負荷長さ率Mr1が未処理のものに比較して6割程度の値となっており,突出山部の割合が少なくなっていること(凸部の上端が平坦となっていること),従って,プラトー構造の潤滑面が形成されていることが判る。 Furthermore, in the gears of the examples, the load length ratio Mr1 is about 60% of that of the untreated gear, and the ratio of the protruded peaks is reduced (the upper end of the protruded part is flat). ), which means that a lubricating surface with a plateau structure is formed.
これに対し比較例の方法で処理された歯車でも,負荷長さ率Mr1の値より,歯面には,凸部の頂部が平坦化されたプラトー構造の潤滑面が形成されていることが推察できるものの,スキューネスRskの値から,比較例の方法で形成された凹部は,本発明のものに比較して開口幅が大きなものとなっており,このような開口幅の大きな凹部の形成が,後述する精度等級の基準となる数値を大幅に上昇(加工精度を低下)させているものと考えられる。 On the other hand, it can be inferred from the value of the load length ratio Mr1 that the gear processed by the method of the comparative example also has a lubricating surface with a plateau structure in which the top of the convex portion is flattened. However, from the value of skewness Rsk, the recess formed by the method of the comparative example has a larger opening width than that of the present invention. It is thought that the numerical value that is the standard of the accuracy grade described later is greatly increased (the processing accuracy is lowered).
また,比較例の方法で形成された凹部は,突出谷部深さRvkの値から実施例の方法で形成された凹部(ガウジ)に比較して深さが浅く,油溜まりとしての機能,従って,歯面の潤滑性についても本発明のものと比較して性能が劣るものと推察される。 In addition, the concave portion formed by the method of the comparative example is shallower than the concave portion (gouge) formed by the method of the example from the value of the protruding valley depth Rvk, and functions as an oil reservoir. , the lubricity of the tooth surface is also inferior to that of the present invention.
(3)加工精度の比較
JIS B 1702-1:1998で規定する歯車担体の個別誤差中,単一ピッチ誤差fpt,累積ピッチ誤差Fp,全歯形誤差Fα,全歯すじ誤差Fβについて見ると,実施例の方法で加工された歯車では,未処理のものに比較していずれの数値共に若干の上昇が見られるものの,未処理の状態に対し30%以下の増加率に抑えることができている。
(3) Comparison of processing accuracy
Among the individual errors of the gear carrier specified in JIS B 1702-1:1998, single pitch error fpt, cumulative pitch error Fp, total tooth profile error Fα, and total tooth trace error Fβ. In the case of gears, although a slight increase can be seen in all numerical values compared to the untreated gear, the rate of increase can be suppressed to 30% or less compared to the untreated state.
従って,例えばN5級として定められている個別誤差の上限値の数値に対し,30%程度,少ない誤差(高い精度)で歯車を仕上げておくことで,本発明の方法でプラトー構造の潤滑面を形成した後においても,処理対象とした歯車の加工精度を,N5級の範囲に維持することが可能となる。 Therefore, for example, by finishing the gear with an error (high accuracy) that is about 30% smaller than the upper limit of the individual error specified for N5 class, the lubricating surface of the plateau structure can be obtained by the method of the present invention. Even after forming, it is possible to maintain the processing accuracy of the gear to be processed within the N5 class range.
事実,本実施例の試験条件では,本発明の方法で処理した後の歯車の誤差(単一ピッチ誤差fpt,累積ピッチ誤差Fp,全歯形誤差Fα,全歯すじ誤差Fβ)は,全てN5級として規定されている上限値の範囲内にあった。 In fact, under the test conditions of this embodiment, the gear errors (single pitch error fpt, cumulative pitch error Fp, total tooth profile error Fα, total tooth trace error Fβ) after processing by the method of the present invention are all N5 class. was within the upper limits specified as
この結果から,本発明の方法では,高精度に仕上げられた歯車の加工精度を維持しつつ,プラトー構造の潤滑面を歯面に形成するという,相反する要求に対応し得るものであることが確認できた。 From these results, it is clear that the method of the present invention can meet the contradictory requirements of forming a lubricating surface with a plateau structure on the tooth flank while maintaining the machining accuracy of a highly-finished gear. It could be confirmed.
これに対し,比較例に記載の方法で加工された歯車では,未処理の状態に比較して,単一ピッチ誤差fpt,累積ピッチ誤差Fp,全歯形誤差Fα,全歯すじ誤差Fβのいずれの数値とも大幅な上昇を示しており,前述した条件での試験結果において,比較例の歯車では,全歯形誤差Fαを除き,その他の誤差は,N5級で規定する上限値を超えるものとなっており,比較例の方法では高精度に仕上げた歯車の加工精度の維持と,プラトー構造の潤滑面の形成を両立させ得るものではなかった。 On the other hand, in the gear machined by the method described in the comparative example, any of the single pitch error fpt, the cumulative pitch error Fp, the total tooth profile error Fα, and the total tooth trace error Fβ compared to the unprocessed state. Both numerical values show a significant increase, and in the test results under the conditions described above, in the gear of the comparative example, except for the total tooth profile error Fα, other errors exceed the upper limit values stipulated in class N5. Therefore, in the method of the comparative example, it was not possible to achieve both the maintenance of the machining precision of the gear finished with high precision and the formation of the lubricating surface of the plateau structure.
Claims (5)
角を有する不定形な形状の硬質砥粒を弾性体の表面に付着させ,又は弾性体に練り込んでなる弾性研磨材を,前記歯車の歯面に対し略垂直に噴射して,前記歯面に微細な凹凸を形成するブラスト処理と,
前記ブラスト処理後の前記歯面を研磨して,前記凹凸の凸部の頂部を除去して平坦化する研磨処理を行い,
前記歯面に,前記ブラスト処理前に形成されていた凹凸の凹部に比較して開口幅が狭く,かつ,深さが深い凹部であるガウジと,前記ガウジ間に形成された,上端が平坦化された凸部を有する,プラトー構造の表面を形成すると共に,
前記ブラスト処理前の前記歯車の歯面に対し,前記研磨処理後の前記歯車の歯面の算術平均粗さRa,単一ピッチ誤差,累積ピッチ誤差,全歯形誤差,及び全歯すじ誤差の上昇をいずれも30%以下に抑えることを特徴とする高精度歯車の加工方法。 After gear cutting and heat treatment, finish processing is performed to achieve an accuracy of at least N5 grade accuracy specified in JIS B 1702-1: 1998, and the arithmetic mean roughness Ra of the surface is 0.2 μm. Gears that have been finished with high precision as follows are targeted for processing,
Hard abrasive grains having an irregular shape with corners are attached to the surface of an elastic body, or an elastic abrasive material kneaded into an elastic body is sprayed almost perpendicularly to the tooth surface of the gear, and the tooth surface is Blasting to form fine unevenness on the
polishing the tooth surface after the blasting treatment to remove the tops of the uneven protrusions for flattening;
A gouge, which is a concave portion having a narrower opening width and a deeper depth than the uneven concave portion formed before the blasting treatment on the tooth surface, and a flattened upper end formed between the gouge. forming a plateau-structured surface with ridges;
Increase in arithmetic mean roughness Ra, single pitch error, cumulative pitch error, total tooth profile error, and total tooth trace error of the tooth flank of the gear after the polishing treatment with respect to the tooth flank of the gear before the blasting treatment A method for machining a high-precision gear characterized by suppressing each of the above to 30% or less.
5. A machining method for a high-precision gear according to claim 3, wherein said second blasting is performed at an inclination angle of 20 to 60 degrees with respect to the tooth flank.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021110330A JP7485374B2 (en) | 2021-07-01 | 2021-07-01 | High-precision gear manufacturing methods |
CN202210517833.XA CN115555817A (en) | 2021-07-01 | 2022-05-13 | Machining method of high-precision gear |
TW111120600A TWI814418B (en) | 2021-07-01 | 2022-06-02 | Machining method of high precision gear |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021110330A JP7485374B2 (en) | 2021-07-01 | 2021-07-01 | High-precision gear manufacturing methods |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023007221A true JP2023007221A (en) | 2023-01-18 |
JP7485374B2 JP7485374B2 (en) | 2024-05-16 |
Family
ID=84736853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021110330A Active JP7485374B2 (en) | 2021-07-01 | 2021-07-01 | High-precision gear manufacturing methods |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7485374B2 (en) |
CN (1) | CN115555817A (en) |
TW (1) | TWI814418B (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000257697A (en) | 1999-03-11 | 2000-09-19 | Nissan Motor Co Ltd | High surface pressure resisting gear and manufacture therefor |
JP2003088935A (en) * | 2001-09-13 | 2003-03-25 | Sumitomo Heavy Ind Ltd | Manufacturing method of external gear |
JP4502594B2 (en) * | 2003-05-22 | 2010-07-14 | 富士重工業株式会社 | Gear manufacturing method |
JP4238171B2 (en) * | 2004-03-31 | 2009-03-11 | ジヤトコ株式会社 | Gear lapping method and apparatus |
JP5351875B2 (en) * | 2010-11-30 | 2013-11-27 | 株式会社神戸製鋼所 | Mold for plastic working, method for producing the same, and method for forging aluminum material |
JP5793014B2 (en) * | 2011-07-21 | 2015-10-14 | 株式会社不二製作所 | Side polishing method for hard brittle material substrate |
CN104741867A (en) * | 2013-12-27 | 2015-07-01 | 嵇春霞 | Vehicle frame processing method |
CN108179258A (en) * | 2017-11-27 | 2018-06-19 | 江阴市永兴机械制造有限公司 | A kind of gear teeth face shot peening strengthening finely finishing method |
JP2019171520A (en) * | 2018-03-28 | 2019-10-10 | 株式会社ノリタケカンパニーリミテド | Resinoid grinding wheel |
JP7188243B2 (en) | 2019-04-04 | 2022-12-13 | マツダ株式会社 | Manufacturing method of hypoid gear |
-
2021
- 2021-07-01 JP JP2021110330A patent/JP7485374B2/en active Active
-
2022
- 2022-05-13 CN CN202210517833.XA patent/CN115555817A/en active Pending
- 2022-06-02 TW TW111120600A patent/TWI814418B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI814418B (en) | 2023-09-01 |
JP7485374B2 (en) | 2024-05-16 |
CN115555817A (en) | 2023-01-03 |
TW202302267A (en) | 2023-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101706104B1 (en) | Method of treating surface of mold and mold having surface treated by said method | |
KR101446259B1 (en) | Abrasive for blast processing and blast processing method employing the same | |
EP3441500B1 (en) | Method of treating a surface of a mold | |
CN112756707B (en) | Surface composite strengthening method for ultrahigh-strength stainless steel gear | |
US11858177B2 (en) | Method of using surface material of molding surface of mold | |
KR102173928B1 (en) | Method of surface treatment of metal products and metal products | |
CN112469537B (en) | Metal product surface member and polishing method thereof | |
JP2023007221A (en) | High-precision gear processing method | |
US2942389A (en) | Gear finishing | |
US11407048B2 (en) | Method for producing a workpiece provided with a toothing or profiling | |
Fiocchi et al. | Ultra-precision face grinding with constant pressure, lapping kinematics, and SiC grinding wheels dressed with overlap factor | |
JP2991012B2 (en) | Wheels for finishing gears | |
CN103056764B (en) | Belt wheel pulley method for processing surface and belt wheel pulley face processing lapping device | |
JP2000280120A (en) | Manufacture of gear | |
JP7176349B2 (en) | Linear motion device and its manufacturing method | |
Xiu et al. | Study on surface finish mechanism in quick-point grinding | |
JPH1148036A (en) | Manufacture for gear of super high quality | |
JP4541062B2 (en) | Functional member and manufacturing method thereof | |
CN107824815B (en) | The cutter that cutting edge area surface has dimple to cheat | |
CN111411202B (en) | Machining process for increasing surface compressive stress depth of roller | |
JP2006175545A (en) | Method for smoothing tooth flank of gear | |
Ota et al. | Novel microsurface machining techniques for improving the traction coefficient | |
JP2668714B2 (en) | Gear manufacturing method | |
JPH1190829A (en) | Manufacture of gear | |
Yoshizaki | Improvement in tooth surface strength of carburized transmission gears by fine particle bombarding process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240416 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240424 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7485374 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |