JP2023004420A - Thermally conductive composite particles and method for producing the same - Google Patents
Thermally conductive composite particles and method for producing the same Download PDFInfo
- Publication number
- JP2023004420A JP2023004420A JP2021106061A JP2021106061A JP2023004420A JP 2023004420 A JP2023004420 A JP 2023004420A JP 2021106061 A JP2021106061 A JP 2021106061A JP 2021106061 A JP2021106061 A JP 2021106061A JP 2023004420 A JP2023004420 A JP 2023004420A
- Authority
- JP
- Japan
- Prior art keywords
- silica
- boron nitride
- thermally conductive
- composite particles
- conductive composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Silicon Compounds (AREA)
Abstract
【課題】窒化ホウ素にシリカを被覆させることにより、樹脂との親和性を向上させて樹脂組成物への充填量を高め、樹脂組成物に高い熱伝導性を付与できる熱伝導性複合粒子及びその製造方法を提供する。【解決手段】本発明の熱伝導性複合粒子は、窒化ホウ素の表面にシリカが被覆されてなる熱伝導性複合粒子であって、前記シリカの被覆量は前記窒化ホウ素の質量に対し、0.5質量%未満である。また、当該熱伝導性複合粒子は、窒化ホウ素と沈殿法シリカ、ゲル法シリカ、乾燥シリカから選ばれる1以上のシリカを乾式法でメカノケミカル処理することにより製造できる。【選択図】図1Kind Code: A1 A thermally conductive composite particle capable of imparting high thermal conductivity to a resin composition by coating boron nitride with silica to improve the affinity with the resin and increase the filling amount in the resin composition; A manufacturing method is provided. SOLUTION: The thermally conductive composite particles of the present invention are thermally conductive composite particles in which the surface of boron nitride is coated with silica, and the coating amount of the silica is 0.00% with respect to the mass of the boron nitride. It is less than 5% by mass. Further, the thermally conductive composite particles can be produced by mechanochemically treating boron nitride and one or more types of silica selected from precipitated silica, gel silica, and dry silica by a dry method. [Selection drawing] Fig. 1
Description
本発明は、窒化ホウ素の表面に所定量のシリカを被覆することにより樹脂組成物への充填量を高め、樹脂組成物に高い熱伝導性を付与できる熱伝導性複合粒子及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to thermally conductive composite particles capable of imparting high thermal conductivity to a resin composition by coating a predetermined amount of silica on the surface of boron nitride, and a method for producing the thermally conductive composite particles.
近年、半導体デバイスやIC等の電気・電子機器の小型化や軽量化に伴い、電子部品の高密度実装化が進んでおり、電子部品からの発熱が増大する傾向にある。発生した熱が電子部品に蓄積されると耐久性に悪影響が及ぶため、発生した熱を電子部品から効率よく放出できる高熱伝導性フィラーのニーズが高まっている。
高熱伝導性フィラーとして、窒化ホウ素、窒化アルミニウム、炭化ケイ素、アルミナ、マグネシア等が挙げられる。これらの中でも、窒化ホウ素は熱伝導率が高い、絶縁性を有する、比重が小さい等の優れた特性を示すが、粒子の平板面に官能基がないため、樹脂との親和性が低く、樹脂組成物への充填量が低いという課題がある。
そのため、窒化ホウ素に他の材料を複合させることにより、樹脂との親和性を向上させて充填量を高め、熱伝導率の高い樹脂組成物を提供することを可能とする熱伝導性複合粒子が望まれている。
2. Description of the Related Art In recent years, with the miniaturization and weight reduction of electrical and electronic equipment such as semiconductor devices and ICs, electronic components are being mounted at higher density, and the heat generated from electronic components tends to increase. Since generated heat accumulates in electronic components and adversely affects durability, there is a growing need for high thermal conductivity fillers that can efficiently dissipate the generated heat from electronic components.
Examples of highly thermally conductive fillers include boron nitride, aluminum nitride, silicon carbide, alumina, magnesia, and the like. Among these, boron nitride exhibits excellent properties such as high thermal conductivity, insulating properties, and low specific gravity. There is a problem that the filling amount to the composition is low.
Therefore, by compounding boron nitride with other materials, thermally conductive composite particles can be provided that improve the affinity with resins, increase the filling amount, and provide a resin composition with high thermal conductivity. Desired.
従来、窒化ホウ素に他の材料を複合した熱伝導性複合粒子についての提案がある。例えば、窒化ホウ素にシリカが被覆した熱伝導性複合粒子(第1フィラー)の開示がある(特許文献1参照)。また、板状粒子または棒状粒子である熱伝導性フィラーと、無機粒子とを混合し、メカノケミカル処理を行って得られる熱伝導性複合粒子についての開示があり、板状粒子及び無機粒子には窒化ホウ素が包含される(特許文献2参照)。 Conventionally, there have been proposals for thermally conductive composite particles obtained by compounding boron nitride with other materials. For example, there is a disclosure of thermally conductive composite particles (first filler) in which boron nitride is coated with silica (see Patent Document 1). In addition, there is a disclosure of thermally conductive composite particles obtained by mixing a thermally conductive filler, which is a plate-like particle or a rod-like particle, with inorganic particles and performing a mechanochemical treatment. Boron nitride is included (see Patent Document 2).
しかし、特許文献1に開示の窒化ホウ素にシリカを被覆した熱伝導性複合粒子は、樹脂組成物に充填した窒化ホウ素が加水分解して電子部品、基板あるいはヒートシンクなどを腐食するおそれがあるため、窒化ホウ素を加水分解されにくいシリカで被覆し耐湿性を改善したものであり、樹脂との親和性を向上させて樹脂組成物への充填量を高めることについては記載も示唆もない。また、メカノケミカル処理により窒化ホウ素にシリカを被覆させることについては記載も示唆もない。特許文献2に開示の熱伝導性複合粒子は、コアとなる無機粒子の表面に板状粒子または棒状粒子が結合し、機械的強度により充填された成形体の熱伝導率の異方性を低減させるもので、樹脂との親和性を向上させて樹脂組成物への充填量を高めることについては記載も示唆もない。 However, in the thermally conductive composite particles in which silica is coated on boron nitride disclosed in Patent Document 1, the boron nitride filled in the resin composition may hydrolyze and corrode electronic components, substrates, heat sinks, etc. It is obtained by coating boron nitride with silica, which is difficult to hydrolyze, to improve moisture resistance, and there is no description or suggestion about increasing the filling amount in the resin composition by improving the affinity with the resin. In addition, there is no description or suggestion about covering boron nitride with silica by mechanochemical treatment. In the thermally conductive composite particles disclosed in Patent Document 2, plate-like particles or rod-like particles are bonded to the surface of inorganic particles serving as cores, and the anisotropy of the thermal conductivity of the filled compact is reduced by mechanical strength. However, there is no description or suggestion about improving the affinity with the resin and increasing the filling amount in the resin composition.
本発明は、上記の事情に鑑みなされたもので、窒化ホウ素にシリカを被覆(複合)させることにより、樹脂との親和性を向上させて樹脂組成物への充填量を高め、樹脂組成物に高い熱伝導性を付与できる熱伝導性複合粒子及びその製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and by coating (compositing) silica with boron nitride, the affinity with the resin is improved, the filling amount of the resin composition is increased, and the resin composition is improved. An object of the present invention is to provide thermally conductive composite particles capable of imparting high thermal conductivity and a method for producing the same.
本発明者等は、上記の課題を解決するため、種々検討を重ね本発明に想到した。すなわち、本発明は、窒化ホウ素の表面にシリカが被覆されてなる熱伝導性複合粒子であって、前記シリカの被覆量は前記窒化ホウ素の質量に対し、0.5質量%未満であることを特徴とする熱伝導性複合粒子に関する。当該発明において、シリカの被覆量は窒化ホウ素の質量に対し、0.3質量%以下でもよい。 In order to solve the above problems, the inventors of the present invention made various studies and arrived at the present invention. That is, the present invention provides thermally conductive composite particles in which the surface of boron nitride is coated with silica, and the silica coating amount is less than 0.5% by mass with respect to the mass of the boron nitride. It relates to thermally conductive composite particles characterized by: In the invention, the silica coating amount may be 0.3% by mass or less with respect to the mass of boron nitride.
また、本発明は、窒化ホウ素と沈殿法シリカ、ゲル法シリカ、乾燥シリカから選ばれる1以上のシリカを乾式法でメカノケミカル処理することを特徴とする上記の熱伝導性複合粒子の製造方法に関する。当該発明において、シリカは沈殿法シリカでもよい。 The present invention also relates to the above-described method for producing thermally conductive composite particles, wherein boron nitride and one or more types of silica selected from precipitated silica, gel silica, and dry silica are mechanochemically treated by a dry method. . In the invention, the silica may be precipitated silica.
本発明の熱伝導性複合粒子は、樹脂との親和性が向上させられているため、樹脂組成物への充填量が高められ、樹脂組成物に高い熱伝導性を付与でき有用である。 Since the thermally conductive composite particles of the present invention have improved affinity with resins, they are useful in that they can be filled in a resin composition in a higher amount and impart high thermal conductivity to the resin composition.
本発明の熱伝導性複合粒子の製造方法は、窒化ホウ素とシリカを乾式法でメカノケミカル処理するだけで行えるので、熱伝導性複合粒子を簡易に製造でき有用である。 The method for producing thermally conductive composite particles of the present invention can be carried out simply by subjecting boron nitride and silica to mechanochemical treatment by a dry method.
本発明の熱伝導性複合粒子は、窒化ホウ素とシリカをメカノケミカル処理することにより製造できる。窒化ホウ素は、六方晶窒化ホウ素でも立方晶窒化ホウ素でもよいが、熱伝導性に優れる六方晶窒化ホウ素が好ましい。また、シリカは、沈殿法シリカ、ゲル法シリカ、乾燥シリカから選ばれる1以上を用いることができるが、二次粒子の凝集性が低い(凝集がほぐれ易い)という点及び易解砕性という点から沈殿法シリカを用いることが好ましい。 The thermally conductive composite particles of the present invention can be produced by mechanochemically treating boron nitride and silica. Boron nitride may be either hexagonal boron nitride or cubic boron nitride, but hexagonal boron nitride is preferred because of its excellent thermal conductivity. In addition, silica can be one or more selected from precipitation method silica, gel method silica, and dry silica, but the aggregation of secondary particles is low (aggregation is easily loosened) and easy crushability. It is preferred to use precipitated silica from silica.
メカノケミカル処理とは、対象となる原料にせん断、圧縮、摩擦、曲げ、衝撃等の機械的エネルギーを与え、原料の表面を改質する処理方法である。メカノケミカル処理の手段は特に限定されないが、ボールミル、ビーズミル、サンドミル等のメディア分散機やジェットミル粉砕機等の公知の手段を用いることができる。メカノケミカル処理の処理時間や処理条件等は、使用する手段に応じて適宜設定することができる。 Mechanochemical treatment is a treatment method in which mechanical energy such as shear, compression, friction, bending, and impact is applied to the raw material to modify the surface of the raw material. The means of mechanochemical treatment is not particularly limited, but known means such as media dispersing machines such as ball mills, bead mills and sand mills, and jet mill pulverizers can be used. The treatment time, treatment conditions, and the like of the mechanochemical treatment can be appropriately set according to the means used.
また、メカノケミカル処理は、分散媒を用いる湿式法と分散媒を用いない乾式法があるが、本発明の熱伝導性複合粒子の製造は乾式法のメカノケミカル処理が好ましい。 The mechanochemical treatment includes a wet method using a dispersion medium and a dry method using no dispersion medium, and the dry method mechanochemical treatment is preferable for the production of the thermally conductive composite particles of the present invention.
本発明の熱伝導性複合粒子におけるシリカの被覆量は、窒化ホウ素の質量に対し、0.5質量%未満である。シリカの被覆量が0.5質量%以上になると、シリカが増加して複合粒子が嵩高くなり、充填する樹脂組成物の粘度が高められるために練込限界量が減少し、樹脂組成物に充填される窒化ホウ素も減少するからである。また、シリカは熱伝導率が低いため、シリカが増加することにより充填する樹脂組成物の熱伝導率の低下を招くからである。 The amount of silica coated in the thermally conductive composite particles of the present invention is less than 0.5 mass % with respect to the mass of boron nitride. When the silica coating amount is 0.5% by mass or more, the silica increases and the composite particles become bulky, and the viscosity of the resin composition to be filled is increased, so the kneading limit amount is reduced, and the resin composition is affected. This is because the amount of boron nitride to be filled is also reduced. In addition, since silica has a low thermal conductivity, an increase in silica causes a decrease in thermal conductivity of the resin composition to be filled.
また、本発明の熱伝導性複合粒子におけるシリカの被覆量は、窒化ホウ素の質量に対し、0.3質量%以下であることが好ましく、0.3質量%がより好ましい。シリカの被覆量が0.3質量%以下になると、練込限界量が増加し、樹脂組成物に充填される窒化ホウ素も増加するからである。 The amount of silica coated in the thermally conductive composite particles of the present invention is preferably 0.3% by mass or less, more preferably 0.3% by mass, based on the mass of boron nitride. This is because if the silica coating amount is 0.3% by mass or less, the kneading limit amount increases, and the amount of boron nitride with which the resin composition is filled also increases.
本発明の熱伝導性複合粒子は、樹脂組成物、特に基板、半導体パッケージ又は工業用樹脂材料に充填し、熱伝導性フィラーとして使用することができる。ここで、工業用樹脂材料とは、耐食、耐薬品性、加工性(特に切断、曲げ、溶接)等が要求される樹脂材料で例えば工業用プレートを挙げられる。樹脂組成物に用いられる樹脂は特に限定されないが、エポキシ樹脂、シリコーン樹脂、メラミン樹脂、ユリア樹脂、フェノール樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ナイロン等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリベンゾイミダゾール、アラミド樹脂、ポリフェニレンスルフィド、全芳香族ポリエステル、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、アクリロニトリル-アクリルゴム・スチレン樹脂、アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン等の汎用樹脂等を例示できる。 The thermally conductive composite particles of the present invention can be used as thermally conductive fillers by filling resin compositions, particularly substrates, semiconductor packages or industrial resin materials. Here, the industrial resin material is a resin material that requires corrosion resistance, chemical resistance, workability (in particular, cutting, bending, welding), etc., and examples thereof include industrial plates. The resin used in the resin composition is not particularly limited, but epoxy resin, silicone resin, melamine resin, urea resin, phenol resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, polyamide such as nylon, poly Polyester such as butylene terephthalate and polyethylene terephthalate, polybenzimidazole, aramid resin, polyphenylene sulfide, wholly aromatic polyester, liquid crystal polymer, polysulfone, polyethersulfone, polycarbonate, maleimide-modified resin, ABS resin, acrylonitrile-acrylic rubber/styrene resin, General-purpose resins such as acrylonitrile/ethylene/propylene/diene rubber-styrene resins, polyethylene, polypropylene, polyvinyl chloride, and polystyrene can be exemplified.
次いで、本発明を実施例を挙げて説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Next, the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
〔実施例1〕(シリカの被覆量が0.3質量%の複合粒子)
窒化ホウ素(グレード名:HS、エアブラウン株式会社製)300gと沈殿法シリカ(グレード名:Nipsil LP、東ソー株式会社製)0.9gを高速混合造粒機により高速撹拌させること(メカノケミカル処理、乾式法)で図1に示す窒化ホウ素の質量に対してシリカの被覆量が0.3質量%の複合粒子を得た。高速混合造粒機の容積は2Lで、撹拌速度5000rpm、混合時間は20分である。図1に示す複合粒子のSEM写真は、得られた複合粒子をカーボンテープの上に張り付け、走査型電子顕微鏡(装置名:日本電子株式会社製、JSM-7500FA)を用いて複合粒子の表面及び形状を観察したものである。以下の図2~図4も同様である。
[Example 1] (Composite particles with a silica coating amount of 0.3% by mass)
300 g of boron nitride (grade name: HS, manufactured by Air Brown Co., Ltd.) and 0.9 g of precipitated silica (grade name: Nipsil LP, manufactured by Tosoh Corporation) are stirred at high speed with a high-speed mixing granulator (mechanochemical treatment, dry process method) to obtain composite particles having a coating amount of silica of 0.3% by mass with respect to the mass of boron nitride shown in FIG. The volume of the high-speed mixing granulator is 2 L, the stirring speed is 5000 rpm, and the mixing time is 20 minutes. The SEM photograph of the composite particles shown in FIG. The shape is observed. The same applies to FIGS. 2 to 4 below.
〔比較例1〕(未処理の窒化ホウ素)
窒化ホウ素(グレード名:HS、エアブラウン株式会社)をそのまま使用した。図2に示すように、窒化ホウ素の表面は平滑である。
[Comparative Example 1] (untreated boron nitride)
Boron nitride (grade name: HS, AirBrown Co., Ltd.) was used as it was. As shown in FIG. 2, the surface of boron nitride is smooth.
〔比較例2〕(メカノケミカル処理された窒化ホウ素)
沈殿法シリカを添加しない以外は、実施例1と同様の方法で窒化ホウ素をメカノケミカル処理した。図3に示す窒化ホウ素は、表面が改質されている。
[Comparative Example 2] (mechanochemically treated boron nitride)
Boron nitride was mechanochemically treated in the same manner as in Example 1, except that precipitated silica was not added. The boron nitride shown in FIG. 3 is surface-modified.
〔比較例3〕(シリカの被覆量が0.5質量%の複合粒子)
窒化ホウ素(グレード名:HS、エアブラウン株式会社)300gと沈殿法シリカ(グレード名:Nipsil LP、東ソー株式会社製)1.5gを高速混合造粒機により高速撹拌させること(メカノケミカル処理、乾式法)で図4に示す窒化ホウ素の質量に対してシリカの被覆量が0.5質量%の複合粒子を得た。高速混合造粒機の容積は2Lで、撹拌速度5000rpm、混合時間は20 分である。
[Comparative Example 3] (Composite particles with a silica coating amount of 0.5% by mass)
300 g of boron nitride (grade name: HS, Air Brown Co., Ltd.) and 1.5 g of precipitated silica (grade name: Nipsil LP, manufactured by Tosoh Corporation) are stirred at high speed by a high-speed mixing granulator (mechanochemical treatment, dry method ) to obtain composite particles having a silica coating amount of 0.5% by mass with respect to the mass of boron nitride shown in FIG. The volume of the high-speed mixing granulator is 2 L, the stirring speed is 5000 rpm, and the mixing time is 20 minutes.
上記の実施例1及び比較例1~3の各試料(複合粒子又は窒化ホウ素)について、下記の測定を行った。 The following measurements were performed for each sample (composite particles or boron nitride) of Example 1 and Comparative Examples 1 to 3 above.
1.水分量
試料の吸湿性を評価する。吸湿性が高いと樹脂組成物の特性に悪影響を与える可能性がある。
試料5gを水分計(装置名:株式会社エー・アンド・デイ製、MX-50)に載せ、130℃強熱時の重量減少率を測定し、水分量とした。
2.比表面積
メカノケミカル処理によって、試料が破砕/磨砕されて微細化が進行していないかを評価する。微細化が進行すると、熱伝導率の低下や水分量の増加(耐吸湿性の低下)を招く可能性がある。
全自動比表面積測定装置(装置名:株式会社マウンテック製、Macsorb(登録商標) HM model-1200)を使用して試料のBET比表面積を測定した。測定前に150℃で30分の真空加熱排気による前処理を行い、液体窒素温度近傍(77K)でBET流動法(1点法)により測定した。
3.中心粒子径
メカノケミカル処理によって、試料が破壊されて微細化していないかを評価する。熱伝導性フィラーの粒子径が大きくなると熱伝導パスが長く太くなり熱伝導率が向上し、逆に粒子径が小さくなると熱伝導率が低下することはよく知られている。本発明においても、複合粒子又は窒化ホウ素が破壊されて中心粒子径が小さくなると、熱伝導率の低下を招く可能性がある。
0.2%ヘキサメタりん酸ナトリウム水溶液に試料を分散させ、粒度分布測定装置(マイクロトラック・ベル株式会社製、MT3000)を用いて粒度分布を測定し、D50の値を読み取った。
4.吸液量
樹脂への練り込み易さを評価する。樹脂へ練り込み易くなる(多量に充填できる)ことによって、樹脂組成物の熱伝導率の向上が期待できる。
吸液量測定は、流動パラフィンを用いてJIS5101-13-2の煮あまに油法を参考とした。測定手順は次のとおりである。
(1)試料2gを秤量し、ガラス製の測定板の上に置いた。
(2)流動パラフィンをスポイトから1回につき4~5滴ずつ徐々に加え、パレットナイフで流動パラフィンに試料を練り込んだ。
(3)上記(2)の操作を繰り返し行い、流動パラフィンと試料の塊ができるところまで滴下を続けた。
(4)以後、流動パラフィンを1滴ずつ滴下し、完全に混練するようにして繰り返し、ペーストが柔らかな硬さになったところを終点とした。
(5)終点迄に要した流動パラフィンの重量を100倍し、吸液量(単位g/100g)とした。
5.分散液試験(pH・電気伝導度)
メカノケミカル処理によって、窒化ホウ素の分解に伴う酸化ホウ素(B2O3)の発生等、不純物の含有量が増加していないかを評価する。例えば、B2O3の発生量が多いと、最終製品(樹脂組成物)の特性に悪影響を与える可能性がある。
純水1Lに試料10gを入れて撹拌して懸濁液を得た。ハンディpH・電気伝導率計(装置名:東亜ディーケーケー株式会社製、WM-32EP)を使用して、pH及び電気伝導度(率)を測定した。
6.酸化ホウ素含有量
メカノケミカル処理によって、窒化ホウ素の分解に伴う酸化ホウ素(B2O3)の発生が進んでいないかを評価する。B2O3の発生量が多いと、最終製品(樹脂組成物)の特性に悪影響を与える可能性がある。また、電気伝導度やpH値に影響を与える。
純水1Lに試料10gを入れて撹拌して懸濁液を固液分離した後、ICP発光分光分析装置(装置名:サーモフィッシャーサイエンティフィック株式会社製、iCAP7200Duo)を使用してホウ素濃度を測定し、その測定値から酸化ホウ素含有量を算出した。
7.熱伝導率
(1)205mLの紙コップにエポキシ樹脂(三井化学株式会社製、エポミックR140P)40gを入れ、練込限界量になるまで試料を徐々に配合し、自転・公転ミキサー(株式会社シンキー製ARE-310)で混合する作業を繰り返した。練込限界量まで配合・混合後、2-エチル-4-メチルイミダゾール(和光純薬工業株式会社製)を0.8g加えて十分に混合・脱泡し、120℃で2時間加熱硬化した。
練込限界量における体積充填率は次の式により導出した。
試料の体積充填率(vol%)=(試料の体積(cm3)/(試料の体積(cm3)+エポキシ樹脂の体積(cm3)))×100 (式1)
試料の体積(cm3)= 試料重量(g)/試料の密度(g/cm3) (式2)
エポキシ樹脂の体積(cm3)= エポキシ樹脂の重量(g)/エポキシ樹脂の密度(g/cm3) (式3)
比較例1、比較例2の試料の密度は窒化ホウ素の密度を使用した。
実施例1、比較例3は(式4)~(式6)を用いて試料の密度を算出した。
試料の密度(g/cm3)= 窒化ホウ素の密度(g/cm3)×(試料中の窒化ホウ素の割合(質量%)/ 100)+ シリカの密度(g/cm3)×(試料中のシリカの割合(質量%)/100) (式4)
試料中の窒化ホウ素の割合(質量%)=(窒化ホウ素の処理質量(g)/(窒化ホウ素の処理質量(g)+ シリカの処理質量(g)))×100 (式5)
試料中のシリカの割合(質量%)=(シリカの処理質量(g)/(窒化ホウ素の処理質量(g)+ シリカの処理質量(g)))×100 (式6)
窒化ホウ素の密度:2.27g/cm3、エポキシ樹脂の密度:1.16g/cm3、沈殿法シリカの密度:2.2g/cm3
(2)硬化した樹脂組成物を研磨し、直径5cm、厚さ2cmの熱伝導率測定用試験試料を作製した。
(3)熱伝導率測定用試験試料を25℃の恒温槽で2時間以上保持した後、迅速熱伝導計(京都電子工業株式会社製、QTM-500)を使用して樹脂組成物の熱伝導率を測定した。
1. Moisture content Evaluate the hygroscopicity of the sample. High hygroscopicity may adversely affect the properties of the resin composition.
A 5 g sample was placed on a moisture meter (equipment name: MX-50, manufactured by A&D Co., Ltd.), and the weight loss rate upon ignition at 130° C. was measured to determine the moisture content.
2. Specific Surface Area Evaluate whether or not the sample is crushed/ground by mechanochemical treatment to make it finer. As the miniaturization progresses, there is a possibility of causing a decrease in thermal conductivity and an increase in moisture content (decrease in hygroscopic resistance).
The BET specific surface area of the sample was measured using a fully automatic specific surface area measuring device (device name: Macsorb (registered trademark) HM model-1200 manufactured by Mountec Co., Ltd.). Before the measurement, pretreatment was performed by vacuum heating and exhausting at 150°C for 30 minutes, and the measurement was performed by the BET flow method (one-point method) near liquid nitrogen temperature (77K).
3. Median particle size Evaluate whether the sample has been destroyed and made finer by mechanochemical treatment. It is well known that when the particle size of the thermally conductive filler becomes large, the thermal conduction path becomes long and thick, thereby improving the thermal conductivity, and conversely, when the particle size becomes small, the thermal conductivity decreases. Also in the present invention, when the composite particles or boron nitride are destroyed to reduce the central particle size, the thermal conductivity may be lowered.
A sample was dispersed in a 0.2% sodium hexametaphosphate aqueous solution, and the particle size distribution was measured using a particle size distribution analyzer (MT3000 manufactured by Microtrack Bell Co., Ltd.) to read the D50 value.
4. Liquid Absorption Evaluate the ease of kneading into the resin. It can be expected to improve the thermal conductivity of the resin composition by making it easier to knead into the resin (allowing a large amount of filling).
The amount of liquid absorption was measured using liquid paraffin and referring to the boiled linseed oil method of JIS5101-13-2. The measurement procedure is as follows.
(1) 2 g of sample was weighed and placed on a glass measuring plate.
(2) 4 to 5 drops of liquid paraffin were gradually added from the dropper at a time, and the sample was kneaded into the liquid paraffin with a palette knife.
(3) The above operation (2) was repeated, and dropwise addition was continued until lumps of liquid paraffin and the sample were formed.
(4) After that, liquid paraffin was added drop by drop, and the paste was thoroughly kneaded and repeated until the paste reached a soft hardness.
(5) The weight of liquid paraffin required to reach the end point was multiplied by 100 to obtain the liquid absorption amount (unit: g/100 g).
5. Dispersion test (pH, electrical conductivity)
Evaluate whether or not the mechanochemical treatment increases the content of impurities such as boron oxide (B 2 O 3 ) due to the decomposition of boron nitride. For example, a large amount of B 2 O 3 generated may adversely affect the properties of the final product (resin composition).
10 g of the sample was added to 1 L of pure water and stirred to obtain a suspension. Using a handy pH/electric conductivity meter (equipment name: WM-32EP manufactured by Toa DKK Co., Ltd.), pH and electric conductivity (rate) were measured.
6. Boron oxide content Evaluate whether or not boron oxide (B 2 O 3 ) is generated due to the decomposition of boron nitride by the mechanochemical treatment. A large amount of B 2 O 3 generated may adversely affect the properties of the final product (resin composition). It also affects electrical conductivity and pH value.
After adding 10 g of sample to 1 L of pure water and stirring to separate the suspension into solid and liquid, the boron concentration was measured using an ICP emission spectrometer (equipment name: iCAP7200Duo manufactured by Thermo Fisher Scientific Co., Ltd.). The boron oxide content was calculated from the measured value.
7. Thermal conductivity (1) Put 40 g of epoxy resin (manufactured by Mitsui Chemicals, Inc., Epomic R140P) in a 205 mL paper cup, gradually mix the sample until it reaches the kneading limit, ARE-310) was repeated. After compounding and mixing up to the kneading limit amount, 0.8 g of 2-ethyl-4-methylimidazole (manufactured by Wako Pure Chemical Industries, Ltd.) was added, thoroughly mixed and defoamed, and cured by heating at 120°C for 2 hours.
The volumetric filling rate at the kneading limit amount was derived from the following equation.
Sample volume filling rate (vol%) = (Sample volume (cm 3 ) / (Sample volume (cm 3 ) + Epoxy resin volume (cm 3 ))) × 100 (Formula 1)
Sample volume (cm 3 ) = sample weight (g)/sample density (g/cm 3 ) (Formula 2)
Epoxy resin volume (cm 3 ) = Epoxy resin weight (g)/Epoxy resin density (g/cm 3 ) (Formula 3)
As the density of the samples of Comparative Examples 1 and 2, the density of boron nitride was used.
In Example 1 and Comparative Example 3, the densities of the samples were calculated using (Formula 4) to (Formula 6).
Density of sample (g/cm 3 ) = density of boron nitride (g/cm 3 ) × (percentage of boron nitride in sample (% by mass) / 100) + density of silica (g/cm 3 ) × (in sample of silica (% by mass)/100) (Formula 4)
Percentage of boron nitride in the sample (% by mass) = (treated mass of boron nitride (g) / (treated mass of boron nitride (g) + treated mass of silica (g))) × 100 (Formula 5)
Ratio of silica in the sample (% by mass) = (treated mass of silica (g) / (treated mass of boron nitride (g) + treated mass of silica (g))) × 100 (Formula 6)
Boron nitride density: 2.27 g/cm 3 Epoxy resin density: 1.16 g/cm 3 Precipitated silica density: 2.2 g/cm 3
(2) The cured resin composition was ground to prepare a test sample for thermal conductivity measurement with a diameter of 5 cm and a thickness of 2 cm.
(3) After holding the test sample for thermal conductivity measurement in a constant temperature bath at 25 ° C for 2 hours or more, the thermal conductivity of the resin composition was measured using a rapid thermal conductivity meter (manufactured by Kyoto Electronics Industry Co., Ltd., QTM-500). rate was measured.
実施例1及び比較例1~3の測定結果を表1に示した。 Table 1 shows the measurement results of Example 1 and Comparative Examples 1 to 3.
表1から実施例1、比較例1、比較例2及び比較例3について、以下の解析ができる。
実施例1:樹脂組成物に練込限界量(樹脂組成物に充填できる最大量)を充填した場合、樹脂組成物の熱伝導率は各比較例と比べて最も高く、窒化ホウ素の有する高度な熱伝導性能を樹脂組成物に十分に付与することができる。また、実施例1と比較例2のそれぞれの練込限界量に差違がない、すなわち樹脂組成物に充填される窒化ホウ素の量に差違がないにも拘わらず、実施例1の練込限界量を充填した樹脂組成物の熱伝導率が比較例2のそれより高いのは、実施例1は効率の良い熱伝導パスが形成されるからである。その理由については次のように考えられる。図5の左図に示すように、樹脂との混練時に窒化ホウ素の表面の微量の微少シリカがスペーサーの役割をすることにより、ランダムな方向に向いた窒化ホウ素は、「窒化ホウ素の端面-窒化ホウ素の平面」の接触点の形成が促進され、効率の良い三次元的な熱伝導パスのネットワークが形成されることにより熱伝導率が高められるからと考えられる。この機序から、窒化ホウ素にごく僅かでもシリカが被覆されている限り、比較例2の樹脂組成物の熱伝導率を凌駕する。したがって、本発明の熱伝導性複合粒子におけるシリカの被覆量の下限を設定することは特に馴染まないが、例えば窒化ホウ素の質量に対し、シリカの被覆量が0.01質量%でも0.05質量%でも比較例2の樹脂組成物の熱伝導率を凌駕する。
比較例1:吸液量が実施例1や他の比較例より高いことから、樹脂との親和性が最も低く練込限界量が低いので、練込限界量を充填しても熱伝導率の高い樹脂組成物を得られないことが分かる。
比較例2:メカノケミカル処理で窒化ホウ素の表面が改質されているため、樹脂との親和性が高められ、比較例1より吸液量が低く、樹脂組成物への練込限界量は比較例1より高い。しかし、比較例2は比較例1に比べて練込限界量が高いにも拘わらず、両者の樹脂組成物の熱伝導率にほとんど差違がないのは、以下の理由によると考えられる。比較例2は、図5の右図に示すように、シリカのスペーサーが存在しないため、メカノケミカル処理された窒化ホウ素を樹脂に充填した場合、実施例1のような三次元的な熱伝導パスのネットワークが形成されないばかりか、窒化ホウ素-樹脂-窒化ホウ素という接触(熱伝導パス)が実施例1より多くなり、樹脂は熱伝導率が低いために窒化ホウ素-樹脂のその境界面の熱抵抗が大きくなる(熱伝導率が悪くなる)からと考えられる。他方、未処理の窒化ホウ素の比較例1は、比較例2よりも中心粒子径が大きい(比較例1:26.6 μm、比較例2:18.8 μm)ため、比較例2と比べて長く太い熱伝導パスを形成できるため、練込限界量が低いにも拘わらず熱伝導率が高くなると考えられる。
比較例3:樹脂組成物に練込限界量を充填した場合の熱伝導率は、被覆されるシリカの増加で樹脂組成物の粘度が高まり練込限界量が減少すること及び熱伝導率が低いシリカの増加で樹脂組成物の熱伝導率が低下することにより、比較例1、比較例2と比べて若干高いものの、実施例1に比べて低い。また、電気伝導度及びB2O3含有量が実施例1より高く、B2O3等の不純物の含有量が実施例1より増加し、樹脂組成物の特性に悪影響を与える可能性がある。したがって、シリカの被覆量が0.5質量%の比較例3は本発明の熱伝導性複合粒子の境界点であると考えられる。
From Table 1, the following analysis can be made for Example 1, Comparative Example 1, Comparative Example 2, and Comparative Example 3.
Example 1: When the resin composition is filled with the kneading limit amount (the maximum amount that can be filled in the resin composition), the thermal conductivity of the resin composition is the highest compared to each comparative example, and the high degree of boron nitride Thermal conductivity performance can be sufficiently imparted to the resin composition. In addition, although there is no difference in the kneading limit amount between Example 1 and Comparative Example 2, that is, there is no difference in the amount of boron nitride filled in the resin composition, the kneading limit amount of Example 1 The reason why the thermal conductivity of the resin composition filled with is higher than that of Comparative Example 2 is that an efficient thermal conduction path is formed in Example 1. The reason for this is considered as follows. As shown in the left figure of FIG. 5, when the boron nitride is kneaded with the resin, a small amount of fine silica on the surface of the boron nitride acts as a spacer, so that the boron nitride oriented in a random direction becomes "boron nitride end face-nitriding It is believed that this is because the formation of contact points on the plane of boron is promoted, and an efficient network of three-dimensional heat conduction paths is formed, thereby increasing the thermal conductivity. From this mechanism, the thermal conductivity of the resin composition of Comparative Example 2 is surpassed as long as the boron nitride is coated with even a very small amount of silica. Therefore, although it is not particularly suitable to set the lower limit of the silica coating amount in the thermally conductive composite particles of the present invention, for example, even if the silica coating amount is 0.01% by mass with respect to the mass of boron nitride, it is 0.05 mass. %, it surpasses the thermal conductivity of the resin composition of Comparative Example 2.
Comparative Example 1: Since the liquid absorption amount is higher than that of Example 1 and other comparative examples, the affinity with the resin is the lowest and the kneading limit amount is low. It can be seen that a high resin composition cannot be obtained.
Comparative Example 2: Since the surface of boron nitride is modified by mechanochemical treatment, the affinity with the resin is enhanced, the amount of liquid absorption is lower than that of Comparative Example 1, and the limit amount of kneading into the resin composition is comparative. Higher than Example 1. However, although Comparative Example 2 has a higher kneading limit than Comparative Example 1, the reason why there is almost no difference in thermal conductivity between the two resin compositions is considered as follows. In Comparative Example 2, as shown in the right figure of FIG. network is not formed, and the number of contacts (thermal conduction paths) of boron nitride-resin-boron nitride is greater than in Example 1, and since the resin has a low thermal conductivity, the thermal resistance of the boundary surface of the boron nitride-resin is considered to be due to the increase in the thermal conductivity (the thermal conductivity is deteriorated). On the other hand, Comparative Example 1 of untreated boron nitride has a larger central particle size than Comparative Example 2 (Comparative Example 1: 26.6 μm, Comparative Example 2: 18.8 μm), so a long and thick heat conduction It is thought that because the paths can be formed, the thermal conductivity is high despite the low kneading limit.
Comparative Example 3: The thermal conductivity when the resin composition is filled with the kneading limit amount is that the viscosity of the resin composition increases due to the increase in the amount of silica to be coated, and the kneading limit amount decreases, and the thermal conductivity is low. Since the thermal conductivity of the resin composition decreases due to the increase in silica, it is slightly higher than Comparative Examples 1 and 2, but lower than Example 1. In addition, the electrical conductivity and B 2 O 3 content are higher than those in Example 1, and the content of impurities such as B 2 O 3 is higher than in Example 1, which may adversely affect the properties of the resin composition. . Therefore, Comparative Example 3 with a silica coating amount of 0.5% by mass is considered to be a boundary point for the thermally conductive composite particles of the present invention.
本発明の熱伝導性複合粒子は、樹脂に充填することにより樹脂に高い熱伝導性を付与できるので、電子部品等の放熱が必要な樹脂成形体に好適である。 The thermally conductive composite particles of the present invention can impart high thermal conductivity to a resin by being filled in the resin, and therefore are suitable for resin moldings that require heat dissipation, such as electronic parts.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021106061A JP7680737B2 (en) | 2021-06-25 | 2021-06-25 | Thermally conductive composite particles and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021106061A JP7680737B2 (en) | 2021-06-25 | 2021-06-25 | Thermally conductive composite particles and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023004420A true JP2023004420A (en) | 2023-01-17 |
JP7680737B2 JP7680737B2 (en) | 2025-05-21 |
Family
ID=85100459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021106061A Active JP7680737B2 (en) | 2021-06-25 | 2021-06-25 | Thermally conductive composite particles and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7680737B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001002830A (en) * | 1999-06-21 | 2001-01-09 | Fujitsu Ltd | High thermal conductive composition |
JP2014166930A (en) * | 2013-02-28 | 2014-09-11 | Shin Etsu Chem Co Ltd | Boron nitride powder and resin composition containing the same |
JP2015214639A (en) * | 2014-05-09 | 2015-12-03 | Dic株式会社 | Composite particle, method for producing the same and resin composition |
WO2021006310A1 (en) * | 2019-07-11 | 2021-01-14 | 昭和電工株式会社 | Method for producing silica-coated boron nitride particles and silica-coated boron nitride particles |
WO2021036972A1 (en) * | 2019-08-23 | 2021-03-04 | Evonik Specialty Chemicals (Shanghai) Co., Ltd. | Thermal conductive filler and preparation method thereof |
-
2021
- 2021-06-25 JP JP2021106061A patent/JP7680737B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001002830A (en) * | 1999-06-21 | 2001-01-09 | Fujitsu Ltd | High thermal conductive composition |
JP2014166930A (en) * | 2013-02-28 | 2014-09-11 | Shin Etsu Chem Co Ltd | Boron nitride powder and resin composition containing the same |
JP2015214639A (en) * | 2014-05-09 | 2015-12-03 | Dic株式会社 | Composite particle, method for producing the same and resin composition |
WO2021006310A1 (en) * | 2019-07-11 | 2021-01-14 | 昭和電工株式会社 | Method for producing silica-coated boron nitride particles and silica-coated boron nitride particles |
WO2021036972A1 (en) * | 2019-08-23 | 2021-03-04 | Evonik Specialty Chemicals (Shanghai) Co., Ltd. | Thermal conductive filler and preparation method thereof |
CN114667311A (en) * | 2019-08-23 | 2022-06-24 | 赢创运营有限公司 | Heat-conducting filler and preparation method thereof |
JP2022546342A (en) * | 2019-08-23 | 2022-11-04 | エボニック オペレーションズ ゲーエムベーハー | Thermally conductive filler and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP7680737B2 (en) | 2025-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhi et al. | Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers | |
Hou et al. | Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity | |
TWI700243B (en) | Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material | |
Fang et al. | Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength | |
JP5607928B2 (en) | Mixed boron nitride composition and method for producing the same | |
RU2346017C1 (en) | Fire-resistant composite material (versions) and method of obtaining it | |
TWI838500B (en) | Blocky boron nitride particles, heat conductive resin composition, and heat dissipation member | |
US8053495B2 (en) | Ceramic powder and applications thereof | |
CN101472841B (en) | ceramic powder and use thereof | |
CN110959190B (en) | Low dielectric constant heat conductive heat dissipation member | |
Li et al. | Electrically insulating ZnOs/ZnOw/silicone rubber nanocomposites with enhanced thermal conductivity and mechanical properties | |
Kim et al. | Effect of filler size on thermal properties of paraffin/silver nanoparticle composites | |
Kim et al. | Continuously thermal conductive pathway of bidisperse boron nitride fillers in epoxy composite for highly efficient heat dissipation | |
EP3915939A1 (en) | Filler composition, silicone resin composition, and heat dissipation component | |
TW202142491A (en) | Alumina powder, resin composition, andheat dissipation component | |
JP6580851B2 (en) | High thermal conductivity electrical insulation composition | |
JP7481214B2 (en) | Magnesium oxide powder, filler composition, resin composition, and heat dissipation part | |
KR102789945B1 (en) | Massive boron nitride particles, heat-conductive resin composition and heat-radiating member | |
CN101563291B (en) | Amorphous silica powder, method for producing same, and sealing material for semiconductor | |
JP6786047B2 (en) | Method of manufacturing heat conductive sheet | |
JP2023004420A (en) | Thermally conductive composite particles and method for producing the same | |
JP5606740B2 (en) | Siliceous powder, production method and use thereof | |
TWI881174B (en) | Boron nitride powder, and method for producing boron nitride powder | |
CN115335324B (en) | Surface modified particulate material and slurry composition | |
JP2024507083A (en) | Heat dissipation material, composition containing the same, and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240529 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20250131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20250221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20250318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250430 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7680737 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |