[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2023074344A - Heat insulation multiple pipe for super conductivity power transmission, heat insulation multiple pipe laying device for super conductivity power transmission, heat insulation multiple pipe construction method for super conductivity power transmission, and superconductive cable construction method - Google Patents

Heat insulation multiple pipe for super conductivity power transmission, heat insulation multiple pipe laying device for super conductivity power transmission, heat insulation multiple pipe construction method for super conductivity power transmission, and superconductive cable construction method Download PDF

Info

Publication number
JP2023074344A
JP2023074344A JP2021187253A JP2021187253A JP2023074344A JP 2023074344 A JP2023074344 A JP 2023074344A JP 2021187253 A JP2021187253 A JP 2021187253A JP 2021187253 A JP2021187253 A JP 2021187253A JP 2023074344 A JP2023074344 A JP 2023074344A
Authority
JP
Japan
Prior art keywords
power transmission
tube
heat insulating
superconducting
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021187253A
Other languages
Japanese (ja)
Other versions
JP7098037B1 (en
Inventor
雄策 井上
Yusaku Inoue
哲也 岸口
Tetsuya Kishiguchi
有治 木坂
Yuji Kisaka
知則 角
Tomonori Sumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2021187253A priority Critical patent/JP7098037B1/en
Application granted granted Critical
Publication of JP7098037B1 publication Critical patent/JP7098037B1/en
Publication of JP2023074344A publication Critical patent/JP2023074344A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Thermal Insulation (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

To provide a heat insulation multiple pipe for super conductivity power transmission, a heat insulation multiple pipe laying device for super conductivity power transmission, a heat insulation multiple pipe construction method for super conductivity power transmission, and a superconductive cable construction method capable of suppressing manufacturing costs, reducing pressure loss in vacuuming, and securing roundness of an inner pipe.SOLUTION: A heat insulation multiple pipe (1) for super conductivity power transmission into which a superconductive cable core (2) is inserted includes: an inner pipe (11), which is a straight pipe; an outer pipe (12), which is a straight pipe and disposed outside the inner pipe (11); a flow channel (FP2) of a cooling medium for cooling the superconductive cable core (2), which is formed inside the inner pipe (11); a heat resistant radiation layer (13) disposed on the outer surface of the inner pipe (11); and a plurality of heat insulation materials (14) disposed between the outer pipe (12) and the heat resistant radiation layer (13), which is arranged in an axial direction of the inner pipe (11) at a predetermined interval (D). The predetermined interval (D) is larger than 50 mm and equal to or smaller than 180 mm.SELECTED DRAWING: Figure 1

Description

本発明は、超電導送電用断熱多重管、超電導送電用断熱多重管敷設装置、超電導送電用断熱多重管の施工方法、及び超電導ケーブルの施工方法に関する。 The present invention relates to a superconducting thermal insulation multiplex pipe, a superconducting thermal insulation multiplex pipe laying apparatus, a construction method for a superconducting thermal insulation multiplex pipe, and a superconducting cable construction method.

電流が流れる導体として超電導導体を用いる超電導ケーブルが知られている。超電導とは、金属や合金などの電気抵抗が、固有の転移温度以下でゼロになる現象である。超電導ケーブルは、その断面積が小さくても大電流を流すことができるため、送電設備を小型化でき、また、送電効率を向上させることができる。超電導ケーブルに電流を流す際には、超電導導体の超電導状態を維持するために、超電導導体を常に転移温度以下となるよう冷却する必要がある。例えば、超電導ケーブルの内部に冷媒(例えば液体窒素)を流すことにより、超電導導体を冷却する。また、超電導ケーブルの外部から超電導導体への熱の侵入を防ぐ必要もあるため、超電導ケーブルは、超電導線を撚り合わせて製作される超電導ケーブルコアと断熱多重管から構成される場合が多い。 A superconducting cable using a superconducting conductor as a conductor through which current flows is known. Superconductivity is a phenomenon in which the electrical resistance of metals and alloys becomes zero below their inherent transition temperature. A superconducting cable can pass a large current even if its cross-sectional area is small, so that power transmission equipment can be downsized and power transmission efficiency can be improved. In order to maintain the superconducting state of the superconducting conductor when a current is passed through the superconducting cable, the superconducting conductor must always be cooled to below the transition temperature. For example, the superconducting conductor is cooled by flowing a coolant (such as liquid nitrogen) inside the superconducting cable. In addition, since it is necessary to prevent heat from entering the superconducting conductor from the outside of the superconducting cable, the superconducting cable is often composed of a superconducting cable core made by twisting superconducting wires together and a heat-insulating multiple tube.

特許文献1は、超電導ケーブルコアが挿入される超電導送電用断熱多重管であって、ストレート管である内管と、ストレート管であり、内管の外側に配置される外管と、内管の外面に設けられる耐熱輻射層と、外管と耐熱輻射層との間に設けられ、内管の軸方向に所定間隔を空けて配置される複数の断熱材と、を備え、内管の内部に、超電導ケーブルコアを冷却するための冷媒の流路が形成される超電導送電用断熱多重管が開示されている。特許文献1では、複数の断熱材同士の隙間が50mm以下であることが望ましいとされる。施工方法に関しては、超電導送電用断熱多重管、又は超電導送電用断熱多重管に挿入される超電導ケーブルコアを備える超電導ケーブルへ曲げ加工を施した状態で、超電導送電用断熱多重管、又は超電導ケーブルを運搬する工程、運搬後に超電導ケーブルを直線状に曲げ戻す工程、を提案している。 Patent Document 1 discloses a superconducting power transmission heat insulation multiplex tube into which a superconducting cable core is inserted, comprising an inner tube that is a straight tube, an outer tube that is a straight tube and is arranged outside the inner tube, and an inner tube. A heat-resistant radiation layer provided on the outer surface, and a plurality of heat insulating materials provided between the outer tube and the heat-resistant radiation layer and arranged at predetermined intervals in the axial direction of the inner tube, , a superconducting power transmission heat insulation multiplex tube in which a coolant flow path for cooling a superconducting cable core is formed. According to Patent Document 1, it is desirable that the gap between the plurality of heat insulating materials is 50 mm or less. Regarding the construction method, the superconducting heat insulation multiple pipe for superconducting power transmission or the superconducting cable having a superconducting cable core to be inserted into the superconducting heat insulation multiple pipe for superconducting power transmission or the superconducting heat insulation multiple pipe for superconducting power transmission or the superconducting cable is bent. We propose a transporting process and a process of bending the superconducting cable straight back after transporting.

特許第6751826号公報Japanese Patent No. 6751826

例えば電力送電や鉄道に超電導ケーブルを用いる場合、長尺の超電導ケーブルが必要となる。超電導ケーブルの製作の容易さおよびケーブル敷設現場での作業性を考慮すると、超電導ケーブルに用いられる断熱多重管もまた、工場にて長尺に製造されることが望ましい。この場合、断熱多重管は、曲げ加工を施してドラムに巻き付けられた状態で工場から搬送される。また、敷設現場において、ドラムに巻き付けられた断熱多重管を直線状に曲げ戻す。 For example, when a superconducting cable is used for electric power transmission or railways, a long superconducting cable is required. Considering the ease of manufacturing the superconducting cable and the workability at the cable laying site, it is desirable that the heat-insulating multiplex tube used for the superconducting cable is also manufactured in a long length at a factory. In this case, the heat insulating multi-layered pipe is bent and wound around a drum before being transported from the factory. Also, at the construction site, the heat insulating multi-layer pipe wound around the drum is bent back straight.

特許文献1に係る超電導送電用断熱多重管では、断熱材の間隔を50mm以下とするため、配置する断熱材の数量が多くなる。そのため、断熱多重管の製造コストの増大と、断熱層形成のために内管と外管との間を真空引きする際の圧力損失の増大が課題となっている。加えて、断熱材の間隔が広すぎる場合、断熱多重管が曲げ加工及び曲げ戻し加工時に座屈し、超電導ケーブルが挿入できない。そのため、断熱多重管が座屈せず内管の真円度を確保できる最適な断熱材の間隔が要求される。なお、真円度とは、内管もしくは外管における長径と短径との比((短径/長径)×100(%))である。 In the superconducting power transmission heat insulating multiple tube according to Patent Document 1, the number of heat insulating materials to be arranged is increased because the distance between the heat insulating materials is set to 50 mm or less. As a result, there are problems such as an increase in the manufacturing cost of the heat insulating multiple tube and an increase in pressure loss when the space between the inner tube and the outer tube is evacuated to form the heat insulating layer. In addition, if the distance between the heat insulating materials is too large, the heat insulating multi-layer tube will buckle during bending and unbending, making it impossible to insert the superconducting cable. Therefore, an optimum interval between the heat insulating materials is required so that the heat insulating multiple pipes do not buckle and the roundness of the inner pipes can be ensured. The circularity is the ratio of the major axis to the minor axis of the inner tube or the outer tube ((minor axis/major axis)×100(%)).

本発明は、上記事情に鑑みてなされたものであり、製造コストを抑制し、且つ、真空引きする際の圧力損失を低減し、更に、内管の真円度を確保することができる超電導送電用断熱多重管、超電導送電用断熱多重管敷設装置、超電導送電用断熱多重管の施工方法、及び超電導ケーブルの施工方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances. An object of the present invention is to provide a heat insulating multiple pipe for superconducting power transmission, a heat insulating multiple pipe laying device for superconducting power transmission, a construction method for a heat insulating multiple pipe for superconducting power transmission, and a construction method for a superconducting cable.

本発明者は、上述の課題を解決すべく鋭意検討した。その結果、本発明者は、内管の軸方向に断熱材を、50mmを上回り、且つ、180mm以下の間隔で配置し、断熱多重管へ曲げ加工、曲げ戻し加工、及び扁平矯正加工を施すことを見出した。 The inventor of the present invention has made intensive studies to solve the above-described problems. As a result, the present inventor arranged the heat insulating materials in the axial direction of the inner pipe at intervals of more than 50 mm and not more than 180 mm, and subjected the heat insulating multiple pipe to bending, unbending, and flattening. I found

本発明は上記の知見に鑑みてなされた。本発明の要旨は以下の手段を採用する。
(1)本発明の一実施形態に係る超電導送電用断熱多重管は、超電導ケーブルコアが挿入される超電導送電用断熱多重管であって、
ストレート管である内管と、
ストレート管であり、前記内管の外側に配置される外管と、
前記超電導ケーブルコアを冷却するための冷媒の流路であって、前記内管の内部に形成される流路と、
前記内管の外面に設けられる耐熱輻射層と、
前記外管と前記耐熱輻射層との間に設けられ、前記内管の軸方向に所定間隔で配置される複数の断熱材と、
を備え、
前記所定間隔は、50mmを上回り、且つ、180mm以下である。
(2)上記(1)において、
前記所定間隔は、50mmを上回り、且つ、140mm以下であってもよい。
(3)上記(1)又は(2)において、
前記所定間隔は、前記超電導送電用断熱多重管の真円度を増大させる扁平矯正装置に応じた間隔であってもよい。
(4)上記(3)において、
前記扁平矯正装置は、複数のローラを含み、
前記所定間隔と前記複数のローラの間隔とは、対応してもよい。
(5)上記(4)において、
前記所定間隔は、前記複数のローラと2つの前記断熱材とが第1方向に沿って見て重なるよう、設定されていてもよい。
(6)上記(4)において、
前記複数のローラの間隔は、前記複数のローラと2つの前記断熱材とが第1方向に沿って見て重なるよう、設定されていてもよい。
(7)本発明の一実施形態に係る超電導送電用断熱多重管敷設装置は、
超電導ケーブルコアが挿入される超電導送電用断熱多重管と前記超電導送電用断熱多重管の真円度を増大させる扁平矯正装置とを含む超電導送電用断熱多重管敷設装置であって、
前記超電導送電用断熱多重管は、
ストレート管である内管と、
ストレート管であり、前記内管の外側に配置される外管と、
前記超電導ケーブルコアを冷却するための冷媒の流路であって、前記内管の内部に形成される流路と、
前記内管の外面に設けられる耐熱輻射層と、
前記外管と前記耐熱輻射層との間に設けられ、前記内管の軸方向に所定間隔を空けて配置される複数の断熱材と、
を備え、
前記扁平矯正装置は、前記外管と接する。
(8)本発明の一実施形態に係る超電導送電用断熱多重管の施工方法は、
上記(2)乃至(6)のいずれか1項に記載の超電導送電用断熱多重管の施工方法であって、
前記超電導送電用断熱多重管を曲げる曲げ工程と、
前記曲げ工程で曲げられた前記超電導送電用断熱多重管を曲げ戻す曲げ戻し工程と、
前記曲げ戻し工程で曲げ戻された超電導送電用断熱多重管の真円度を前記扁平矯正装置により増大させる扁平矯正工程と、
を備える。
(9)本発明の一実施形態に係る超電導ケーブルの施工方法は、
上記(2)乃至(6)のいずれか1項に記載の超電導送電用断熱多重管と、前記超電導送電用断熱多重管に挿入される超電導ケーブルコアと、を含む超電導ケーブルの施工方法であって、
前記超電導ケーブルを曲げる曲げ工程と、
前記曲げ工程で曲げられた前記超電導ケーブルを曲げ戻す曲げ戻し工程と、
前記曲げ戻し工程で曲げ戻された前記超電導ケーブルの真円度を前記扁平矯正装置により増大させる扁平矯正工程と、
を備える。
The present invention has been made in view of the above findings. The gist of the present invention employs the following means.
(1) A superconducting power transmission heat insulation multiplex tube according to an embodiment of the present invention is a superconducting power transmission heat insulation multiplex tube into which a superconducting cable core is inserted,
an inner tube that is a straight tube;
an outer tube that is a straight tube and is arranged outside the inner tube;
a coolant channel for cooling the superconducting cable core, the channel being formed inside the inner tube;
a heat-resistant radiation layer provided on the outer surface of the inner tube;
a plurality of heat insulating materials provided between the outer tube and the heat-resistant radiation layer and arranged at predetermined intervals in the axial direction of the inner tube;
with
The predetermined distance is more than 50 mm and less than or equal to 180 mm.
(2) In (1) above,
The predetermined distance may be greater than 50 mm and less than or equal to 140 mm.
(3) In (1) or (2) above,
The predetermined interval may be an interval corresponding to a flattening device for increasing the roundness of the heat insulating multiple tube for superconducting power transmission.
(4) In (3) above,
The flatness correction device includes a plurality of rollers,
The predetermined interval may correspond to the interval between the plurality of rollers.
(5) In (4) above,
The predetermined interval may be set such that the plurality of rollers and the two heat insulators overlap each other when viewed along the first direction.
(6) In (4) above,
The intervals between the plurality of rollers may be set such that the plurality of rollers and the two heat insulators overlap each other when viewed along the first direction.
(7) A superconducting power transmission thermal insulation multiplex pipe laying device according to an embodiment of the present invention,
1. A superconducting power transmission insulation multiplex pipe laying device including a superconducting power transmission insulation multiplex pipe into which a superconducting cable core is inserted and a flattening device for increasing the roundness of the superconducting power transmission insulation multiplex pipe,
The heat insulating multiple tube for superconducting power transmission,
an inner tube that is a straight tube;
an outer tube that is a straight tube and is arranged outside the inner tube;
a coolant channel for cooling the superconducting cable core, the channel being formed inside the inner tube;
a heat-resistant radiation layer provided on the outer surface of the inner tube;
a plurality of heat insulating materials provided between the outer tube and the heat-resistant radiation layer and arranged at predetermined intervals in the axial direction of the inner tube;
with
The flattening correction device is in contact with the outer tube.
(8) A method for constructing a superconducting heat-insulating multiple pipe for power transmission according to an embodiment of the present invention includes:
The method for constructing a heat insulating multiple pipe for superconducting power transmission according to any one of (2) to (6) above,
a bending step of bending the superconducting power transmission heat insulating multiple tube;
a bending-back step of bending back the heat-insulating multiple pipe for superconducting power transmission bent in the bending step;
A flattening step of increasing the roundness of the superconducting power transmission heat insulating multi-pipe bent back in the flattening step by the flattening device;
Prepare.
(9) A superconducting cable construction method according to an embodiment of the present invention includes:
A superconducting cable construction method including the superconducting power transmission thermal insulation multiplex tube according to any one of the above (2) to (6) and a superconducting cable core to be inserted into the superconducting power transmission thermal insulation multiplex tube. ,
a bending step of bending the superconducting cable;
a bending-back step of bending back the superconducting cable bent in the bending step;
A flattening correction step of increasing the roundness of the superconducting cable bent back in the unbending step by the flattening correction device;
Prepare.

本発明によれば、製造コストを抑制し、且つ、真空引きする際の圧力損失を低減し、更に、内管の真円度を確保することができる超電導送電用断熱多重管、超電導送電用断熱多重管敷設装置、超電導送電用断熱多重管の施工方法、及び超電導ケーブルの施工方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a superconducting power transmission heat insulation multiple tube and a superconducting power transmission heat insulation that can suppress manufacturing costs, reduce pressure loss during vacuuming, and further ensure the roundness of the inner tube. It is possible to provide a multi-pipe laying apparatus, a method for laying a superconducting heat insulating multi-pipe for power transmission, and a method for laying a superconducting cable.

本発明の一実施形態に係る超電導送電用断熱多重管の一例を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing an example of a superconducting power transmission heat insulating multiplex tube according to an embodiment of the present invention; 扁平矯正装置の概要の一例を示す側面図である。It is a side view which shows an example of the outline|summary of a flat correction apparatus. 図2Aの正面図である。2B is a front view of FIG. 2A; FIG. 本実施形態に係る超電導送電用断熱多重管の内管の真円度の測定結果の一例を示す表である。4 is a table showing an example of measurement results of the roundness of the inner tube of the heat-insulating multiplex tube for superconducting power transmission according to the present embodiment. 本実施形態に係る超電導送電用断熱多重管の内管の真円度の平均値の一例を示すグラフである。4 is a graph showing an example of the average value of the roundness of the inner tube of the heat insulating multiplex tube for superconducting power transmission according to the present embodiment. 本実施形態に係る超電導送電用断熱多重管敷設装置の側面の一例を示す概略図である。1 is a schematic diagram showing an example of a side surface of a superconducting power transmission heat insulating multiple pipe laying apparatus according to the present embodiment; FIG. 本実施形態に係る超電導送電用断熱多重管の施工方法の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a method for constructing the superconducting power transmission heat insulating multiple pipe according to the present embodiment. 本実施形態に係る超電導ケーブルの施工方法の一例を示すブロック図である。It is a block diagram which shows an example of the construction method of the superconducting cable which concerns on this embodiment.

本発明の一実施形態に係る超電導送電用断熱多重管1について図面を参照しながら説明する。以下の説明では、共通する構成要素には同一符号を付してそれらの重複説明を省略する場合がある。なお、以下の説明では、超電導送電用断熱多重管1の軸方向(長手方向)をX方向、図1の紙面奥行方向をY方向、X方向及びY方向の双方に直交する方向をZ方向と称する場合がある。 A heat insulating multiple tube 1 for superconducting power transmission according to one embodiment of the present invention will be described with reference to the drawings. In the following description, common constituent elements may be given the same reference numerals, and redundant description thereof may be omitted. In the following description, the axial direction (longitudinal direction) of the superconducting power transmission heat insulation multiple tube 1 is the X direction, the depth direction of the paper surface of FIG. 1 is the Y direction, and the direction perpendicular to both the X and Y directions is the Z direction. sometimes referred to as

図1は、本実施形態に係る超電導送電用断熱多重管1(以下、単に断熱多重管1とも称する)の一例を示す断面図である。断熱多重管1には、超電導ケーブルコア2が挿通される。断熱多重管1と超電導ケーブルコア2とにより、超電導ケーブルCが形成される。超電導ケーブルCは、長尺(例えば450m程度)であり、例えば電力送電や鉄道に用いられる。 FIG. 1 is a cross-sectional view showing an example of a superconducting power transmission heat insulation multiplex tube 1 (hereinafter also simply referred to as heat insulation multiplex tube 1) according to the present embodiment. A superconducting cable core 2 is inserted through the heat insulating multiple tube 1 . A superconducting cable C is formed by the heat insulating multiple tube 1 and the superconducting cable core 2 . The superconducting cable C is long (for example, about 450 m) and used for electric power transmission and railways, for example.

超電導ケーブルコア2は、コルゲート管21と、コルゲート管21の外側に設けられる超電導導体22とを備える。超電導導体22は、熱絶縁層23と、超電導層24と、電気絶縁層25と、シールド超電導層26と、電気絶縁層27と、導体保護層28とが、この順に外側に積層されることにより形成される。なお、超電導ケーブルコア2の構成はこれに限られず、超電導ケーブルコア2としては公知のものを使用可能である。 The superconducting cable core 2 includes a corrugated tube 21 and superconducting conductors 22 provided outside the corrugated tube 21 . The superconducting conductor 22 is formed by laminating a thermal insulating layer 23, a superconducting layer 24, an electrical insulating layer 25, a shield superconducting layer 26, an electrical insulating layer 27, and a conductor protective layer 28 in this order. It is formed. The structure of the superconducting cable core 2 is not limited to this, and a known superconducting cable core 2 can be used.

コルゲート管21の内部には、超電導ケーブルコア2を冷却する冷媒が流れる第1の流路FP1が形成される。この冷媒として、例えば液体窒素が用いられる。 Inside the corrugated tube 21, a first flow path FP1 is formed through which a coolant for cooling the superconducting cable core 2 flows. Liquid nitrogen, for example, is used as this coolant.

熱絶縁層23は、コルゲート管21と超電導導体22との間を熱的に絶縁する。超電導層24には、送電電流としての電流が流れる。電気絶縁層25は、超電導層24とシールド超電導層26との間を電気的に絶縁する。シールド超電導層26には、シールド電流としての電流が流れる。電気絶縁層27は、超電導導体22を外部から電気的に絶縁する。導体保護層28は、超電導導体22を外部から機械的に保護する。 The thermal insulation layer 23 thermally insulates between the corrugated tube 21 and the superconducting conductor 22 . A current as a transmission current flows through the superconducting layer 24 . Electrical insulation layer 25 provides electrical insulation between superconducting layer 24 and shield superconducting layer 26 . A current flows through the shield superconducting layer 26 as a shield current. The electrical insulating layer 27 electrically insulates the superconducting conductor 22 from the outside. The conductor protective layer 28 mechanically protects the superconducting conductor 22 from the outside.

断熱多重管1は、内管11と、外管12と、耐熱輻射層13と、複数の断熱材14とを備える。 The heat insulating multiple tube 1 includes an inner tube 11 , an outer tube 12 , a heat resistant radiation layer 13 and a plurality of heat insulating materials 14 .

内管11は、円筒状であり、蛇腹加工や波形加工が行われていないストレート管である。すなわち、内管11の内面及び外面は平滑となっている。これにより、内部に冷媒が流れる際の圧力損失を低減することができる。内管11の内部には、超電導ケーブルコア2が挿通される。超電導ケーブルコア2と内管11との間には隙間が形成される。内管11は、ステンレス鋼製である。例えば、内管11の材質は、SUS316、SUS316L、SUS304L、SUS304等から適宜選択される。内管11は、例えば、外径60.5mm、厚さ2.0mmである。 The inner tube 11 is cylindrical and is a straight tube that is not corrugated or corrugated. That is, the inner and outer surfaces of the inner tube 11 are smooth. Thereby, the pressure loss when the coolant flows inside can be reduced. A superconducting cable core 2 is inserted through the inner tube 11 . A gap is formed between the superconducting cable core 2 and the inner tube 11 . The inner tube 11 is made of stainless steel. For example, the material of the inner tube 11 is appropriately selected from SUS316, SUS316L, SUS304L, SUS304, and the like. The inner tube 11 has, for example, an outer diameter of 60.5 mm and a thickness of 2.0 mm.

超電導ケーブルコア2と内管11との間の隙間には、超電導ケーブルコア2を冷却する冷媒が流れる第2の流路FP2が形成される。また、前述のように、コルゲート管21の内部には第1の流路FP1が形成されている。第1の流路FP1は、例えば、不図示の冷却装置から供給される冷媒が、超電導ケーブルCの一端から他端へ向けて流れる往路として用いられる。第2の流路FP2は、例えば、超電導ケーブルCの他端から排出された冷媒が、冷却装置まで戻るために、超電導ケーブルCの他端から一端へ向けて流れる復路として用いられる。冷却装置からの冷媒は、不図示のポンプにより圧縮された状態で超電導ケーブルCの一端に供給されることにより、第1の流路FP1及び第2の流路FP2を流通する。 A gap between the superconducting cable core 2 and the inner tube 11 is formed with a second flow path FP2 through which a coolant for cooling the superconducting cable core 2 flows. Further, as described above, the first flow path FP1 is formed inside the corrugated pipe 21 . The first flow path FP1 is used, for example, as an outward path through which a coolant supplied from a cooling device (not shown) flows from one end of the superconducting cable C to the other end. The second flow path FP2 is used, for example, as a return path for the coolant discharged from the other end of the superconducting cable C to flow back to the cooling device from the other end of the superconducting cable C toward one end. The coolant from the cooling device is supplied to one end of the superconducting cable C in a compressed state by a pump (not shown), thereby flowing through the first flow path FP1 and the second flow path FP2.

外管12は、円筒状であり、蛇腹加工や波形加工が行われていないストレート管である。すなわち、外管12の内面及び外面は平滑となっている。外管12は、内管11の外側に設けられる。内管11と外管12との間には隙間が形成される。外管12は、ステンレス鋼製である。例えば、外管12の材質は、SUS316、SUS316L、SUS304L、SUS304等から適宜選択される。外管12は、例えば、外径76.3mm、厚さ2.0mmである。 The outer tube 12 is cylindrical and is a straight tube that is not corrugated or corrugated. That is, the inner and outer surfaces of the outer tube 12 are smooth. The outer tube 12 is provided outside the inner tube 11 . A gap is formed between the inner tube 11 and the outer tube 12 . The outer tube 12 is made of stainless steel. For example, the material of the outer tube 12 is appropriately selected from SUS316, SUS316L, SUS304L, SUS304, and the like. The outer tube 12 has, for example, an outer diameter of 76.3 mm and a thickness of 2.0 mm.

耐熱輻射層13は、内管11の外面に設けられる。耐熱輻射層13は、内管11の全長に亘って設けられる。耐熱輻射層13は、内管11の外面の全体を覆うように設けられる。耐熱輻射層13は、例えば、厚さ2mmである。耐熱輻射層13は、例えば、スーパーインシュレーションを内管11に複数回巻き付けることにより形成される。スーパーインシュレーションは、例えば、アルミニウムが蒸着された樹脂フィルムとポリエステルネットを積層した構造からなる多層断熱材である。スーパーインシュレーションは、外部からの輻射熱の侵入を抑制する。すなわち、耐熱輻射層13により、外管12側から内管11側への輻射熱の伝達が抑制され、断熱多重管1の外部から超電導ケーブルコア2への熱の侵入を防ぐことができる。 A heat-resistant radiation layer 13 is provided on the outer surface of the inner tube 11 . The heat-resistant radiation layer 13 is provided over the entire length of the inner tube 11 . The heat-resistant radiation layer 13 is provided so as to cover the entire outer surface of the inner tube 11 . The heat-resistant radiation layer 13 has a thickness of 2 mm, for example. The heat-resistant radiation layer 13 is formed, for example, by winding super insulation around the inner tube 11 multiple times. Super insulation is a multi-layer heat insulating material having a structure in which, for example, a resin film on which aluminum is vapor-deposited and a polyester net are laminated. Super insulation suppresses the entry of radiant heat from the outside. That is, the heat-resistant radiation layer 13 suppresses the transmission of radiant heat from the outer tube 12 side to the inner tube 11 side, and prevents heat from entering the superconducting cable core 2 from the outside of the heat insulating multiplex tube 1 .

断熱材14は、耐熱輻射層13と外管12との間に設けられる。断熱材14は、円筒状である。断熱材14は、円筒状の内管11と外管12との間に、全周に亘って配置されている。複数の断熱材14が、内管11の軸方向(X方向)に所定間隔Dを空けて断続的に配置される。所定間隔Dとは、図1における「断熱材設置間隔」である。
複数の断熱材14は、50mmを上回り(50mm超)、且つ、180mm以下の間隔で配置される。本願発明者らは、ローラ41Aの回転軸とローラ41Bの回転軸との間隔が、この間隔に少なくとも2つの断熱材14が位置するよう、設定されていれば、断熱多重管1を扁平矯正加工することにより、良好な内管11の真円度が得られるという知見を得た。これにより、複数の断熱材14が、50mmを上回り、且つ、180mm以下の間隔でも、この間隔に少なくとも2つの断熱材14が位置していれば、内管11の真円度が良好な断熱多重管1が得られる。複数の断熱材14の間隔は、120mmを上回ることがより好ましい。複数の断熱材14の間隔は、140mm以下がより好ましい。
断熱材14は、耐熱輻射層13の外面に設けられる。断熱材14と外管12との間には隙間が形成されている。断熱材14の幅(軸方向の長さ)は、19mm以上50mm以下が好ましい。断熱材14の幅を19mm以上50mm以下とすることで、断熱多重管1の曲げ加工性を確保することができる。断熱材14の幅は、40mm以上がより好ましい。断熱材14の厚さは例えば3mmである。
A heat insulating material 14 is provided between the heat-resistant radiation layer 13 and the outer tube 12 . The heat insulating material 14 is cylindrical. The heat insulating material 14 is arranged between the cylindrical inner tube 11 and the outer tube 12 over the entire circumference. A plurality of heat insulating materials 14 are intermittently arranged at predetermined intervals D in the axial direction (X direction) of the inner tube 11 . The predetermined interval D is the "insulating material installation interval" in FIG.
The plurality of heat insulating materials 14 are arranged at intervals of more than 50 mm (more than 50 mm) and less than or equal to 180 mm. The inventors of the present application have found that if the distance between the rotation axis of the roller 41A and the rotation axis of the roller 41B is set so that at least two heat insulating materials 14 are positioned in this distance, the heat insulating multi-layer tube 1 can be flattened. The inventors have found that by doing so, the inner tube 11 can be obtained with good roundness. As a result, even if the plurality of heat insulating materials 14 are arranged at intervals of more than 50 mm and at most 180 mm, as long as at least two heat insulating materials 14 are positioned at this interval, the roundness of the inner tube 11 is good. A tube 1 is obtained. More preferably, the distance between the plurality of heat insulating materials 14 exceeds 120 mm. More preferably, the distance between the plurality of heat insulating materials 14 is 140 mm or less.
A heat insulating material 14 is provided on the outer surface of the heat-resistant radiation layer 13 . A gap is formed between the heat insulating material 14 and the outer tube 12 . The width (length in the axial direction) of the heat insulating material 14 is preferably 19 mm or more and 50 mm or less. By setting the width of the heat insulating material 14 to 19 mm or more and 50 mm or less, it is possible to ensure the bending workability of the heat insulating multiple tube 1 . More preferably, the width of the heat insulating material 14 is 40 mm or more. The thickness of the heat insulating material 14 is, for example, 3 mm.

断熱材14には、軸方向に貫通する不図示の通気孔もしくは溝が形成されている。例えば、通気孔は、断熱材14を径方向に貫通するよう形成されている。すなわち、通気孔は、円筒状の断熱材14の内周面から外周面まで延びる。この場合、断熱材14は、軸方向と直交する断面がC字状に形成される。なお、断熱材14の周方向の全長に対する、通気孔の周方向の長さは5%程度と十分に小さいため、断熱材14は、円筒状とみなすことができる。 The heat insulating material 14 is formed with vent holes or grooves (not shown) penetrating in the axial direction. For example, the vents are formed to radially penetrate the heat insulating material 14 . That is, the ventilation holes extend from the inner peripheral surface to the outer peripheral surface of the cylindrical heat insulating material 14 . In this case, the heat insulating material 14 has a C-shaped cross section perpendicular to the axial direction. Since the length of the ventilation holes in the circumferential direction is about 5% of the total length of the heat insulating material 14 in the circumferential direction, which is sufficiently small, the heat insulating material 14 can be regarded as having a cylindrical shape.

断熱材14は、例えば、フッ素樹脂(ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッカビニル、ポリクロロトリフルオロチレン)もしくはフッ素樹脂に繊維状のフィラーを添加したガラス繊維強化プラスチックなどを用いても良い。または、シリカエアロゲルを添加したガラス繊維状の断熱紙などが望ましい。なお、断熱材14の材質はこれに限られない。例えば、断熱材14は、スーパーインシュレーションを耐熱輻射層13に複数回巻き付けることにより形成されていてもよい。
このように、断熱材14を用いることで、内管11と外管12との熱電導を抑制することができる。
The heat insulating material 14 may be made of, for example, fluorine resin (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polychlorotrifluoroethylene) or glass fiber reinforced plastic obtained by adding fibrous filler to fluorine resin. . Alternatively, it is desirable to use glass fiber heat insulating paper to which silica airgel is added. In addition, the material of the heat insulating material 14 is not limited to this. For example, the heat insulating material 14 may be formed by winding super insulation around the heat-resistant radiation layer 13 multiple times.
By using the heat insulating material 14 in this manner, heat conduction between the inner tube 11 and the outer tube 12 can be suppressed.

複数の断熱材14と外管12の間および耐熱輻射層13と外管12との間には、真空断熱部15が形成される。すなわち、断熱多重管1を軸方向に沿った断面で見ると、耐熱輻射層13と外管12との間には、断熱材14及び真空断熱部15と、真空断熱部15とが軸方向に交互に設けられることとなる。真空断熱部15は、内管11と外管12との間を真空引きすることにより形成される。真空引きは、内管11と外管12との間の空気を、断熱材14と外管12との間の隙間、断熱材14同士の間の隙間、及び断熱材14に形成された通気孔もしくは溝を介して外部に排出することにより行われる。断熱材14及び真空断熱部15により、外管12から内管11への熱電導が抑制され、断熱多重管1の外部から超電導ケーブルコア2への熱の侵入を防ぐことができる。 A vacuum heat insulating portion 15 is formed between the plurality of heat insulating materials 14 and the outer tube 12 and between the heat-resistant radiation layer 13 and the outer tube 12 . That is, when the heat-insulating multiple tube 1 is viewed in cross-section along the axial direction, the heat-insulating material 14 and the vacuum heat-insulating portion 15 are placed between the heat-resistant radiation layer 13 and the outer tube 12, and the vacuum heat-insulating portion 15 extends in the axial direction. They are provided alternately. The vacuum heat insulating portion 15 is formed by drawing a vacuum between the inner tube 11 and the outer tube 12 . The air between the inner tube 11 and the outer tube 12 is evacuated through the gaps between the heat insulating materials 14 and the outer tube 12, the gaps between the heat insulating materials 14, and the ventilation holes formed in the heat insulating materials 14. Alternatively, it is carried out by discharging to the outside through a groove. The heat insulation material 14 and the vacuum heat insulation portion 15 suppress heat conduction from the outer tube 12 to the inner tube 11 , thereby preventing heat from entering the superconducting cable core 2 from the outside of the heat insulating multi-layer tube 1 .

本実施形態においては、複数の断熱材14が、断熱多重管1に曲げ加工及び曲げ戻し加工を行う際の、外管12から内管11への曲げ応力の伝達材として機能する。複数の断熱材14は、外管12から内管11への曲げ応力の伝達を平滑に行うだけでなく、曲げ戻し加工後の内管11の真円度の維持にも寄与する。 In this embodiment, the plurality of heat insulating materials 14 function as materials for transmitting bending stress from the outer tube 12 to the inner tube 11 when the heat insulating multi-layer tube 1 is subjected to bending and unbending. The plurality of heat insulating materials 14 not only smoothly transmit the bending stress from the outer tube 12 to the inner tube 11, but also contribute to maintaining the circularity of the inner tube 11 after bending back.

本実施形態に係る超電導送電用断熱多重管1によれば、断熱材14を、50mmを上回り、且つ、180mm以下の間隔で配置するので、断熱材14の数量を低減でき、製造コストを抑制することができ、且つ、内管11の真円度を確保することができる。すなわち、断熱材を50mm以下の間隔で配置すると、断熱材14の数量が多くなりすぎ、製造コストがかかる上、真空引き時に断熱材が悪影響をおよぼすおそれがある。一方、断熱材を180mm超の間隔で配置すると、多重管を曲げ戻す際に断熱材の間隔が大きくなりすぎ、断熱材14が無い箇所での変形が大きくなりすぎるため、内管11の真円度を確保できないおそれがある。
また、内管11がストレート管であるので、内管11の内面が平滑であり、内管11の内部に形成された第2の流路FP2における冷媒の圧力損失を低減することができる。
According to the superconducting power transmission heat insulating multiple pipe 1 according to the present embodiment, the heat insulating materials 14 are arranged at intervals of more than 50 mm and 180 mm or less, so that the quantity of the heat insulating materials 14 can be reduced and the manufacturing cost can be suppressed. In addition, the circularity of the inner tube 11 can be ensured. That is, if the heat insulating materials are arranged at intervals of 50 mm or less, the number of the heat insulating materials 14 becomes too large, which increases the manufacturing cost and may adversely affect the evacuation. On the other hand, if the heat insulating materials are arranged at an interval of more than 180 mm, the distance between the heat insulating materials becomes too large when the multiple pipe is bent back, and the deformation at the place where the heat insulating material 14 is absent becomes too large. There is a possibility that the degree cannot be guaranteed.
Further, since the inner tube 11 is a straight tube, the inner surface of the inner tube 11 is smooth, and the pressure loss of the refrigerant in the second flow path FP2 formed inside the inner tube 11 can be reduced.

図2Aは、扁平矯正装置40の概要の一例を示す側面図である。図2Aでは、以下の説明のために外管12の内側に設けられる断熱材14を示している。図2Bは、図2Aの正面図である。断熱多重管1は扁平矯正装置40と接する。扁平矯正装置40は、断熱多重管1の真円度を増大させる装置である。扁平矯正装置は、例えば、リールに巻かれた多重管を巻き戻した後、多重管の真円度を増大させるために用いられる。上述した複数の断熱材14の所定間隔Dは、扁平矯正装置40に応じた間隔である。断熱材14の所定間隔Dは、扁平矯正装置40に依存する。 FIG. 2A is a side view showing an example of the outline of the flatness correction device 40. FIG. FIG. 2A shows the heat insulating material 14 provided inside the outer tube 12 for the following explanation. FIG. 2B is a front view of FIG. 2A. The heat insulating multiple tube 1 is in contact with the flattening device 40 . The flattening device 40 is a device for increasing the roundness of the heat insulation multi-pipe 1 . A flattening device is used, for example, to increase the roundness of a multi-pipe wound on a reel after the multi-pipe is unwound. The predetermined interval D between the plurality of heat insulating materials 14 described above is an interval corresponding to the flattening correction device 40 . The predetermined interval D of the heat insulating material 14 depends on the flattening correction device 40 .

扁平矯正装置40は、複数のローラ41A,41B,41Cを含む。図2A、図2Bに示されるように、扁平矯正装置40は断熱多重管1の外管12に接している。2つのローラ41A,41Bは断熱多重管1の軸を通る同一平面(図2AではX-Z平面)上において並ぶように配置される。ローラ41Aとローラ41Bは、間隔を空けて配置される。例えば、X方向における、ローラ41Aとローラ41Bのローラ回転軸間の距離は、400mmである。ローラ41Cは、上記同一平面上において、断熱多重管1を挟んでローラ41A,41Bの反対側に配置される。ローラ41Cは、X方向において、ローラ41Aとローラ41Bの中間位置に配置されることが好ましい。X方向における、ローラ41Cと、ローラ41Aまたはローラ41Bとのローラ回転軸間の距離は、200mmである。
図2A、図2Bに示す例では、複数のローラ41A,41B,41Cが上下方向(Z方向)に配置されているが、この形態に限るものではなく、図2Aの紙面奥行方向(Y方向)など他の方向に配置されてもよい。
The flatness correction device 40 includes a plurality of rollers 41A, 41B, 41C. As shown in FIGS. 2A and 2B, the flattening device 40 is in contact with the outer tube 12 of the heat insulating multi-layer tube 1 . The two rollers 41A and 41B are arranged side by side on the same plane (the XZ plane in FIG. 2A) passing through the axis of the heat insulating multiple tube 1. As shown in FIG. The roller 41A and the roller 41B are arranged with an interval therebetween. For example, the distance between the roller rotation axes of roller 41A and roller 41B in the X direction is 400 mm. The roller 41C is arranged on the same plane as the rollers 41A and 41B on the opposite side of the heat insulating multiple tube 1. As shown in FIG. The roller 41C is preferably arranged at an intermediate position between the rollers 41A and 41B in the X direction. The distance between the roller rotation axes of roller 41C and roller 41A or roller 41B in the X direction is 200 mm.
In the example shown in FIGS. 2A and 2B, a plurality of rollers 41A, 41B, and 41C are arranged in the vertical direction (Z direction), but the present invention is not limited to this configuration. , etc., may be arranged in other directions.

図2Bに示されるように、ローラ41A,41B,41Cは孔型ローラである。図2Bに示す正面視において、ローラ41A,41Bとローラ41Cによって形成される略円形の孔型が断熱多重管1の外径に相当する。ローラ41A,41Bとローラ41Cは、断熱多重管1を挟み込むように配置される。
図2Aおいては3つのローラ41A,41B,41Cが示されているが、ローラは3つに限られるものではない。ローラで断熱多重管1を両側から挟み込む構成とするため、ローラは断熱多重管の両側に配置される。
As shown in FIG. 2B, rollers 41A, 41B, 41C are grooved rollers. In the front view shown in FIG. 2B, the substantially circular groove formed by the rollers 41A, 41B and the roller 41C corresponds to the outer diameter of the heat insulating multi-layer tube 1. As shown in FIG. The rollers 41A, 41B and the roller 41C are arranged so as to sandwich the heat insulating multiple tube 1 therebetween.
Although three rollers 41A, 41B, and 41C are shown in FIG. 2A, the number of rollers is not limited to three. The rollers are arranged on both sides of the heat-insulating multi-pipe because the rollers sandwich the heat-insulating multi-pipe 1 from both sides.

所定間隔Dは、ローラ41A,41B,41Cの間隔に依存する。すなわち、ローラ41Aとローラ41Bの間隔、及びローラ41Aとローラ41C(又はローラ41Bとローラ41C)の間隔により、好ましい所定間隔Dが決定される。本実施形態においては、所定間隔Dを、50mmを上回り、且つ、180mm以下とすることで、内管11の真円度を確保することができる。
例えば、本実施形態では、断熱材の幅(X方向の長さ)が40mmである。そのため、
前述のようにローラ41Cとローラ41A(またはローラ41B)とのローラ回転軸間の距離が、200mmの場合において、所定間隔Dを140mmとしても、断熱材の幅の長さ40mmを考慮すれば、ローラ41Cとローラ41Aとの間に、常に少なくとも1つの断熱材が配置されることとなる。
The predetermined distance D depends on the distance between the rollers 41A, 41B, 41C. That is, the preferred predetermined interval D is determined by the interval between the rollers 41A and 41B and the interval between the rollers 41A and 41C (or the rollers 41B and 41C). In this embodiment, the circularity of the inner tube 11 can be ensured by setting the predetermined distance D to be more than 50 mm and 180 mm or less.
For example, in this embodiment, the width (length in the X direction) of the heat insulating material is 40 mm. for that reason,
As described above, when the distance between the roller rotation axes of roller 41C and roller 41A (or roller 41B) is 200 mm, even if the predetermined interval D is 140 mm, considering the width of the heat insulating material of 40 mm, At least one heat insulating material is always arranged between the roller 41C and the roller 41A.

複数のローラ41A,41B,41Cを備える扁平矯正装置40は、断熱多重管1を扁平矯正加工することができる。すなわち、リールから巻き戻された多重管がZ方向(第1方向)に扁平形状をなしていたとしても、その扁平形状を矯正して(Z方向に多少押しつぶして)真円形状に近づけることができる。このとき、Z方向は、多重管の扁平を矯正させる方向であると言える。 A flattening device 40 having a plurality of rollers 41A, 41B, and 41C can flatten the heat-insulating multiple tube 1 . That is, even if the multiplex tube unwound from the reel has a flattened shape in the Z direction (first direction), it is possible to correct the flattened shape (by slightly crushing it in the Z direction) to make it closer to a perfect circle. can. At this time, it can be said that the Z direction is the direction for correcting the flatness of the multi-pipe.

所定間隔Dは、複数のローラ41A,41B,41Cと2つの断熱材14とが第1方向(Z方向)に沿って見て重なるよう、設定されている。 The predetermined interval D is set so that the plurality of rollers 41A, 41B, 41C and the two heat insulating materials 14 overlap each other when viewed along the first direction (Z direction).

複数のローラ41A,41B,41Cの間隔は、複数のローラ41A,41B,41Cと2つの断熱材14とが第1方向(Z方向)に沿って見て重なるよう、設定されている。より詳細には、ローラ41Aの回転軸とローラ41Bの回転軸との間の間隔は、この間隔に少なくとも2つの断熱材14が位置するよう、設定されている。すなわち、本実施形態では、断熱材の間隔や複数のローラの間隔を調整することで、2つの断熱材が複数のローラの間に配置されている。 The intervals between the plurality of rollers 41A, 41B, 41C are set so that the plurality of rollers 41A, 41B, 41C and the two heat insulating materials 14 overlap each other when viewed along the first direction (Z direction). More specifically, the distance between the rotation axis of roller 41A and the rotation axis of roller 41B is set so that at least two heat insulators 14 are positioned in this distance. That is, in this embodiment, two heat insulating materials are arranged between the plurality of rollers by adjusting the distance between the heat insulating materials and the distance between the plurality of rollers.

3つのローラ41A,41B,41Cそれぞれの外径及び内径は、ローラ41Aの回転軸とローラ41Bの回転軸との間に少なくとも2つの断熱材14が位置するように設定されていれば、様々な値を採用し得る。 The outer diameter and inner diameter of each of the three rollers 41A, 41B, 41C can be varied as long as at least two heat insulators 14 are positioned between the rotation axis of the roller 41A and the rotation axis of the roller 41B. value can be adopted.

以下、図1及び図5を参照して、超電導送電用断熱多重管1を用いた超電導送電用断熱多重管敷設装置100について説明する。図5は、超電導送電用断熱多重管敷設装置100側面の一例を示す概略図である。図5の右向きの矢印は断熱多重管1が搬送される方向である。すなわち、図5の左側が上流側、右側が下流側である。
本実施形態に係る超電導送電用断熱多重管敷設装置100は、超電導ケーブルコア2が挿入される断熱多重管1と断熱多重管1の真円度を増大させる扁平矯正装置40と、を備える。図5に示すように、扁平矯正装置40の上流側に曲げ戻し装置50を、更にその上流側に断熱多重管1が巻き回されたドラム60を備えてもよい。
本実施形態に係る超電導送電用断熱多重管敷設装置100は、ストレート管である内管11と、ストレート管であり、内管11の外側に配置される外管12と、超電導ケーブルコア2を冷却するための冷媒の流路であって、内管11の内部に形成される流路FP2と、内管11の外面に設けられる耐熱輻射層13と、外管12と耐熱輻射層13との間に設けられ、内管11の軸方向に所定間隔Dを空けて配置される複数の断熱材14と、を備える。
Hereinafter, a superconducting power transmission heat insulation multiplex pipe laying apparatus 100 using the superconducting power transmission heat insulation multiplex pipe 1 will be described with reference to FIGS. FIG. 5 is a schematic diagram showing an example of a side view of the superconducting power transmission heat insulating multi-pipe laying apparatus 100. As shown in FIG. The rightward arrow in FIG. 5 indicates the direction in which the heat insulating multiple tube 1 is conveyed. That is, the left side of FIG. 5 is the upstream side, and the right side is the downstream side.
A superconducting power transmission heat insulation multiple pipe laying apparatus 100 according to the present embodiment includes a heat insulation multiple pipe 1 into which a superconducting cable core 2 is inserted, and a flattening device 40 for increasing the roundness of the heat insulation multiple pipe 1 . As shown in FIG. 5, a bendback device 50 may be provided upstream of the flattening correction device 40, and a drum 60 around which the heat insulating multiple tube 1 is wound may be provided on the upstream side.
A superconducting power transmission heat insulating multi-pipe laying apparatus 100 according to the present embodiment cools an inner pipe 11 that is a straight pipe, an outer pipe 12 that is a straight pipe and is arranged outside the inner pipe 11, and a superconducting cable core 2. A flow path for the coolant for the cooling, which is a flow path FP2 formed inside the inner tube 11, a heat-resistant radiation layer 13 provided on the outer surface of the inner tube 11, and between the outer tube 12 and the heat-resistant radiation layer 13. and a plurality of heat insulating materials 14 arranged at predetermined intervals D in the axial direction of the inner pipe 11 .

扁平矯正装置40は、外管12と接している。扁平矯正装置40は、複数のローラ41A,41B,41Cを含む。ローラ41A,41B,41Cは孔型ローラである。ローラ41A,41B,41Cによって形成される略円形の孔型が断熱多重管1の外径に相当する。ローラ41A,41Bとローラ41Cは、断熱多重管1を挟み込むように配置される。断熱多重管1を扁平矯正装置40に挿通し、断熱多重管1の長手方向に沿って搬送移動させることで、断熱多重管1又を扁平矯正加工することができる。 The flatness correction device 40 is in contact with the outer tube 12 . The flatness correction device 40 includes a plurality of rollers 41A, 41B, 41C. The rollers 41A, 41B, 41C are slotted rollers. A substantially circular hole shape formed by the rollers 41A, 41B, and 41C corresponds to the outer diameter of the heat insulating multiple tube 1. As shown in FIG. The rollers 41A, 41B and the roller 41C are arranged so as to sandwich the heat insulating multiple tube 1 therebetween. The heat insulation multiple pipe 1 can be flattened by inserting the heat insulation multiple pipe 1 into the flattening device 40 and conveying and moving it along the longitudinal direction of the heat insulation multiple pipe 1 .

断熱多重管1が巻き回されたドラム60、曲げ戻し装置50においても、複数のローラ41A,41B,41Cを用いてもよい。 A plurality of rollers 41A, 41B, and 41C may also be used in the drum 60 around which the heat insulating multi-layer pipe 1 is wound and the bend-back device 50 .

内管11としてストレート管を用いるため、内管11の内面が平滑であり、内管11の内部に形成された第2の流路FP2における冷媒の圧力損失を低減することができる。また、内管11と外管12との間に断熱材14が所定間隔Dを空けて配置されているため、断熱材14が曲げ応力伝達のためのスペーサとなり、内管11及び外管12の扁平を抑えることができる。また、内管11及び外管12の双方がストレート管であるため、コルゲート管を用いる場合と比べて製造コストが抑えられる。 Since a straight tube is used as the inner tube 11, the inner surface of the inner tube 11 is smooth, and the pressure loss of the refrigerant in the second flow path FP2 formed inside the inner tube 11 can be reduced. In addition, since the heat insulating material 14 is arranged between the inner tube 11 and the outer tube 12 with a predetermined interval D, the heat insulating material 14 serves as a spacer for transmitting bending stress. flatness can be reduced. Moreover, since both the inner tube 11 and the outer tube 12 are straight tubes, the manufacturing cost can be suppressed as compared with the case of using corrugated tubes.

断熱材14を設置する所定間隔Dは、50mmを上回り、且つ、180mm以下である。扁平矯正装置40により断熱多重管1を扁平矯正加工することができる。これにより、内管11の扁平をより効果的に抑えることができる。すなわち、内管11の真円度を確保することができる。また、内管11及び外管12の扁平度の軸方向のばらつきを抑えることができる。これにより、特に内管11について、第2の流路FP2の流路面積の軸方向のばらつきを抑えることができるため、第2の流路FP2を流れる冷媒の流通速度を軸方向で均一とし、超電導ケーブルコア2の冷却度を軸方向で均一とすることができる。 A predetermined interval D for installing the heat insulating material 14 is more than 50 mm and 180 mm or less. The heat insulating multi-layer tube 1 can be flattened by the flattening device 40 . As a result, flattening of the inner tube 11 can be suppressed more effectively. That is, the roundness of the inner tube 11 can be ensured. In addition, variations in the flatness of the inner tube 11 and the outer tube 12 in the axial direction can be suppressed. As a result, it is possible to suppress variations in the flow path area of the second flow path FP2 in the axial direction, especially for the inner pipe 11, so that the flow velocity of the coolant flowing through the second flow path FP2 is made uniform in the axial direction. The degree of cooling of the superconducting cable core 2 can be made uniform in the axial direction.

断熱材14は円筒状である。これにより、断熱材14と外管12の内面とが面接触し、外管12への局所的な応力集中を防止することができるため、外管12の局所変形を確実に防ぐことができる。また、断熱材14によって外管12を全周に亘って支持することができるため、外管12の扁平をより効果的に抑えることができる。 The heat insulating material 14 is cylindrical. As a result, the heat insulating material 14 and the inner surface of the outer tube 12 are in surface contact, and local stress concentration on the outer tube 12 can be prevented, so that local deformation of the outer tube 12 can be reliably prevented. In addition, since the outer tube 12 can be supported over the entire circumference by the heat insulating material 14, flattening of the outer tube 12 can be suppressed more effectively.

また、断熱材14には、内管11の軸方向に貫通する通気孔もしくは溝が形成されている。これにより、内管11と外管12との間の真空引きを、通気孔もしくは溝を介して短時間で行うことができる。 Further, the heat insulating material 14 is formed with a vent hole or a groove penetrating in the axial direction of the inner tube 11 . As a result, vacuuming between the inner tube 11 and the outer tube 12 can be performed in a short period of time via the vent holes or grooves.

以下、図6及び図7を参照して、超電導送電用断熱多重管1の施工方法200及び超電導ケーブルCの施工方法300について説明する。
断熱多重管1の施工方法200については、まず、断熱多重管1に曲げ加工を施してドラムに巻き付ける(曲げ工程;S200)。ドラムに巻き付けられた断熱多重管1を直線状に曲げ戻す(曲げ戻し工程;S201)。
超電導ケーブルCの施工方法300については、まず、超電導ケーブルC(超電導ケーブルコア2が挿入された状態の断熱多重管1)に曲げ加工を施してドラムに巻き付ける(曲げ工程;S300)。ドラムに巻き付けられた超電導ケーブルCを直線状に曲げ戻す(曲げ戻し工程;S301)。
Hereinafter, a construction method 200 for the superconducting power transmission heat insulating multiple pipe 1 and a construction method 300 for the superconducting cable C will be described with reference to FIGS.
As for the construction method 200 for the heat insulating multiple pipe 1, first, the heat insulating multiple pipe 1 is bent and wound around a drum (bending step; S200). The heat-insulating multiple tube 1 wound around the drum is straightly bent back (bending back step; S201).
As for the construction method 300 of the superconducting cable C, first, the superconducting cable C (insulating multiple tube 1 with the superconducting cable core 2 inserted) is bent and wound around a drum (bending step; S300). The superconducting cable C wound around the drum is straightly bent back (bending back step; S301).

次に、曲げ戻し工程S201,S301で曲げ戻された断熱多重管1又は超電導ケーブルCの真円度を扁平矯正装置により増大させる(扁平矯正工程;S202,S302)。扁平矯正装置40は、複数のローラ41A,41B,41Cを含む。ローラ41A,41B,41Cは孔型ローラである。ローラ41A,41B,41Cによって形成される略円形の孔型が断熱多重管1又は超電導ケーブルCの外径に相当する。ローラ41A,41Bとローラ41Cは、断熱多重管1又は超電導ケーブルCを挟み込むように配置される。断熱多重管1又は超電導ケーブルCを扁平矯正装置40に挿通し、断熱多重管1又は超電導ケーブルCの長手方向に沿って搬送移動させることで、断熱多重管1又は超電導ケーブルCを扁平矯正加工することができる。 Next, the roundness of the heat insulating multi-layer tube 1 or the superconducting cable C bent back in the unbending steps S201 and S301 is increased by the flattening device (flatness straightening steps; S202 and S302). The flatness correction device 40 includes a plurality of rollers 41A, 41B, 41C. The rollers 41A, 41B, 41C are slotted rollers. A substantially circular hole shape formed by the rollers 41A, 41B, and 41C corresponds to the outer diameter of the heat insulating multiple tube 1 or the superconducting cable C. As shown in FIG. The rollers 41A, 41B and the roller 41C are arranged so as to sandwich the heat insulating multiple tube 1 or the superconducting cable C therebetween. The heat insulation multiple pipe 1 or the superconducting cable C is inserted into a flattening device 40 and conveyed along the longitudinal direction of the heat insulation multiple pipe 1 or the superconducting cable C to flatten the heat insulation multiple pipe 1 or the superconducting cable C. be able to.

本実施形態に係る断熱多重管1は、ストレート管である内管11と、ストレート管であり、内管11の外側に配置される外管12と、内管11の外面に設けられる耐熱輻射層13と、外管12と耐熱輻射層13との間に設けられ、内管11の軸方向に所定間隔を空けて配置される複数の断熱材14と、を備える。内管11の内部に、超電導ケーブルコア2を冷却するための冷媒の流路FP2が形成される。 The heat insulating multiple pipe 1 according to the present embodiment includes an inner pipe 11 that is a straight pipe, an outer pipe 12 that is a straight pipe and is arranged outside the inner pipe 11, and a heat-resistant radiation layer provided on the outer surface of the inner pipe 11. and a plurality of heat insulating materials 14 provided between the outer tube 12 and the heat-resistant radiation layer 13 and arranged at predetermined intervals in the axial direction of the inner tube 11 . Inside the inner tube 11, a coolant flow path FP2 for cooling the superconducting cable core 2 is formed.

内管11としてストレート管を用いるため、内管11の内面が平滑であり、内管11の内部に形成された第2の流路FP2における冷媒の圧力損失を低減することができる。また、内管11と外管12との間に断熱材14が所定間隔Dを空けて配置されているため、断熱多重管1又は超電導ケーブルCに曲げ工程S200,S300、曲げ戻し工程S201,S301及び扁平矯正工程S202,S302を施したとしても、断熱材14が曲げ応力伝達のためのスペーサとなり、内管11及び外管12の扁平を抑えることができる。すなわち、内管11及び外管12がストレート管の場合であっても、断熱多重管1又は超電導ケーブルCの曲げ工程S200,S300、曲げ戻し工程S201,S301、及び扁平矯正工程S202,S302が可能となり、長尺の断熱多重管1又は超電導ケーブルCを製造することができる。また、内管11及び外管12の双方がストレート管であるため、コルゲート管を用いる場合と比べて製造コストが抑えられる。 Since a straight tube is used as the inner tube 11, the inner surface of the inner tube 11 is smooth, and the pressure loss of the refrigerant in the second flow path FP2 formed inside the inner tube 11 can be reduced. In addition, since the heat insulating material 14 is arranged between the inner tube 11 and the outer tube 12 with a predetermined gap D, the heat insulating multiple tube 1 or the superconducting cable C is subjected to bending steps S200 and S300 and bending back steps S201 and S301. And even if the flattening steps S202 and S302 are performed, the heat insulating material 14 serves as a spacer for transmitting bending stress, and flattening of the inner tube 11 and the outer tube 12 can be suppressed. That is, even when the inner tube 11 and the outer tube 12 are straight tubes, the bending steps S200 and S300, the unbending steps S201 and S301, and the flattening steps S202 and S302 of the heat insulating multiple tube 1 or the superconducting cable C are possible. As a result, a long heat-insulating multiple tube 1 or a superconducting cable C can be manufactured. Moreover, since both the inner tube 11 and the outer tube 12 are straight tubes, the manufacturing cost can be suppressed as compared with the case of using corrugated tubes.

断熱材14を設置する所定間隔Dは、50mmを上回り、且つ、180mm以下である。また、扁平矯正工程S202,S302では扁平矯正装置40により断熱多重管1又は超電導ケーブルCを扁平矯正加工することができる。これにより、断熱多重管1又は超電導ケーブルCの曲げ工程S200,S300及び曲げ戻し工程S201,S301による内管11の扁平をより効果的に抑えることができる。すなわち、内管11の真円度を確保することができる。また、扁平矯正工程S202,S302を行った後の内管11及び外管12の扁平度の軸方向のばらつきを抑えることができる。これにより、特に内管11について、第2の流路FP2の流路面積の軸方向のばらつきを抑えることができるため、第2の流路FP2を流れる冷媒の流通速度を軸方向で均一とし、超電導ケーブルコア2の冷却度を軸方向で均一とすることができる。 A predetermined interval D for installing the heat insulating material 14 is more than 50 mm and 180 mm or less. Further, in the flattening steps S202 and S302, the heat insulating multiple tube 1 or the superconducting cable C can be flattened by the flattening device 40. FIG. As a result, flattening of the inner tube 11 due to the bending steps S200 and S300 and the unbending steps S201 and S301 of the heat insulating multiple tube 1 or the superconducting cable C can be suppressed more effectively. That is, the roundness of the inner tube 11 can be ensured. In addition, it is possible to suppress variation in the axial direction of the flatness of the inner tube 11 and the outer tube 12 after performing the flattening steps S202 and S302. As a result, it is possible to suppress variations in the flow path area of the second flow path FP2 in the axial direction, particularly for the inner tube 11, so that the flow velocity of the coolant flowing through the second flow path FP2 is made uniform in the axial direction. The degree of cooling of the superconducting cable core 2 can be made uniform in the axial direction.

断熱材14は円筒状である。これにより、断熱多重管1又は超電導ケーブルCに曲げ工程S200,S300を施す場合に、断熱材14と外管12の内面とが面接触し、外管12への局所的な応力集中を防止することができるため、外管12の局所変形を確実に防ぐことができる。また、断熱材14によって外管12を全周に亘って支持することができるため、断熱多重管1又は超電導ケーブルCの曲げ工程S200,S300及び曲げ戻し工程S201,S301による外管12の扁平をより効果的に抑えることができる。 The heat insulating material 14 is cylindrical. As a result, when the heat insulating multiple tube 1 or the superconducting cable C is subjected to the bending steps S200 and S300, the heat insulating material 14 and the inner surface of the outer tube 12 come into surface contact to prevent local stress concentration on the outer tube 12. Therefore, local deformation of the outer tube 12 can be reliably prevented. In addition, since the outer tube 12 can be supported over the entire circumference by the heat insulating material 14, the outer tube 12 can be flattened by the bending steps S200 and S300 and the bending back steps S201 and S301 of the heat insulating multiple tube 1 or the superconducting cable C. can be suppressed more effectively.

また、断熱材14には、内管11の軸方向に貫通する通気孔もしくは溝が形成されている。これにより、内管11と外管12との間の真空引きを、通気孔もしくは溝を介して短時間で行うことができる。 Further, the heat insulating material 14 is formed with a vent hole or a groove penetrating in the axial direction of the inner tube 11 . As a result, vacuuming between the inner tube 11 and the outer tube 12 can be performed in a short period of time via the vent holes or grooves.

(実施例)
本実施形態に係る超電導送電用断熱多重管1を用いて、超電導送電用断熱多重管1の内管11の真円度を測定した結果の一例を説明する。
断熱多重管No.1から4の4本を用いた。断熱多重管No.1からNo.4は、以下の点(1)から(4)においては共通とした。
(1)内管11:ストレート管、外径60.5mm、厚さ2.0mm、長さ1800mm、SUS316
(2)外管12:ストレート管、外径76.3mm、厚さ2.0mm、長さ1800mm、SUS316
(3)断熱材14:幅(軸方向の長さ)40mm、厚さ3.0mm、フッ素樹脂
(4)耐熱輻射層13:厚さ2.0mm、長さ1800mm
(Example)
An example of the result of measuring the roundness of the inner tube 11 of the heat insulating multiplex tube 1 for superconducting power transmission according to this embodiment will be described.
Adiabatic multi-pipe no. Four of 1 to 4 were used. Adiabatic multi-pipe no. 1 to No. 4 are common in the following points (1) to (4).
(1) Inner tube 11: straight tube, outer diameter 60.5 mm, thickness 2.0 mm, length 1800 mm, SUS316
(2) Outer tube 12: straight tube, outer diameter 76.3 mm, thickness 2.0 mm, length 1800 mm, SUS316
(3) Heat insulating material 14: Width (axial length) 40 mm, thickness 3.0 mm, fluorine resin (4) Heat-resistant radiation layer 13: thickness 2.0 mm, length 1800 mm

断熱多重管No.1からNo.4において、断熱材14の所定間隔Dを変えて内管11の真円度を測定した。断熱材14の所定間隔Dは、50mm、140mm、230mm、320mmとした。断熱多重管1に曲げ加工、曲げ戻し加工、及び扁平矯正加工を行った後、内管11の真円度を測定した。 Adiabatic multi-pipe no. 1 to No. 4, the roundness of the inner tube 11 was measured by changing the predetermined interval D of the heat insulating material 14 . The predetermined intervals D of the heat insulating material 14 were set to 50 mm, 140 mm, 230 mm, and 320 mm. After bending, unbending, and flattening the heat-insulating multiple tube 1, the roundness of the inner tube 11 was measured.

曲げ加工として、200mm間隔で配置した3つの曲げローラを用いて、断熱多重管1の3点曲げを行った。曲げ戻し加工として、曲げ加工後の断熱多重管1が直線状に戻るよう曲げ戻しを行った。その後、3つのローラを用いて扁平矯正加工を行った。X方向における、ローラ41Aとローラ41Bのローラ回転軸間の距離を400mm間隔で配置し、X方向における、ローラ41Aとローラ41Cのローラ回転軸間の距離を200mm間隔で配置した。断熱材14のX方向における大きさ(長さ)は40mmとした。 As the bending process, three bending rollers arranged at intervals of 200 mm were used to perform three-point bending of the heat insulating multi-layer tube 1 . As the bending back process, the heat insulating multiple tube 1 after the bending process was bent back so as to return to a straight shape. After that, flatness correction processing was performed using three rollers. The distance between the roller rotation axes of the rollers 41A and 41B in the X direction was arranged at intervals of 400 mm, and the distance between the roller rotation axes of the rollers 41A and 41C in the X direction was arranged at intervals of 200 mm. The size (length) of the heat insulating material 14 in the X direction was set to 40 mm.

真円度は、扁平矯正加工を行った後の内管11について、軸方向に直交する断面における、径が最小となった部分の長さを短径(mm)として計測し、径が最大となった部分の長さを長径(mm)として計測し、短径を長径で除することにより求めた。すなわち、「(短径/長径)×100(%)」として真円度を求めた。
真円度の値が大きいほど、扁平矯正加工を行った後の内管11の断面が真円に近く、内管11の扁平が抑えられたことを示す。真円度は、内管11のうち、断熱材14が配置されている部分の断面と、断熱材14が配置されていない部分の断面とのそれぞれについて計測された。
Roundness is measured by measuring the length of the portion with the smallest diameter in the cross section perpendicular to the axial direction of the inner pipe 11 after flattening correction processing as the minor diameter (mm), and measuring the length of the portion where the diameter is the largest The length of the bent portion was measured as the major axis (mm), and it was obtained by dividing the minor axis by the major axis. That is, the roundness was determined as "(minor axis/major axis) x 100 (%)".
The larger the roundness value, the closer the cross section of the inner tube 11 after the flattening process is to a perfect circle, indicating that the flattening of the inner tube 11 is suppressed. The roundness was measured for each of the cross section of the inner pipe 11 where the heat insulating material 14 is arranged and the cross section of the portion where the heat insulating material 14 is not arranged.

図3に内管11の真円度の測定結果の一例を示す。図3中の「断熱材有無」は、断熱多重管1の測定箇所において断熱材14が配置されているか否かを示す。図3では、断熱材14が配置されている断面及び配置されていない断面での長径、短径、及び真円度の測定結果を示す。図3中の「-」は、測定を実施していないことを示す。 FIG. 3 shows an example of the measurement result of the roundness of the inner tube 11. As shown in FIG. 3 indicates whether or not the heat insulating material 14 is arranged at the measurement location of the heat insulating multiple pipe 1 . FIG. 3 shows measurement results of the major axis, the minor axis, and the circularity of a cross section in which the heat insulating material 14 is arranged and a cross section in which the heat insulating material 14 is not arranged. "-" in FIG. 3 indicates that no measurement was performed.

図4では、図3の各断熱多重管No.1からNo.4の真円度について比較した。図4に示すように、断熱多重管No.3,No.4では断熱材14の有無に関わらずおおよそ同様の真円度を示したが、断熱多重管No.1,No.2においては、断熱材14が配置されていない部分の断面においてそれぞれ真円度が90.7%、92.5%を示した。断熱材14の間隔が50mm、140mmの断熱多重管No.1,No.2において、高い真円度が確保できた。 In FIG. 4, each adiabatic multi-pipe No. 3 in FIG. 1 to No. 4 were compared for roundness. As shown in FIG. 3, No. 4 showed approximately the same degree of circularity regardless of the presence or absence of the heat insulating material 14. 1, No. 2, the circularity of the section where the heat insulating material 14 is not arranged is 90.7% and 92.5%, respectively. Insulation multiple pipe No. 50 and 140 mm between the insulation materials 14 were used. 1, No. 2, high roundness could be secured.

ここで、真円度が大きいほど、扁平矯正加工を行った後の内管11の扁平が抑えられたことを示すため、真円度は大きいことが好ましい。なお、特許文献1では、内管及び外管の両方の真円度が重要だとされているが、本願発明者らは、超電導ケーブルコア2を内管11に挿入することに鑑み、外管12の真円度よりも内管11の真円度の方が重要であるという知見を得た。 Here, the larger the roundness, the more the flatness of the inner tube 11 after the flattening process is suppressed, so the roundness is preferably large. In Patent Document 1, it is said that the roundness of both the inner tube and the outer tube is important. We have found that the circularity of the inner tube 11 is more important than the circularity of the inner tube 12 .

以上より、断熱材14の所定間隔Dの好適な範囲は、50mmを上回り、且つ、180mm以下であることが分かった。 From the above, it was found that the preferable range of the predetermined interval D of the heat insulating material 14 is more than 50 mm and 180 mm or less.

以上、本発明の実施形態を説明したが、上記実施形態は、例として提示したものであり、本発明の範囲が上記実施形態のみに限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれる。例えば、断熱材14に形成される通気孔又は溝は、省略されていてもよい。この場合であっても、内管11と外管12との間の真空引きを、例えば断熱材14と外管12との間の隙間を介して行うことができる。また、通気孔は、断熱材14の径方向の中央部のみに設けられていてもよい。 Although the embodiments of the present invention have been described above, the above embodiments are presented as examples, and the scope of the present invention is not limited only to the above embodiments. The above embodiment can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. The above-described embodiments and modifications thereof are included in the invention described in the claims and their equivalents, as well as being included in the scope and gist of the invention. For example, vents or grooves formed in the insulation 14 may be omitted. Even in this case, the inner tube 11 and the outer tube 12 can be evacuated through the gap between the heat insulating material 14 and the outer tube 12, for example. Alternatively, the vent hole may be provided only in the radially central portion of the heat insulating material 14 .

1 超電導送電用断熱多重管(断熱多重管)
2 超電導ケーブルコア
11 内管
12 外管
13 耐熱輻射層
14 断熱材
15 真空断熱部
21 コルゲート管
22 超電導導体
23 熱絶縁層
24 超電導層
25 電気絶縁層
26 シールド超電導層
27 電気絶縁層
28 導体保護層
40 扁平矯正装置
41A,41B,41C ローラ
100 超電導送電用断熱多重管敷設装置
200 超電導送電用断熱多重管の施工方法
300 超電導ケーブルの施工方法
FP1 第1の流路
FP2 第2の流路
S200,S300 曲げ工程
S201,S301 曲げ戻し工程
S202,S302 扁平矯正工程
1 Thermal insulation multiplex tube for superconducting power transmission (thermal insulation multiplex tube)
2 Superconducting cable core 11 inner tube 12 outer tube 13 heat-resistant radiation layer 14 heat insulating material 15 vacuum heat insulating portion 21 corrugated tube 22 superconducting conductor 23 heat insulating layer 24 superconducting layer 25 electrical insulating layer 26 shield superconducting layer 27 electrical insulating layer 28 conductor protection layer 40 flattening devices 41A, 41B, 41C rollers 100 superconducting power transmission heat insulation multiple pipe laying device 200 superconducting power transmission heat insulation multiple pipe construction method 300 superconducting cable construction method FP1 first flow path FP2 second flow path S200, S300 Bending process S201, S301 Unbending process S202, S302 Flattening process

本発明は上記の知見に鑑みてなされた。本発明の要旨は以下の手段を採用する。
(1)本発明の一実施形態に係る超電導送電用断熱多重管は、超電導ケーブルコアが挿入される超電導送電用断熱多重管であって、
ストレート管である内管と、
ストレート管であり、前記内管の外側に配置される外管と、
前記超電導ケーブルコアを冷却するための冷媒の流路であって、前記内管の内部に形成される流路と、
前記内管の外面に設けられる耐熱輻射層と、
前記外管と前記耐熱輻射層との間に設けられ、前記内管の軸方向に所定間隔で配置される複数の断熱材と、
を備え、
前記所定間隔は、50mmを上回り、且つ、180mm以下であり、
前記所定間隔は、前記超電導送電用断熱多重管の真円度を増大させる扁平矯正装置に応じた間隔である。
)上記(1)において、
前記扁平矯正装置は、複数のローラを含み、
前記所定間隔と前記複数のローラの間隔とは、対応してもよい。
)上記()において、
前記所定間隔は、前記複数のローラと2つの前記断熱材とが第1方向に沿って見て重なるよう、設定されていてもよい。
)上記()において、
前記複数のローラの間隔は、前記複数のローラと2つの前記断熱材とが第1方向に沿って見て重なるよう、設定されていてもよい。
)本発明の一実施形態に係る超電導送電用断熱多重管敷設装置は、
超電導ケーブルコアが挿入される超電導送電用断熱多重管と前記超電導送電用断熱多重管の真円度を増大させる扁平矯正装置とを含む超電導送電用断熱多重管敷設装置であって、
前記超電導送電用断熱多重管は、
ストレート管である内管と、
ストレート管であり、前記内管の外側に配置される外管と、
前記超電導ケーブルコアを冷却するための冷媒の流路であって、前記内管の内部に形成される流路と、
前記内管の外面に設けられる耐熱輻射層と、
前記外管と前記耐熱輻射層との間に設けられ、前記内管の軸方向に所定間隔を空けて配置される複数の断熱材と、
を備え、
前記扁平矯正装置は、前記外管と接する。
)本発明の一実施形態に係る超電導送電用断熱多重管の施工方法は、
上記()乃至()のいずれか1項に記載の超電導送電用断熱多重管の施工方法であって、
前記超電導送電用断熱多重管を曲げる曲げ工程と、
前記曲げ工程で曲げられた前記超電導送電用断熱多重管を曲げ戻す曲げ戻し工程と、
前記曲げ戻し工程で曲げ戻された超電導送電用断熱多重管の真円度を前記扁平矯正装置により増大させる扁平矯正工程と、
を備える。
)本発明の一実施形態に係る超電導ケーブルの施工方法は、
上記()乃至()のいずれか1項に記載の超電導送電用断熱多重管と、前記超電導送電用断熱多重管に挿入される超電導ケーブルコアと、を含む超電導ケーブルの施工方法であって、
前記超電導ケーブルを曲げる曲げ工程と、
前記曲げ工程で曲げられた前記超電導ケーブルを曲げ戻す曲げ戻し工程と、
前記曲げ戻し工程で曲げ戻された前記超電導ケーブルの真円度を前記扁平矯正装置により増大させる扁平矯正工程と、
を備える。
The present invention has been made in view of the above findings. The gist of the present invention employs the following means.
(1) A superconducting power transmission heat insulation multiplex tube according to an embodiment of the present invention is a superconducting power transmission heat insulation multiplex tube into which a superconducting cable core is inserted,
an inner tube that is a straight tube;
an outer tube that is a straight tube and is arranged outside the inner tube;
a coolant channel for cooling the superconducting cable core, the channel being formed inside the inner tube;
a heat-resistant radiation layer provided on the outer surface of the inner tube;
a plurality of heat insulating materials provided between the outer tube and the heat-resistant radiation layer and arranged at predetermined intervals in the axial direction of the inner tube;
with
the predetermined interval is more than 50 mm and 180 mm or less;
The predetermined interval is an interval corresponding to a flattening device for increasing the roundness of the heat insulating multiple tube for superconducting power transmission.
( 2 ) In (1) above,
The flatness correction device includes a plurality of rollers,
The predetermined interval may correspond to the interval between the plurality of rollers.
( 3 ) In ( 2 ) above,
The predetermined interval may be set such that the plurality of rollers and the two heat insulators overlap each other when viewed along the first direction.
( 4 ) In ( 2 ) above,
The intervals between the plurality of rollers may be set such that the plurality of rollers and the two heat insulators overlap each other when viewed along the first direction.
( 5 ) A superconducting power transmission thermal insulation multi-pipe laying apparatus according to an embodiment of the present invention,
1. A superconducting power transmission insulation multiplex pipe laying device including a superconducting power transmission insulation multiplex pipe into which a superconducting cable core is inserted and a flattening device for increasing the roundness of the superconducting power transmission insulation multiplex pipe,
The heat insulating multiple tube for superconducting power transmission,
an inner tube that is a straight tube;
an outer tube that is a straight tube and is arranged outside the inner tube;
a coolant channel for cooling the superconducting cable core, the channel being formed inside the inner tube;
a heat-resistant radiation layer provided on the outer surface of the inner tube;
a plurality of heat insulating materials provided between the outer tube and the heat-resistant radiation layer and arranged at predetermined intervals in the axial direction of the inner tube;
with
The flattening correction device is in contact with the outer tube.
( 6 ) A method for constructing a superconducting power transmission thermal insulation multiplex pipe according to an embodiment of the present invention includes:
The construction method for the superconducting power transmission heat insulating multiple pipe according to any one of ( 1 ) to ( 4 ) above,
a bending step of bending the superconducting power transmission heat insulating multiple tube;
a bending-back step of bending back the heat-insulating multiple pipe for superconducting power transmission bent in the bending step;
A flattening step of increasing the roundness of the superconducting power transmission heat insulating multi-pipe bent back in the flattening step by the flattening device;
Prepare.
( 7 ) A superconducting cable construction method according to an embodiment of the present invention includes:
A method for constructing a superconducting cable comprising: a superconducting power transmission thermal insulation multiplex tube according to any one of the above ( 1 ) to ( 4 ); and a superconducting cable core to be inserted into the superconducting power transmission thermal insulation multiplex tube. ,
a bending step of bending the superconducting cable;
a bending-back step of bending back the superconducting cable bent in the bending step;
A flattening correction step of increasing the roundness of the superconducting cable bent back in the unbending step by the flattening correction device;
Prepare.

Claims (9)

超電導ケーブルコアが挿入される超電導送電用断熱多重管であって、
ストレート管である内管と、
ストレート管であり、前記内管の外側に配置される外管と、
前記超電導ケーブルコアを冷却するための冷媒の流路であって、前記内管の内部に形成される流路と、
前記内管の外面に設けられる耐熱輻射層と、
前記外管と前記耐熱輻射層との間に設けられ、前記内管の軸方向に所定間隔で配置される複数の断熱材と、
を備え、
前記所定間隔は、50mmを上回り、且つ、180mm以下である、
ことを特徴とする超電導送電用断熱多重管。
A superconducting power transmission heat insulation multiplex tube into which a superconducting cable core is inserted,
an inner tube that is a straight tube;
an outer tube that is a straight tube and is arranged outside the inner tube;
a coolant channel for cooling the superconducting cable core, the channel being formed inside the inner tube;
a heat-resistant radiation layer provided on the outer surface of the inner tube;
a plurality of heat insulating materials provided between the outer tube and the heat-resistant radiation layer and arranged at predetermined intervals in the axial direction of the inner tube;
with
The predetermined interval is more than 50 mm and 180 mm or less,
A heat insulating multiple tube for superconducting power transmission, characterized by:
前記所定間隔は、50mmを上回り、且つ、140mm以下である、
ことを特徴とする請求項1に記載の超電導送電用断熱多重管。
The predetermined interval is more than 50 mm and 140 mm or less,
The heat insulating multiple tube for superconducting power transmission according to claim 1, characterized in that:
前記所定間隔は、前記超電導送電用断熱多重管の真円度を増大させる扁平矯正装置に応じた間隔である、
ことを特徴とする請求項1又は2に記載の超電導送電用断熱多重管。
The predetermined interval is an interval corresponding to a flattening correction device that increases the roundness of the heat insulating multiple tube for superconducting power transmission.
3. The heat-insulating multiple tube for superconducting power transmission according to claim 1 or 2, characterized in that:
前記扁平矯正装置は、複数のローラを含み、
前記所定間隔と前記複数のローラの間隔とは、対応する、
ことを特徴とする請求項3に記載の超電導送電用断熱多重管。
The flatness correction device includes a plurality of rollers,
The predetermined interval and the interval between the plurality of rollers correspond to
The heat insulating multiple tube for superconducting power transmission according to claim 3, characterized in that:
前記所定間隔は、前記複数のローラと2つの前記断熱材とが第1方向に沿って見て重なるよう、設定されている、
ことを特徴とする請求項4に記載の超電導送電用断熱多重管。
The predetermined interval is set so that the plurality of rollers and the two heat insulating materials overlap when viewed along the first direction,
5. The heat insulating multiple tube for superconducting power transmission according to claim 4, characterized in that:
前記複数のローラの間隔は、前記複数のローラと2つの前記断熱材とが第1方向に沿って見て重なるよう、設定されている、
ことを特徴とする請求項4に記載の超電導送電用断熱多重管。
The intervals between the plurality of rollers are set so that the plurality of rollers and the two heat insulating materials overlap when viewed along the first direction.
5. The heat insulating multiple tube for superconducting power transmission according to claim 4, characterized in that:
超電導ケーブルコアが挿入される超電導送電用断熱多重管と前記超電導送電用断熱多重管の真円度を増大させる扁平矯正装置とを含む超電導送電用断熱多重管敷設装置であって、
前記超電導送電用断熱多重管は、
ストレート管である内管と、
ストレート管であり、前記内管の外側に配置される外管と、
前記超電導ケーブルコアを冷却するための冷媒の流路であって、前記内管の内部に形成される流路と、
前記内管の外面に設けられる耐熱輻射層と、
前記外管と前記耐熱輻射層との間に設けられ、前記内管の軸方向に所定間隔を空けて配置される複数の断熱材と、
を備え、
前記扁平矯正装置は、前記外管と接する、
ことを特徴とする超電導送電用断熱多重管敷設装置。
1. A superconducting power transmission insulation multiplex pipe laying device including a superconducting power transmission insulation multiplex pipe into which a superconducting cable core is inserted and a flattening device for increasing the roundness of the superconducting power transmission insulation multiplex pipe,
The heat insulating multiple tube for superconducting power transmission,
an inner tube that is a straight tube;
an outer tube that is a straight tube and is arranged outside the inner tube;
a coolant channel for cooling the superconducting cable core, the channel being formed inside the inner tube;
a heat-resistant radiation layer provided on the outer surface of the inner tube;
a plurality of heat insulating materials provided between the outer tube and the heat-resistant radiation layer and arranged at predetermined intervals in the axial direction of the inner tube;
with
The flat correction device is in contact with the outer tube,
A heat insulating multiple pipe laying device for superconducting power transmission, characterized by:
請求項2乃至6のいずれか1項に記載の超電導送電用断熱多重管の施工方法であって、
前記超電導送電用断熱多重管を曲げる曲げ工程と、
前記曲げ工程で曲げられた前記超電導送電用断熱多重管を曲げ戻す曲げ戻し工程と、
前記曲げ戻し工程で曲げ戻された超電導送電用断熱多重管の真円度を前記扁平矯正装置により増大させる扁平矯正工程、
を備えることを特徴とする超電導送電用断熱多重管の施工方法。
A method for constructing a superconducting heat-insulating multiple pipe for power transmission according to any one of claims 2 to 6,
a bending step of bending the superconducting power transmission heat insulating multiple tube;
a bending-back step of bending back the heat-insulating multiple pipe for superconducting power transmission bent in the bending step;
A flattening step of increasing the roundness of the superconducting power transmission heat insulating multi-layer tube that has been bent back in the flattening step by the flattening device;
A method for constructing a heat insulating multiple pipe for superconducting power transmission, comprising:
請求項2乃至6のいずれか1項に記載の超電導送電用断熱多重管と、前記超電導送電用断熱多重管に挿入される超電導ケーブルコアと、を含む超電導ケーブルの施工方法であって、
前記超電導ケーブルを曲げる曲げ工程と、
前記曲げ工程で曲げられた前記超電導ケーブルを曲げ戻す曲げ戻し工程と、
前記曲げ戻し工程で曲げ戻された前記超電導ケーブルの真円度を前記扁平矯正装置により増大させる扁平矯正工程と、
を備えることを特徴とする超電導ケーブルの施工方法。
A superconducting cable construction method comprising the superconducting power transmission thermal insulation multiplex tube according to any one of claims 2 to 6 and a superconducting cable core to be inserted into the superconducting power transmission thermal insulation multiplex tube,
a bending step of bending the superconducting cable;
a bending-back step of bending back the superconducting cable bent in the bending step;
A flattening correction step of increasing the roundness of the superconducting cable bent back in the unbending step by the flattening correction device;
A method for constructing a superconducting cable, comprising:
JP2021187253A 2021-11-17 2021-11-17 Insulated multiple pipes for superconducting power transmission, heat insulating multiple pipe laying equipment for superconducting power transmission, construction method of heat insulating multiple pipes for superconducting power transmission, and construction method of superconducting cables Active JP7098037B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021187253A JP7098037B1 (en) 2021-11-17 2021-11-17 Insulated multiple pipes for superconducting power transmission, heat insulating multiple pipe laying equipment for superconducting power transmission, construction method of heat insulating multiple pipes for superconducting power transmission, and construction method of superconducting cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021187253A JP7098037B1 (en) 2021-11-17 2021-11-17 Insulated multiple pipes for superconducting power transmission, heat insulating multiple pipe laying equipment for superconducting power transmission, construction method of heat insulating multiple pipes for superconducting power transmission, and construction method of superconducting cables

Publications (2)

Publication Number Publication Date
JP7098037B1 JP7098037B1 (en) 2022-07-08
JP2023074344A true JP2023074344A (en) 2023-05-29

Family

ID=82356934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021187253A Active JP7098037B1 (en) 2021-11-17 2021-11-17 Insulated multiple pipes for superconducting power transmission, heat insulating multiple pipe laying equipment for superconducting power transmission, construction method of heat insulating multiple pipes for superconducting power transmission, and construction method of superconducting cables

Country Status (1)

Country Link
JP (1) JP7098037B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855381U (en) * 1971-10-27 1973-07-16
JP2001176338A (en) * 1999-12-20 2001-06-29 Hitachi Ltd Non-connected superconductive material and its manufacturing method
WO2006059446A1 (en) * 2004-12-01 2006-06-08 Sumitomo Electric Industries, Ltd. Super-conducting cable
JP2007080649A (en) * 2005-09-14 2007-03-29 Jfe Steel Kk Heat insulating multiple piping for superconductive electrical energy transmission
JP2011226621A (en) * 2010-04-22 2011-11-10 Sumitomo Electric Ind Ltd Insulated tube and superconductive cable
JP2014081016A (en) * 2012-10-15 2014-05-08 Saho Midori Heat insulation film spacer and vacuum heat insulation low temperature apparatus
JP2017062982A (en) * 2015-09-25 2017-03-30 昭和電線ケーブルシステム株式会社 Superconductive cable heat insulation tube and superconductive cable
JP2019164888A (en) * 2018-03-19 2019-09-26 公益財団法人鉄道総合技術研究所 Superconducting cable
JP6751826B1 (en) * 2020-04-09 2020-09-09 日鉄エンジニアリング株式会社 Construction method of heat-insulated multiple pipes for superconducting power transmission, heat-insulated multiple pipes for superconducting power transmission, and construction method of superconducting cables

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855381U (en) * 1971-10-27 1973-07-16
JP2001176338A (en) * 1999-12-20 2001-06-29 Hitachi Ltd Non-connected superconductive material and its manufacturing method
WO2006059446A1 (en) * 2004-12-01 2006-06-08 Sumitomo Electric Industries, Ltd. Super-conducting cable
JP2007080649A (en) * 2005-09-14 2007-03-29 Jfe Steel Kk Heat insulating multiple piping for superconductive electrical energy transmission
JP2011226621A (en) * 2010-04-22 2011-11-10 Sumitomo Electric Ind Ltd Insulated tube and superconductive cable
JP2014081016A (en) * 2012-10-15 2014-05-08 Saho Midori Heat insulation film spacer and vacuum heat insulation low temperature apparatus
JP2017062982A (en) * 2015-09-25 2017-03-30 昭和電線ケーブルシステム株式会社 Superconductive cable heat insulation tube and superconductive cable
JP2019164888A (en) * 2018-03-19 2019-09-26 公益財団法人鉄道総合技術研究所 Superconducting cable
JP6751826B1 (en) * 2020-04-09 2020-09-09 日鉄エンジニアリング株式会社 Construction method of heat-insulated multiple pipes for superconducting power transmission, heat-insulated multiple pipes for superconducting power transmission, and construction method of superconducting cables

Also Published As

Publication number Publication date
JP7098037B1 (en) 2022-07-08

Similar Documents

Publication Publication Date Title
US6883549B2 (en) Conduit for the transport of cyrogenic media
JP6751826B1 (en) Construction method of heat-insulated multiple pipes for superconducting power transmission, heat-insulated multiple pipes for superconducting power transmission, and construction method of superconducting cables
KR101347484B1 (en) Piping and processing system both provided with heating means
JP2002527697A (en) Support mechanism for super insulator
JP2023074344A (en) Heat insulation multiple pipe for super conductivity power transmission, heat insulation multiple pipe laying device for super conductivity power transmission, heat insulation multiple pipe construction method for super conductivity power transmission, and superconductive cable construction method
WO2008056811A1 (en) Bend portion of heat insulation multiple pipe for superconducting transmission
WO2016171144A1 (en) Double pipe
JP5505865B2 (en) Insulated tube and superconducting cable
EP1441367A2 (en) Superconducting cable
JP3622185B2 (en) Cryogenic insulation tube and superconducting cable
JP2016133200A (en) Heat insulation pipe for superconductive cable, and superconductive cable line
JP4716246B2 (en) Superconducting cable
KR102011151B1 (en) Superconducting cable
US6883548B2 (en) Spacer for a long substrate
JP7231778B1 (en) Superconducting power transmission heat insulation multiple pipe and superconducting cable construction method
JP2017507300A (en) Cryogenic fluid transfer line
JP2001067950A (en) Superconducting cable and manufacture thereof
JP6216302B2 (en) Insulated pipe insulation unit and superconducting cable line
JP4031204B2 (en) Superconducting cable manufacturing method
JP2017062982A (en) Superconductive cable heat insulation tube and superconductive cable
JP4986151B2 (en) Thermal insulation structure for superconducting cable connection and its manufacturing method
JP2003194267A (en) Flexible coolant transporting pipe and superconducting power cable
KR101718904B1 (en) Transfer line for ultra-cold fluid
JPH03271652A (en) Heat insulating duct
KR102608511B1 (en) Vacuum Insulation Part Dividing Device And Superconducting Cable Having The Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220628

R150 Certificate of patent or registration of utility model

Ref document number: 7098037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150