[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2022183826A - Soil improvement method - Google Patents

Soil improvement method Download PDF

Info

Publication number
JP2022183826A
JP2022183826A JP2021091320A JP2021091320A JP2022183826A JP 2022183826 A JP2022183826 A JP 2022183826A JP 2021091320 A JP2021091320 A JP 2021091320A JP 2021091320 A JP2021091320 A JP 2021091320A JP 2022183826 A JP2022183826 A JP 2022183826A
Authority
JP
Japan
Prior art keywords
component
soil
less
mass
improvement method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021091320A
Other languages
Japanese (ja)
Inventor
知也 大前
Tomoya Omae
光博 福島
Mitsuhiro Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2021091320A priority Critical patent/JP2022183826A/en
Publication of JP2022183826A publication Critical patent/JP2022183826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

To provide a soil improvement method which can uniformly mix soil and a solidification material by reducing a clay lump when improving the soil containing clay by using the solidification material, and can obtain a soil-improved body which is excellent in rigidity.SOLUTION: In a soil improvement method for mixing hydraulic setting powder (ii), a chemical compound (iii) expressed by the following general formula (1) and water (iv) to soil (i) which contains clay, the soil improvement method mixes (ii) to (i) at a ratio equal to or lower than 18 mass%, and in the method, (i) is the soil whose uniformity coefficient (D50/D10) is equal to or higher than 2.6, and equal to or lower than 8.0: R-O-(AO)m-H (1). (In the general formula (1), R expresses a hydrogen atom, or a hydrocarbon group whose carbon number is equal to or larger 1, and equal to or smaller than 4, AO expresses an oxyethylene group or an oxypropylene, and m expresses an average addition mole number of AO, and is a number equal to or larger than 20, and equal to or smaller than 18,000.)SELECTED DRAWING: None

Description

本発明は、地盤改良方法に関する。 The present invention relates to a ground improvement method.

土木、建築などの分野では、土壌、セメントなどの様々な成分を含有する組成物が様々な用途で用いられている。例えば、地盤改良工法、山留め工法、基礎杭工法、及び埋め戻し工法等で使用される組成物として、ソイルセメントが知られている。ソイルセメントは、土壌にセメント系固化材あるいはこれに水を加えて混合したものである。土木、建築分野で用いるソイルセメントは、セメント系固化材と水とを事前に混合したセメントミルクを土壌に添加して調製されることが多い。ソイルセメントは、工法などの違いにより、要求特性、例えば、粘性、流動性などの物性も異なる。セメントミルクやソイルセメントは、例えば、地盤にセメントミルクを注入して地中にソイルセメント柱体を造設する、いわゆるソイルセメント工法のような柱状地盤補強工法に用いられている。また、地盤土壌を固化材で置換する、いわゆる置換コラム法が知られている。 In fields such as civil engineering and construction, compositions containing various components such as soil and cement are used for various purposes. For example, soil cement is known as a composition used in ground improvement method, earth retaining method, foundation pile method, backfilling method and the like. Soil cement is a mixture of soil with a cement-based solidifying material or water added thereto. Soil cement used in the fields of civil engineering and construction is often prepared by adding cement milk, which is a mixture of a cement-based solidifying material and water in advance, to soil. Soil cements have different physical properties, such as viscosity and fluidity, due to differences in construction methods. Cement milk and soil cement are used, for example, in a columnar ground reinforcement construction method such as the so-called soil cement construction method in which cement milk is injected into the ground to construct a soil cement column in the ground. Also known is a so-called replacement column method in which ground soil is replaced with a solidification material.

特許文献1には、内部に水硬性固化材液の供給通路を有する掘削オーガの先端部に、少なくとも掘削爪と該水硬性固化材液の吐出口を備え、該掘削オーガを、オーガモータを備えた施工装置で回転(正回転又は逆回転)させながら所定深度まで掘進し、その後水硬性固化材液を該吐出口より吐出しつつ、該掘削オーガを回転(正回転又は逆回転)させながら、又は回転させないで引上げ、掘削部の所定区間を該水硬性固化材液で充填することを特徴とする水硬性固化材液置換コラムの築造方法が開示されている。 Patent Document 1 discloses an excavation auger having a supply passage for a hydraulic solidification liquid inside thereof, and having at least an excavation claw and a discharge port for the hydraulic solidification liquid at the tip thereof, and the excavation auger equipped with an auger motor. Excavate to a predetermined depth while rotating (forward or reverse rotation) with the construction device, and then rotate (forward or reverse rotation) the excavation auger while discharging the hydraulic solidification material liquid from the discharge port, or A method for constructing a hydraulic solidifying material replacement column is disclosed, which is characterized by pulling up the column without rotating it and filling a predetermined section of an excavated portion with the hydraulic solidifying material liquid.

一方、セメント系固化材に種々の成分を添加することが知られている。
特許文献2には、オルト位多価フェノール骨格を有する化合物を含有するソイルセメントが開示されている。
特許文献3には、ポリオキシアルキレン基を有する特定の単量体1とリン酸モノエステル系単量体2とリン酸ジエステル系単量体3とをpH7以下で共重合して得られるリン酸エステル系重合体を含有するソイルセメント用添加剤が開示されている。
特許文献4には、粉状のセメント系固化材100質量部当たり、リグニンスルホン酸ナトリウム、炭酸アルカリ金属塩、及び所定のポリエーテル系消泡剤から成なる粉状の地盤改良用添加剤を0.5~15質量部の割合で含有して成る粉状の地盤改良用プレミックスセメント組成物が開示されている。
On the other hand, it is known to add various components to cementitious solidifying materials.
Patent Document 2 discloses a soil cement containing a compound having an ortho-position polyhydric phenol skeleton.
In Patent Document 3, phosphoric acid obtained by copolymerizing a specific monomer 1 having a polyoxyalkylene group, a phosphoric acid monoester monomer 2, and a phosphoric acid diester monomer 3 at pH 7 or less A soil cement additive containing an ester polymer is disclosed.
In Patent Document 4, 0 parts of a powdery soil improvement additive consisting of sodium lignin sulfonate, alkali metal carbonate, and a predetermined polyether antifoaming agent is added per 100 parts by mass of a powdery cement-based solidifying material. A powdery premixed cement composition for soil improvement comprising 0.5 to 15 parts by weight is disclosed.

特開2011-106253号公報JP 2011-106253 A 特開2020-26523号公報JP 2020-26523 A 特開2007-169547号公報JP 2007-169547 A 特開2009-286655号公報JP 2009-286655 A

ソイルセメントは、土壌からの取り込みや混合中の凝集などにより、粘土が塊となって存在することがある。ソイルセメント中の粘土塊が残っていると、例えば、掘削撹拌装置が備えている掘削翼や撹拌翼に土壌が付着しやすくなり、これらの翼と土壌とが同期回転する、いわゆる共回り現象が発生して土壌と固化材とが均一に撹拌混合されないことがある。粘土などの細粒分が均一に混合されないと、ソイルセメント柱体中で粘土塊が局在する状態となるため、当該ソイルセメントの硬化物である地盤改良体の強度の低下をもたらす。
本発明は、粘土を含む土壌を固化材を用いて地盤改良する際に、粘土塊を低減して土壌と固化材とを均一に混合でき、強度に優れた地盤改良体が得られる地盤改良方法を提供する。
In soil cement, clay may exist as clumps due to incorporation from the soil or agglomeration during mixing. If clay lumps remain in the soil cement, for example, the soil tends to adhere to the excavating blades and mixing blades of the excavating and mixing device, causing the so-called co-rotation phenomenon in which these blades and the soil rotate synchronously. It may occur and the soil and solidification material may not be stirred and mixed uniformly. If the fine particles such as clay are not uniformly mixed, clay lumps will be localized in the soil cement column, resulting in a decrease in the strength of the soil improvement material, which is the hardened material of the soil cement.
INDUSTRIAL APPLICABILITY The present invention is a ground improvement method that can uniformly mix the soil and the solidifying material by reducing clay lumps when soil containing clay is improved using a solidifying material, and obtains a soil improvement body with excellent strength. I will provide a.

本発明は、粘土を含む土壌(i)〔以下、(i)成分という〕に、水硬性粉体(ii)〔以下、(ii)成分という〕と、下記一般式(1)で表される化合物(iii)〔以下、(iii)成分という〕と、水(iv)〔以下、(iv)成分という〕とを混合する地盤改良方法であって、
(i)成分が、均等係数(D50/D10)が2.6以上8.0以下の土壌であり、
(ii)成分を、(i)成分に対して、18質量%以下の割合で混合する、
地盤改良方法に関する。
R-O-(AO)-H (1)
(一般式(1)中、Rは水素原子又は炭素数1以上4以下の炭化水素基を表し、AOはオキシエチレン基又はオキシプロピレンを表し、mはAOの平均付加モル数を表す。)
The present invention comprises clay-containing soil (i) [hereinafter referred to as component (i)], hydraulic powder (ii) [hereinafter referred to as component (ii)], and general formula (1) below. A soil improvement method for mixing compound (iii) [hereinafter referred to as (iii) component] and water (iv) [hereinafter referred to as (iv) component],
(i) the component is soil with a uniformity coefficient (D50/D10) of 2.6 or more and 8.0 or less;
(ii) component is mixed in a ratio of 18% by mass or less with respect to (i) component,
It relates to a ground improvement method.
RO-(AO) m -H (1)
(In general formula (1), R represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, AO represents an oxyethylene group or oxypropylene, and m represents the average number of added moles of AO.)

本発明によれば、粘土を含む土壌を固化材を用いて地盤改良する際に、粘土塊を低減して土壌と固化材とを均一に混合でき、強度に優れた地盤改良体が得られる地盤改良方法が提供される。 According to the present invention, when soil containing clay is improved using a solidification material, clay lumps can be reduced and the soil and the solidification material can be uniformly mixed, and a ground improvement body having excellent strength can be obtained. An improved method is provided.

<地盤改良方法>
本発明の地盤改良方法は、均等係数(D50/D10)が2.6以上8.0以下の(i)成分に、(ii)成分と、(iii)成分と、(iv)成分とを混合する地盤改良方法であって、(ii)成分を、(i)成分に対して、18質量%以下の割合で混合する、地盤改良方法である。
<Soil Improvement Method>
In the ground improvement method of the present invention, the (i) component having a uniformity coefficient (D50/D10) of 2.6 or more and 8.0 or less is mixed with the (ii) component, the (iii) component, and the (iv) component. It is a ground improvement method, wherein the component (ii) is mixed with the component (i) in a ratio of 18% by mass or less.

(i)成分は粘土を含む、均等係数(D50/D10)が2.6以上8.0以下の土壌である。(i)成分の均等係数(D50/D10)は、JIS A 1204の方法で得られる有効径D50(通過質量百分率50%の粒径)を有効径D10(通過質量百分率10%の粒径)で除すことにより算出される。後述の実施例でもこの方法で均等係数を算出した。(i)成分の均等係数(D50/D10)は、砂成分が少なくかつ粒子間が密実になることで地盤改良体の強度が向上できる観点から、2.6以上、好ましくは2.8以上、より好ましくは3.0以上、そして、8.0以下、好ましくは7.6以下、より好ましくは7.0以下、更に好ましくは6.0以下である。 The component (i) is clay-containing soil having a uniformity coefficient (D50/D10) of 2.6 or more and 8.0 or less. (i) The uniformity factor (D50/D10) of the component is the effective diameter D50 (particle diameter at a passing mass percentage of 50%) obtained by the method of JIS A 1204 with the effective diameter D10 (particle diameter at a passing mass percentage of 10%). It is calculated by dividing The uniformity coefficient was calculated by this method also in the examples described later. (i) The uniformity coefficient (D50/D10) of the component is 2.6 or more, preferably 2.8 or more, from the viewpoint that the strength of the soil improvement material can be improved by reducing the sand component and making the grains dense. It is more preferably 3.0 or more and 8.0 or less, preferably 7.6 or less, more preferably 7.0 or less, still more preferably 6.0 or less.

(i)成分は、混合均一性と水を介して粒子付着強度を高める観点から、自然含水比が35%以上85%以下の土壌であってよい。(i)成分の自然含水比は、土壌に含まれる水の質量を土壌の乾燥質量で除した比率を意味しているものであり、JIS A 1203の土の含水比試験の方法により算出される。後述の実施例でもこの方法で自然含水比を測定した。(i)成分の自然含水比は、より好ましくは40%以上、更に好ましくは45%以上、そして、より好ましくは80%以下、更に好ましくは75%以下である。 Component (i) may be soil having a natural water content of 35% or more and 85% or less, from the viewpoint of increasing the uniformity of mixing and the adhesion strength of particles through water. (i) The natural water content of the component means the ratio obtained by dividing the mass of water contained in the soil by the dry mass of the soil, and is calculated by the soil water content test method of JIS A 1203. . The natural water content ratio was also measured by this method in the examples described later. The natural water content of component (i) is more preferably 40% or more, still more preferably 45% or more, and more preferably 80% or less, still more preferably 75% or less.

(i)成分は、粒子同士の接着点を確保し強度を高める観点から、BET比表面積が30m/g以上70m/g以下の土壌であってよい。(i)成分のBET比表面積は、より好ましくは35m/g以上、更に好ましくは40m/g以上、そして、より好ましくは65m/g以下、更に好ましくは60m/g以下である。(i)成分のBET比表面積は、土壌粒子の表面に吸着占有面積のわかったガス分子を吸着させ、その量から試料の比表面積を求め、ガス分子の凝縮から細孔分布を測定する方法により算出される。(i)成分のBET比表面積は、具体的には、例えば、全自動比表面積測定装置(例えばマウンテック株式会社製MacSorb)を用い、1点式BET法により測定できる。後述の実施例では、全自動比表面積測定装置(マウンテック株式会社製MacSorb)を用い、ガラスセルに約3gの試料を入れ、液体窒素温度に冷却した試料に、吸着用ガス(窒素とヘリウムとを3:7に混合した混合ガス)を、60cm/minの流速で導入して、吸着させ、試料を室温に戻した場合に脱着するガス量を測定し、試料質量で割ることで比表面積(1点式BET法)を得た。 The component (i) may be soil having a BET specific surface area of 30 m 2 /g or more and 70 m 2 /g or less from the viewpoint of securing adhesion points between particles and increasing strength. The BET specific surface area of component (i) is more preferably 35 m 2 /g or more, still more preferably 40 m 2 /g or more, and more preferably 65 m 2 /g or less, still more preferably 60 m 2 /g or less. The BET specific surface area of component (i) is determined by a method of adsorbing gas molecules with a known adsorption area on the surface of soil particles, determining the specific surface area of the sample from the amount, and measuring the pore distribution from the condensation of the gas molecules. Calculated. Specifically, the BET specific surface area of component (i) can be measured, for example, by a single-point BET method using a fully automatic specific surface area measuring device (eg, MacSorb manufactured by Mountec Co., Ltd.). In the examples described later, a fully automatic specific surface area measuring device (MacSorb manufactured by Mountec Co., Ltd.) was used, about 3 g of a sample was placed in a glass cell, and the sample cooled to the temperature of liquid nitrogen was added with an adsorption gas (nitrogen and helium). 3:7 mixed gas) is introduced at a flow rate of 60 cm 3 /min for adsorption, the amount of gas desorbed when the sample is returned to room temperature is measured, and the specific surface area ( 1-point BET method) was obtained.

(i)成分は、化合物(iii)が粒子同士を架橋することで強度を高める観点から、細孔距離が7nm以上20nm以下の土壌であってよい。(i)成分の細孔距離は、土壌に含まれる水の体積をBET比表面積で除することにより算出される。(i)成分の細孔距離は、化合物(iii)が架橋することのできる近距離の観点から、より好ましくは8nm以上、更に好ましくは9nm以上、そして、より好ましくは18nm以下、更に好ましくは16nm以下である。 The component (i) may be soil having a pore distance of 7 nm or more and 20 nm or less from the viewpoint of increasing the strength by cross-linking the particles with the compound (iii). The pore distance of component (i) is calculated by dividing the volume of water contained in the soil by the BET specific surface area. The pore distance of component (i) is more preferably 8 nm or more, still more preferably 9 nm or more, and more preferably 18 nm or less, still more preferably 16 nm, from the viewpoint of the short distance that compound (iii) can crosslink. It is below.

(i)成分は、化合物(iii)が粒子表面の水を固定化し強度を高める観点から、自然含水比と塑性限界の差が0%以上80%以下の土壌であってよい。ここで、塑性限界は、土が塑性状から半固体状に移るときの境界の含水比であり、例えば、土壌の塊をよく練り、ガラス板上で手のひらを用いて転がしながら直径3mmにしたときに、ちょうど切れぎれになる時の含水比のことであってよい。(i)成分の塑性限界は、具体的には、例えば、JIS A 1205「土の液性限界・塑性限界試験方法」で測定することができ、後述の実施例でもこの方法で塑性限界を測定した。(i)成分の自然含水比と塑性限界の差は、化合物(iiiの高濃度化と混合均一性の観点から、より好ましくは20%以上、更に好ましくは40%以上、そして、より好ましくは70%以下、更に好ましくは60%以下である。 The component (i) may be soil in which the difference between the natural water content and the plastic limit is 0% or more and 80% or less, from the viewpoint that the compound (iii) fixes water on the surface of the particles and increases the strength. Here, the plastic limit is the water content ratio at the boundary when the soil changes from a plastic state to a semi-solid state. In addition, it may be the water content ratio when it is just cut off. Specifically, the plastic limit of the component (i) can be measured, for example, by JIS A 1205 “Liquid limit/plastic limit test method for soil”, and the plastic limit is measured by this method in the examples described later. did. The difference between the natural water content of component (i) and the plastic limit is more preferably 20% or more, more preferably 40% or more, and more preferably 70%, from the viewpoint of increasing the concentration of compound (iii) and mixing uniformity. % or less, more preferably 60% or less.

本発明では、(i)成分についての各物性(均等係数など)は、本発明の地盤改良方法を行う土壌(原位置における土壌)を試料として求める。例えば、均等係数は、原位置における土壌について求めたものであってよい。 In the present invention, each physical property (uniformity coefficient, etc.) for the component (i) is obtained by using soil (in situ soil) as a sample for performing the soil improvement method of the present invention. For example, the uniformity factor may be determined for the soil in situ.


(i)成分の均等係数、自然含水比、BET比表面積は、例えば、工業品の砂、粒度調整用の砂、水を混錬することで調整することができる。
j
The uniformity factor, natural water content, and BET specific surface area of component (i) can be adjusted, for example, by kneading industrial sand, sand for grain size adjustment, and water.

(i)成分は、平均粒径が、例えば、1μm以上、更に5μm以上、そして、150μm以下、更に100μm以下、更に50μm以下であってよい。ここで、(i)成分の平均粒径は、例えば、粒子が水中に浮遊する懸濁液をつくり、懸濁液の時間的な密度変化を測定して粒度を求める方法で測定されたものである。(i)成分の平均粒径は、具体的には、例えば、JIS A 1223「土の細粒分含有率試験方法」で測定することができる。 Component (i) may have an average particle size of, for example, 1 μm or more, further 5 μm or more, and 150 μm or less, further 100 μm or less, further 50 μm or less. Here, the average particle size of the component (i) is measured, for example, by preparing a suspension in which particles float in water and measuring changes in the density of the suspension over time to determine the particle size. be. Specifically, the average particle size of the component (i) can be measured, for example, according to JIS A 1223 "Testing method for content of fine particles in soil".

(i)成分は、粒径75μm未満の細粒分を含有することが好ましい。
地盤材料としての土の分類基準は、地盤工学会基準(公益社団法人地盤工学会、2009)としてまとめられている。それによると、粒径5μm以上75μm未満の粒子はシルト、粒径5μm未満の粒子は粘土に分類される。これらの細粒分は、土壌に粘性を与える成分である。また、前記地盤工学会基準によれば、粒径75μm未満の細粒分の割合が50質量%以上の土壌として、粘性土、有機質土、火山灰質粘性土が知られている。本発明では、このような土壌を対象とすることができる。
(i)成分の一例として、粒径75μm未満の細粒分の割合が、好ましくは40質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上、より更に好ましくは70質量%以上、そして、好ましくは100質量%以下の土壌が挙げられる。
Component (i) preferably contains fine particles having a particle size of less than 75 μm.
Criteria for classifying soil as a geotechnical material are summarized as criteria of the Geotechnical Society (Geotechnical Society of Japan, 2009). According to this, particles with a particle size of 5 μm or more and less than 75 μm are classified as silt, and particles with a particle size of less than 5 μm are classified as clay. These fine grain fractions are components that give viscosity to the soil. Further, according to the Japanese Geotechnical Society standards, cohesive soil, organic soil, and volcanic cohesive soil are known as soils in which the ratio of fine particles having a particle size of less than 75 μm is 50% by mass or more. In the present invention, such soil can be targeted.
As an example of component (i), the proportion of fine particles having a particle size of less than 75 μm is preferably 40% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass or more, and even more preferably 70% by mass. above, and preferably below 100% by mass.

粘土は、層状構造をもった含水珪酸塩鉱物(以降、粘土鉱物と呼ぶ)を主体としたものであり、この粘土中に微粒の鉱物として含まれる粘土鉱物としては、カオリン(カオリナイト、ディッカイト、ナクライトなど)、蛇紋石(リザーダイト、アンチゴライト、クリソタイルなど)、雲母粘土鉱物(イライト、セリサイト、海緑石、セラドナイトなど)、クロライト、バーミキュライト、スメクタイト(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライトなど)などが挙げられる。土壌が含む粘土の種類、量などは多様であるが、本発明では、例えば、カオリン及びスメクタイトから選ばれる粘土鉱物を含む土壌を対象とすることができる。 Clay is mainly composed of hydrous silicate minerals (hereinafter referred to as clay minerals) having a layered structure, and kaolin (kaolinite, dickite, nacrite, etc.), serpentine (lizardite, antigorite, chrysotile, etc.), mica clay minerals (illite, sericite, glauconite, celadonite, etc.), chlorite, vermiculite, smectite (montmorillonite, beidellite, nontronite, saponite) , hectorite, etc.). There are various types and amounts of clay contained in soil, but the present invention can target soil containing clay minerals selected from kaolin and smectite, for example.

(i)成分は、ハロイサイトを含む土壌であってよい。(i)成分は、ハロイサイトを、例えば、5質量%以上、更に10質量%以上、更に15質量%以上、そして、50質量%以下、更に40質量%以下、更に30質量%以下含有するものであってよい。 The (i) component may be soil containing halloysite. Component (i) contains, for example, 5% by mass or more, 10% by mass or more, 15% by mass or more, and 50% by mass or less, 40% by mass or less, and 30% by mass or less of halloysite. It's okay.

(i)成分は、粘土を、例えば、15質量%以上、更に20質量%以上、更に25質量%以上、そして、100質量%以下、更に95質量%以下、更に90質量%以下含有するものであってよい。 Component (i) contains, for example, 15 mass % or more, further 20 mass % or more, further 25 mass % or more, and 100 mass % or less, further 95 mass % or less, further 90 mass % or less of clay. It's okay.

(i)成分は、火山灰を起源とする土壌であってよい。(i)成分は、火山灰質の粘性土、例えば、凝灰質粘土であってよい。凝灰質粘土は、火山灰が風化、水成などを経て粘土化した土壌である。一般に凝灰質粘土は、砂の混入が少なく、乳白色ないし乳灰白色の外観を呈している。凝灰質粘土は、ソイルセメントの製造時に粘土塊が混入、形成しやすい一方でその粘土塊の解膠がしにくい土壌であるが、本発明では、このような凝灰質粘土からの粘土塊であっても容易に解膠できる。(i)成分は、凝灰質粘土を、例えば、5質量%以上、更に10質量%以上、更に15質量%以上、そして、50質量%以下、更に40質量%以下、更に30質量%以下含有するものであってよい。 The (i) component may be soil originating from volcanic ash. The (i) component may be a volcanic cohesive soil, such as a tuffaceous clay. Tuffaceous clay is soil made from volcanic ash that has turned into clay through weathering and hydration. In general, tuffaceous clays have a low sand content and a milky or milky white appearance. Tuff clay is a soil in which clay lumps are easily mixed and formed during the production of soil cement, but the clay lumps are difficult to deflocculate. It can be deflocculated easily. Component (i) contains, for example, 5 mass% or more, further 10 mass% or more, further 15 mass% or more, and 50 mass% or less, further 40 mass% or less, further 30 mass% or less of tuff clay. can be anything.

(i)成分は、乾燥密度が、例えば1.9g/cm以上、更に2.0g/cm以上、そして、2.9g/cm以下、更に2.8g/cm以下であってよい。ここで、(i)成分の乾燥密度は、JIS A 1224の方法で測定されたものである。 Component (i) may have a dry density of, for example, 1.9 g/cm 3 or more, further 2.0 g/cm 3 or more, and 2.9 g/cm 3 or less, further 2.8 g/cm 3 or less. . Here, the dry density of component (i) is measured by the method of JIS A 1224.

(ii)成分は、水硬性粉体である。(ii)成分の水硬性粉体は、水和反応により硬化する物性を有する粉体のことであり、例えば、セメント、石膏等が挙げられる。
水硬性粉体は、セメントが好ましい。セメントは、例えば、普通ポルトランドセメント等のポルトランドセメント、ビーライトセメント、中庸熱セメント、早強セメント、超早強セメント、耐硫酸塩セメント等のセメントである。水硬性粉体は、セメント、更にポルトランドセメントを、好ましくは25質量%以上、より好ましくは35質量%以上、更に好ましくは50質量%以上、より更に好ましくは60質量%以上、より更に好ましくは70質量%以上、そして、好ましくは95質量%以下、より好ましくは92質量%以下、更に好ましくは90質量%以下、より更に好ましくは85質量%以下含有する。
(ii) component is a hydraulic powder. Hydraulic powder as component (ii) is a powder having a physical property to harden by hydration reaction, and examples thereof include cement and gypsum.
The hydraulic powder is preferably cement. Cement includes, for example, Portland cement such as ordinary Portland cement, belite cement, moderate heat cement, high-early-strength cement, super-early-strength cement, sulfate-resistant cement, and the like. Hydraulic powder contains cement, more preferably Portland cement, preferably 25% by mass or more, more preferably 35% by mass or more, still more preferably 50% by mass or more, even more preferably 60% by mass or more, and even more preferably 70% by mass. % by mass or more, preferably 95% by mass or less, more preferably 92% by mass or less, even more preferably 90% by mass or less, and even more preferably 85% by mass or less.

また、水硬性粉体は、高炉スラグ、フライアッシュ、シリカフュームなどのポゾラン作用及び/又は潜在水硬性を有する粉体や、石粉(炭酸カルシウム粉末)を含有することができる。セメントに、これらが添加された高炉スラグセメント、フライアッシュセメント、シリカフュームセメント等でもよい。水硬性粉体は、水和生成物であるエトリンガイトのアルミニウムイオン供給源の観点から、高炉スラグを含有することが好ましい。水硬性粉体が高炉スラグを含有する場合、その含有量は、水硬性粉体中、好ましくは10質量%以上、より好ましくは15質量%以上、そして、好ましくは60質量%以下、より好ましくは50質量%未満である。 Moreover, the hydraulic powder can contain powder having pozzolanic action and/or latent hydraulicity such as blast furnace slag, fly ash, silica fume, and stone powder (calcium carbonate powder). Blast-furnace slag cement, fly ash cement, silica fume cement, etc. to which these are added to cement may also be used. The hydraulic powder preferably contains blast furnace slag from the viewpoint of supplying aluminum ions for ettringite, which is a hydration product. When the hydraulic powder contains blast furnace slag, the content is preferably 10% by mass or more, more preferably 15% by mass or more, and preferably 60% by mass or less, more preferably 60% by mass or less, more preferably It is less than 50% by mass.

なお、本発明では、水硬性粉体の量は、水和反応により硬化する物性を有する粉体の量、例えばセメントや石膏の量であるが、水硬性粉体が、ポゾラン作用を有する粉体、潜在水硬性を有する粉体、及び石粉(炭酸カルシウム粉末)から選ばれる粉体を含む場合、本発明では、それらの量も水硬性粉体の量に算入する。 In the present invention, the amount of hydraulic powder is the amount of powder having a physical property to harden by hydration reaction, for example, the amount of cement or gypsum. , latent hydraulic powder, and stone powder (calcium carbonate powder), the amount thereof is also included in the amount of hydraulic powder in the present invention.

(iii)成分は、下記一般式(1)で表される化合物である。
R-O-(AO)-H (1)
(一般式(1)中、Rは水素原子又は炭素数1以上4以下の炭化水素基を表し、AOはオキシエチレン基又はオキシプロピレンを表し、mはAOの平均付加モル数を表す。)
一般式(1)中、Rは、水素原子又は炭素数1以上4以下の炭化水素基である。炭化水素基は、アルキル基、アルケニル基が挙げられる。Rは、水素原子が好ましい。
一般式(1)中、AOはオキシエチレン基又はオキシプロピレンである。AOは、オキシエチレン基が好ましい。
一般式(1)中、mはAOの平均付加モル数を表す。mは、例えば、50以上、更に100以上、更に150以上、そして、50000以下、更に25000以下、更に12500以下の数であってよい。
Component (iii) is a compound represented by the following general formula (1).
RO-(AO) m -H (1)
(In general formula (1), R represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, AO represents an oxyethylene group or oxypropylene, and m represents the average number of added moles of AO.)
In general formula (1), R is a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. Hydrocarbon groups include alkyl groups and alkenyl groups. R is preferably a hydrogen atom.
In general formula (1), AO is an oxyethylene group or oxypropylene. AO is preferably an oxyethylene group.
In general formula (1), m represents the average added mole number of AO. m may be, for example, a number of 50 or more, further 100 or more, further 150 or more, and 50,000 or less, further 25,000 or less, further 12,500 or less.

(iii)成分の重量平均分子量は、例えば、1000以上、更に2000以上、更に3000以上、そして、2000000以下、更に1000000以下、更に500000以下、更に200000以下であってよい。(i)成分がこの重量平均分子量となるように一般式(1)中のmを選定することが好ましい。 The weight average molecular weight of component (iii) may be, for example, 1,000 or more, further 2,000 or more, further 3,000 or more, and 2,000,000 or less, further 1,000,000 or less, further 500,000 or less, further 200,000 or less. It is preferable to select m in the general formula (1) so that the component (i) has this weight average molecular weight.

本発明の地盤改良方法では、コラムの強度と工事で発生する排泥量の削減を両立する観点から、(ii)成分を、(i)成分に対して、18質量%以下の割合で混合する。この割合は、好ましくは3質量%以上、より好ましくは3.2質量%以上、更に好ましくは4質量%以上、より好ましくは5質量%以上、より更に好ましくは6質量%以上、より更に好ましくは8質量%以上、そして、好ましくは15質量%以下、より好ましくは12質量%以下、より好ましくは11質量%以下、更に好ましくは10質量%以下である。この割合は、〔(ii)成分の量/(i)成分の量〕×100で算出される。 In the ground improvement method of the present invention, the component (ii) is mixed with the component (i) in a ratio of 18% by mass or less from the viewpoint of achieving both the strength of the column and the reduction of the amount of sludge generated during construction. . This proportion is preferably 3% by mass or more, more preferably 3.2% by mass or more, still more preferably 4% by mass or more, more preferably 5% by mass or more, even more preferably 6% by mass or more, and even more preferably 8% by mass or more, preferably 15% by mass or less, more preferably 12% by mass or less, more preferably 11% by mass or less, and even more preferably 10% by mass or less. This ratio is calculated by [amount of component (ii)/amount of component (i)]×100.

本発明の地盤改良方法では、粘土塊の少ない均一な固化材混合物((i)成分、(ii)成分、(iii)成分及び水を含む混合物の意味である。以下同様。)を得る観点から、(iii)成分を、(i)成分に対して、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.03質量%以上、そして、好ましくは1質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.2質量%以下の割合で混合する。この割合は、〔(iii)成分の量/(i)成分の量〕×100で算出される。 In the ground improvement method of the present invention, from the viewpoint of obtaining a uniform solidification material mixture (meaning a mixture containing (i) component, (ii) component, (iii) component and water, hereinafter the same) with less clay lumps , Component (iii) is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, still more preferably 0.03% by mass or more, and preferably 1% by mass, relative to component (i) % or less, more preferably 0.5 mass % or less, and still more preferably 0.2 mass % or less. This ratio is calculated by [amount of component (iii)/amount of component (i)]×100.

本発明の地盤改良方法では、短時間で混合均一なセメントスラリーを調整する観点から、(iii)成分を、(ii)成分に対して、好ましくは0.007質量%以上、より好ましくは0.008質量%以上、更に好ましくは0.009質量%以上、そして、好ましくは12質量%以下、より好ましくは5質量%以下、更に好ましくは1質量%以下の割合で混合する。この割合は、〔(iii)成分の量/(ii)成分の量〕×100で算出される。 In the ground improvement method of the present invention, the component (iii) is preferably 0.007% by mass or more, more preferably 0.007% by mass or more, more preferably 0.007% by mass or more, based on the component (ii), from the viewpoint of preparing a uniformly mixed cement slurry in a short time. 008% by mass or more, more preferably 0.009% by mass or more, and preferably 12% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less. This ratio is calculated by [amount of component (iii)/amount of component (ii)]×100.

本発明の地盤改良方法では、セメントスラリーの流動性確保と排泥量低減の観点から、(iv)成分を、(ii)成分に対して、好ましくは40質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上、そして、好ましくは250質量%以下、より好ましくは150質量%以下、更に好ましくは80質量%以下の割合で混合する。この割合は、〔(iv)成分の量/(ii)成分の量〕×100で算出される。 In the ground improvement method of the present invention, from the viewpoint of ensuring the fluidity of the cement slurry and reducing the amount of sludge discharged, the component (iv) is preferably 40% by mass or more, more preferably 50% by mass, based on the component (ii). Above, more preferably 60% by mass or more, preferably 250% by mass or less, more preferably 150% by mass or less, and even more preferably 80% by mass or less are mixed. This ratio is calculated by [amount of component (iv)/amount of component (ii)]×100.

本発明では、減水剤(v)〔以下、(v)成分という〕を(i)成分に混合してもよい。
(v)成分としては、カルボキシル基、スルホン酸基及びリン酸基から選ばれる基を有する高分子化合物が挙げられる。該高分子化合物の重量平均分子量は、3000以上10万以下であってよい。(v)成分としては、例えば、ポリカルボン酸系重合体、ナフタレン系重合体、リン酸(ヒドロキシアルキル)メタクリル酸)エステルの重合物等が挙げられる。具体的には、炭素数2又は3のオキシアルキレン基を導入したポリアルキレングリコールモノエステル系単量体とアクリル酸系重合体、アミド系マクロモノマーを含む重合体、ポリエチレンイミンを含有する重合体、炭素数2又は3のオキシアルキレン基を導入したポリアルキレングリコールモノエステル系単量体と、リン酸ジ-〔(2-ヒドロキシエチル)メタクリル酸〕エステルと、リン酸モノ(2-ヒドロキシエチル)メタクリル酸エステルとの共重合体、ナフタレンスルホン酸ホルムアルデヒド縮合物等が挙げられる。また、(v)成分としてメラミンスルホン酸ホルマリン縮合物系、アミノスルホン酸系等も挙げられる。(v)成分は市販の減水剤や高性能減水剤を用いることができる。
本発明の地盤改良方法では、セメントミルクポンプにかかる負荷低減の観点から、(v)成分を、(ii)成分に対して、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.03質量%以上、そして、好ましくは1質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.2質量%以下の割合で混合する。この割合は、〔(v)成分の量/(ii)成分の量〕×100で算出される。
In the present invention, a water reducing agent (v) [hereinafter referred to as component (v)] may be mixed with component (i).
Component (v) includes polymer compounds having groups selected from carboxyl groups, sulfonic acid groups and phosphoric acid groups. The weight average molecular weight of the polymer compound may be 3,000 or more and 100,000 or less. Examples of component (v) include polycarboxylic acid-based polymers, naphthalene-based polymers, and polymers of phosphoric acid (hydroxyalkyl) methacrylic acid) esters. Specifically, a polyalkylene glycol monoester-based monomer and an acrylic acid-based polymer into which an oxyalkylene group having 2 or 3 carbon atoms is introduced, a polymer containing an amide-based macromonomer, a polymer containing polyethyleneimine, Polyalkylene glycol monoester-based monomer into which an oxyalkylene group having 2 or 3 carbon atoms is introduced, phosphoric acid di-[(2-hydroxyethyl) methacrylic acid] ester, and phosphoric acid mono(2-hydroxyethyl) methacrylic acid Copolymers with acid esters, naphthalene sulfonic acid formaldehyde condensates, and the like are included. In addition, melamine sulfonic acid-formalin condensates, aminosulfonic acid systems, and the like can also be used as the component (v). A commercially available water reducing agent or a high performance water reducing agent can be used as the component (v).
In the soil improvement method of the present invention, from the viewpoint of reducing the load on the cement milk pump, the component (v) is preferably 0.01% by mass or more, more preferably 0.02% by mass, relative to the component (ii). Above, more preferably 0.03% by mass or more, and preferably 1% by mass or less, more preferably 0.5% by mass or less, and even more preferably 0.2% by mass or less are mixed. This ratio is calculated by [amount of component (v)/amount of component (ii)]×100.

本発明では、消泡剤(vi)〔ただし(iii)成分を除く〕〔以下、(vi)成分という〕を(i)成分に混合してもよい。
(vi)成分としては、シリコーン系消泡剤、脂肪酸エステル系消泡剤、エーテル系消泡剤、脂肪族アミン系消泡剤などが挙げられる。シリコーン系消泡剤ではジメチルポリシロキサンがより好ましく、脂肪酸エステル系消泡剤ではポリアルキレングリコール脂肪酸エステルがより好ましく、エーテル系消泡剤ではポリアルキレングリコールアルキルエーテルがより好ましく、脂肪族アミン系消泡剤ではアルキルジメチルアミン又はその塩がより好ましい。
本発明の地盤改良方法では、ミルクプラントでの材料の流出を防止する観点から、(vi)成分を、(ii)成分に対して、好ましくは0.0001質量%以上、より好ましくは0.0002質量%以上、更に好ましくは0.0003質量%以上、そして、好ましくは0.01質量%以下、より好ましくは0.005質量%以下、更に好ましくは0.001質量%以下の割合で混合する。この割合は、〔(vi)成分の量/(ii)成分の量〕×100で算出される。
In the present invention, an antifoaming agent (vi) [excluding component (iii)] [hereinafter referred to as component (vi)] may be mixed with component (i).
Component (vi) includes silicone antifoaming agents, fatty acid ester antifoaming agents, ether antifoaming agents, and aliphatic amine antifoaming agents. Dimethylpolysiloxane is more preferable as a silicone antifoaming agent, polyalkylene glycol fatty acid ester is more preferable as a fatty acid ester antifoaming agent, polyalkylene glycol alkyl ether is more preferable as an ether antifoaming agent, and an aliphatic amine antifoaming agent. Alkyldimethylamine or a salt thereof is more preferred as the agent.
In the soil improvement method of the present invention, from the viewpoint of preventing the outflow of materials in the milk plant, the component (vi) is preferably 0.0001% by mass or more, more preferably 0.0002% by mass, based on the component (ii). % by mass or more, more preferably 0.0003% by mass or more, and preferably 0.01% by mass or less, more preferably 0.005% by mass or less, and even more preferably 0.001% by mass or less. This ratio is calculated by [amount of component (vi)/amount of component (ii)]×100.

本発明では、(i)成分に、(ii)成分と(iii)成分と(iv)成分とを含有するスラリーを混合することが好ましい。前記スラリーは、いわゆるセメントミルクなどの固化材スラリーであってよい。前記スラリーは、(v)成分、(vi)成分を含有することができる。 In the present invention, it is preferable to mix the component (i) with a slurry containing the components (ii), (iii) and (iv). The slurry may be a solidifying material slurry such as so-called cement milk. The slurry may contain components (v) and (vi).

また、本発明では、(i)成分に、(ii)成分、(iii)成分、(iv)成分を別々に混合することもできる。 In the present invention, component (ii), component (iii), and component (iv) can be separately mixed with component (i).

本発明の地盤改良方法では、(i)成分の原位置で、(i)成分に、(ii)成分と(iii)成分と(iv)成分とを混合し、ソイルセメントを調製することができる。本発明の地盤改良方法として、例えば、調製したソイルセメントを地盤に打設し、ソイルセメントが硬化して地盤改良体となり、地盤の強度を向上させることが挙げられる。 In the ground improvement method of the present invention, soil cement can be prepared by mixing component (i) with component (ii), component (iii) and component (iv) in situ with component (i). . As the soil improvement method of the present invention, for example, the prepared soil cement is placed in the ground, and the soil cement hardens to become a soil improvement body to improve the strength of the ground.

本発明の地盤改良方法は、ソイルセメントを地盤に打設する施工方法が挙げられる。例えば、表層混合処理法、中層混合処理法、深層混合処理法、鋼管杭工法、シールド工法などの工法で実施できる。例えば、深層混合改良工法では、高圧噴射工法、TRD工法、SMW工法などが挙げられる。本発明の方法は、深層混合処理法に好適である。 The ground improvement method of the present invention includes a construction method of placing soil cement in the ground. For example, it can be implemented by construction methods such as a surface layer mixing method, an intermediate layer mixing method, a deep layer mixing method, a steel pipe pile construction method, and a shield construction method. For example, the deep mixing improvement method includes a high pressure injection method, a TRD method, an SMW method, and the like. The method of the present invention is suitable for deep mixing processing methods.

本発明の地盤改良方法では、前記スラリーを用いることが好ましい。その場合、前記スラリーを、スラリー混合方式の撹拌機を用いて(i)成分に混合することができる。ここで、スラリー混合方式の撹拌機とは、土壌とスラリーの機械攪拌を伴う工法に用いられる攪拌機であり、土壌にセメントなどの水硬性粉体を含むスラリーを注入し機械攪拌を加えることのできる撹拌機である。このような撹拌機を使用した工法として、例えば、マッドスタビ工法、ARM工法、LVM工法、FAM工法、マッドミキサーM-II工法、SCM工法、ISM工法、WILL工法、アイマーク工法II、VMS工法、STコラム工法。三次元攪拌工法、パワーブレンダー工法、MMB工法、MR-IIC工法、ツイン・ブレードミキシング工法、オープンウィング工法、ダブルミキシング工法、USP工法、MT-CMC工法、エスミコラム工法、スリーエスG工法、ソイルマスター工法、CDM-SSC工法、PROP工法、CI-CMC工法、アスコラム工法、DJM工法、TRD工法、エポコラム工法、NCコラム工法、RASコラム工法、JST工法、CDM-LODIC工法、CDM-コラム工法、CDM工法、テノコラム工法、KS-B・MIX工法、CDM-Mega工法、CDM-Land4工法、CDM-レムニ2/3工法、CDM-FLOAT工法、DCM-L工法、DCS工法、拡縮コラム工法、HEMS工法、MITS工法を挙げることができる。 In the soil improvement method of the present invention, it is preferable to use the slurry. In that case, the slurry can be mixed with component (i) using a slurry mixing type stirrer. Here, the slurry mixing type agitator is an agitator used in a construction method involving mechanical agitation of soil and slurry, and can add slurry containing hydraulic powder such as cement to soil and add mechanical agitation. A stirrer. Examples of construction methods using such stirrers include the Mud Stubby construction method, ARM construction method, LVM construction method, FAM construction method, Mud Mixer M-II construction method, SCM construction method, ISM construction method, WILL construction method, Eye Mark construction method II, VMS construction method, ST column method. Three-dimensional mixing method, power blender method, MMB method, MR-IIC method, twin blade mixing method, open wing method, double mixing method, USP method, MT-CMC method, ESMI column method, 3S G method, soil master method , CDM-SSC method, PROP method, CI-CMC method, As-column method, DJM method, TRD method, Epo-column method, NC-column method, RAS-column method, JST method, CDM-LODIC method, CDM-column method, CDM method, Tenocolumn method, KS-B・MIX method, CDM-Mega method, CDM-Land4 method, CDM-Lemni 2/3 method, CDM-FLOAT method, DCM-L method, DCS method, Scaling column method, HEMS method, MITS method can be mentioned.

本発明では、コラムの品質と工期短縮の両立の観点から、前記撹拌機による混合では、羽根切り回数が、好ましくは100回以上、より好ましくは200回以上、そして、好ましくは1000回以下、より好ましくは500回以下である。この範囲の羽根切り回数となる撹拌機を用いることが好ましい。一般に、地盤の改良に用いる撹拌機は、撹拌翼を備えており、撹拌翼の形状、撹拌翼の数、撹拌力、土壌の量、土壌の質などを考慮して羽根切り回数が設定される。 In the present invention, from the viewpoint of both the quality of the column and the shortening of the construction period, in the mixing with the stirrer, the number of times of blade cutting is preferably 100 times or more, more preferably 200 times or more, and preferably 1000 times or less. It is preferably 500 times or less. It is preferable to use a stirrer with blade cutting times within this range. In general, the agitator used for soil improvement is equipped with agitating blades, and the blade cutting frequency is set in consideration of the shape of the agitating blade, the number of agitating blades, the agitation power, the amount of soil, the quality of the soil, etc. .

前記スラリーを用いる場合、該スラリーを地盤である(i)成分に注入する具体的な方法は、公知の地盤改良方法に準じてよい。前記スラリーを地盤に注入する方法として、例えば、噴射撹拌工法(一相流方式、二相流方式、三相流方式)や機械撹拌工法(CDM工法など)、更に地中連続壁工法(SMW工法、TRD工法など)などが挙げられる。前記スラリーと(i)成分とを混合して得た、ソイルセメントなどの固化材混合物は、公知の地盤改良方法に準じて固化させることができる。 When the slurry is used, a specific method of injecting the slurry into the ground component (i) may be according to a known ground improvement method. As a method of injecting the slurry into the ground, for example, injection stirring method (single-phase flow method, two-phase flow method, three-phase flow method), mechanical stirring method (CDM method, etc.), underground continuous wall method (SMW method) , TRD method, etc.). A solidification material mixture such as soil cement obtained by mixing the slurry and component (i) can be solidified according to a known ground improvement method.

本発明では、前記スラリーを地盤に注入しながら(i)成分を混合撹拌し、ソイルセメントとした後、ソイルセメントコラムを築造することができる。本発明では、混合撹拌装置の先端部から前記スラリーを排出させながら地盤を回転掘進して(i)成分と前記スラリーと混合することができる。これらを組み合わせて実施できる。このような方法は、深層混合処理法に好適である。 In the present invention, the component (i) is mixed and agitated while injecting the slurry into the ground to obtain soil cement, and then the soil cement column can be constructed. In the present invention, it is possible to mix the component (i) with the slurry by rotating and excavating the ground while discharging the slurry from the tip of the mixing and stirring device. These can be implemented in combination. Such methods are suitable for deep mixing processes.

本発明の地盤改良方法としては、撹拌翼とスラリーの噴出口とを備えたロッドを回転させながら(i)成分に貫入させ、(ii)成分と(iii)成分と(iv)成分とを含有するスラリーを前記噴出口から(i)成分に注入させながら前記撹拌翼で(i)成分と前記スラリーとを撹拌混合する地盤改良方法であって、(ii)成分を、(i)成分に対して、18質量%以下の割合で混合する、地盤改良方法が挙げられる。この方法もまた(i)成分の原位置で行うことが好ましい。一般に、このようなロッドを用いる場合は、ロッドの回転形状に応じた形状の領域、例えば円形の領域で(i)成分とスラリーとが撹拌混合される。 As the ground improvement method of the present invention, a rod equipped with a stirring blade and a slurry ejection port is rotated and penetrated into the component (i) to contain the component (ii), the component (iii) and the component (iv). A ground improvement method for stirring and mixing the (i) component and the slurry with the stirring blade while injecting the slurry into the (i) component from the spout, wherein the (ii) component is added to the (i) component and mixing at a ratio of 18% by mass or less, a ground improvement method. This method is also preferably performed in situ with component (i). In general, when such a rod is used, the component (i) and the slurry are stirred and mixed in a region having a shape corresponding to the rotational shape of the rod, such as a circular region.

本発明では、スラリー混合方式の撹拌機として、例えば、オーガロッドと、オーガロッドに設けられた固化材(前記スラリー)の噴出口と、オーガロッドに設けられた掘削翼と、必要によりオーガロッドに設けられた共回り防止翼と、を備えた掘削用アースオーガを用いることができる。このような掘削用アースオーガは、ソイルセメントコラムを築造する方法で公知ものを使用できる。
前記掘削用アースオーガを、地盤のソイルセメントコラムを築造する所定の位置にセットし、撹拌翼を回転させながら所定空堀深度まで掘進する。その際、オーガロッドから前記スラリーを吐出させながら掘進する。前記スラリーを吐出させずに掘進してもよいが、所定深度に達したら前記スラリーを吐出させながら掘進する。注入掘進工程(混合撹拌)が完了したら、前記スラリーの吐出を停止し、オーガロッドの回転方向を逆転した後、引き上げ(混合撹拌)を開始する。オーガを引き抜いて工程を完了する。このような方法では、羽根切り回数は、撹拌翼の回転数から算出することができる。
本発明では、ソイルセメントコラム中の粘土塊が低減され、また存在する粘土塊も小さいもとなるため、ソイルセメントコラムの強度の低下を抑制できる。前記スラリーは流動性に優れたものとなるため、作業性も向上する。
In the present invention, as a slurry mixing type stirrer, for example, an auger rod, a solidifying material (said slurry) ejection port provided on the auger rod, an excavating blade provided on the auger rod, and if necessary, on the auger rod An earth auger for excavation with provided anti-rotation wings can be used. Such excavating earth augers can be used in a manner known in the art for constructing soil-cement columns.
The earth auger for excavation is set at a predetermined position for constructing a soil cement column in the ground, and excavation is performed to a predetermined dry excavation depth while rotating the stirring blade. At that time, the excavation is carried out while discharging the slurry from the auger rod. The trench may be excavated without discharging the slurry, but when the predetermined depth is reached, the excavation is carried out while discharging the slurry. After the pouring and advancing step (mixing and stirring) is completed, the discharge of the slurry is stopped, and after the rotation direction of the auger rod is reversed, lifting (mixing and stirring) is started. Withdraw the auger to complete the process. In such a method, the number of blade cutting times can be calculated from the rotation speed of the stirring blade.
In the present invention, the clay lumps in the soil cement column are reduced, and the existing clay lumps are also small, so that the deterioration of the strength of the soil cement column can be suppressed. Since the slurry has excellent fluidity, workability is also improved.

<地盤改良体>
本発明は、(i)成分と、(ii)成分と、(iii)成分とを含有する地盤改良体であって、(i)成分が、均等係数(D50/D10)が2.6以上8.0以下の土壌であり、(ii)成分を、(i)成分に対して、18質量%以下の割合で含有する、地盤改良体に関する。本発明の地盤改良体には、本発明の地盤改良方法で述べた事項を適宜適用することができる。本発明の地盤改良体における(i)成分、(ii)成分、(iii)成分などの具体例や好ましい例も、本発明の地盤改良方法と同じである。
<Soil improvement material>
The present invention is a soil improvement material containing components (i), (ii), and (iii), wherein the component (i) has a uniformity coefficient (D50/D10) of 2.6 or more and 8 It relates to a soil improvement material having a soil of .0 or less and containing component (ii) in a ratio of 18% by mass or less with respect to component (i). The items described in the soil improvement method of the present invention can be appropriately applied to the soil improvement body of the present invention. Specific examples and preferred examples of components (i), (ii), and (iii) in the soil improvement material of the present invention are also the same as those of the soil improvement method of the present invention.

本発明の地盤改良体は、(i)成分と、(ii)成分と、(iii)成分とを混合してなる地盤改良体であって、(i)成分が、均等係数(D50/D10)が2.6以上8.0以下の土壌であり、(ii)成分の混合量が、(i)成分の混合量に対して、18質量%以下である、地盤改良体であってよい。
また、本発明の地盤改良体は、(i)成分と、(ii)成分と、(iii)成分と、(vi)成分を混合してなる混合物を硬化させてなる地盤改良体であって、(i)成分が、均等係数(D50/D10)が2.6以上8.0以下の土壌であり、前記混合物中の(ii)成分の含有量が、前記混合物中の(i)成分の含有量に対して、18質量%以下である、地盤改良体であってよい。
The soil improvement material of the present invention is a soil improvement material obtained by mixing components (i), (ii), and (iii), wherein the component (i) has a uniformity coefficient (D50/D10) is 2.6 or more and 8.0 or less, and the mixing amount of component (ii) is 18% by mass or less with respect to the mixing amount of component (i).
Further, the soil improvement material of the present invention is a soil improvement material obtained by curing a mixture obtained by mixing components (i), (ii), (iii), and (vi), (i) component is soil with a uniformity coefficient (D50/D10) of 2.6 or more and 8.0 or less, and the content of component (ii) in the mixture is the content of component (i) in the mixture It may be a soil improvement material that is 18% by mass or less with respect to the amount.

(1)固化材スラリーの調製
表に示す(ii)成分、(iii)成分及び(iv)成分を混合し、固化材スラリーを作製した。混合は、ハンドミキサーで1分の条件で行った。その際、(iii)成分は、(ii)成分に対する割合が表の通りとなるように混合した。また(iv)成分は、(ii)成分に対して60質量%になるように混合した。
(1) Preparation of Solidifying Material Slurry Components (ii), (iii) and (iv) shown in the table were mixed to prepare a solidifying material slurry. Mixing was performed with a hand mixer for 1 minute. At that time, the component (iii) was mixed so that the ratio to the component (ii) was as shown in the table. In addition, component (iv) was mixed so as to be 60% by mass with respect to component (ii).

(2)粘土残存面積率の測定
表に示す(i)成分に、固化材スラリーを混合し、ソイルセメントを作製した。混合は、モルタルホバートミキサーを使用し1分の条件で行った。その際、固化材スラリーは(i)に対する(ii)成分の割合が表の通りとなるように用いた。
ソイルセメントを、直径10cm×高さ5cmの容器(軟質プラスチック製カップ)に充填し、10回タッピング行うことで粗な空隙を除いた。
(2) Measurement of residual clay area ratio A soil cement was prepared by mixing the component (i) shown in the table with a solidifying agent slurry. Mixing was performed using a mortar Hobart mixer for 1 minute. At that time, the solidifying material slurry was used so that the ratio of component (ii) to component (i) was as shown in the table.
The soil cement was filled into a container (soft plastic cup) having a diameter of 10 cm and a height of 5 cm, and rough voids were removed by tapping 10 times.

ソイルセメントが未硬化の状態で、容器の底部から2.5cmの位置で、容器の外側から容器ごと充填したソイルセメントを上下に割断し、下部分の断面に、1%フェノールフタレイン(90%エタノール)を吹きかけた。セメントを含む部分は染色されるが、セメントを含まない箇所は染色されない。セメントを含まない個所は、粘土塊が残存する非染色の箇所である。
染色処理後の断面に、5mm方眼のメッシュの透明版を合わせ、非染色のセル数を計数し、以下の式で粘土塊残存率を算出し、混合性の指標とした。この計算式は、セルの一部が非染色であるものは、非染色のセル0.5個に相当するとして計算するものである。粘土塊残存率の値が小さいほど、土壌と固化材スラリーが均一に混合されていることを意味する。
粘土塊残存率(%)={(5mm方眼全てが非染色のセル数)×1+(5mm方眼の一部が非染色のセル数)×0.5}/(計測に使用した全てのセル数)
With the soil cement unhardened, the soil cement filled with the container was cut vertically from the outside of the container at a position 2.5 cm from the bottom of the container, and 1% phenolphthalein (90% ethanol) was sprayed. The part containing cement is dyed, but the part without cement is not dyed. Cement-free locations are unstained locations where clay mass remains.
A transparent plate of mesh of 5 mm grid was placed on the section after the dyeing treatment, and the number of unstained cells was counted, and the clay mass residual rate was calculated by the following formula and used as an index of the mixing property. In this calculation formula, a partially unstained cell corresponds to 0.5 unstained cells. It means that the smaller the value of the residual clay mass ratio, the more uniformly the soil and the solidifying material slurry are mixed.
Clay mass residual rate (%) = {(Number of unstained cells in all 5 mm squares) × 1 + (Number of unstained cells in part of 5 mm squares) × 0.5} / (Number of all cells used for measurement )

(3)最低針貫入値の測定
前記(2)で割断したソイルセメントの上部分を、容器に入ったまま20℃で24時間養生した。その際、断面の乾燥を防ぐために、ソイルセメントの断面を濡れタオルで覆って養生した。養生後、針入度試験器を使用して最低針貫入値を測定した。針入度試験器には、規定の針入度針(以下針と呼ぶ)を用いた。ここで、針はステンレス鋼(JIS G 4303に規定するSUS440C)、針先の形状が円錐状であり、寸法が長さ40mm、直径1mm、錆がついておらず、曲がりがないものであった。また、針のテーパー部の表面粗さはJIS B 0651で測定したとき0.3μm以下のものであった。
針入度試験器の載荷部(針、針保持具、おもり)の総質量が所定の質量(100g)を示すことを確認した後、おもり(50±0.05g)を針入度試験器の針保持具に取り付けた。また、留金具を押し、針保持具が直ちに落下することを確認した。養生後のサンプルを針入度試験器で、針が止まるまでの距離を測定した。サンプル表面の異なる5箇所を無作為に選んでこの測定を行った。この距離の内、最も小さい距離を最低針貫入値として表に示した。最低針貫入値が小さいほど硬化体の強度が高いことを意味する。
(3) Measurement of Minimum Needle Penetration Value The upper portion of the soil cement cut in (2) above was cured at 20° C. for 24 hours in a container. At that time, in order to prevent drying of the cross section, the cross section of the soil cement was covered with a wet towel for curing. After curing, the minimum needle penetration value was measured using a penetrometer. A prescribed penetration needle (hereinafter referred to as a needle) was used for the penetration tester. Here, the needle was made of stainless steel (SUS440C defined in JIS G 4303), had a conical tip, had a length of 40 mm, a diameter of 1 mm, and was not rusted or bent. The surface roughness of the taper portion of the needle was 0.3 μm or less when measured according to JIS B 0651.
After confirming that the total mass of the loading part (needle, needle holder, weight) of the penetration tester shows the specified mass (100 g), the weight (50 ± 0.05 g) is placed on the penetration tester. Attached to the needle holder. Also, the clasp was pressed and the needle holder immediately dropped. The sample after curing was measured with a needle penetration tester to measure the distance until the needle stops. This measurement was performed at five randomly selected locations on the sample surface. The smallest of these distances is shown in the table as the minimum needle penetration value. The smaller the minimum needle penetration value, the higher the strength of the cured product.

Figure 2022183826000001
Figure 2022183826000001

*1 調製品は、市販の笠岡粘土(カサネン工場社製、商品名 笠岡粘土(粉末)(250メッシュ))と、6号珪砂と、水とを、笠岡粘土/珪砂/水=10/70/20(質量比)で混合して調製した土壌である。 * 1 Prepared product is commercially available Kasaoka clay (manufactured by Kasanen Factory, trade name Kasaoka clay (powder) (250 mesh)), No. 6 silica sand, and water, Kasaoka clay / silica sand / water = 10/70/ Soil prepared by mixing at 20 (mass ratio).

Figure 2022183826000002
Figure 2022183826000002

Claims (11)

粘土を含む土壌(i)〔以下、(i)成分という〕に、水硬性粉体(ii)〔以下、(ii)成分という〕と、下記一般式(1)で表される化合物(iii)〔以下、(iii)成分という〕と、水(iv)〔以下、(iv)成分という〕とを混合する地盤改良方法であって、
(i)成分が、均等係数(D50/D10)が2.6以上8.0以下の土壌であり、
(ii)成分を、(i)成分に対して、18質量%以下の割合で混合する、
地盤改良方法。
R-O-(AO)-H (1)
(一般式(1)中、Rは水素原子又は炭素数1以上4以下の炭化水素基を表し、AOはオキシエチレン基又はオキシプロピレンを表し、mはAOの平均付加モル数を表す。)
Soil (i) containing clay [hereinafter referred to as component (i)], hydraulic powder (ii) [hereinafter referred to as component (ii)], and compound (iii) represented by the following general formula (1) [hereinafter referred to as component (iii)] and water (iv) [hereinafter referred to as component (iv)] are mixed,
(i) the component is soil with a uniformity coefficient (D50/D10) of 2.6 or more and 8.0 or less;
(ii) component is mixed in a ratio of 18% by mass or less with respect to (i) component,
Soil improvement method.
RO-(AO) m -H (1)
(In general formula (1), R represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, AO represents an oxyethylene group or oxypropylene, and m represents the average number of added moles of AO.)
(i)成分が、自然含水比が35%以上85%以下の土壌である、請求項1に記載の地盤改良方法。 The soil improvement method according to claim 1, wherein the component (i) is soil having a natural water content of 35% or more and 85% or less. (i)成分が、BET比表面積が30m/g以上70m/g以下の土壌である、請求項1又は2に記載の地盤改良方法。 The ground improvement method according to claim 1 or 2, wherein the component (i) is soil having a BET specific surface area of 30 m 2 /g or more and 70 m 2 /g or less. (i)成分が、細孔距離が7nm以上20nm以下の土壌である、請求項1~3の何れか1項に記載の地盤改良方法。 (i) The soil improvement method according to any one of claims 1 to 3, wherein the component is soil having a pore distance of 7 nm or more and 20 nm or less. (i)成分が、自然含水比と塑性限界の差が0%以上80%以下の土壌である、請求項1~4の何れか1項に記載の地盤改良方法。 (i) The soil improvement method according to any one of claims 1 to 4, wherein the component is soil with a difference between the natural water content and the plastic limit of 0% or more and 80% or less. (i)成分が、ハロイサイトを含む土壌である、請求項1~5の何れか1項に記載の地盤改良方法。 (i) The soil improvement method according to any one of claims 1 to 5, wherein the component is soil containing halloysite. (i)成分が、凝灰質粘土を含む土壌である、請求項1~6の何れか1項に記載の地盤改良方法。 (i) The soil improvement method according to any one of claims 1 to 6, wherein the component is soil containing tuffaceous clay. (iv)成分を、(ii)成分に対して、40質量%以上250質量%以下の割合で混合する、請求項1~7の何れか1項に記載の地盤改良方法。 The ground improvement method according to any one of claims 1 to 7, wherein the component (iv) is mixed with the component (ii) in a proportion of 40% by mass or more and 250% by mass or less. (iii)成分の重量平均分子量が1000以上2000000以下である、請求項1~8の何れか1項に記載の地盤改良方法。 (iii) The soil improvement method according to any one of claims 1 to 8, wherein the weight average molecular weight of the component is 1000 or more and 2000000 or less. (i)成分に、減水剤(v)を混合する、請求項1~9の何れか1項に記載の地盤改良方法。 The soil improvement method according to any one of claims 1 to 9, wherein the component (i) is mixed with a water reducing agent (v). (i)成分に、消泡剤(vi)を混合する、請求項1~10の何れか1項に記載の地盤改良方法。 The ground improvement method according to any one of claims 1 to 10, wherein the component (i) is mixed with an antifoaming agent (vi).
JP2021091320A 2021-05-31 2021-05-31 Soil improvement method Pending JP2022183826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021091320A JP2022183826A (en) 2021-05-31 2021-05-31 Soil improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021091320A JP2022183826A (en) 2021-05-31 2021-05-31 Soil improvement method

Publications (1)

Publication Number Publication Date
JP2022183826A true JP2022183826A (en) 2022-12-13

Family

ID=84437958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021091320A Pending JP2022183826A (en) 2021-05-31 2021-05-31 Soil improvement method

Country Status (1)

Country Link
JP (1) JP2022183826A (en)

Similar Documents

Publication Publication Date Title
EP2298709A1 (en) Concrete mix having anti-efflorescence properties and method of making concrete using the same
JP2008037891A (en) Method for preparing soil cement slurry
JP5769197B2 (en) Hydraulic cement composition for ground injection and ground improvement method using the same
JP6755743B2 (en) Manufacturing method of fluidized soil cement
JP2022183826A (en) Soil improvement method
JP2022183825A (en) Soil improvement method
CN114409355B (en) Low-water-to-gel ratio vertical barrier material and preparation method and application thereof
JP7084200B2 (en) Admixture composition for hydraulic composition
JP6711801B2 (en) Foaming agent composition for civil engineering construction materials
JP2004211382A (en) Soil improving method
JP5769198B2 (en) Hydraulic cement composition for ground injection and ground improvement method using the same
JPH08169779A (en) Foamed mortar cavity filler
Deng et al. Exploring macroscopic and microscopic impacts of alcohol amine modified with water-reducing agent on cementitious material and its application
CN116947406A (en) Composite slurry for stirring pile foundation reinforcement engineering
JP7299869B2 (en) Ground improvement method
JP6578316B2 (en) Ground improvement method
JP7391485B2 (en) soil cement
JP2023182442A (en) Ground improvement method
JP7044535B2 (en) Hydraulic composition for pile construction method
JP2001225037A (en) Seepage control and bank protection construction method of waste disposal site
JPH0825782B2 (en) Grout material for fixing underwater structure and its construction method
JP2023083701A (en) Soil improvement method
JP2022044989A (en) Ground improvement method
JP6755828B2 (en) Ground improvement method
JP6924738B2 (en) Additives for soil cement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240917