[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2023080218A - 眼科装置 - Google Patents

眼科装置 Download PDF

Info

Publication number
JP2023080218A
JP2023080218A JP2023064796A JP2023064796A JP2023080218A JP 2023080218 A JP2023080218 A JP 2023080218A JP 2023064796 A JP2023064796 A JP 2023064796A JP 2023064796 A JP2023064796 A JP 2023064796A JP 2023080218 A JP2023080218 A JP 2023080218A
Authority
JP
Japan
Prior art keywords
image
unit
eye
light
fixation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023064796A
Other languages
English (en)
Inventor
佑介 小野
Yusuke Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2023064796A priority Critical patent/JP2023080218A/ja
Publication of JP2023080218A publication Critical patent/JP2023080218A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0091Fixation targets for viewing direction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

【課題】固視不良に対して好適に対処する。【解決手段】実施形態の眼科装置の固視系は、被検眼に固視光を投射する。データ取得部は、眼底の3次元領域にOCTスキャンを繰り返し適用してデータを繰り返し取得する。観察画像取得部は、OCTスキャンの繰り返し適用と並行して眼底の観察画像を取得する。データ処理部は、データ取得部が取得したデータに基づき眼底の正面投影像を形成して観察画像との間のレジストレーションを行う第1の処理と、当該データに基づき被検眼の所定部位の位置とOCTスキャンの適用範囲との間の偏位を求めて閾値と比較する第2の処理とを並行して且つOCTスキャンの繰り返しレートに同期して繰り返し実行する。制御部は、偏位が閾値よりも大きいと判定されたとき、偏位を打ち消す又は小さくするように固視光の投射位置及び/又はOCTスキャンの適用範囲を移動する。【選択図】図4

Description

この発明は眼科装置に関する。
眼科装置には、被検眼の画像を得るための眼科撮影装置と、被検眼の特性を測定するための眼科測定装置と、被検眼を治療するための眼科治療装置とが含まれる。
眼科撮影装置の例として、光コヒーレンストモグラフィ(OCT)を利用して断層像を得る光干渉断層計や、眼底を写真撮影する眼底カメラや、共焦点光学系を用いたレーザ走査により眼底の画像を得る走査型レーザ検眼鏡(SLO)、スリットランプ顕微鏡、手術用顕微鏡などがある。
眼科測定装置の例として、被検眼の屈折特性を測定する眼屈折検査装置(レフラクトメータ、ケラトメータ)や、眼圧計や、角膜の特性(角膜厚、細胞分布等)を得るスペキュラーマイクロスコープや、ハルトマン-シャックセンサを用いて被検眼の収差情報を得るウェーブフロントアナライザや、視野状態を測定する視野計・マイクロペリメータなどがある。
眼科治療装置の例として、疾患部等の治療対象部位にレーザ光を投射するレーザ治療装置や、特定の目的(白内障手術、角膜屈折矯正手術等)のための手術装置、手術用顕微鏡などがある。
多くの眼科装置には、被検眼(又は僚眼)に固視標を提示するための構成が設けられている。固視標には、被検眼の所望の部位のデータを取得するために視線を誘導する機能や、データの取得中に被検眼を固定する機能などがある。
特開2016-158721号公報
しかし、固視標を提示していても所望の部位のデータを取得できないことがある。例えば、被検眼の視力に問題がある場合や、被検者が老人又は子供である場合、固視標の上記機能を十分に発揮できないことがある。また、被検眼の随意的又は不随意的な動きが固視を妨げることもある。このような現象は固視不良(fixation loss)などと呼ばれる。
この発明の目的は、固視不良に対して好適に対処することが可能な眼科装置を提供することにある。
実施形態の眼科装置は、被検眼に固視光を投射する固視系と、前記固視光が投射されている前記被検眼の眼底の3次元領域に対して光コヒーレンストモグラフィスキャンを繰り返し適用してデータを繰り返し取得するデータ取得部と、前記データ取得部による前記光コヒーレンストモグラフィスキャンの前記眼底への繰り返し適用と並行して、近赤外光を用いた動画撮影を前記眼底に適用して観察画像を取得する観察画像取得部と、前記データ取得部により取得された前記データに基づき前記眼底の正面投影像を形成して前記観察画像との間のレジストレーションを行う第1の処理と、前記データ取得部により取得された前記データに基づき前記被検眼の所定部位の位置と前記光コヒーレンストモグラフィスキャンの適用範囲との間の偏位を求めて所定の閾値と比較する第2の処理とを、互いに並行して、且つ、前記データ取得部による前記光コヒーレンストモグラフィスキャンの繰り返しレートに同期して繰り返し実行するデータ処理部と、前記第2の処理において前記偏位が前記所定の閾値よりも大きいと判定されたとき、前記偏位を打ち消す又は小さくするように、前記固視光の投射位置を移動するための前記固視系の制御及び前記光コヒーレンストモグラフィスキャンの適用範囲を移動するための前記データ取得部の制御の少なくとも一方を実行する制御部とを含む。
このように構成された実施形態によれば、固視不良に対して好適に対処することが可能である。
実施形態に係る眼科装置の構成の例を表す概略図。 実施形態に係る眼科装置の構成の例を表す概略図。 実施形態に係る眼科装置の構成の例を表す概略図。 実施形態に係る眼科装置の構成の例を表す概略図。 実施形態に係る眼科装置の動作の例を表すフローチャート。 実施形態に係る眼科装置が表示する画面の例を表す概略図。 実施形態に係る眼科装置が表示する画面の例を表す概略図。 実施形態に係る眼科装置が表示する画面の例を表す概略図。
この発明の実施形態について図面を参照しながら詳細に説明する。実施形態の眼科装置は、光干渉断層計を少なくとも含む。
光干渉断層計に加え、実施形態の眼科装置は、光干渉断層計以外の眼科撮影装置と、眼科測定装置と、眼科治療装置とのうちのいずれか1つ以上を含んでいてもよい。実施形態の眼科装置に含まれる眼科撮影装置は、例えば、眼底カメラ、走査型レーザ検眼鏡、スリットランプ検眼鏡、手術用顕微鏡等のうちのいずれか1つ以上であってよい。また、実施形態の眼科装置に含まれる眼科測定装置は、例えば、眼屈折検査装置、眼圧計、スペキュラーマイクロスコープ、ウェーブフロントアナライザ、視野計、マイクロペリメータ等のうちのいずれか1つ以上であってよい。また、実施形態の眼科装置に含まれる眼科治療装置は、例えば、レーザ治療装置、手術装置、手術用顕微鏡等のうちのいずれか1つ以上であってよい。
以下に説明する例示的な実施形態の眼科装置は、光干渉断層計と眼底カメラとを含む。この光干渉断層計にはスウェプトソースOCTが適用されているが、OCTのタイプはこれに限定されず、他のタイプのOCT(スペクトラルドメインOCT、タイムドメインOCT、アンファスOCT等)が適用されてもよい。
〈構成〉
図1に示すように、眼科装置1は、眼底カメラユニット2、OCTユニット100及び演算制御ユニット200を含む。眼底カメラユニット2には、被検眼Eの正面画像を取得するための光学系や機構が設けられている。OCTユニット100には、OCTを実行するための光学系や機構の一部が設けられている。OCTを実行するための光学系や機構の他の一部は、眼底カメラユニット2に設けられている。演算制御ユニット200は、各種の演算や制御を実行する1以上のプロセッサを含む。これらに加え、被検者の顔を支持するための部材(顎受け、額当て等)や、OCTの対象部位を切り替えるためのレンズユニット(例えば、前眼部OCT用アタッチメント)等の任意の要素やユニットが眼科装置1に設けられてもよい。
本明細書において「プロセッサ」は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路を意味する。プロセッサは、例えば、記憶回路や記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。
〈眼底カメラユニット2〉
眼底カメラユニット2には、被検眼Eの眼底Efを撮影するための光学系が設けられている。取得される眼底Efの画像(眼底像、眼底写真等と呼ばれる)は、観察画像、撮影画像等の正面画像である。観察画像は、近赤外光を用いた動画撮影により得られる。撮影画像は、フラッシュ光を用いた静止画像である。更に、眼底カメラユニット2は、被検眼Eの前眼部を撮影して正面画像(前眼部像)を取得することができる。
眼底カメラユニット2は、照明光学系10と撮影光学系30とを含む。照明光学系10は被検眼Eに照明光を照射する。撮影光学系30は、被検眼Eからの照明光の戻り光を検出する。OCTユニット100からの測定光は、眼底カメラユニット2内の光路を通じて被検眼Eに導かれ、その戻り光は、同じ光路を通じてOCTユニット100に導かれる。
照明光学系10の観察光源11から出力された光(観察照明光)は、曲面状の反射面を有する反射ミラー12により反射され、集光レンズ13を経由し、可視カットフィルタ14を透過して近赤外光となる。更に、観察照明光は、撮影光源15の近傍にて一旦集束し、ミラー16により反射され、リレーレンズ17、18、絞り19及びリレーレンズ20を経由する。そして、観察照明光は、孔開きミラー21の周辺部(孔部の周囲の領域)にて反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて被検眼E(眼底Ef又は前眼部)を照明する。被検眼Eからの観察照明光の戻り光は、対物レンズ22により屈折され、ダイクロイックミラー46を透過し、孔開きミラー21の中心領域に形成された孔部を通過し、ダイクロイックミラー55を透過し、撮影合焦レンズ31を経由し、ミラー32により反射される。更に、この戻り光は、ハーフミラー33Aを透過し、ダイクロイックミラー33により反射され、集光レンズ34によりイメージセンサ35の受光面に結像される。イメージセンサ35は、所定のフレームレートで戻り光を検出する。なお、撮影光学系30のフォーカスは、眼底Ef又は前眼部に合致するように調整される。
撮影光源15から出力された光(撮影照明光)は、観察照明光と同様の経路を通って眼底Efに照射される。被検眼Eからの撮影照明光の戻り光は、観察照明光の戻り光と同じ経路を通ってダイクロイックミラー33まで導かれ、ダイクロイックミラー33を透過し、ミラー36により反射され、集光レンズ37によりイメージセンサ38の受光面に結像される。
LCD(Liquid Crystal Display)39は固視標や視力測定用視標を表示する。LCD39から出力された光束は、その一部がハーフミラー33Aにて反射され、ミラー32に反射され、撮影合焦レンズ31及びダイクロイックミラー55を経由し、孔開きミラー21の孔部を通過する。孔開きミラー21の孔部を通過した光束は、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投射される。
LCD39の画面上における固視標の表示位置を変更することにより、被検眼Eの固視位置を変更できる。固視位置の例として、黄斑を中心とする画像を取得するための固視位置や、視神経乳頭を中心とする画像を取得するための固視位置や、黄斑と視神経乳頭との間の眼底中心を中心とする画像を取得するための固視位置や、黄斑から大きく離れた部位(眼底周辺部)の画像を取得するための固視位置などがある。このような典型的な固視位置の少なくとも1つを指定するためのGUI(Graphical User Interface)等を設けることができる。また、固視位置(固視標の表示位置)をマニュアルで移動するためのGUI等を設けることができる。
移動可能な固視標を被検眼Eに提示するための構成はLCD等の表示装置には限定されない。例えば、光源アレイ(発光ダイオード(LED)アレイ等)における複数の光源を選択的に点灯させることにより、移動可能な固視標を生成することができる。また、移動可能な1以上の光源により、移動可能な固視標を生成することができる。
アライメント光学系50は、被検眼Eに対する光学系のアライメントに用いられるアライメント指標を生成する。LED51から出力されたアライメント光は、絞り52及び53並びにリレーレンズ54を経由し、ダイクロイックミラー55により反射され、孔開きミラー21の孔部を通過する。孔開きミラー21の孔部を通過した光は、ダイクロイックミラー46を透過し、対物レンズ22により被検眼Eに投射される。アライメント光の角膜反射光は、観察照明光の戻り光と同じ経路を通ってイメージセンサ35に導かれる。その受光像(アライメント指標像)に基づいてマニュアルアライメントやオートアライメントを実行できる。
フォーカス光学系60は、被検眼Eに対するフォーカス調整に用いられるスプリット指標を生成する。フォーカス光学系60は、撮影光学系30の光路(撮影光路)に沿った撮影合焦レンズ31の移動に連動して、照明光学系10の光路(照明光路)に沿って移動される。反射棒67は、照明光路に対して挿脱可能である。フォーカス調整を行う際には、反射棒67の反射面が照明光路に傾斜配置される。LED61から出力されたフォーカス光は、リレーレンズ62を通過し、スプリット指標板63により2つの光束に分離され、二孔絞り64を通過し、ミラー65により反射され、集光レンズ66により反射棒67の反射面に一旦結像されて反射される。更に、フォーカス光は、リレーレンズ20を経由し、孔開きミラー21に反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投射される。フォーカス光の眼底反射光は、アライメント光の角膜反射光と同じ経路を通ってイメージセンサ35に導かれる。その受光像(スプリット指標像)に基づいてマニュアルフォーカスやオートフォーカスを実行できる。
視度補正レンズ70及び71は、孔開きミラー21とダイクロイックミラー55との間の撮影光路に選択的に挿入可能である。視度補正レンズ70は、強度遠視を補正するためのプラスレンズ(凸レンズ)である。視度補正レンズ71は、強度近視を補正するためのマイナスレンズ(凹レンズ)である。
ダイクロイックミラー46は、眼底撮影用光路とOCT用光路とを合成する。ダイクロイックミラー46は、OCTに用いられる波長帯の光を反射し、眼底撮影用の光を透過させる。OCT用光路(測定光の光路)には、OCTユニット100側からダイクロイックミラー46側に向かって順に、コリメータレンズユニット40、光路長変更部41、光スキャナ42、OCT合焦レンズ43、ミラー44、及びリレーレンズ45が設けられている。
光路長変更部41は、図1に示す矢印の方向に移動可能とされ、OCT用光路の長さを変更する。この光路長の変更は、眼軸長に応じた光路長補正や、干渉状態の調整などに利用される。光路長変更部41は、コーナーキューブと、これを移動する機構とを含む。
光スキャナ42は、被検眼Eの瞳孔と光学的に共役な位置に配置される。光スキャナ42は、OCT用光路を通過する測定光LSを偏向する。光スキャナ42は、例えば、2次元走査が可能なガルバノスキャナである。
OCT合焦レンズ43は、OCT用の光学系のフォーカス調整を行うために、測定光LSの光路に沿って移動される。撮影合焦レンズ31の移動、フォーカス光学系60の移動、及びOCT合焦レンズ43の移動を連係的に制御することができる。
〈OCTユニット100〉
図2に例示するように、OCTユニット100には、スウェプトソースOCTを実行するための光学系が設けられている。この光学系は、干渉光学系を含む。この干渉光学系は、波長可変光源(波長掃引型光源)からの光を測定光と参照光とに分割する機能と、被検眼Eからの測定光の戻り光と参照光路を経由した参照光とを重ね合わせて干渉光を生成する機能と、この干渉光を検出する機能とを備える。干渉光学系により得られた干渉光の検出結果(検出信号)は、干渉光のスペクトルを示す信号であり、演算制御ユニット200に送られる。
光源ユニット101は、例えば、出射光の波長を高速で変化させる近赤外波長可変レーザを含む。光源ユニット101から出力された光L0は、光ファイバ102により偏波コントローラ103に導かれてその偏光状態が調整される。更に、光L0は、光ファイバ104によりファイバカプラ105に導かれて測定光LSと参照光LRとに分割される。
参照光LRは、光ファイバ110によりコリメータ111に導かれて平行光束に変換され、光路長補正部材112及び分散補償部材113を経由し、コーナーキューブ114に導かれる。光路長補正部材112は、参照光LRの光路長と測定光LSの光路長とを合わせるよう作用する。分散補償部材113は、参照光LRと測定光LSとの間の分散特性を合わせるよう作用する。コーナーキューブ114は、参照光LRの入射方向に移動可能であり、それにより参照光LRの光路長が変更される。
コーナーキューブ114を経由した参照光LRは、分散補償部材113及び光路長補正部材112を経由し、コリメータ116によって平行光束から集束光束に変換され、光ファイバ117に入射する。光ファイバ117に入射した参照光LRは、偏波コントローラ118に導かれてその偏光状態が調整され、光ファイバ119によりアッテネータ120に導かれて光量が調整され、光ファイバ121によりファイバカプラ122に導かれる。
一方、ファイバカプラ105により生成された測定光LSは、光ファイバ127により導かれてコリメータレンズユニット40により平行光束に変換され、光路長変更部41、光スキャナ42、OCT合焦レンズ43、ミラー44及びリレーレンズ45を経由し、ダイクロイックミラー46により反射され、対物レンズ22により屈折されて被検眼Eに入射する。測定光LSは、被検眼Eの様々な深さ位置において散乱・反射される。被検眼Eからの測定光LSの戻り光は、往路と同じ経路を逆向きに進行してファイバカプラ105に導かれ、光ファイバ128を経由してファイバカプラ122に到達する。
ファイバカプラ122は、光ファイバ128を介して入射された測定光LSと、光ファイバ121を介して入射された参照光LRとを合成して(干渉させて)干渉光を生成する。ファイバカプラ122は、所定の分岐比(例えば1:1)で干渉光を分岐することにより、一対の干渉光LCを生成する。一対の干渉光LCは、それぞれ光ファイバ123及び124を通じて検出器125に導かれる。
検出器125は、例えばバランスドフォトダイオードである。バランスドフォトダイオードは、一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを含み、これらフォトディテクタにより得られた一対の検出結果の差分を出力する。検出器125は、この出力(検出信号)をDAQ(Data Acquisition System)130に送る。
DAQ130には、光源ユニット101からクロックKCが供給される。クロックKCは、光源ユニット101において、波長可変光源により所定の波長範囲内で掃引される各波長の出力タイミングに同期して生成される。光源ユニット101は、例えば、各出力波長の光L0を分岐することにより得られた2つの分岐光の一方を光学的に遅延させた後、これらの合成光を検出した結果に基づいてクロックKCを生成する。DAQ130は、検出器125から入力される検出信号をクロックKCに基づきサンプリングする。DAQ130は、検出器125からの検出信号のサンプリング結果を演算制御ユニット200に送る。
本例では、測定光LSの光路(測定光路、測定アーム)の長さを変更するための光路長変更部41と、参照光LRの光路(参照光路、参照アーム)の長さを変更するためのコーナーキューブ114の双方が設けられているが、光路長変更部41とコーナーキューブ114のいずれか一方のみが設けられもよい。また、これら以外の光学部材を用いて、測定光路長と参照光路長との差を変更することも可能である。
〈制御系〉
眼科装置1の制御系の構成例を図3A及び図3Bに示す。図3A及び図3Bにおいて、眼科装置1に含まれる構成要素の一部が省略されている。制御部210、画像形成部220及びデータ処理部230は、例えば、演算制御ユニット200に設けられる。
〈制御部210〉
制御部210は、各種の制御を実行する。制御部210は、主制御部211と記憶部212とを含む。
〈主制御部211〉
主制御部211は、プロセッサを含み、眼科装置1の各部(図1~図3Bに示された各要素を含む)を制御する。例えば、主制御部211は、図示しない駆動機構を制御することで撮影合焦レンズ31を移動する。また、主制御部211は、図示しない駆動機構を制御することでOCT合焦レンズ43を移動する。また、主制御部211は、参照駆動部114Aを制御することでコーナーキューブ114を移動する。
移動機構150は、例えば、少なくとも眼底カメラユニット2を3次元的に移動する。典型的な例において、移動機構150は、少なくとも眼底カメラユニット2をx方向(左右方向)に移動するための機構と、y方向(上下方向)に移動するための機構と、z方向(奥行き方向、前後方向)に移動するための機構とを含む。x方向に移動するための機構は、例えば、x方向に移動可能なxステージと、xステージを移動するx移動機構とを含む。y方向に移動するための機構は、例えば、例えば、y方向に移動可能なyステージと、yステージを移動するy移動機構とを含む。z方向に移動するための機構は、例えば、z方向に移動可能なzステージと、zステージを移動するz移動機構とを含む。各移動機構は、パルスモータ等のアクチュエータを含み、主制御部211からの制御を受けて動作する。
主制御部211は、LCD39を制御する。例えば、主制御部211は、手動又は自動で設定された固視位置に対応するLCD39の画面上の位置に固視標を表示する。また、主制御部211は、LCD39に表示されている固視標の表示位置を(連続的に又は段階的に)変更することができる。それにより、固視標を移動することができる(つまり、固視位置を変更することができる)。固視標の表示位置や移動態様は、マニュアルで又は自動的に設定される。マニュアルでの設定は、例えばGUIを用いて行われる。自動的な設定は、例えば、データ処理部230により行われる。
〈記憶部212〉
記憶部212は各種のデータを記憶する。記憶部212に記憶されるデータとしては、OCT画像や眼底像や前眼部像や被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者情報や、左眼/右眼の識別情報や、電子カルテ情報などを含む。
〈画像形成部220〉
画像形成部220は、プロセッサを含み、DAQ130からの出力(検出信号のサンプリング結果)に基づき画像を形成する。例えば、画像形成部220は、従来のスウェプトソースOCTと同様に、Aライン毎のサンプリング結果に基づくスペクトル分布に信号処理を施してAライン毎の反射強度プロファイルを形成し、これらAラインプロファイルを画像化してスキャンラインに沿って配列する。上記信号処理には、ノイズ除去(ノイズ低減)、フィルタ処理、FFT(Fast Fourier Transform)などが含まれる。
〈データ処理部230〉
データ処理部230は、プロセッサを含み、画像形成部220により形成された画像に対して画像処理や解析処理を施す。データ処理部230は、3次元画像形成部231と、画像投影部232と、位置合わせ部233と、解析部234と、偏位比較部235とを含む。
〈3次元画像形成部231〉
3次元画像形成部231は、被検眼Eの3次元領域のOCTスキャン(換言すると、3次元画像を取得するためのスキャン)が行われたときに動作する。
3次元領域のOCTスキャンが行われなかった場合、3次元画像形成部231による処理を経ることなく、解析部234等による処理が実行される。なお、画像投影部232と位置合わせ部233も、被検眼Eの3次元領域のOCTスキャンが行われたときに動作する。
3次元領域をスキャンするためのスキャンモード(スキャンパターン)の例として、ラスタースキャン(3次元スキャン)、ラジアルスキャン、マルチクロススキャンなどがある。ラスタースキャンは、互いに平行な複数のラインを順次にスキャンするモードである。ラジアルスキャンは、放射状に配列された複数のラインを順次にスキャンするモードである。マルチクロススキャンは、互いに平行な所定本数のラインからなる第1ライン群と、第1ライン群に直交する所定本数のラインからなる第2ライン群とを順次にスキャンするモードである。
3次元画像形成部231により形成される3次元画像の種類は任意である。3次元画像とは、典型的には、3次元座標系により画素の位置が定義された画像を意味する。例示的な実施形態において、3次元画像形成部231は、3次元画像としてスタックデータ又はボリュームデータを形成する。
スタックデータは、3次元領域のスキャンにより収集されたデータに基づき画像形成部220が形成した複数の断面像(Bスキャン像。例えばxz断面像。)を1つの3次元座標系(3次元空間)に埋め込むことによって形成される。すなわち、スタックデータは、複数のスキャンラインに沿って得られた複数のBスキャン像を、これらスキャンラインの位置関係に基づいて3次元的に配列させることによって得られる。
ボリュームデータは、スタックデータに含まれる複数のBスキャン像の間の画素を補間してボクセル化することによって形成される。ボリュームデータはボクセルデータなどと呼ばれる。
このようにして形成された3次元画像を表示する場合、データ処理部230はレンダリング処理を行うことができる。レンダリング処理の例として、ボリュームレンダリング、最大値投影(Maximum Intensity Projection、MIP)などがある。
データ処理部230は、3次元画像から2次元断面像を形成することができる。この処理の例として、多断面再構成(Multi-planar Reconstruction、MPR)などがある。
〈画像投影部232〉
画像投影部232は、3次元画像形成部231により形成された3次元画像から正面投影像を形成する。正面投影像は、3次元画像を所定方向に投影することにより形成される2次元画像である。3次元画像を投影する処理は、所定方向に沿って配列された複数の画素の値を加算する処理を含む。
正面投影像の典型的な例として、プロジェクション画像とシャドウグラムがある。プロジェクション画像は、3次元画像を所定方向(z方向、深さ方向、Aスキャン方向)に投影することによって形成される。眼底カメラユニット2により得られた眼底像と同様に、眼底Efの3次元画像から形成された正面投影像には、眼底Efの表面の形態が表現されている。
シャドウグラムは、3次元画像の一部(例えば特定の層に相当する部分データ)を所定方向に投影することによって形成される。眼底Efの表面組織(内境界膜及びその近傍の層)を含む部分データを投影することで、眼底像と同様に、眼底Efの表面の形態が表現された正面投影像が得られる。
〈位置合わせ部233〉
位置合わせ部233は、眼底カメラユニット2により得られた眼底像と、画像投影部232により形成された正面投影像との間の位置合わせ(レジストレーション)を行う。
眼底カメラユニット2により観察画像が得られる場合、位置合わせ部233は、逐次に取得される画像フレームのそれぞれについてレジストレーションを行うことができる。或いは、所定のフレーム間隔でレジストレーションを行ってもよい。
一連のOCTスキャン(例えばラスタースキャン)が繰り返し実行される場合、画像形成部220及び3次元画像形成部231は、逐次に実行される一連のOCTスキャンのそれぞれにて収集された一連のデータから3次元画像を形成する。つまり、画像形成部220及び3次元画像形成部231は、一連のOCTスキャンの繰り返しに同期して、3次元画像を形成するための処理を繰り返し実行する。更に、画像投影部232は、逐次に形成される3次元画像のそれぞれから正面投影像を形成することができる。位置合わせ部233は、逐次に形成される正面投影像のそれぞれについてレジストレーションを行うことができる。
眼底カメラユニット2により観察画像が得られ、且つ、一連のOCTスキャンが繰り返し実行される場合において、位置合わせ部233は、観察画像のフレームレートと、一連のOCTスキャンの繰り返しレートとに基づいて、観察画像の画像フレームと正面投影像とを対応付けてレジストレーションを行うことができる。このとき、主制御部211は、観察画像の画像フレームを取得タイミングと、一連のOCTスキャンの繰り返しタイミングとを同期させることができる。
レジストレーションは、例えば、双方の画像(眼底像及び正面投影像)から特徴領域を検出する第1処理と、双方の特徴領域を基準として双方の画像を位置合わせする第2処理とを含む。
第1処理で検出される特徴領域は、例えば、視神経乳頭に相当する領域、黄斑に相当する領域、特徴的な血管に相当する領域、病変部に相当する領域、レーザ治療痕に相当する領域のいずれかであってよい。第1処理において、位置合わせ部233は、画素値や画素配列を参照して特徴領域を検出することができる。
第2処理において、位置合わせ部233は、例えば、眼底像から検出された特徴領域と正面投影像から検出された特徴領域とを一致させるように、眼底像と正面投影像との相対位置を調整する。このとき、位置合わせ部233は、特徴領域の輪郭や代表点(中心点、重心点等)を特定し、それらを一致させるようにレジストレーションを行ってもよい。また、位置合わせ部233は、双方の特徴領域の一致の度合を評価し、所定閾値以上の評価値が得られたときに双方の特徴領域が一致したと判定するようにしてもよい。
〈解析部234〉
解析部234は、OCTスキャンにより取得されたデータを解析して被検眼Eの所定部位の位置を特定する。
ここで、被検眼Eの所定部位は任意であってよい。例えば、眼底EfのOCTスキャンが行われる場合、所定部位は、黄斑、視神経乳頭、病変部、注目血管等であってよい。或いは、前眼部のOCTスキャンが行われる場合、所定部位は、隅角、毛様体等であってよい。
また、解析部234により特定される所定部位の位置は、例えば、OCTスキャンにより取得されたデータにおける位置(つまりスキャン範囲における位置)であってよい。
解析部234は、セグメンテーション部2341と、位置特定部2342と、位置関係取得部2343とを含む。
この実施形態では、3次元画像形成部231により形成された3次元画像が解析部234に入力される。或いは、被検眼Eの3次元領域のOCTスキャンが行われなかった場合には、画像形成部220により形成された画像(又は、この画像をデータ処理部230等が加工して得られた画像)が解析部234に入力される。
以下、3次元画像を処理する場合について特に説明するが、それ以外の画像が得られた場合においても同様の処理を実行することが可能である。
〈セグメンテーション部2341〉
セグメンテーション部2341は、3次元画像を解析して少なくとも1つのセグメントを特定する。特定されるセグメントは、典型的には、眼の層組織の画像、又は層境界の画像である。
眼底Efの3次元画像から特定されるセグメントの例として、内境界膜の画像、神経線維層の画像、神経節細胞層の画像、内網状層の画像、内顆粒層の画像、外網状層の画像、外顆粒層の画像、外境界膜の画像、網膜色素上皮の画像、ブルッフ膜の画像、脈絡膜の画像、脈絡膜強膜境界の画像、強膜の画像などがある。
典型的な実施形態では、セグメンテーション部2341は、2つのセグメントを特定する。例えば、解析部234により位置が特定される被検眼Eの所定部位が黄斑中心(中心窩)である場合、セグメンテーション部2341は、内境界膜の画像と、ブルッフ膜の画像とを特定するように構成されてよい。もちろん、セグメンテーション部2341の構成はこれに限定されない。
セグメンテーション部2341は、従来と同様に、3次元画像の画素値の変化に基づいてセグメンテーションを行うことができる。例えば、セグメンテーション部2341は、各Aラインに配置された画素群の値のうちから特徴的な値を特定し、特定された値を有する画素を目的のセグメントを構成する画素として選択するように構成されてよい。
セグメンテーションにおいて、セグメンテーション部2341は、隣接する2つの層の境界の近似曲線を求めるように構成されてもよい。この近似曲線は、任意の手法で求めることができる。近似曲線の例として、線形近似曲線、対数近似曲線、多項式近似曲線、累乗近似曲線、指数近似曲線、移動平均近似曲線などがある。
〈位置特定部2342〉
位置特定部2342は、セグメンテーション部2341により特定された少なくとも1つのセグメントに基づいて、被検眼Eの所定部位の位置を特定する。
セグメンテーション部2341が単一のセグメントを特定した場合、例えば、位置特定部2342は、このセグメントの位置、サイズ、形状等のうちのいずれかの情報に基づいて、被検眼Eの所定部位の位置を特定することができる。このような処理により特定可能な部位として、視神経乳頭、黄斑(黄斑中心)、病変部などがある。
セグメンテーション部2341が2つ(又はそれ以上)のセグメントを特定した場合、例えば、位置特定部2342は、これらセグメントの位置、相対位置、サイズ、相対サイズ、形状、相対形状等のうちのいずれかの情報に基づいて、被検眼Eの所定部位の位置を特定することができる。このような処理により特定可能な部位として、視神経乳頭、黄斑(黄斑中心)、病変部などがある。
典型的な例において、セグメンテーション部2341は、第1セグメントと第2セグメントとを特定することができる。この場合、位置特定部2342は、第1セグメントと第2セグメントとの間の距離の分布に基づいて所定部位の位置を特定することができる。
具体例を説明する。眼底Efの3次元画像が取得された場合、セグメンテーション部2341は、内境界膜の画像とブルッフ膜の画像とを特定する。位置特定部2342は、内境界膜の画像とブルッフ膜の画像との間の距離の分布を求める。この距離分布は、内境界膜とブルッフ膜との間に含まれる層の厚さの分布(網膜厚分布)を表す。
一般に、黄斑は、ブルッフ膜の方向に向かう内境界膜の凹みとして検出される。更に、黄斑中心は、一般に、この凹みにおける最も深い位置として検出される。このような解剖学的特徴を考慮し、位置特定部2342は、内境界膜の画像とブルッフ膜の画像との間の距離分布において、距離が最も短い位置を探索し、探索された位置を黄斑中心の位置に設定することができる。
上記距離分布において、距離が最短の位置が2つ以上探索されることがある。この場合、位置特定部2342は、例えば、探索された位置の近傍領域における距離分布に基づいて、当該位置が黄斑中心の位置に該当するか否か判定することができる。或いは、位置特定部2342は、探索された位置の近傍領域における内境界膜の画像の形状(凹み形状)に基づいて、当該位置が黄斑中心の位置に該当するか否か判定することができる。より一般に、位置特定部2342は、少なくとも上記距離分布を含む情報に基づいて、眼底Efの所定部位の位置を特定することができる。
〈位置関係取得部2343〉
位置関係取得部2343は、位置特定部2342により特定された被検眼Eの所定部位の位置と、OCTスキャンの範囲(スキャン範囲)との間の位置関係を求める。
典型的な例において、位置関係取得部2343は、被検眼Eの所定部位の位置に対するスキャン範囲の偏位を求めることができる。ここで、被検眼Eの所定部位の位置に対するスキャン範囲の偏位は、スキャン範囲に対する被検眼Eの所定部位の位置の偏位と実質的に等しい。
例えば、位置関係取得部2343は、被検眼Eの所定部位の位置と、スキャン範囲における既定位置との間の差(偏位ベクトル)を求めることができる。すなわち、位置関係取得部2343は、被検眼Eの所定部位の位置を始点とし且つスキャン範囲における既定位置を終点とする偏位ベクトル、又は、スキャン範囲における既定位置を始点とし且つ被検眼Eの所定部位の位置を終点とする偏位ベクトルを求める。
スキャン範囲における既定位置は、任意に設定されてよい。例えば、スキャン範囲における既定位置は、スキャン範囲の中心、複数のスキャンラインが交差する位置、又は、スキャン範囲の外縁上の位置(頂点位置、辺の中点位置等)に設定される。
スキャン範囲における既定位置は、広がりを持つ領域であってよい。例えば、スキャン範囲の中心を含む所定領域を既定位置とすることができる。或いは、スキャン範囲の外縁を既定位置とすることも可能である。
このような場合、位置関係取得部2343は、例えば、被検眼Eの所定部位の位置と、スキャン範囲における所定領域との間の最短距離に沿って偏位ベクトルを求めることができる。他の例において、位置関係取得部2343は、被検眼Eの所定部位の位置と、所定領域中の代表位置(中心、重心、外縁上の位置等)とを結ぶように偏位ベクトルを求めることができる。
逆に、被検眼Eの所定部位の位置は、広がりを持つ領域であってよい。例えば、位置関係取得部2343は、位置特定部2342により特定された位置を中心とする領域(円形領域、矩形領域等)と、スキャン範囲における既定位置とに基づいて、偏位ベクトルを求めることができる。当該領域の大きさは、例えば、撮影倍率、スキャン範囲のサイズ、
スキャン範囲における既定位置と、被検眼Eの所定部位の位置との双方が、広がりを持つ領域であってもよい。この場合、位置関係取得部2343は、双方の領域の位置関係を求めることができる。
例えば、位置関係取得部2343は、被検眼Eの所定部位の領域(例:黄斑中心及びその近傍)が、スキャン範囲の外縁の内側に含まれるか否かを判定することができる。この判定は、例えば、被検眼Eの所定部位(例:黄斑中心)の位置と、スキャン範囲の中心との差の大きさに関する判定と、実質的に同じ処理である。
〈偏位比較部235〉
偏位比較部235は、位置関係取得部2343により求められた偏位と既定閾値とを比較する。この偏位は、例えば、前述した偏位ベクトルの大きさである。偏位比較部235は、例えば、位置関係取得部2343により求められた偏位が既定閾値を超えるか否か判定する。
既定閾値は任意に設定されてよい。例えば、固視の精度を高めたい場合には既定閾値を小さな値に設定することができる。
〈ユーザーインターフェイス240〉
ユーザーインターフェイス240は表示部241と操作部242とを含む。表示部241は表示装置3を含む。操作部242は各種の操作デバイスや入力デバイスを含む。
ユーザーインターフェイス240は、例えばタッチパネルのような表示機能と操作機能とが一体となったデバイスを含んでいてもよい。他の実施形態において、ユーザーインターフェイスの少なくとも一部が眼科装置に含まれていなくてよい。例えば、表示デバイスは、眼科装置に接続された外部装置であってよい。
〈動作〉
眼科装置1の動作について説明する。動作の例を図4に示す。
(S1:固視光の投射を開始)
まず、固視位置が指定される。固視位置の指定は、手動又は自動で行われる。自動の場合の典型的な例において、主制御部211は、固視位置を指定するためのGUIを表示部241に表示する。ユーザーは、このGUI及び操作部242を用いて、所望の固視位置を設定する。自動の場合の典型的な例において、主制御部211は、外部から入力された情報に基づいて固視位置を指定する。この情報の例として、電子カルテシステムから入力された被検者の電子カルテや、手動又は自動で指定された撮影モードなどがある。本例では、固視位置として「黄斑」が指定されたとする。
主制御部211は、指定された固視位置に対応する画面の位置に固視標を表示するようにLCD39を制御する。それにより、被検眼Eに固視光が投射される。固視光は、例えば、撮影が完了するまで継続的に被検眼Eに投射される。
(S2:観察画像の取得を開始)
主制御部211は、被検眼Eの観察画像の取得を開始するように照明光学系10及び撮影光学系30を制御する。前述のように、観察画像は、被検眼Eを正面から撮影して得られる動画像である。この段階では、前眼部の観察画像が得られる。
主制御部211は、観察画像を表示部241にリアルタイムで表示する。更に、主制御部211は、観察画像として逐次に得られる画像フレームをデータ処理部230に転送する。
なお、固視光の投射を開始するタイミング(ステップS1)と、観察画像の取得を開始するタイミング(ステップS2)は、図4に示す順序に限定されない。例えば、観察画像の取得を開始した後に固視標の投射を開始するように制御を行ってもよい。或いは、観察画像の取得と固視標の投射とを同時に開始するように制御を行ってもよい。
(S3:アライメント・フォーカシング)
次に、主制御部211は、アライメント光を被検眼Eに投射するようにアライメント光学系50を制御し、且つ、フォーカス光を被検眼Eに投射するようにフォーカス光学系60を制御する。
更に、主制御部211は、従来と同じ要領でオートアライメント及びオートフォーカスを実行する。或いは、ユーザーがマニュアルアライメント及びマニュアルフォーカスの一方又は双方を行うようにしてもよい。それにより、眼底Efに対するアライメント及びフォーカシングが完了する。
なお、ステップS3の中間段階で、眼底カメラユニット2により得られる観察画像は、前眼部観察画像から眼底観察画像に移行する。
(S4:OCT観察を開始)
アライメント及びフォーカシングが完了したら、主制御部211は、OCT観察が開始させるように、光スキャナ42及びOCTユニット100を制御する。OCT観察は、所定のスキャンパターンでのOCTスキャンを所定の繰り返しレートで反復することにより動画像(時系列画像)を取得するものである。
OCT観察に適用されるスキャンパターンは、自動又は手動で設定される。スキャンパターンは、例えば、注目部位(黄斑、視神経乳頭、眼底周辺部等)に応じて選択される。典型的には、ラスタースキャン、ラジアルスキャン、マルチクロススキャン、クロススキャン、サークルスキャン、ラインスキャン等が適用される。
本例では、ラスタースキャンが適用されるものとする。よって、主制御部211は、ラスタースキャンを反復するように制御を行う。それぞれのラスタースキャンに基づき形成される画像は3次元画像である。
この段階の「観察用ラスタースキャン」におけるAライン(測定光LSの照射スポット)の間隔は、後述のステップS22の「撮影用スキャン」のそれよりも広く設定されていてよい。それにより、繰り返しレートを高めることができる。また、観察用ラスタースキャンにおけるスキャン範囲と、撮影用スキャンにおけるスキャン範囲とは、同じでも異なってもよい。
ステップS4において、OCTスキャンの条件の調整を行うことができる。この条件調整には、従来と同様に、測定アーム又は参照アームの光路長調整、OCTフォーカス調整、画質調整などが含まれる。
OCT観察が開始されると、次に示す一連の処理がリアルタイムで、且つ、ラスタースキャンの繰り返しレートに同期して実行される。OCTユニット100は、各ラスタースキャンで収集されたデータを画像形成部220に送る。画像形成部220は、各ラスタースキャンにて収集されたデータから複数のBスキャン像を形成し、制御部210に送る。主制御部211は、各ラスタースキャンに対応する複数のBスキャン像をデータ処理部230に送る。3次元画像形成部231は、各ラスタースキャンに対応する複数のBスキャン像から3次元画像を形成し、画像投影部232及び解析部234のそれぞれに送る。
以下、ステップS5~S6、S11~S14(場合によっては、ステップS15~S16も)も、ラスタースキャンの繰り返しレートに同期して実行される。また、ステップS5~S7からなる一連の処理と、ステップS11~S16からなる一連の処理とは、並行して実行される。
(S5:正面投影像の形成)
OCT観察が開始されると、反復的なラスタースキャンの繰り返し周波数に同期したタイミングで、3次元画像が画像投影部232に逐次に入力される。画像投影部232は、逐次に入力される3次元画像から正面投影像を形成し、位置合わせ部233に送る。
(S6:レジストレーション)
位置合わせ部233は、画像投影部232から逐次に入力される正面投影像と、主制御部211により転送される観察画像の画像フレームとのレジストレーションを行う。
レジストレーションの対象となる正面投影像と画像フレームとの組み合わせは任意である。例えば、位置合わせ部233は、最新の正面画像と最新の画像フレームとを対応付け、これらのレジストレーションを行うように構成されてよい。そのために、観察画像のフレームレートとOCT観察の繰り返しレートとを同期させることができる。他の例において、位置合わせ部233は、予め設定された基準画像フレームと各正面投影像とのレジストレーションを行うように構成されてよい。
(S7:確認画面を表示)
主制御部211は、固視状態を確認するための画面(確認画面)を表示部241に表示する。なお、確認画面の表示を開始するタイミングは任意であってよい。例えば、ステップS1よりも前のタイミング、又は、ステップS1~S6の間のタイミングで、確認画面の表示を開始することができる。
更に、主制御部211は、ステップS2で取得が開始された観察画像と、ステップS5で形成された正面投影像とを、確認画面に表示する。このとき、主制御部211は、ステップS6のレジストレーションの結果を利用して観察画像と正面投影像とを表示する。つまり、観察画像を構成する画像フレームと正面投影像とのレジストレーションがなされているので、相互の位置が調整された状態の観察画像と正面投影像とが表示される。このとき、観察画像及び正面投影像の一方又は双方は、動画像として表示される。
確認画面の例を図5に示す。確認画面300には、ステップS2で取得が開始された観察画像Gと、ステップS5で形成された正面投影像Hとが表示される。観察画像Gと正面投影像Hとは、ステップS6において位置合わせがなされている。本例では、観察画像Gの上に正面投影像Hがオーバーレイ表示されている。
確認画面300には、キャプチャーボタン310が設けられている。キャプチャーボタン310は、OCT撮影を行うための指示を受け付けるソフトウェアキーである。典型的な例において、確認画面300には、図示しないポインターが表示される。ユーザーは、操作部242を用いてキャプチャーボタン310をクリックすることで、OCT撮影の指示を入力することができる。表示部241がタッチパネルである場合、ユーザーは、キャプチャーボタン310をタップすることで、OCT撮影の指示を入力することができる。
(S11:セグメンテーション)
ステップS4においてOCT観察が開始されると、反復的なラスタースキャンの繰り返し周波数に同期したタイミングで、3次元画像がセグメンテーション部2341に逐次に入力される。セグメンテーション部2341は、逐次に入力される3次元画像を解析して少なくとも1つのセグメントを特定する。本例では、内境界膜の画像とブルッフ膜の画像とが特定される。セグメンテーション部2341による特定の結果は、位置特定部2342に送られる。
(S12:所定部位の位置を特定)
位置特定部2342は、セグメンテーション部2341により特定された少なくとも1つのセグメントに基づいて、被検眼Eの所定部位の位置を特定する。本例では、位置特定部2342は、内境界膜の画像とブルッフ膜の画像との間の距離が最も短い位置を特定する。特定された位置は、黄斑中心の位置と推定される。位置特定部2342による位置特定の結果は、位置関係取得部2343に送られる。
位置特定部2342による位置特定の結果は、主制御部211にも送られる。主制御部211は、位置特定部2342により特定された所定部位(黄斑中心)の位置に基づく画像(注目部位画像)を確認画面300に表示する。注目部位画像は、例えば、データ処理部230又は主制御部211により作成される。
注目部位画像は、例えば、正面投影像H(よって、観察画像G)に重ねて表示される。この場合、注目部位画像が表示される位置は、レジストレーションの結果に基づき決定される。
典型的な例において、正面投影像Hの形成に用いられた3次元画像と、位置特定部2342により解析された3次元画像とは、同じである。また、レジストレーションにより観察画像Gと正面投影像Hとの位置合わせは既になされている。よって、レジストレーションの結果を参照することで、位置特定部2342により特定された位置に対応する観察画像G中の位置と、正面投影像H中の位置とを対応付けることが可能である。或いは、正面投影像Hの形成に用いられた3次元画像と、位置特定部2342により解析された3次元画像とが同じであることを利用し、位置特定部2342により特定された位置に対応する正面投影像H中の位置を特定することも可能である。
他の例を説明する。OCT観察では、ラスタースキャンの繰り返しレートに同期して時系列的な3次元画像が取得される。更に、ステップS5~S6からなる一連の処理と、ステップS11~S13からなる一連の処理とは、互いに別々に、且つ、並行して実行される。したがって、或るタイミングにおいて、確認画面300に表示されている正面投影像Hの元になった3次元画像と、この正面投影像Hとともに表示される注目部位画像の元になった3次元画像とが異なる場合も想定される。
この場合、データ処理部230は、観察画像の画像フレームを逐次に解析して、眼底Ef(特徴部位)の時系列的変位を検出することができる。或いは、位置特定部2342は、逐次に特定される所定部位(黄斑中心)の位置の時系列的変位から、眼底Efの時系列的変位を検出することができる。主制御部211又はデータ処理部230は、このようにして検出された眼底Efの時系列的変位に基づいて、異なるタイミングで取得された2つ(以上)の3次元画像の間のレジストレーションを行い、確認画面300に表示されている正面投影像Hと、この正面投影像Hとともに表示される注目部位画像との間のレジストレーションを行うことができる。
注目部位画像の例を説明する。第1の例において、注目部位画像は、位置特定部2342により特定された位置を示す画像である。このような注目部位画像は、例えば、特定された位置に対応する正面投影像H中の位置に表示される点像、当該位置を指し示す矢印画像、又は、これらに類する画像であってよい。
第2の例において、注目部位画像は、位置特定部2342により特定された位置に応じた範囲を示す画像である。この範囲は、例えば、位置特定部2342による特定の対象である部位、スキャンパターン等に基づき設定される。一例として、位置特定部2342が黄斑中心の位置を特定した場合、黄斑(及びその周辺)の範囲を示す注目部位画像を作成することができる。この範囲の形状及び/又は大きさは、例えば、臨床的に得られた統計的情報や、3次元画像又は観察画像を解析して得られた個別的情報に基づいて決定される。図6に示す注目部位画像K1は、このような注目部位画像の例である。
更に、主制御部211は、OCTスキャンの範囲を表す画像(スキャン範囲画像)を確認画面300に表示することができる。スキャン範囲画像は、例えば、データ処理部230又は主制御部211により作成される。スキャン範囲画像は、例えば、正面投影像H(よって、観察画像G)に重ねて表示される。
第1の例において、スキャン範囲画像は、ステップS22のOCT撮影において適用されるスキャンパターンの範囲(輪郭、外縁等)を示す。この場合、スキャン範囲画像は、例えば、その中心が、位置特定部2342により特定された位置に対応する位置に配置されるように、位置決めされる。或いは、スキャン範囲画像は、その中心が、観察画像の中心又はOCT観察のスキャン範囲の中心に配置されるように、位置決めされる。図7に示すスキャン範囲画像K2は、このようなスキャン範囲画像の例である。
第2の例において、スキャン範囲画像は、ステップS22のOCT撮影で(少なくとも)スキャンされるべき範囲を示す。この範囲の形状及び/又は大きさは、例えば、臨床的に得られた統計的情報や、3次元画像又は観察画像を解析して得られた個別的情報に基づいて決定される。図7に示すスキャン範囲画像K2は、このようなスキャン範囲画像の例である。
第3の例において、スキャン範囲画像は、OCT観察において適用されているスキャンパターンの範囲を示す。この場合、正面投影像Hの輪郭(外縁)を示すスキャン範囲画像が表示される。
(S13:位置関係を取得)
位置関係取得部2343は、位置特定部2342により特定された被検眼Eの所定部位の位置と、OCTスキャンの範囲(スキャン範囲)との間の位置関係(偏位ベクトル)を求める。位置関係取得部2343により取得された情報(偏位。例えば、偏位ベクトル又はその大きさ。)は、偏位比較部235に送られる。
(S14:偏位を閾値と比較)
偏位比較部235は、位置関係取得部2343により取得された偏位を既定閾値と比較する。
(S15:偏位≦閾値?)
ステップS14の比較により、偏位が閾値を超える(偏位>閾値)と判定された場合(S15:No)、処理はステップS16に移行する。他方、偏位が閾値以下(偏位≦閾値)と判定された場合(S15:Yes)、処理はステップS21に移行する。
(S16:光スキャナ/固視位置を制御)
ステップS14の比較により、偏位が閾値を超える(偏位>閾値)と判定された場合(S15:No)、主制御部211は、固視標を表示しているLCD39、及び、測定光LSを偏向する光スキャナ42のうち、少なくとも一方を制御する。
制御の対象(LCD39及び/又は光スキャナ42)は、予め決定されるか、或いは、当該処理において決定される。典型的な例において、LCD39及び光スキャナ42の一方の制御を常に行うように構成されていてよい。制御の対象の決定は、例えば、被検者の特性・属性、被検眼の特性・属性、OCT観察画像から把握された特徴、観察画像から把握された特徴、過去に行われた検査から把握された特徴など、任意の情報を参照して行うことができる。
LCD39の制御が行われる場合、主制御部211は、例えば、位置関係取得部2343により取得された偏位を打ち消すように固視標の表示位置を変更する。換言すると、主制御部211は、制御の後に位置関係取得部2343により取得される偏位がゼロになるように、固視標の表示位置を変更する。或いは、主制御部211は、制御の後に取得される偏位がステップS13で検出された偏位よりも小さくなるように、固視標の表示位置を変更してもよい。
光スキャナ42の制御が行われる場合、主制御部211は、例えば、位置関係取得部2343により取得された偏位を打ち消すように、光スキャナ42によるスキャン範囲をシフトする。換言すると、主制御部211は、制御の後に位置関係取得部2343により取得される偏位がゼロになるように、スキャン範囲をシフトする。或いは、主制御部211は、制御の後に取得される偏位がステップS13で検出された偏位よりも小さくなるように、スキャン範囲をシフトしてもよい。
このようなLCD39及び/又は光スキャナ42の制御により、被検眼E(眼底Ef)とOCT観察におけるスキャン範囲との相対位置が調整される。つまり、LCD39を制御する場合、眼底Efの移動を促すことによって上記相対位置が変化する。他方、光スキャナ42を制御する場合、スキャン範囲をシフトすることによって上記相対位置が変化する。
LCD39及び/又は光スキャナ42の制御が行われた後、処理はステップS11に戻る。そして、ステップS11~S15が再度実行される。ステップS15において再度「No」と判定された場合、ステップS11~S15のルーチンが再度実行される。このルーチンは、ステップS15において「Yes」と判定されるまで繰り返される。
なお、検査の開始又はOCT観察の開始等の所定タイミングから所定時間が経過したとき、エラー判定を行うことができる。或いは、ユーザーがエラー判定を行ってもよい。このようなエラー判定は、好適な固視状態を得ることが困難である場合に行われる。
(S21:固視OKを表示)
他方、ステップS14の比較により、偏位が閾値以下(偏位≦閾値)と判定された場合(S15:Yes)、主制御部211は、好適な固視状態が得られたことを示す情報を確認画面300に表示する。
この情報は、予め決められたテキスト又は画像であってよい。例えば、「固視OK」、「撮影可能」等のテキストを表示することができる。また、好適な固視状態が得られたことをユーザーが直感的に認識できるような所定の画像を表示することができる。
他の例において、ステップS15で「No」と判定されている間は、不適当な固視状態を示す情報を表示し、ステップS15で「Yes」と判定されたときに、好適な固視状態を示す情報の表示に切り替えるようにしてもよい。
(S22:眼底OCT撮影)
ユーザーは、好適な固視状態になったことをステップS21で表示される情報から把握することができる。或いは、ユーザーは、観察画像G及び/又は正面投影像Hを参照することで、好適な固視状態になったことを把握することができる。
好適な固視状態になったことを把握したら、ユーザーは、確認画面300のキャプチャーボタン310を操作する。キャプチャーボタン310が操作されると、主制御部211は、眼底EfのOCT撮影を実行するように光スキャナ42及びOCTユニット100を制御する。OCT撮影により取得されたデータは、画像診断や画像解析に用いられる。
(S23:眼底撮影)
例えば眼底OCT撮影が終了した後、主制御部211は、眼底Efの撮影を行うように眼底カメラユニット2を制御する。典型的には、可視光を用いたカラー撮影が行われる。ステップS23で取得された眼底像(撮影画像)は、OCT撮影により取得されたデータとともに、又は、それとは別個に、画像診断や画像解析に用いられる。以上で、本動作例に係る処理は終了となる。
〈作用・効果〉
実施形態に係る眼科装置の作用及び効果について説明する。
実施形態の眼科装置は、固視系と、データ取得部と、解析部と、制御部とを含む。
固視系は、被検眼に固視光を投射するように構成される。上記の典型的な実施形態では、LCD39と、これから出力された光(固視光)を被検眼Eに導く光路を形成する光学素子との組み合わせが、固視系として機能している。
データ取得部は、固視光が投射されている被検眼をOCTを用いてスキャンすることでデータを取得するように構成される。このOCTは、例えば、所定のスキャンパターンの繰り返しである。上記の典型的な実施形態では、OCTユニット100に含まれる要素と、測定光LSを被検眼Eに導く光路を形成する光学素子との組み合わせが、データ取得部として機能する。なお、画像形成部220、3次元画像形成部231等も、データ取得部の一部として機能している。
解析部は、データ取得部により取得されたデータを解析することで、被検眼の所定部位の位置を特定するように構成される。解析部により特定される位置は、典型的には、データ取得部により取得されたデータにおける位置、つまり、OCTスキャンの範囲における位置である。上記の典型的な実施形態では、解析部234が解析部として機能している。
制御部は、解析部により特定された所定部位の位置とデータ取得部によるスキャン範囲との間の位置関係に基づいて、固視系及びデータ取得部の少なくとも一方を制御するように構成される。換言すると、制御部は、解析部により特定された所定部位の位置とデータ取得部によるスキャン範囲との間の位置関係に基づいて、被検眼とOCTスキャンの範囲との相対位置を変更することができる。上記の典型的な実施形態では、主制御部211が制御部として機能している。
実施形態において、制御部は、被検眼の所定部位とスキャン範囲との位置関係に基づいてスキャン範囲を変更するようにデータ取得部を制御するように構成されてよい。上記の典型的な実施形態では、主制御部211は、光スキャナ42を制御することによってスキャン範囲を変更している。
実施形態において、制御部は、被検眼の所定部位とスキャン範囲との位置関係に基づいて固視位置を変更するように固視系を制御するように構成されてよい。上記の典型的な実施形態では、主制御部211は、LCD39を制御することによって固視位置を変更している。
このように構成された実施形態によれば、被検眼の所定部位(例えば黄斑中心)とスキャン範囲との位置関係に基づいて、被検眼とスキャン範囲との相対位置を変更することができる。したがって、固視不良が発生しているとき(つまり、被検眼の所定部位とスキャン範囲との位置関係が適当でないとき)、固視不良の解消を図るために、被検眼の固視位置を調整したり、スキャン範囲の位置を調整したりすることができる。それにより、固視不良に対して好適に対処することが可能となる。
実施形態において、データ取得部は、被検眼の画像を取得するように構成されてよい。上記の典型的な実施形態では、画像形成部220によってBスキャン像を形成することや、3次元画像形成部231によって3次元画像を形成することが可能である。
更に、解析部は、セグメンテーション部と、位置特定部と、位置関係取得部とを含んでいてよい。
セグメンテーション部は、データ取得部により取得された画像を解析することで、少なくとも1つのセグメント(層組織、層境界等)を特定するように構成される。上記の典型的な実施形態では、セグメンテーション部2341がセグメンテーション部として機能している。
位置特定部は、セグメンテーション部により特定された少なくとも1つのセグメントに基づいて、被検眼の所定部位の位置を特定するように構成される。上記の典型的な実施形態では、位置特定部2342が位置特定部として機能している。
位置関係取得部は、位置特定部により特定された所定部位の位置とデータ取得部によるスキャン範囲との間の位置関係を求めるように構成される。上記の典型的な実施形態では、位置関係取得部2343が位置関係取得部として機能している。
加えて、制御部は、位置関係取得部により求められた位置関係に基づいて、固視系及びデータ取得部の少なくとも一方の制御を実行するように構成される。
このように構成されたデータ取得部、解析部及び制御部を含む実施形態によれば、OCT画像を利用することで被検眼の所定部位の位置を高確度・高精度に求めることが可能である。それにより、固視位置の調整やスキャン範囲の調整を高確度・高精度で行うことができ、固視不良の解消をより好適に行うことが可能となる。
実施形態において、セグメンテーション部は、少なくとも第1セグメント及び第2セグメントを特定するように構成されてよい。更に、位置特定部は、セグメンテーション部により特定された第1セグメントと第2セグメントとの間の距離の分布に基づいて、被検眼の所定部位の位置を特定するように構成されてよい。
このように構成されたセグメンテーション部及び位置特定部を含む実施形態によれば、異なるセグメントの間の距離によって特定することが可能な被検眼の部位を好適に特定することができる。
異なるセグメントの間の距離によって特定することが可能な部位の典型例として黄斑(黄斑中心)がある。黄斑中心の位置を特定する場合、次のような実施形態を適用することができる。
データ取得部は、被検眼の眼底の画像を取得するように構成される。セグメンテーション部は、データ取得部により取得された眼底の画像を解析することで、内境界膜の画像を第1セグメントとして特定し、且つ、ブルッフ膜の画像を第2セグメントとして特定するように構成される。更に、位置特定部は、セグメンテーション部により特定された内境界膜の画像及びブルッフ膜の画像の間の距離分布から距離が最も短い位置を特定し、これを黄斑中心の位置とすることができる。
なお、他の解析処理によって所定部位の位置を特定する構成を適用することも可能である。例えば、所定のセグメントの位置に基づいて所定部位の位置を特定することができる。その典型例として、ブルッフ膜に相当するセグメントの端部を検出することで、視神経乳頭の位置を特定することができる。或いは、内境界膜に相当するセグメントの形状に基づいて、黄斑又は視神経乳頭を特定することができる。その他にも、OCT血管造影を利用して血管の位置を特定することができる。
実施形態において、データ取得部は、被検眼の3次元領域をスキャンして3次元画像を取得するように構成されてよい。更に、解析部は、データ取得部により取得された3次元画像を解析して、被検眼の所定部位の位置を特定するように構成されてよい。加えて、この実施形態の眼科装置は、画像投影部と、撮影部と、位置合わせ部とを含んでよい。
画像投影部は、データ取得部により取得された3次元画像から正面投影像を形成するように構成される。上記の典型的な実施形態では、画像投影部232が画像投影部として機能している。
撮影部は、被検眼を撮影して正面画像を取得するように構成される。上記の典型的な実施形態では、照明光学系10及び撮影光学系30の組み合わせが撮影部として機能している。
位置合わせ部は、画像投影部により形成された正面投影像と、撮影部により取得された正面画像との間の位置合わせを行う。この位置合わせは、正面投影像と正面画像との偏位を求める処理を少なくとも含む。また、この位置合わせは、求められた偏位を打ち消すように正面投影像と正面画像との位置を調整する処理を更に含んでいてもよい。
この実施形態において、制御部は、撮影部により取得された正面画像を表示手段に表示させるように構成される。更に、制御部は、正面投影像と正面画像との位置合わせの結果に基づいて、位置特定部により特定された被検眼の所定部位の位置に基づく第1画像を正面画像に重ねて表示させるように構成される。上記の典型的な実施形態では、表示部241が表示手段として機能している。更に、第1画像の例として注目部位画像K1が表示されている。
更に、制御部は、データ取得部によるスキャン範囲を示す第2画像を正面画像に重ねて表示させるように構成されてよい。上記の典型的な実施形態では、スキャン範囲画像K2が第2画像として表示されている。
加えて、制御部は、正面画像に正面投影像を重ねて表示させるように構成されてよい。
このように構成されたデータ取得部、解析部、画像投影部、撮影部、位置合わせ部及び制御部を含む実施形態によれば、OCT画像から特定された被検眼の所定部位の位置を示す第1画像を、別の系統(撮影部)で取得された正面画像に重ねて表示することができる。それにより、ユーザーは、被検眼の所定部位の位置を表示画像から容易に把握することができる。
更に、この実施形態によれば、データ取得部によるスキャン範囲を示す第2画像を正面画像に重ねて表示することができる。それにより、ユーザーは、OCTスキャンの範囲を表示画像から容易に把握することができる。また、ユーザーは、第1画像と第2画像との位置関係から、被検眼の所定部位とスキャン範囲との位置関係を容易に把握することができる。
加えて、この実施形態によれば、正面画像に正面投影像を重ねて表示することができるので、ユーザーは、撮影部により取得された正面画像と、OCTにて得られた正面投影像との位置関係を、容易に把握することができる。また、ユーザーは、正面投影像に描出された被検眼の領域における上記所定部位の位置を容易に把握することができる。更に、ユーザーは、正面投影像に描出された被検眼の領域とスキャン範囲との位置関係を容易に把握することができる。
実施形態において、制御部は、位置特定部により特定された被検眼の所定部位の位置に対するスキャン範囲の偏位を既定閾値と比較し、この偏位が既定閾値を超える場合にのみ、固視系及びデータ取得部の少なくとも一方の制御を実行するように構成されてよい。
この実施形態によれば、被検眼の所定部位の位置に対するスキャン範囲の偏位が大きいときには固視不良を解消するための制御を実行し、偏位が十分に小さくなったときに検査(測定、撮影等)に移行することができる。
以上に説明した実施形態はこの発明の一例に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内における変形(省略、置換、付加等)を任意に施すことが可能である。
1 眼科装置
10 照明光学系
30 撮影光学系
39 LCD
42 光スキャナ
100 OCTユニット
211 主制御部
220 画像形成部
231 3次元画像形成部
232 画像投影部
233 位置合わせ部
234 解析部
2341 セグメンテーション部
2342 位置特定部
2343 位置関係取得部
235 偏位比較部

Claims (3)

  1. 被検眼に固視光を投射する固視系と、
    前記固視光が投射されている前記被検眼の眼底の3次元領域に対して光コヒーレンストモグラフィスキャンを繰り返し適用してデータを繰り返し取得するデータ取得部と、
    前記データ取得部による前記光コヒーレンストモグラフィスキャンの前記眼底への繰り返し適用と並行して、近赤外光を用いた動画撮影を前記眼底に適用して観察画像を取得する観察画像取得部と、
    前記データ取得部により取得された前記データに基づき前記眼底の正面投影像を形成して前記観察画像との間のレジストレーションを行う第1の処理と、前記データ取得部により取得された前記データに基づき前記被検眼の所定部位の位置と前記光コヒーレンストモグラフィスキャンの適用範囲との間の偏位を求めて所定の閾値と比較する第2の処理とを、互いに並行して、且つ、前記データ取得部による前記光コヒーレンストモグラフィスキャンの繰り返しレートに同期して繰り返し実行するデータ処理部と、
    前記第2の処理において前記偏位が前記所定の閾値よりも大きいと判定されたとき、前記偏位を打ち消す又は小さくするように、前記固視光の投射位置を移動するための前記固視系の制御及び前記光コヒーレンストモグラフィスキャンの適用範囲を移動するための前記データ取得部の制御の少なくとも一方を実行する制御部と
    を含む眼科装置。
  2. 前記第2の処理において前記偏位が前記所定の閾値以下であると判定されたとき、前記制御部は、前記光コヒーレンストモグラフィスキャンの前記繰り返し適用におけるAラインの間隔よりも狭い間隔での光コヒーレンストモグラフィスキャンを前記眼底に適用するように前記データ取得部を制御する
    ことを特徴とする請求項1に記載の眼科装置。
  3. 前記制御部は、前記レジストレーションの結果に基づき相互の位置が調整された前記正面投影像と前記観察画像とを動画像として表示手段に表示させる
    ことを特徴とする請求項1又は2に記載の眼科装置。

JP2023064796A 2017-01-23 2023-04-12 眼科装置 Pending JP2023080218A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023064796A JP2023080218A (ja) 2017-01-23 2023-04-12 眼科装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017009514A JP2018117692A (ja) 2017-01-23 2017-01-23 眼科装置
JP2023064796A JP2023080218A (ja) 2017-01-23 2023-04-12 眼科装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017009514A Division JP2018117692A (ja) 2017-01-23 2017-01-23 眼科装置

Publications (1)

Publication Number Publication Date
JP2023080218A true JP2023080218A (ja) 2023-06-08

Family

ID=62908853

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017009514A Pending JP2018117692A (ja) 2017-01-23 2017-01-23 眼科装置
JP2023064796A Pending JP2023080218A (ja) 2017-01-23 2023-04-12 眼科装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017009514A Pending JP2018117692A (ja) 2017-01-23 2017-01-23 眼科装置

Country Status (4)

Country Link
US (1) US11219363B2 (ja)
EP (1) EP3571979A4 (ja)
JP (2) JP2018117692A (ja)
WO (1) WO2018135174A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349807B2 (ja) * 2019-03-19 2023-09-25 株式会社トプコン 眼科装置
JP2022068488A (ja) * 2020-10-22 2022-05-10 株式会社トプコン 眼科装置、その制御方法、プログラム、及び記録媒体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289642A (ja) * 2007-05-24 2008-12-04 Topcon Corp 光画像計測装置
JP2014200680A (ja) * 2013-04-03 2014-10-27 株式会社トプコン 眼科装置
JP2015093128A (ja) * 2013-11-13 2015-05-18 株式会社トプコン 眼科観察装置
JP2015128630A (ja) * 2009-09-30 2015-07-16 株式会社ニデック 眼底観察装置及び眼底観察プログラム
JP2016022150A (ja) * 2014-07-18 2016-02-08 株式会社トプコン 視機能検査装置および視機能検査システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050046794A1 (en) * 2003-06-17 2005-03-03 Silvestrini Thomas A. Method and apparatus for aligning a mask with the visual axis of an eye
US8672480B2 (en) 2009-09-30 2014-03-18 Nidek Co., Ltd. Ophthalmic photographing apparatus
JP5582772B2 (ja) 2009-12-08 2014-09-03 キヤノン株式会社 画像処理装置及び画像処理方法
JP5306492B2 (ja) 2012-01-25 2013-10-02 キヤノン株式会社 眼科装置および制御方法並びにプログラム
JP5937163B2 (ja) * 2014-07-23 2016-06-22 国立大学法人東北大学 眼底解析装置及び眼底観察装置
JP2016158721A (ja) 2015-02-27 2016-09-05 株式会社ニデック 眼科装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289642A (ja) * 2007-05-24 2008-12-04 Topcon Corp 光画像計測装置
JP2015128630A (ja) * 2009-09-30 2015-07-16 株式会社ニデック 眼底観察装置及び眼底観察プログラム
JP2014200680A (ja) * 2013-04-03 2014-10-27 株式会社トプコン 眼科装置
JP2015093128A (ja) * 2013-11-13 2015-05-18 株式会社トプコン 眼科観察装置
JP2016022150A (ja) * 2014-07-18 2016-02-08 株式会社トプコン 視機能検査装置および視機能検査システム

Also Published As

Publication number Publication date
JP2018117692A (ja) 2018-08-02
EP3571979A4 (en) 2020-08-19
US11219363B2 (en) 2022-01-11
EP3571979A1 (en) 2019-11-27
US20190350455A1 (en) 2019-11-21
WO2018135174A1 (ja) 2018-07-26

Similar Documents

Publication Publication Date Title
US10702145B2 (en) Ophthalmologic apparatus
JP6899632B2 (ja) 眼科撮影装置
WO2017149928A1 (ja) 眼科撮影装置
JP2023080218A (ja) 眼科装置
US11122973B2 (en) Ophthalmological apparatus
JP2016140360A (ja) 眼科撮影装置
JP2019155003A (ja) 眼科装置、及びその制御方法
JP2019154988A (ja) 眼科撮影装置、その制御方法、プログラム、及び記録媒体
US11571123B2 (en) Ophthalmologic apparatus and method of controlling the same
JP6788445B2 (ja) 眼科装置
JP7117873B2 (ja) 眼科装置
JP7374272B2 (ja) 眼科装置
JP2019155002A (ja) 眼科装置、及びその制御方法
JP7106320B2 (ja) 眼科装置、及び眼科装置の制御方法
JP6942627B2 (ja) 眼科撮影装置、その制御方法、プログラム、及び記録媒体
JP7219312B2 (ja) 眼科装置
JP7286853B2 (ja) 眼科装置、及びその制御方法
JP7154260B2 (ja) 眼科装置
JP7201855B2 (ja) 眼科装置、及び眼科情報処理プログラム
JP7314345B2 (ja) 眼科装置、及びその制御方法
JP7202808B2 (ja) 眼科装置、及びその制御方法
JP7116572B2 (ja) 眼科装置、及び眼科情報処理プログラム
JP6954831B2 (ja) 眼科撮影装置、その制御方法、プログラム、及び記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240416