[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2023048168A - Production method of acylation-modified cellulose fine fiber - Google Patents

Production method of acylation-modified cellulose fine fiber Download PDF

Info

Publication number
JP2023048168A
JP2023048168A JP2021157322A JP2021157322A JP2023048168A JP 2023048168 A JP2023048168 A JP 2023048168A JP 2021157322 A JP2021157322 A JP 2021157322A JP 2021157322 A JP2021157322 A JP 2021157322A JP 2023048168 A JP2023048168 A JP 2023048168A
Authority
JP
Japan
Prior art keywords
cellulose
fine fibers
acylating agent
water
modification reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021157322A
Other languages
Japanese (ja)
Inventor
蓮貞 林
Rentei Rin
俊巳 福井
Toshimi Fukui
彩子 丸田
Ayako Maruta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2021157322A priority Critical patent/JP2023048168A/en
Publication of JP2023048168A publication Critical patent/JP2023048168A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Paper (AREA)

Abstract

To provide a production method of acylation-modified cellulose fine fiber by impregnating cellulose with a modification reaction solution, fibrillating the cellulose and simultaneously acylation-modifying the cellulose.SOLUTION: In a production method of acylation-modified cellulose fine fiber, cellulose is impregnated with a modification reaction solution containing tetraalkylammonium hydroxide represented by formula (1), water, dimethyl sulfoxide and an acylating agent so that the cellulose is acylation-modified and fibrillated. R4N+OH- (1). (In the formula, each of R represents independently a 2-4C alkyl group.)SELECTED DRAWING: Figure 1

Description

本発明は、アシル化修飾セルロース微細繊維の製造方法に関する。 The present invention relates to a method for producing acylated modified cellulose microfibers.

本出願人は、セルロースの溶解並びにセルロースを解繊したセルノースナノファイバー(セルロース微細繊維)及びその製造方法に関して多数の特許出願を行っている。その中で本願に関連する代表的なものを以下に列挙する。 The present applicant has filed a number of patent applications relating to cellulose dissolution, cellulose nanofibers (cellulose fine fibers) obtained by defibrating cellulose, and methods for producing the same. Among them, representative ones related to the present application are listed below.

セルロースを溶解して修飾セルロースとする特許文献1は、テトラアルキルアンモニウムアセテートと非プロトン性極性溶媒によりセルロースを溶解した後、エステル化及びエーテル化反応して修飾セルロースを製造している。 In Patent Document 1, in which cellulose is dissolved to form modified cellulose, modified cellulose is produced by dissolving cellulose with tetraalkylammonium acetate and an aprotic polar solvent, followed by esterification and etherification reactions.

セルロースを溶解させずに、セルロースナノファイバーに解繊して、修飾セルロースナノファイバーを得る先行技術としては、特許文献2~4がある。 Patent Documents 2 to 4 are prior arts for obtaining modified cellulose nanofibers by defibrating cellulose into cellulose nanofibers without dissolving cellulose.

特許文献2は、テトラアルキルアンモニウムアセテートと非プロトン性極性溶媒によりセルロースを膨潤および/または部分溶解して解繊した後、化学変性して修飾セルロースナノファイバーを製造している。 According to Patent Document 2, cellulose is swollen and/or partially dissolved with a tetraalkylammonium acetate and an aprotic polar solvent, defibrated, and then chemically denatured to produce modified cellulose nanofibers.

特許文献3は、ドナー数26以上の非プロトン性溶媒と、カルボン酸ビニルエステルまたはアルデヒドとを含む解繊溶液をセルロースに浸透させて修飾セルロース微細繊維を製造している。 Patent Document 3 manufactures modified cellulose fine fibers by infiltrating cellulose with a defibrating solution containing an aprotic solvent with a donor number of 26 or more and a carboxylic acid vinyl ester or aldehyde.

特許文献4は、ドナー数26以上の非プロトン性溶媒と、カルボン酸ビニルエステル、反応及び/又は解繊促進添加剤として式{X(R1)(R2)(R3)N-R4-Y(式中、Xはハロゲンイオン等、R1~R3はアルキル基、R4はアルキレン基、YはOH、SH又はNH)}の4級アンモニウム塩を含む解繊溶液をセルロースに浸透させて、修飾セルロース微細繊維を製造している。 Patent Document 4 discloses an aprotic solvent having a donor number of 26 or more, a carboxylic acid vinyl ester, and a reaction and/or fibrillation promoting additive of the formula { X- (R1)(R2)(R3)N + -R4-Y (Wherein, X- is a halogen ion, etc., R1 to R3 are alkyl groups, R4 is an alkylene group, Y is OH, SH or NH 2 )}. manufactures modified cellulose microfibers.

特許第5820688号公報Japanese Patent No. 5820688 特許第5875323号公報Japanese Patent No. 5875323 国際公開2017/159823号WO2017/159823 特開2021-116336号公報JP 2021-116336 A

本発明は、修飾反応溶液をセルロースに浸透させて、セルロースを微細化解繊すると同時にアシル化修飾することを含むアシル化修飾セルロース微細繊維の製造方法を提供する。 The present invention provides a method for producing acylation-modified cellulose fine fibers, which comprises permeating cellulose with a modification reaction solution to pulverize and defibrate cellulose and simultaneously acylate and modify the cellulose.

本発明者らは、前記課題を達成するため鋭意検討した結果、セルロースを前処理することなく、水酸化テトラアルキルアンモニウム(以下「TAAH」と略記する場合がある。)、水、ジメチルスルホキシド(以下「DMSO」と略記する場合がある。)と、アシル化剤と、を含む修飾反応溶液をセルロースに浸透させて、セルロースをアシル化修飾するとともに微細化することにより、樹脂への分散性に優れたアシル化修飾セルロース微細繊維を効率的に製造する方法を見出した。 As a result of intensive studies to achieve the above object, the present inventors found that tetraalkylammonium hydroxide (hereinafter sometimes abbreviated as "TAAH"), water, dimethyl sulfoxide (hereinafter sometimes abbreviated as "TAAH"), without pretreatment of cellulose. It is sometimes abbreviated as "DMSO".) and an acylating agent, and the cellulose is permeated with a modification reaction solution to acylate and refine the cellulose, resulting in excellent dispersibility in the resin. We have found a method for efficiently producing acylated modified cellulose microfibers.

すなわち本発明は、以下の構成からなることを特徴とし、上記課題を解決するものである。
[1] 下記式(1)で示される水酸化テトラアルキルアンモニウム、水、ジメチルスルホキシド及びアシル化剤を含む修飾反応溶液をセルロースに浸透させて、セルロースをアシル化修飾し解繊することを含むアシル化修飾セルロース微細繊維の製造方法。
OH (1)
(式中、Rはそれぞれ独立して炭素数が2~4のアルキル基を表す)。
[2] 下記式(1)で示される水酸化テトラアルキルアンモニウム、水及びジメチルスルホキシドを含む溶液をセルロースに浸透させてセルロースを膨潤及び/又は部分解繊した後、前記溶液にアシル化剤を添加して修飾反応溶液とし、前記膨潤及び/又は部分解繊したセルロースをアシル化修飾し解繊することを含むアシル化修飾セルロース微細繊維の製造方法。
OH (1)
(式中、Rはそれぞれ独立して炭素数が2~4のアルキル基を表す)。
[3] 前記修飾反応溶液中の水酸化テトラアルキルアンモニウム、水、メチルスルホキシド及びアシル化剤の成分比が、水酸化テトラアルキルアンモニウム、水、メチルスルホキシド及びアシル化剤の総量に対して、水酸化テトラアルキルアンモニウムが0.1~1.2wt%、水が0.1~1.8wt%、ジメチルスルホキシドが82.0~98.8wt%、アシル化剤が1.0~15.0wt%である、前記[1]又は前記[2]に記載の製造方法。
That is, the present invention is characterized by having the following configurations, and solves the above problems.
[1] Acyl including permeating cellulose with a modification reaction solution containing a tetraalkylammonium hydroxide represented by the following formula (1), water, dimethyl sulfoxide and an acylating agent to acylate and defibrate the cellulose. A method for producing chemically modified cellulose fine fibers.
R 4 N + OH (1)
(In the formula, each R independently represents an alkyl group having 2 to 4 carbon atoms).
[2] A solution containing a tetraalkylammonium hydroxide represented by the following formula (1), water, and dimethylsulfoxide is permeated into cellulose to swell and/or partially decompose cellulose, and then an acylating agent is added to the solution. A method for producing acylated modified cellulose fine fibers, which comprises acylating and defibrating the swollen and/or partially defiberized cellulose to form a modification reaction solution.
R 4 N + OH (1)
(In the formula, each R independently represents an alkyl group having 2 to 4 carbon atoms).
[3] The ratio of the components of the tetraalkylammonium hydroxide, water, methylsulfoxide and acylating agent in the modification reaction solution to the total amount of tetraalkylammonium hydroxide, water, methylsulfoxide and acylating agent is 0.1-1.2 wt% of tetraalkylammonium, 0.1-1.8 wt% of water, 82.0-98.8 wt% of dimethyl sulfoxide, and 1.0-15.0 wt% of acylating agent , the production method according to the above [1] or the above [2].

本発明の修飾反応溶液中のTAAHと水の存在は、修飾反応溶液のセルロースフィブリル同士間への浸透効率を向上することだけでなく、水素結合の切断とアシル化修飾反応を促進することもできる。この二重効果により均一性と解繊度の高いアシル化修飾セルロース微細繊維が得られる。そのため、結晶化度が高く、繊維形状の損傷が少なくてアスペクト比が大きく、且つ溶融混錬により樹脂へのナノ分散ができるセルロース微細繊維を効率良く生産できる。さらに、用途に応じて様々なアシル基を導入し、樹脂などの有機媒体との親和性をさらに向上できる。 The presence of TAAH and water in the modification reaction solution of the present invention not only improves the penetration efficiency of the modification reaction solution between cellulose fibrils, but also promotes hydrogen bond scission and acylation modification reaction. . This dual effect results in acylated modified cellulose microfibers with high uniformity and defibration. Therefore, it is possible to efficiently produce cellulose fine fibers that have a high degree of crystallinity, have a large aspect ratio with little damage to the fiber shape, and can be nano-dispersed in a resin by melt-kneading. Furthermore, various acyl groups can be introduced depending on the application to further improve affinity with organic media such as resins.

さらに、本発明のアシル化修飾セルロース微細繊維の製造法は、水酸化テトラアルキルアンモニウムと水を添加することにより修飾反応時間又は解繊時間を短縮することができる。 Furthermore, in the method for producing acylated modified cellulose fine fibers of the present invention, modification reaction time or fibrillation time can be shortened by adding tetraalkylammonium hydroxide and water.

実施例1、2,4,6、7と比較例1で得たアセチル化修飾セルロース微細繊維のIRスペクトルIR spectra of acetylated modified cellulose fine fibers obtained in Examples 1, 2, 4, 6, 7 and Comparative Example 1 実施例1で得たアセチル化修飾セルロース微細繊維のSEM写真SEM photograph of acetylated modified cellulose fine fibers obtained in Example 1 実施例2で得たアセチル化修飾セルロース微細繊維のSEM写真SEM photograph of acetylated modified cellulose fine fibers obtained in Example 2 実施例4で得たアセチル化修飾セルロース微細繊維のSEM写真SEM photograph of acetylated modified cellulose fine fibers obtained in Example 4 実施例5得たアセチル化修飾セルロース微細繊維のSEM写真Example 5 SEM photograph of acetylated modified cellulose fine fibers obtained 実施例6得たアセチル化修飾セルロース微細繊維のSEM写真Example 6 SEM photograph of acetylated modified cellulose fine fibers obtained 実施例7得たアセチル化修飾セルロース微細繊維のSEM写真Example 7 SEM photograph of acetylated modified cellulose fine fibers obtained 比較例1で処理した木材パルプのSEM写真SEM photograph of wood pulp treated in Comparative Example 1

本発明のセルロース微細繊維の製造方法は、セルロースを機械的破砕や乾燥等の前処理することなく、TAAH、水、DMSOと、アシル化剤と、を含む修飾反応溶液をセルロースに浸透させて、セルロースをアシル化修飾するとともにセルロースミクロフィブリルの間の水素結合を切断しミクロフィブリル同士間の相互作用を弱めることによりアシル化セルロース微細繊維を製造することを特徴とする。 In the method for producing cellulose fine fibers of the present invention, the cellulose is permeated with a modification reaction solution containing TAAH, water, DMSO, and an acylating agent without pretreatment such as mechanical crushing or drying. It is characterized by producing acylated cellulose fine fibers by acylating cellulose and cutting hydrogen bonds between cellulose microfibrils to weaken the interaction between microfibrils.

また、本発明のセルロース微細繊維の製造方法は、セルロースの解繊がある程度進んでからアシル化剤を加えてもよい。すなわち、TAAH、水及びDMSOを含む溶液(以下「解繊溶液」という。)をセルロースに浸透させてセルロースを膨潤及び/又は部分解繊した後、前記溶液にアシル化剤を添加して修飾反応溶液とし、前記膨潤及び/又は部分解繊したセルロースをアシル化修飾するとともにセルロースミクロフィブリルの間の水素結合を切断することによりアシル化セルロース微細繊維を製造することができる。 In addition, in the method for producing cellulose fine fibers of the present invention, the acylating agent may be added after defibration of cellulose has progressed to some extent. That is, a solution containing TAAH, water and DMSO (hereinafter referred to as "fibrillation solution") is permeated into cellulose to swell and/or partially defiberize the cellulose, and then an acylating agent is added to the solution to perform a modification reaction. Acylated cellulose fine fibers can be produced by making a solution and subjecting the swollen and/or partially decomposed cellulose to acylation modification and breaking hydrogen bonds between cellulose microfibrils.

アシル化剤を添加した修飾反応溶液のセルロースへの浸透性を低下させないため、解繊がある程度進んでから加えることが好ましい。アシル化剤を途中から加えることにより、アシル化反応に先立ってTAAH、水とDMSOを含む溶液をセルロースに充分に浸透させることができ、セルロースのミクロフィブリル同士の間を膨張させたり、ミクロフィブリルの配列を乱れさしたりすることができる。そうすることにより、後に添加するアシル化剤は容易にセルロースのフィブリルに作用し修飾反応の効率と均一性を促進できる。 In order not to reduce the permeability of the modification reaction solution to which the acylating agent is added, it is preferable to add the acylating agent after defibration has progressed to some extent. By adding the acylating agent in the middle, the solution containing TAAH, water and DMSO can be sufficiently permeated into the cellulose prior to the acylation reaction, causing swelling between the microfibrils of the cellulose and the formation of the microfibrils. You can perturb the array. By doing so, the acylating agent added later can easily act on the cellulose fibrils to promote the efficiency and uniformity of the modification reaction.

原料となるセルロースは、セルロース単独の形態であってもよく、リグニンやヘミセルロースなどの非セルロース成分を含む混合形態であってもよい。
好ましいセルロール物質としては、I結晶型セルロース構造を含むセルロース物質であり、例えば、木材由来パルプ、木材、竹、リンダーパルプ、綿、セルロースパウダーを含む物質等がある。
The raw material cellulose may be in the form of cellulose alone or in a mixed form containing non-cellulose components such as lignin and hemicellulose.
Preferred cellulose materials are those containing type I crystalline cellulose structure, such as materials containing wood derived pulp, wood, bamboo, linder pulp, cotton, cellulose powder, and the like.

前記TAAHは、セルロースの水素結合を切断し、フィブリル同士間の水素結合を切断する効果を有している。加えて、塩基性であるためセルロース水酸基のアシル化修飾反応を促進する作用もある。一方、水はDMSOにおけるTAAHの安定性及びDMSOとTAAHの溶媒和を付与する役割として働くと推測する。 The TAAH has the effect of breaking hydrogen bonds in cellulose and breaking hydrogen bonds between fibrils. In addition, since it is basic, it also acts to promote the acylation modification reaction of cellulose hydroxyl groups. On the other hand, we speculate that water plays a role in conferring the stability of TAAH in DMSO and the solvation of DMSO and TAAH.

本発明に用いる水酸化テトラアルキルアンモニウム(TAAH)は、アルキル基の炭素数が2~4のものであれば何の制限もないが、好ましいTAAHは、水酸化テトラエチルアンモニウム(TEAH)、水酸化テトラプロピルアンモニウム(TPAH)と水酸化テトラブチルアンモニウム(TBAH)である。TAAHは、水を含んだ方が安定性が高く、加えて、水は修飾反応溶液の成分であるため、TAAHは水溶液の状態で利用できる。その中でも、TEAH、TPAH、TBAHは、市販の薬品が水溶液で市販されており入手が容易である。前記水酸化テトラアルキルアンモニウムは、単独で用いてもよく、2種以上を混合して用いてもよい。 The tetraalkylammonium hydroxide (TAAH) used in the present invention is not particularly limited as long as the alkyl group has 2 to 4 carbon atoms. propylammonium (TPAH) and tetrabutylammonium hydroxide (TBAH). TAAH is more stable when it contains water, and in addition, since water is a component of the modification reaction solution, TAAH can be used in the form of an aqueous solution. Among them, TEAH, TPAH, and TBAH are commercially available chemicals in the form of aqueous solutions and are readily available. The tetraalkylammonium hydroxides may be used alone or in combination of two or more.

一方、水酸化テトラメチルアンモニウムは塩基性を有するもののセルロースの膨張又は解繊を促進する効果が無かった。また、ブチル基より側鎖の長いテトラアルキルアンモニウムは塩基性とDMSOへの溶解性は低く、セルロースの解繊と修飾を促進する効果が低いため好ましくない。 On the other hand, although tetramethylammonium hydroxide has basicity, it did not have the effect of promoting expansion or fibrillation of cellulose. In addition, tetraalkylammonium having a longer side chain than a butyl group is not preferable because it is low in basicity and solubility in DMSO, and is low in the effect of promoting the defibration and modification of cellulose.

本発明に用いるアシル化剤としては、カルボン酸ビニルエステル、カルボン酸無水物及びカルボン酸などがあるが、反応効率を維持し副反応を抑えるためカルボン酸ビニルが最も好ましい。これらのアシル化剤は、単独で又は二種以上を組み合わせて使用できる。 The acylating agent used in the present invention includes vinyl carboxylates, carboxylic acid anhydrides, carboxylic acids and the like, but vinyl carboxylate is most preferable in order to maintain reaction efficiency and suppress side reactions. These acylating agents can be used alone or in combination of two or more.

カルボン酸ビニルエステルとしては、下記式(2)で表されるカルボン酸ビニルエステルを用いることができる。
R1-COO-C(R2)=C(R3)(R4) (2)
(式中、R1は炭素数1~16のアルキル基、アルキレン基シクロアルキル基及びアリール基のいずれかを表わし、R2,R3,R4は水素または炭素数1~16のアルキル基、アルキレン基シクロアルキル基及びアリール基のいずれかを表わす。)
As the carboxylic acid vinyl ester, a carboxylic acid vinyl ester represented by the following formula (2) can be used.
R1-COO-C(R2)=C(R3)(R4) (2)
(Wherein, R1 represents any one of an alkyl group having 1 to 16 carbon atoms, an alkylene group cycloalkyl group and an aryl group; represents either a group or an aryl group.)

さらに、前記カルボン酸ビニルエステルが、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、シクロヘキサンカルボン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、オクチル酸ビニルアジピン酸ジビニル、メタクリル酸ビニル、クロトン酸ビニル、ピバリン酸ビニル、オクチル酸ビニル、安息香酸ビニル、桂皮酸ビニル、酢酸イソプロペニルの群より選択された少なくとも1種であることが好ましい。 Further, the carboxylic acid vinyl ester is vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl cyclohexanecarboxylate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, stearic acid. at least one selected from the group consisting of vinyl, vinyl pivalate, vinyl octylate, divinyl adipate, vinyl methacrylate, vinyl crotonate, vinyl pivalate, vinyl octoate, vinyl benzoate, vinyl cinnamate, and isopropenyl acetate; Preferably.

これらのカルボン酸ビニルは、単独で又は二種以上を組み合わせて使用できる。これらのカルボン酸ビニルのうち、解繊性と反応性の点から、酢酸ビニル、プロピオン酸ビニルと酪酸ビニル等の炭素数2~7(特に2~5)の低級脂肪族カルボン酸ビニルが好ましく、C1-4アルキルカルボン酸ビニルが特に好ましい。炭素数が大きすぎると、ミクロフィブリル間への浸透性とセルロース水酸基に対する反応性が低下するおそれがあるため、低級脂肪族カルボン酸ビニルと併用することが好ましい。 These vinyl carboxylates can be used alone or in combination of two or more. Among these vinyl carboxylates, lower aliphatic vinyl carboxylates having 2 to 7 carbon atoms (especially 2 to 5 carbon atoms) such as vinyl acetate, vinyl propionate and vinyl butyrate are preferred from the viewpoint of fibrillation and reactivity. Vinyl C1-4 alkyl carboxylate is particularly preferred. If the number of carbon atoms is too large, the permeability between microfibrils and the reactivity to cellulose hydroxyl groups may decrease, so it is preferable to use it together with a lower aliphatic vinyl carboxylate.

本発明の修飾反応溶液は、TAAH、水、DMSOとアシル化剤から構成され、その構成比は、TAAHが0.1~1.2wt%、水が0.1~1.8wt%、DMSOが82~98.8wt%、アシル化剤が1~15wt%の濃度範囲内になるように調整される。より好ましくは、TAAHが0.15~1.0wt%、水が0.15~1.6wt%、DMSOが85.4~97.7wt%、アシル化剤が2~12wt%の濃度範囲内になるように調整される。さらに好ましくは、TAAHが0.2~0.9wt%、水が0.2~1.5wt%、DMSOが85.4~97.7wt%、アシル化剤が3~10wt%の濃度範囲内になるように調整される。 The modification reaction solution of the present invention is composed of TAAH, water, DMSO, and an acylating agent. 82-98.8 wt%, and the acylating agent is adjusted to be within the concentration range of 1-15 wt%. More preferably, TAAH is 0.15 to 1.0 wt%, water is 0.15 to 1.6 wt%, DMSO is 85.4 to 97.7 wt%, and the acylating agent is within the concentration range of 2 to 12 wt%. adjusted to be More preferably, the concentration of TAAH is 0.2-0.9 wt%, water is 0.2-1.5 wt%, DMSO is 85.4-97.7 wt%, and the acylating agent is 3-10 wt%. adjusted to be

TAAHの濃度が0.1wt%より低くなると解繊と修飾に与える作用は少ないため好ましくない。一方、1.2wt%より高くなるとセルロースは溶解しI型結晶構造を失う恐れがあるため好ましくない。 If the concentration of TAAH is lower than 0.1 wt %, the effect on fibrillation and modification is small, which is not preferable. On the other hand, if the content is higher than 1.2 wt %, the cellulose may dissolve and lose its type I crystal structure, which is not preferable.

水の濃度は0.1wt%より低くなるとセルロースの解繊度が低下したり、TAAHが不安定で分解したりする恐れがあるため好ましくない。一方、1.8wt%より高くなるとセルロースの解繊度だけでなく、修飾率も低下するため好ましくない。 If the concentration of water is lower than 0.1 wt %, the degree of fibrillation of cellulose may decrease, and TAAH may be unstable and decomposed, which is not preferable. On the other hand, if it is higher than 1.8 wt %, not only the defibration degree of cellulose but also the modification rate is lowered, which is not preferable.

アシル化剤は1wt%より低くなるとセルロースの解繊度合と修飾率(疎水性効果)が低下する恐れがあるため好ましくない。一方、15wt%を超えると修飾反応液のセルロースへの浸透性が悪くなるため解繊度合が低下する恐れがあるため好ましくない。 If the amount of the acylating agent is less than 1 wt %, the degree of fibrillation and modification rate (hydrophobic effect) of cellulose may decrease, which is not preferable. On the other hand, if it exceeds 15 wt %, the permeability of the modification reaction solution to cellulose becomes poor, and the degree of fibrillation may decrease, which is not preferable.

本発明の修飾反応溶液は、TAAH、水、アシル化剤及びDMSO以外に、解繊性、修飾反応性に影響を与えない程度であれば、他の有機溶媒を含むこともできる。例えば、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルピロリトン、ピリジンが他の有機溶媒として挙げられる。 In addition to TAAH, water, an acylating agent, and DMSO, the modification reaction solution of the present invention may contain other organic solvents as long as they do not affect fibrillation properties and modification reactivity. Other organic solvents include, for example, N,N-dimethylacetamide, N,N-dimethylformamide, N-methylpyrroliton, and pyridine.

修飾反応溶液に添加するセルロースの量は、修飾反応溶液中のアシル化剤の濃度が前記濃度範囲であれば、セルロースに対してアシル化剤が過剰であっても問題はないが、アシル化剤の使用効率が低いため、修飾反応溶液中のアシル化剤1部に対してセルロースが1/5~3部が好ましく、より好ましくは1/3~1部、最も好ましくは、1/2~1部である。 Regarding the amount of cellulose added to the modification reaction solution, if the concentration of the acylating agent in the modification reaction solution is within the above concentration range, there is no problem even if the amount of the acylating agent is excessive relative to the cellulose. is low, the cellulose is preferably 1/5 to 3 parts, more preferably 1/3 to 1 part, most preferably 1/2 to 1 part per 1 part of the acylating agent in the modification reaction solution. Department.

セルロースと修飾反応溶液との重量割合は、修飾反応溶液中のアシル化剤濃度とアシル化剤とセルロースの比率を考慮すると、通常、前者/後者=0.5/99.5~25/75程度の範囲から選択でき、例えば1/99~20/80、好ましくは1.5/98.5~15/85、さらに好ましくは2/98~12/88程度である。セルロースの割合が少なすぎると、セルロース微細繊維の生産効率が低くなり、多すぎると、修飾反応溶液のセルロース繊維間、ラメラ間およびミクロフィブリル間への浸透が不十分なため解繊度合いが低下する恐れがある。また、セルロースの割合が多いと分散液の粘度が高くなるため反応の均一性が低下する。いずれにしても生産性と品質が低下するおそれがある。さらに、セルロースの割合が多すぎると得られた微細繊維のサイズと修飾率の均一性が低下するおそれがある。 Considering the concentration of the acylating agent in the modification reaction solution and the ratio of the acylating agent to cellulose, the weight ratio of the cellulose to the modification reaction solution is usually about 0.5/99.5 to 25/75. for example, 1/99 to 20/80, preferably 1.5/98.5 to 15/85, more preferably about 2/98 to 12/88. If the proportion of cellulose is too low, the production efficiency of cellulose fine fibers is low. There is fear. In addition, when the proportion of cellulose is high, the viscosity of the dispersion becomes high, resulting in a decrease in the uniformity of the reaction. In either case, productivity and quality may be reduced. Furthermore, if the proportion of cellulose is too high, the uniformity of the size and modification rate of the obtained fine fibers may be lowered.

本発明の解繊溶液又は修飾反応溶液の調製方法は、特に制限しない。例えば、通常市販から購入したTAAH水溶液を所望のTAAH/水の重量比まで調製した後、解繊溶液であればDMSOを、修飾反応溶液であればDMSOとアシル化剤を加えて攪拌することで解繊溶液又は修飾反応溶液が得られる。市販TAAH水溶液がTAAHの濃度が、水の濃度を最適範囲にしたときに所望濃度より低い場合、使用する前に蒸留し所望水分率まで濃縮してから使用することが好ましい。また、所望濃度より高い場合、水を加え希釈してから使用する。混ぜる時の温度に特に制限しないが、10~70℃が好ましい。 The method for preparing the fibrillation solution or modification reaction solution of the present invention is not particularly limited. For example, after preparing an aqueous TAAH solution purchased from a commercial market to a desired TAAH/water weight ratio, add DMSO for a fibrillation solution, or add DMSO and an acylating agent for a modification reaction solution, and stir. A fibrillation solution or modification reaction solution is obtained. If the concentration of TAAH in the commercially available TAAH aqueous solution is lower than the desired concentration when the concentration of water is adjusted to the optimum range, it is preferable to distill and concentrate to the desired moisture content before use. If the concentration is higher than desired, dilute with water before use. Although there is no particular limitation on the temperature during mixing, 10 to 70°C is preferable.

本発明の修飾反応溶液にてセルロースを修飾する方法は、特に制限しない。例えば、既定量の本発明の修飾反応溶液にセルロースを加え、一定な温度と時間で攪拌することでアシル化修飾したセルロース微細繊維の分散液が得られる。攪拌は、通常用いられる機械式撹拌機で攪拌すればよいが、ホモジナイザー等であってもよい。ビーカースケールならマグネティックスターラーの攪拌で十分である。反応温度は、20~80℃であればよく、室温で温度調整せずに攪拌させればよい。20℃より低くなると修飾反応速度が低いため好ましくない。80℃より高くなるとセルロースやTAAHが分解したりする恐れがあるため好ましくない。最も好ましくは20~70℃である。 The method for modifying cellulose with the modification reaction solution of the present invention is not particularly limited. For example, cellulose is added to a predetermined amount of the modification reaction solution of the present invention, and the mixture is stirred at a constant temperature and time to obtain a dispersion of acylated cellulose fine fibers. Stirring may be performed with a commonly used mechanical stirrer, but a homogenizer or the like may also be used. Stirring with a magnetic stirrer is sufficient for the beaker scale. The reaction temperature may be 20 to 80° C., and the mixture may be stirred at room temperature without adjusting the temperature. If the temperature is lower than 20°C, the modification reaction rate is low, which is not preferable. If the temperature is higher than 80°C, cellulose and TAAH may decompose, which is not preferable. Most preferably it is 20 to 70°C.

本発明での修飾反応時間は、前記修飾反応溶液に含まれるTAAHとアシル化剤の種類と濃度及び反応温度によって適宜に調整すればよい。例えば0.2~24時間、好ましくは0.5~12時間、さらに好ましくは1~8時間程度である。酢酸ビニルなどの低級カルボン酸ビニルを用いる場合、数時間(例えば0.5~5時間)程度の時間であってもよく、好ましくは1~4時間程度である。さらに、前述のように、処理温度(反応温度)を高めたり、攪拌速度を増加したりすることで反応時間を短くしてもよい。この時、カルボン酸ビニルなどの低沸点成分のアシル化剤を含む場合は蒸発を避けるため密閉系統、加圧系統又は還流系統内で行うのが好ましい。反応時間が短すぎると、修飾反応溶液がミクロフィブリル間まで浸透するのが不十分のため、反応が不十分となり、解繊度合いも低下するおそれがある。一方、反応時間が長すぎたり、温度が高すぎたりすることによる過修飾が生じ、セルロース微細繊維の結晶化度と収率が低下するおそれがある。 The modification reaction time in the present invention may be appropriately adjusted depending on the types and concentrations of TAAH and the acylating agent contained in the modification reaction solution and the reaction temperature. For example, it is about 0.2 to 24 hours, preferably 0.5 to 12 hours, more preferably 1 to 8 hours. When a lower vinyl carboxylate such as vinyl acetate is used, the time may be about several hours (eg, 0.5 to 5 hours), preferably about 1 to 4 hours. Furthermore, as described above, the reaction time may be shortened by increasing the treatment temperature (reaction temperature) or increasing the stirring speed. At this time, when an acylating agent of a low boiling point component such as vinyl carboxylate is contained, it is preferable to carry out in a closed system, a pressurized system or a reflux system in order to avoid evaporation. If the reaction time is too short, the modification reaction solution will not sufficiently permeate between the microfibrils, resulting in insufficient reaction and possibly lowering the degree of fibrillation. On the other hand, too long a reaction time or too high a temperature may lead to overmodification, which may reduce the crystallinity and yield of cellulose fine fibers.

アシル化剤を途中から加える場合、第1段階の解繊溶液によりセルロースを膨潤及び/又は部分解繊するのに用いる装置は特に制限しないが、後のアシル化修飾反応/解繊と同じ攪拌装置を備えた装置を使用すればよい。第1段階の膨潤及び/又は部分解繊の時間は、TAAH、水とDMSOの配合比と攪拌機のせん断力により適宜に調整すればよい。例えば、効率の観点から好ましくは5時間以下、より好ましくは4時間以下、最も好ましくは3時間以下である。
そして、アシル化剤を加えてから前記膨潤及び/又は部分解繊したセルロースをアシル化修飾し解繊するのにさらに0.5~5時間以上反応させることが好ましい。
When the acylating agent is added in the middle, the device used for swelling and/or partially defibrating the cellulose with the fibrillation solution in the first step is not particularly limited, but the same agitating device as the later acylation modification reaction/fibrillation. A device with a The time for swelling and/or partial decomposition in the first stage may be appropriately adjusted according to the mixing ratio of TAAH, water and DMSO and the shearing force of the stirrer. For example, from the viewpoint of efficiency, it is preferably 5 hours or less, more preferably 4 hours or less, and most preferably 3 hours or less.
Then, after the addition of the acylating agent, it is preferable that the swollen and/or partially defiberized cellulose is further reacted for 0.5 to 5 hours or more for acylation modification and defibration.

修飾反応/解繊溶液からアシル化修飾セルロース微細繊維を回収する方法として、修飾反応/解繊溶液を回収しそのまま再利用するか否かにより2つ方法が挙げられるが、特に制限しない。 As a method for recovering the acylated modified cellulose fine fibers from the modification reaction/fibrillation solution, there are two methods depending on whether the modification reaction/fibrillation solution is recovered and reused as it is, but there is no particular limitation.

例えば、修飾反応/解繊溶液を回収しそのまま再利用する場合、反応終了後、遠心分離法、圧搾法、濾過法、沈殿法等の固液分離方法を用いて固形分のアシル化修飾微細繊維と修飾反応/解繊溶液をそれぞれ回収する。回収した修飾反応/解繊溶液を組成調整(例えば、消耗されたアシル化剤を追加する)した後次のアシル化修飾微細繊維の合成に使用できる。
固形分のアシル化修飾微細繊維は、洗浄することで残留した修飾/解繊溶媒を除く。洗浄操作を複数回(例えば、2~5回程度)で行うことによりアシル化修飾セルロース微細繊維が得られる。洗浄溶媒は特に制限しないが、修飾微細繊維以外の成分を解ける有機溶媒であればよい。例えば、水、アルコール類、ケトン類、エステル類、トルエン類などが挙げられる。アセチル基等親水性の高いアシル基で修飾する場合は水やアルコールが特に好ましい。一方、ラウリル基等疎水性の高いアシル基で修飾する場合は、アシル化剤を効率的に除くため、水やアルコールで洗浄した後、アセトン、エステル又はトルエン等極性が低い溶媒で洗浄することが好ましい。
For example, when the modification reaction/fibrillation solution is collected and reused as it is, after the reaction is completed, the solid content of the acylated modified fine fibers is separated using a solid-liquid separation method such as centrifugation, compression, filtration, or precipitation. and the modification reaction/fibrillation solution are collected respectively. The recovered modification reaction/fibrillation solution can be used for subsequent synthesis of acylated modified fibrils after composition adjustment (eg, adding the acylating agent that has been depleted).
The solids acylated modified fibrils are washed to remove residual modification/fibrillation solvent. Acylated modified cellulose fine fibers can be obtained by performing the washing operation a plurality of times (for example, about 2 to 5 times). Although the washing solvent is not particularly limited, any organic solvent capable of dissolving components other than the modified fine fibers may be used. Examples include water, alcohols, ketones, esters, and toluenes. Water and alcohol are particularly preferable when modifying with a highly hydrophilic acyl group such as an acetyl group. On the other hand, when modifying with a highly hydrophobic acyl group such as a lauryl group, in order to efficiently remove the acylating agent, after washing with water or alcohol, washing with a solvent with low polarity such as acetone, ester or toluene is recommended. preferable.

一方、修飾反応/解繊溶液を再利用しない場合、反応終了後、水又はメタノールなどでアシル化剤を失活させてから前記に記述した固液分離により修飾セルロース微細繊維を回収し、前記と同じ洗浄方法と洗浄溶媒により洗浄する。 On the other hand, when the modification reaction/fibrillation solution is not reused, after the reaction is completed, the acylating agent is deactivated with water or methanol, and then the modified cellulose fine fibers are recovered by the solid-liquid separation described above. Wash with the same wash method and wash solvent.

得られたセルロース微細繊維の形状はFE-SEMを用いて観察することができる。通常、本発明のアシル化修飾セルロース微細繊維の繊維径は数10~数100nm、長さは数μm~数十μmであるが、場合によっては、ミクロンオーダーの微細繊維が含まれることがある。サブミクロンオーダーやミクロンオーダーの微細繊維に含まれるミクロフィブリルは緩く乱れた状態となっているため、せん断力を加えることで数10nm以下にナノ化することができる。せん断力を加える装置は特に制限しないが、例えば二軸混錬機、ホモジナイザー、マスコロイダーとペイントシェーカーなどが挙げられる。 The shape of the obtained cellulose fine fibers can be observed using FE-SEM. The acylated modified cellulose fine fibers of the present invention usually have a fiber diameter of several tens to several hundred nm and a length of several μm to several tens of μm, but may contain micron-order fine fibers in some cases. Since microfibrils contained in submicron-order or micron-order fine fibers are in a loosely disordered state, they can be nanoized to several tens of nanometers or less by applying a shearing force. Apparatus for applying a shearing force is not particularly limited, but examples thereof include a twin-screw kneader, a homogenizer, a masscolloider and a paint shaker.

本発明のアシル化修飾セルロース微細繊維の平均置換度(セルロースの基本構成単位であるグルコース当たりの置換された水酸基の平均数)は、用途に応じて反応条件で制御することができる。平均置換度は0.1以下になると解繊度合と得られた微細繊維の疎水性が低いため好ましくない。1.5を超えるとセルロースのI型結晶構造を失う恐れがあるため好ましくない。より好ましくは0.2~1.4である。最も好ましくは0.4~1.3である。なお、平均置換度(DS:degree of substitution)は、セルロースの基本構成単位であるグルコース当たりの置換された水酸基の平均数であり、Biomacromolecules 2007,8,1973-1978やWO2012/124652A1又はWO2014/142166A1などを参照できる。 The average degree of substitution of the acylated modified cellulose fine fibers of the present invention (average number of hydroxyl groups substituted per glucose, which is the basic structural unit of cellulose) can be controlled by reaction conditions depending on the application. An average degree of substitution of 0.1 or less is not preferable because the degree of fibrillation and the hydrophobicity of the obtained fine fibers are low. If it exceeds 1.5, the I-type crystal structure of cellulose may be lost, which is not preferable. It is more preferably 0.2 to 1.4. Most preferably it is between 0.4 and 1.3. Incidentally, the average degree of substitution (DS) is the average number of substituted hydroxyl groups per glucose, which is the basic structural unit of cellulose, and is described in Biomacromolecules 2007, 8, 1973-1978, WO2012/124652A1 or WO2014/142166A1. etc. can be referred to.

本発明により作製するセルロース微細繊維は有機溶媒に容易に分散できる。セルロース微細繊維は分散可能の有機溶媒は、アシル基の種類に依存する。例えば、炭素数2~3の脂肪族アシル基で修飾したセルロース微細繊維はアルコール類、アミド類とテトラヒドロフランなどの極性有機溶媒に分散可能である。一方、炭素数4以上の脂肪族アシル基又は芳香族アシル基により修飾したセルロース微細繊維は、極性溶媒から疎水性溶媒まで分散可能である。例えば、ブチリル基、ラウリル基、ベンゾイル基で修飾したセルロース微細繊維は、トルエンやジクロロメタンにも分散可能である。 Cellulose microfibers made according to the present invention are readily dispersible in organic solvents. The organic solvent in which cellulose fine fibers can be dispersed depends on the type of acyl group. For example, cellulose fine fibers modified with aliphatic acyl groups having 2 to 3 carbon atoms can be dispersed in alcohols, amides and polar organic solvents such as tetrahydrofuran. On the other hand, cellulose fine fibers modified with an aliphatic acyl group having 4 or more carbon atoms or an aromatic acyl group can be dispersed in both polar and hydrophobic solvents. For example, cellulose microfibers modified with butyryl, lauryl, and benzoyl groups are also dispersible in toluene and dichloromethane.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、用いた原料の詳細は以下の通りであり、得られた修飾セルロース微細繊維の特性は以下のようにして測定した。 EXAMPLES The present invention will be described in more detail below based on examples, but the present invention is not limited by these examples. The details of the raw materials used are as follows, and the properties of the obtained modified cellulose fine fibers were measured as follows.

(用いた原料、試薬)
セルロースパルプ:NBKPパルプ(キャンフォー)とコットンリンターパルプを用いた。何れも丸紅株式会社から入手した。セルロースパルプをサンプル瓶に入れるサイズまで千切ったパルプ。
40%水酸化テトラプロピルアンモニウム水溶液:東京化成工業株式会社製。
35%水酸化テトラエチルアンモニウム水溶液:東京化成工業株式会社製。
40%水酸化テトラブチルアンモニウム水溶液:東京化成工業株式会社製。
カルボン酸ビニル、DMSO、他の原料:ナカライテスク(株)製の試薬。
(Raw materials and reagents used)
Cellulose pulp: NBKP pulp (Canfor) and cotton linter pulp were used. All were obtained from Marubeni Corporation. Pulp that has been shredded to a size that can be put into a sample bottle.
40% tetrapropylammonium hydroxide aqueous solution: manufactured by Tokyo Chemical Industry Co., Ltd.
35% tetraethylammonium hydroxide aqueous solution: manufactured by Tokyo Chemical Industry Co., Ltd.
40% tetrabutylammonium hydroxide aqueous solution: manufactured by Tokyo Chemical Industry Co., Ltd.
Vinyl carboxylate, DMSO, other raw materials: Reagents manufactured by Nacalai Tesque.

(アシル化修飾セルロース微細繊維のIRスペクトル)
セルロース微細繊維のIRスペクトルはフーリエ変換赤外分光光度計(FT-IR)で測定した。なお、測定は、NICOLET社製「NICOLET MAGNA-IR760 Spectrometer」を用い、反射モードで分析した。アシル化修飾は周波数1730cm-1の吸収バンドにより確認した。
(IR spectrum of acylated modified cellulose fine fiber)
IR spectra of cellulose microfibers were measured with a Fourier transform infrared spectrophotometer (FT-IR). The measurement was performed in reflection mode using a "NICOLET MAGNA-IR760 Spectrometer" manufactured by NICOLET. Acylation modification was confirmed by an absorption band at a frequency of 1730 cm −1 .

(アシル化修飾セルロース微細繊維の平均置換度の評価)
規定量のアシル化修飾セルロース微細繊維をNaOH/EtOH/HOの混合液に分散させ、室温で4時間撹拌することによりエステル結合が加水分解し、アシル基がCNFの水酸基から外れ、アシル化CNFが無修飾CNFに変換される。一方、外れたアシル基は水酸化ナトリウムと結合してカルボン酸ナトリウムに変換し、そのモル数は下に示す滴定法により定量できる。
加水分解後、反応溶液(溶媒、カルボン酸ナトリウムと水酸化ナトリウム)と残渣(無修飾CNF)をろ過により分離した。残渣を乾燥し、天秤で秤量した。溶液を塩酸水溶液で滴定することにより水酸化ナトリウムの残留量を定量した。
加水分解溶液に加えた水酸化ナトリウムの当量数をA、加水分解後回収、乾燥後CNFの重さをW、滴定に消耗された塩酸の当量数をBとして、下式によりアシル基のモル数(C)とアシル基の平均置換度DSを算出した。
セルロース(無水グルカン)のモル数(M)=W/162
アシル基のモル数C=A-B
平均置換度DS=C/M
(Evaluation of Average Degree of Substitution of Acylated Modified Cellulose Fine Fibers)
A specified amount of acylated modified cellulose fine fibers is dispersed in a mixture of NaOH/EtOH/H 2 O and stirred at room temperature for 4 hours to hydrolyze the ester bond, remove the acyl group from the hydroxyl group of CNF, and acylate. CNF is converted to unmodified CNF. On the other hand, the detached acyl group is combined with sodium hydroxide to convert to sodium carboxylate, and the number of moles thereof can be quantified by the titration method shown below.
After hydrolysis, the reaction solution (solvent, sodium carboxylate and sodium hydroxide) and the residue (unmodified CNF) were separated by filtration. The residue was dried and weighed on a balance. The residual amount of sodium hydroxide was quantified by titrating the solution with aqueous hydrochloric acid.
The number of equivalents of sodium hydroxide added to the hydrolysis solution is A, the weight of CNF recovered after hydrolysis and after drying is W, and the number of equivalents of hydrochloric acid consumed for titration is B, the number of moles of acyl groups is calculated by the following formula. The average degree of substitution DS between (C) and the acyl group was calculated.
Number of moles (M) of cellulose (anhydrous glucan) = W/162
Number of moles of acyl group C = AB
Average degree of substitution DS = C/M

(SEM観察)
セルロース微細繊維の形状はFE-SEM(日本電子(株)製「JSM-6700F」、測定条件:20mA、60秒)を用いて観察した。
(SEM observation)
The shape of the cellulose fine fibers was observed using an FE-SEM (“JSM-6700F” manufactured by JEOL Ltd., measurement conditions: 20 mA, 60 seconds).

(アシル化修飾セルロース微細繊維の有機溶媒分散性の評価)
アシル化修飾セルロース微細繊維の有機溶媒への分散性は、アシル化修飾率と解繊度合を反映するパラメターである。本発明は以下の方法により評価する。
洗浄したアシル化修飾セルロース微細繊維(乾燥重量0.05g)と分散用溶媒10gをそれぞれ20mlのサンプル瓶に入れ、スターラーでよく撹拌した後、室温で6時間静置した後観察し、沈殿しない場合は分散良好と判断した。一方、沈殿し場合は分散不可と評価した。
(Evaluation of organic solvent dispersibility of acylated modified cellulose fine fibers)
The dispersibility of the acylated cellulose fine fibers in an organic solvent is a parameter that reflects the acylation modification rate and the defibration degree. The present invention is evaluated by the following methods.
Put the washed acylated modified cellulose fine fibers (dry weight 0.05 g) and 10 g of the dispersion solvent in a 20 ml sample bottle, stir well with a stirrer, leave at room temperature for 6 hours, and observe. was judged to have good dispersion. On the other hand, when it precipitated, it was evaluated as not dispersible.

(アシル化修飾セルロース微細繊維の結晶化度の評価)
アシル化修飾セルロース微細繊維の分散液を乾燥し、粉末X線結晶回折(XRD)を用いて結晶化度を測定した。なお、X線回折装置(UltimaIV、株式会社リガク製)を使用して分析した。測定条件を次に示した。
・X線:Cu/40kV/40mA
・スキャンスピード:10°/分
・走査範囲:2θ=5~70°
また、下記式によって、結晶化度を算出した(Textile Res.J.29:786-794,1959参照)。
結晶化度(%)=[(I200-IAM)/I200]×100
I200:2θ=22.6°の回折強度
IAM:アモルファス部の回折強度であり2θ=18.5°の回折強度
(Evaluation of crystallinity of acylated modified cellulose fine fibers)
The dispersion of acylated modified cellulose microfibers was dried and crystallinity was measured using powder X-ray crystal diffraction (XRD). The analysis was performed using an X-ray diffractometer (Ultima IV, manufactured by Rigaku Corporation). The measurement conditions are shown below.
・X-ray: Cu/40kV/40mA
・Scan speed: 10°/min ・Scan range: 2θ = 5 to 70°
Also, the degree of crystallinity was calculated by the following formula (see Textile Res. J. 29:786-794, 1959).
Crystallinity (%) = [(I200-IAM) / I200] × 100
I200: Diffraction intensity at 2θ=22.6° IAM: Diffraction intensity at 2θ=18.5°, which is the diffraction intensity of the amorphous portion

〔実施例1〕
40%の水酸化テトラプロピルアンモニウム(TPAH)水溶液0.1g、ジメチルスルホキシド5gを10mlのサンプル瓶に入れ、23℃磁性スターラーで混合液が均一に混ざるまで攪拌した。次に、コトンリンターパルプ0.23gを加え1時間攪拌した後、酢酸ビニル0.25gを入れて1時間攪拌することでアセチル化修飾した。次に、蒸留水で洗浄することにより修飾反応溶液(TPAH、酢酸ビニルとDMSO)と副生物(アセトアルデヒド)を除いた。得られたセルロース微細繊維について、修飾有無をFT-IR分析で確認した結果、IRスペクトル(図1)は周波数1730cm-1付近に強い吸収バンドが検出された。また、平均置換度と結晶化度を評価した結果、それぞれは1.3と68%であった(表1)。SEMで形状を観察した結果を図2に示した。殆どのセルロース微細繊維の繊維径は数10~数100nm、長さは数μm~数十μmに分布している。アセチル化微細繊維をエタノール、イソプロパノール、テトラヒドロフラン、ジクロロメタン等の溶媒に分散し、得られた分散液は室温で静置しても沈降による層分離が見られなかった。
[Example 1]
0.1 g of a 40% tetrapropylammonium hydroxide (TPAH) aqueous solution and 5 g of dimethyl sulfoxide were placed in a 10 ml sample bottle and stirred with a magnetic stirrer at 23° C. until the mixture was uniformly mixed. Next, 0.23 g of cotton linter pulp was added and stirred for 1 hour, and then 0.25 g of vinyl acetate was added and stirred for 1 hour for acetylation modification. Modification reaction solutions (TPAH, vinyl acetate and DMSO) and by-products (acetaldehyde) were then removed by washing with distilled water. As a result of confirming the presence or absence of modification of the obtained cellulose fine fibers by FT-IR analysis, a strong absorption band was detected near a frequency of 1730 cm −1 in the IR spectrum (FIG. 1). Moreover, as a result of evaluating the average degree of substitution and the degree of crystallinity, they were 1.3 and 68%, respectively (Table 1). FIG. 2 shows the result of observing the shape with SEM. Most of the cellulose fine fibers have a fiber diameter of several tens to several hundred nm and a length of several micrometers to several tens of micrometers. The acetylated fine fibers were dispersed in solvents such as ethanol, isopropanol, tetrahydrofuran, and dichloromethane, and the obtained dispersion did not show layer separation due to sedimentation even when left standing at room temperature.

〔実施例2〕
40%TPAH水溶液と酢酸ビニルの添加量をそれぞれ0.06gと0.15gにした以外は実施例1と同様に実施と評価した。結果を図1(IRスペクトル)、図3(SEM写真)と表1(平均置換度と結晶化度)にそれぞれ示した。TPAH水溶液と酢酸ビニルの添加量を減らすことで修飾率は低下したが、解繊度合は殆ど変わらなかった。SEMで形状を観察した結果、殆どのセルロース微細繊維の繊維径は数10~数100nm、長さは数μm~数十μmに分布している。アセチル化微細繊維をエタノール、イソプロパノール、テトラヒドロフラン、ジクロロメタン等の溶媒に分散し、得られた分散液は室温で静置しても沈降による層分離が見られなかった。
[Example 2]
Evaluation was carried out in the same manner as in Example 1 except that the amounts of the 40% TPAH aqueous solution and vinyl acetate added were changed to 0.06 g and 0.15 g, respectively. The results are shown in FIG. 1 (IR spectrum), FIG. 3 (SEM photograph) and Table 1 (average degree of substitution and crystallinity), respectively. By reducing the amounts of the TPAH aqueous solution and vinyl acetate added, the modification rate decreased, but the defibration degree remained almost unchanged. As a result of observing the shape with an SEM, most of the cellulose fine fibers have a fiber diameter of several tens to several hundred nm and a length of several μm to several tens of μm. The acetylated fine fibers were dispersed in solvents such as ethanol, isopropanol, tetrahydrofuran, and dichloromethane, and the obtained dispersion did not show layer separation due to sedimentation even when left standing at room temperature.

〔実施例3〕
反応温度を55℃にした以外は実施例2と同様にして実施し評価した。結果を図4と表1に示した。結晶化度は実施例2とほぼ同等であったが、平均置換度は実施例2を上回った。SEMで形状を観察した結果、一部の粗大繊維が観察されたが、殆どのセルロース微細繊維の繊維径は数10~数100nm、長さは数μm~数十μmに分布している。アセチル化微細繊維をエタノール、イソプロパノール、テトラヒドロフラン、ジクロロメタン等の溶媒に分散し、得られた分散液は室温で静置しても沈降による層分離が見られなかった。
[Example 3]
Evaluation was carried out in the same manner as in Example 2 except that the reaction temperature was changed to 55°C. The results are shown in FIG. 4 and Table 1. The degree of crystallinity was almost the same as in Example 2, but the average degree of substitution exceeded that in Example 2. As a result of observing the shape with an SEM, some coarse fibers were observed, but most of the cellulose fine fibers were distributed with a fiber diameter of several tens to several hundred nm and a length of several μm to several tens of μm. The acetylated fine fibers were dispersed in solvents such as ethanol, isopropanol, tetrahydrofuran, and dichloromethane, and the obtained dispersion did not show layer separation due to sedimentation even when left standing at room temperature.

〔実施例4〕
40%TPAH水溶液に代えて40%のTBAH水溶液を用いた以外は実施例2と同様に実施と評価した。結果を図1(IRスペクトル)、図4(SEM写真)と表1(平均置換度と結晶化度)にそれぞれ示した。SEMで形状を観察した結果、一部の粗大繊維が観察されたが、殆どのセルロース微細繊維の繊維径は数10~数100nm、長さは数μm~数十μmに分布している。アセチル化微細繊維をエタノール、イソプロパノール、テトラヒドロフラン、ジクロロメタン等の溶媒に分散し、得られた分散液は室温で静置しても沈降による層分離が見られなかった。TBAHはTPAHとほぼ同等な解繊促進効果を有することが分かった。
[Example 4]
Evaluation was carried out in the same manner as in Example 2 except that a 40% TBAH aqueous solution was used instead of the 40% TPAH aqueous solution. The results are shown in FIG. 1 (IR spectrum), FIG. 4 (SEM photograph) and Table 1 (average degree of substitution and crystallinity), respectively. As a result of observing the shape with an SEM, some coarse fibers were observed, but most of the cellulose fine fibers were distributed with a fiber diameter of several tens to several hundred nm and a length of several μm to several tens of μm. The acetylated fine fibers were dispersed in solvents such as ethanol, isopropanol, tetrahydrofuran, and dichloromethane, and the obtained dispersion did not show layer separation due to sedimentation even when left standing at room temperature. It was found that TBAH has almost the same fibrillation promoting effect as TPAH.

〔実施例5〕
40%TPAH水溶液に代えて40%のTEAH水溶液を用いた以外は実施例2と同様に実施と評価した。結果を図5(SEM写真)と表1(平均置換度と結晶化度)にそれぞれ示した。結晶化度は実施例2とほぼ同等であった。平均置換度は実施例2より高かったが、粗大繊維の含有量が増えた。TPAHと比べ解繊の促進作用がやや低下したが、有機溶媒への分散性は殆ど変わらなかった。
[Example 5]
Evaluation was carried out in the same manner as in Example 2, except that a 40% TEAH aqueous solution was used instead of the 40% TPAH aqueous solution. The results are shown in FIG. 5 (SEM photograph) and Table 1 (average degree of substitution and degree of crystallinity), respectively. The degree of crystallinity was almost the same as in Example 2. The average degree of substitution was higher than in Example 2, but the content of coarse fibers was increased. Compared to TPAH, the fibrillation promoting action was slightly reduced, but the dispersibility in organic solvents was almost unchanged.

〔実施例6〕
コトンリンターパルプに代えてキャンフォーパルプを用いた以外は実施例2と同様に実施と評価した。結果を図1(IRスペクトル)、図6(SEM写真)と表1(平均置換度と結晶化度)にそれぞれ示した。評価結果から、セルロースの原料を変えても同等な修飾と解繊度合が得られることが判明した。
[Example 6]
Evaluation was carried out in the same manner as in Example 2, except that canfor pulp was used instead of cotton linter pulp. The results are shown in FIG. 1 (IR spectrum), FIG. 6 (SEM photograph) and Table 1 (average degree of substitution and crystallinity), respectively. From the evaluation results, it was found that even if the raw material of cellulose is changed, the same degree of modification and fibrillation can be obtained.

〔実施例7〕
予備膨潤/解繊せず、最初から酢酸ビニルを添加し2時間攪拌した以外実施例1と同様にアセチル化修飾セルロース微細繊維を調製し評価した。得られたセルロース微細繊維の平均置換度は1.31、結晶化度は65%(表1)であった。IRスペクトルを図1,SEM写真を図7に示した。SEM観察の結果から、粗大繊維は実施例1より多かったが、微細繊維のほうは実施例とほぼ同等な形状とサイズを持つことが判明した。
[Example 7]
Acetylation-modified cellulose fine fibers were prepared and evaluated in the same manner as in Example 1 except that vinyl acetate was added from the beginning and stirred for 2 hours without pre-swelling/fibrillation. The obtained cellulose fine fibers had an average degree of substitution of 1.31 and a degree of crystallinity of 65% (Table 1). The IR spectrum is shown in FIG. 1, and the SEM photograph is shown in FIG. From the results of SEM observation, it was found that the coarse fibers were larger than those of Example 1, but the fine fibers had substantially the same shape and size as those of Examples.

〔比較例1〕
水酸化テトラプロピルアンモニウム水溶液を添加しない以外は実施例6と同様にしてセルロースのアシル化修飾反応を行った。実施例1と同様に洗浄し固形分を回収した。回収した固形分のSEM写真を図8に示す。原料のパルプ繊維とほぼ同様な粗大繊維が観察された。FT-IR分析の結果(図1)により修飾は殆どなかった。
[Comparative Example 1]
The acylation modification reaction of cellulose was carried out in the same manner as in Example 6, except that the tetrapropylammonium hydroxide aqueous solution was not added. It was washed in the same manner as in Example 1 and the solid content was recovered. A SEM photograph of the collected solid content is shown in FIG. Coarse fibers similar to those of raw material pulp fibers were observed. The FT-IR analysis results (Fig. 1) showed little modification.

〔比較例2〕
40%の水酸化テトラプロピルアンモニウム(TPAH)水溶液の添加量を0.18gに変更した以外は実施例1と同様にしてセルロースのアシル化修飾反応を行った。実施例1と同様に洗浄し固形分を回収した。回収したアセチル化セルロース微細繊維の平均置換度は1.13であり、結晶化度は45%まで低下した。この結果から、一部のセルロースは完全溶解し酢酸セルロースに変換されたと考える。
[Comparative Example 2]
The acylation modification reaction of cellulose was carried out in the same manner as in Example 1, except that the amount of 40% tetrapropylammonium hydroxide (TPAH) aqueous solution added was changed to 0.18 g. It was washed in the same manner as in Example 1 and the solid content was recovered. The recovered acetylated cellulose fine fibers had an average degree of substitution of 1.13 and a crystallinity of 45%. From this result, it is considered that part of the cellulose was completely dissolved and converted to cellulose acetate.

実施例1~7及び比較例1、2の修飾反応溶液の組成と反応条件及び得られたセルロース微細繊維の平均置換度、結晶化度をまとめて表1に示す。

Figure 2023048168000002
Table 1 summarizes the compositions and reaction conditions of the modification reaction solutions of Examples 1 to 7 and Comparative Examples 1 and 2, and the average degree of substitution and crystallinity of the obtained cellulose fine fibers.
Figure 2023048168000002

本発明の修飾セルロース微細繊維は、各種複合材料、コーティング剤に利用でき、シートやフィルムに成形して利用することもできる。

The modified cellulose fine fibers of the present invention can be used for various composite materials and coating agents, and can also be used by molding into sheets and films.

Claims (3)

下記式(1)で示される水酸化テトラアルキルアンモニウム、水、ジメチルスルホキシド及びアシル化剤を含む修飾反応溶液をセルロースに浸透させて、セルロースをアシル化修飾し解繊することを含むアシル化修飾セルロース微細繊維の製造方法。
OH (1)
(式中、Rはそれぞれ独立して炭素数が2~4のアルキル基を表す)。
Acylation-modified cellulose comprising permeating cellulose with a modification reaction solution containing a tetraalkylammonium hydroxide represented by the following formula (1), water, dimethylsulfoxide and an acylating agent to acylate and defibrate the cellulose. A method for producing fine fibers.
R 4 N + OH (1)
(In the formula, each R independently represents an alkyl group having 2 to 4 carbon atoms).
下記式(1)で示される水酸化テトラアルキルアンモニウム、水及びジメチルスルホキシドを含む溶液をセルロースに浸透させてセルロースを膨潤及び/又は部分解繊した後、前記溶液にアシル化剤を添加して修飾反応溶液とし、前記膨潤及び/又は部分解繊したセルロースをアシル化修飾し解繊することを含むアシル化修飾セルロース微細繊維の製造方法。
OH (1)
(式中、Rはそれぞれ独立して炭素数が2~4のアルキル基を表す)。
A solution containing a tetraalkylammonium hydroxide represented by the following formula (1), water, and dimethylsulfoxide is permeated into cellulose to swell and/or partially defiberize the cellulose, and then an acylating agent is added to the solution for modification. A method for producing acylated cellulose fine fibers, which comprises acylating and defibrating the swollen and/or partially defiberized cellulose as a reaction solution.
R 4 N + OH (1)
(In the formula, each R independently represents an alkyl group having 2 to 4 carbon atoms).
前記修飾反応溶液中の水酸化テトラアルキルアンモニウム、水、メチルスルホキシド及びアシル化剤の成分比が、水酸化テトラアルキルアンモニウム、水、メチルスルホキシド及びアシル化剤の総量に対して、水酸化テトラアルキルアンモニウムが0.1~1.2wt%、水が0.1~1.8wt%、ジメチルスルホキシドが82.0~98.8wt%、アシル化剤が1.0~15.0wt%である、請求項1又は請求項2に記載の製造方法。

The component ratio of tetraalkylammonium hydroxide, water, methylsulfoxide and acylating agent in the modification reaction solution is such that the total amount of tetraalkylammonium hydroxide, water, methylsulfoxide and acylating agent is is 0.1 to 1.2 wt%, water is 0.1 to 1.8 wt%, dimethyl sulfoxide is 82.0 to 98.8 wt%, and the acylating agent is 1.0 to 15.0 wt%. The manufacturing method according to claim 1 or claim 2.

JP2021157322A 2021-09-28 2021-09-28 Production method of acylation-modified cellulose fine fiber Pending JP2023048168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021157322A JP2023048168A (en) 2021-09-28 2021-09-28 Production method of acylation-modified cellulose fine fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021157322A JP2023048168A (en) 2021-09-28 2021-09-28 Production method of acylation-modified cellulose fine fiber

Publications (1)

Publication Number Publication Date
JP2023048168A true JP2023048168A (en) 2023-04-07

Family

ID=85780177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021157322A Pending JP2023048168A (en) 2021-09-28 2021-09-28 Production method of acylation-modified cellulose fine fiber

Country Status (1)

Country Link
JP (1) JP2023048168A (en)

Similar Documents

Publication Publication Date Title
US12084525B2 (en) Sulfate ester modified cellulose nanofibers and method for producing cellulose nanofibers
CN110770257B (en) Chemically modified cellulose fiber and method for producing same
JP5676860B2 (en) Polysaccharide nanofibers and production method thereof, ionic liquid solution containing polysaccharide nanofibers and composite material
JP6454427B2 (en) Modified cellulose fine fiber and method for producing the same
JP6905039B2 (en) Cellulose fine fibers and their manufacturing methods
KR102682506B1 (en) Chemical Formula Manufacturing Method of Cellulose Fiber
JP6895180B2 (en) Production of nanocellulose and its intermediates using oxalic acid dihydrate
JP6737864B2 (en) Chemically modified cellulose fiber and method for producing the same
JP6349341B2 (en) Modified cellulose fine fiber and method for producing the same
JP5875323B2 (en) Production method of polysaccharide nanofiber dispersion and polysaccharide nanofiber dispersion obtained by the production method
JP2020050736A (en) Resin composition
JP2023048168A (en) Production method of acylation-modified cellulose fine fiber
Priya et al. Characterization of micro-fibrillated cellulose produced from sawmill wastage: crystallinity and thermal properties
JP2023072245A (en) Method for producing acylated chitin nanofiber
JP6674020B2 (en) Method for producing cellulose fine fiber
JP7389660B2 (en) Cellulose fine fiber and its manufacturing method
JP7527434B2 (en) Cellulose fiber composition and method for producing same
JP7350570B2 (en) Modified cellulose nanofiber and method for producing the same
JP2022030446A (en) Dicarboxylic acid monoesterification modified cellulose nanofiber
JP2021179047A (en) Aggregate of acylated cellulose nanofibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240605