JP2022170067A - Cobalt recovery method - Google Patents
Cobalt recovery method Download PDFInfo
- Publication number
- JP2022170067A JP2022170067A JP2021075948A JP2021075948A JP2022170067A JP 2022170067 A JP2022170067 A JP 2022170067A JP 2021075948 A JP2021075948 A JP 2021075948A JP 2021075948 A JP2021075948 A JP 2021075948A JP 2022170067 A JP2022170067 A JP 2022170067A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- leachate
- leaching
- hydrochloric acid
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 137
- 239000010941 cobalt Substances 0.000 title claims abstract description 137
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 137
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000011084 recovery Methods 0.000 title claims abstract description 19
- 238000002386 leaching Methods 0.000 claims abstract description 52
- 239000012535 impurity Substances 0.000 claims abstract description 47
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 39
- 238000001556 precipitation Methods 0.000 claims abstract description 30
- 239000005708 Sodium hypochlorite Substances 0.000 claims abstract description 17
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims abstract description 17
- 230000001376 precipitating effect Effects 0.000 claims abstract description 16
- 239000002994 raw material Substances 0.000 claims abstract description 14
- 239000002253 acid Substances 0.000 claims abstract description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 106
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 84
- 229910052742 iron Inorganic materials 0.000 claims description 42
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 36
- 229910052802 copper Inorganic materials 0.000 claims description 35
- 239000010949 copper Substances 0.000 claims description 35
- 239000007788 liquid Substances 0.000 claims description 15
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 3
- 239000002244 precipitate Substances 0.000 abstract description 37
- 239000000243 solution Substances 0.000 abstract description 18
- 239000007864 aqueous solution Substances 0.000 abstract description 9
- 239000010802 sludge Substances 0.000 description 49
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 28
- 229910052751 metal Inorganic materials 0.000 description 23
- 239000002184 metal Substances 0.000 description 23
- 239000000203 mixture Substances 0.000 description 17
- 229910052759 nickel Inorganic materials 0.000 description 14
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 7
- JJLJMEJHUUYSSY-UHFFFAOYSA-L copper(II) hydroxide Inorganic materials [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 6
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- MSNWSDPPULHLDL-UHFFFAOYSA-K ferric hydroxide Chemical compound [OH-].[OH-].[OH-].[Fe+3] MSNWSDPPULHLDL-UHFFFAOYSA-K 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- AEJIMXVJZFYIHN-UHFFFAOYSA-N copper;dihydrate Chemical compound O.O.[Cu] AEJIMXVJZFYIHN-UHFFFAOYSA-N 0.000 description 3
- 238000004993 emission spectroscopy Methods 0.000 description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001869 cobalt compounds Chemical class 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- 229910021506 iron(II) hydroxide Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、コバルト回収方法に関する。 The present invention relates to a cobalt recovery method.
コバルトは、国内において携帯電話、ノートパソコン、電気自動車、特殊鋼等に使用される。コバルトは、リチウムイオン電池の正極材への用途が最も多い。特に車載用リチウムイオン電池への用途が需要を後押ししており、酸化コバルトや硫酸コバルト等のコバルト化合物が主に利用されている。特殊鋼(スーパーアロイ、超合金)等では、主に電気コバルト(コバルト地金)が使用されているが、一部で酸化コバルトも使用される。他にも家庭電化製品・音響機器等に使用されるアルニコ磁石(Al-Ni-Co)やサマリウムコバルト磁石等の永久磁石といった用途で使用されている。 Cobalt is used in mobile phones, laptop computers, electric vehicles, special steel, etc. in Japan. Cobalt is most commonly used as a cathode material in lithium-ion batteries. In particular, applications in automotive lithium-ion batteries are boosting demand, and cobalt compounds such as cobalt oxide and cobalt sulfate are mainly used. Electrolytic cobalt (cobalt bare metal) is mainly used in special steels (superalloys, superalloys), etc., but cobalt oxide is also used in some areas. It is also used for permanent magnets such as alnico magnets (Al--Ni--Co) and samarium-cobalt magnets used in home electric appliances and audio equipment.
しかし、コバルトは希少金属で他の金属より市場価格が高い。また産地が偏在しているため供給が不安定であり、現状では需要量のほとんどを輸入に依存している。 However, cobalt is a rare metal and has a higher market price than other metals. In addition, because of the uneven distribution of production areas, the supply is unstable, and at present, most of the demand is dependent on imports.
そこで、希少有価物であるコバルト及びニッケルを使用済みのリチウムイオン電池や特殊鋼等からこれらの有価物を回収してリサイクルすることが望まれている。リチウムイオン電池廃材から高純度のコバルト化合物を回収する方法が提案されている(特許文献1参照)。 Therefore, it is desired to recover and recycle rare and valuable materials such as cobalt and nickel from used lithium ion batteries, special steel, and the like. A method for recovering a high-purity cobalt compound from lithium ion battery waste has been proposed (see Patent Document 1).
しかしながら、従来の回収方法では、コバルト沈殿物におけるコバルト純度は高くないという問題があった。 However, the conventional recovery method has a problem that the cobalt purity in the cobalt precipitate is not high.
本発明のコバルト回収方法は、コバルトを含むリサイクル原料から、前記コバルトを回収するコバルト回収方法であって、前記リサイクル原料を酸溶液により溶解し、前記コバルトを前記酸溶液に浸出させる浸出工程と、前記浸出により生じた浸出液に水酸化ナトリウム水溶液を添加することにより前記浸出液中の不純物を沈殿させる不純物沈殿工程と、前記沈殿した不純物を除去する不純物除去工程と、前記不純物が除去された前記浸出液に次亜塩素酸ナトリウム水溶液を添加することにより前記コバルトを沈殿させるコバルト沈殿工程と、を備える。 A method for recovering cobalt according to the present invention is a method for recovering cobalt from a recycled raw material containing cobalt, the method comprising: a leaching step of dissolving the recycled raw material in an acid solution and leaching the cobalt into the acid solution; an impurity precipitation step of precipitating impurities in the leachate by adding a sodium hydroxide aqueous solution to the leachate produced by the leach; an impurity removal step of removing the precipitated impurities; and a cobalt precipitation step of precipitating the cobalt by adding an aqueous sodium hypochlorite solution.
本発明によれば、コバルト純度が高いコバルト沈殿物を回収することができる。 According to the present invention, cobalt precipitates with high cobalt purity can be recovered.
本発明のコバルト回収方法について、図面を用いて説明する。図1は、本実施形態のコバルト回収方法の例を示すフローチャートである。 The cobalt recovery method of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart showing an example of the cobalt recovery method of this embodiment.
図1に示すように、コバルト回収方法は、コバルトを含むリサイクル原料から、前記コバルトを回収するコバルト回収方法であって、前記リサイクル原料を酸溶液により溶解し、前記コバルトを前記酸溶液に浸出させる浸出工程(ステップ50)と、前記浸出により生じた浸出液に水酸化ナトリウム水溶液を添加することにより前記浸出液中の不純物を沈殿させる不純物沈殿工程と(ステップ51)、前記沈殿した不純物を除去する不純物除去工程と(ステップ52)、前記不純物が除去された前記浸出液に次亜塩素酸ナトリウム水溶液を添加することにより前記コバルトを沈殿させるコバルト沈殿工程と(ステップ53)、を備える。なお、不純物は、鉄及び銅の少なくとも1つの元素を含む。 As shown in FIG. 1, the cobalt recovery method is a method for recovering cobalt from recycled raw materials containing cobalt, wherein the recycled raw materials are dissolved in an acid solution, and the cobalt is leached into the acid solution. a leaching step (step 50); an impurity precipitation step (step 51) of precipitating impurities in the leaching solution by adding an aqueous sodium hydroxide solution to the leaching solution produced by the leaching; and an impurity removal step of removing the precipitated impurities. and a cobalt precipitation step (step 53) of precipitating the cobalt by adding an aqueous sodium hypochlorite solution to the leachate from which the impurities have been removed. Note that the impurities include at least one element of iron and copper.
本実施形態では、リチウムイオン電池やネオジム磁石などが含まれた廃棄物を焼成・加工したスラッジを用いて実験を行った。スラッジには、コバルト、ネオジム、及びニッケル等のレアメタルの他、鉄や銅等の不純物が含まれている。したがって、スラッジに含まれたコバルトを回収するために、鉄や銅等の金属を不純物として除去し、高純度のコバルト沈殿物としてコバルトを回収する。 In this embodiment, an experiment was conducted using sludge obtained by firing and processing waste containing lithium ion batteries, neodymium magnets, and the like. Sludge contains rare metals such as cobalt, neodymium, and nickel, as well as impurities such as iron and copper. Therefore, in order to recover cobalt contained in the sludge, metals such as iron and copper are removed as impurities, and cobalt is recovered as a high-purity cobalt precipitate.
まず、本実施形態の浸出処理(ステップ50)について説明する。リサイクル原料であるスラッジをエネルギー分散型蛍光X線分析装置(SHIMADZU EDX-7000)によって測定した。図2は、蛍光X線分析装置によって測定したスラッジの組成を示したものである。図2に示すように、スラッジの主な組成物の重量%は、コバルトが31.2重量%、鉄が25.7重量%、ネオジムが22.7重量%、銅が3.85重量%、ニッケルが1.16重量%、塩素が9.68重量%、及びその他が約5.71重量%となった。 First, the leaching process (step 50) of this embodiment will be described. Sludge, which is a recycled raw material, was measured by an energy dispersive X-ray fluorescence spectrometer (SHIMADZU EDX-7000). FIG. 2 shows the composition of sludge measured by a fluorescent X-ray spectrometer. As shown in FIG. 2, the main composition weight percent of the sludge is 31.2 weight percent cobalt, 25.7 weight percent iron, 22.7 weight percent neodymium, 3.85 weight percent copper, It resulted in 1.16 wt% nickel, 9.68 wt% chlorine, and about 5.71 wt% others.
また、リサイクル原料であるスラッジを王水に浸出させ、主な金属の浸出量をICP発光分光分析法(ICP-AES)で測定した。スラッジ1gを王水20 mL(濃硫酸15 mL+濃硝酸5 mL)に浸出させ、各金属の浸出量をICP-AES(SHIMADZU ICPS-9000)により、コバルト、鉄、及び銅について測定を行った。図3は、ICP発光分光分析法で測定したスラッジの組成を示したものである。図3に示すように、スラッジの主な組成物の重量は、スラッジ1g当たり、コバルトが161.3 mg、鉄が127.2 mg、及び銅が23.6 mgとなった。 In addition, sludge, which is a recycled raw material, was leached with aqua regia, and the amount of leaching of major metals was measured by ICP emission spectrometry (ICP-AES). 1 g of sludge was leached into 20 mL of aqua regia (15 mL of concentrated sulfuric acid + 5 mL of concentrated nitric acid), and the leaching amount of each metal was measured for cobalt, iron, and copper by ICP-AES (SHIMADZU ICPS-9000). FIG. 3 shows the composition of the sludge measured by ICP emission spectrometry. As shown in FIG. 3, the weight of the main composition of the sludge was 161.3 mg cobalt, 127.2 mg iron and 23.6 mg copper per gram of sludge.
本実施形態では、王水によってスラッジ中の金属は完全に浸出したと仮定し、王水による浸出量を基準として、塩酸による浸出実験を行った。 In the present embodiment, it is assumed that metals in the sludge are completely leached by aqua regia, and the leaching experiment with hydrochloric acid is performed based on the amount of leaching by aqua regia.
図4乃至図6は、塩酸(Wako製)の濃度1.8 mol/L、6.0 mol/L、及び12 mol/Lにおける濃度毎の固液比(スラッジ/塩酸)1/20 g/mL、1/40 g/mL、1/60 g/mL、1/80 g/mL、及び1/100 g/mLとスラッジ1 g当たりのコバルトの浸出量との関係を示したグラフである。 4 to 6 show the solid-liquid ratio (sludge/hydrochloric acid) 1/20 g/ 1 is a graph showing the relationship between mL, 1/40 g/mL, 1/60 g/mL, 1/80 g/mL, and 1/100 g/mL and the amount of cobalt leached per 1 g of sludge.
図4は、塩酸濃度1.8 mol/Lにおける濃度毎の固液比(スラッジ/塩酸)とスラッジ1g当たりのコバルトの浸出量との関係を示したグラフである。図5は、塩酸濃度6.0 mol/Lにおける濃度毎の固液比(スラッジ/塩酸)とスラッジ1 g当たりのコバルトの浸出量との関係を示したグラフである。図6は、塩酸濃度12 mol/Lにおける濃度毎の固液比(スラッジ/塩酸)とスラッジ1 g当たりのコバルトの浸出量との関係を示したグラフである。 FIG. 4 is a graph showing the relationship between the solid-liquid ratio (sludge/hydrochloric acid) for each concentration at a hydrochloric acid concentration of 1.8 mol/L and the leaching amount of cobalt per 1 g of sludge. FIG. 5 is a graph showing the relationship between the solid-liquid ratio (sludge/hydrochloric acid) for each concentration at a hydrochloric acid concentration of 6.0 mol/L and the leaching amount of cobalt per 1 g of sludge. FIG. 6 is a graph showing the relationship between the solid-liquid ratio (sludge/hydrochloric acid) for each concentration at a hydrochloric acid concentration of 12 mol/L and the leaching amount of cobalt per 1 g of sludge.
図4乃至図6に示すように、塩酸により浸出されたコバルトの重量は固液比にほとんど影響されず、ほぼ一定であった。この結果より、コバルトを浸出させる最適条件の固液比(スラッジ/塩酸)は、1/20 g/mL(スラッジ1.0gに対して塩酸20mL)であることを明らかにした。以降の実験では、この条件でリサイクル原料であるスラッジを溶解させた。 As shown in FIGS. 4 to 6, the weight of cobalt leached with hydrochloric acid was almost constant without being affected by the solid-liquid ratio. From this result, it was clarified that the optimum solid-liquid ratio (sludge/hydrochloric acid) for leaching cobalt is 1/20 g/mL (20 mL of hydrochloric acid for 1.0 g of sludge). In subsequent experiments, sludge, which is a recycled raw material, was dissolved under these conditions.
図7は、塩酸(Wako製)の濃度(1.8 mol/L、6.0 mol/L、及び12 mol/L)と濃度毎のコバルト、鉄、及び銅の浸出率(塩酸による浸出量/王水による浸出量)との関係を示したグラフである。上記のように、本実施形態では、王水によってスラッジ中の金属は完全に浸出したと仮定し、式(1)に示すように、王水による浸出量を基準として、塩酸による浸出実験を行った。 FIG. 7 shows the concentrations of hydrochloric acid (manufactured by Wako) (1.8 mol/L, 6.0 mol/L, and 12 mol/L) and the leaching rates of cobalt, iron, and copper for each concentration (the amount of leaching by hydrochloric acid). / amount of leaching by aqua regia). As described above, in the present embodiment, it is assumed that metals in the sludge are completely leached by aqua regia, and as shown in Equation (1), leaching experiments with hydrochloric acid are performed based on the amount of leaching by aqua regia. rice field.
浸出率[%]=(WD/WA)×100 ・・・・・(1) Leaching rate [%] = (WD/WA) x 100 (1)
ここで、WDは20 mLの塩酸に溶解した各金属の浸出量(重量[mg])、WAは20 mLの王水に溶解した各金属の浸出量(重量[mg])である。 Here, WD is the leaching amount (weight [mg]) of each metal dissolved in 20 mL of hydrochloric acid, and WA is the leaching amount (weight [mg]) of each metal dissolved in 20 mL of aqua regia.
図7に示すように、1.8 mol/Lの塩酸濃度では、何れの金属も浸出率は不十分であった。また、6.0 mol/Lの塩酸濃度では、鉄と銅の浸出率は、95%以上であり、コバルトの浸出率は約80%であった。12mol/Lの塩酸濃度では、何れの金属の浸出率は、95%以上であった。コバルトの浸出率は塩酸濃度1.8 mol/L、6.0 mol/L、12 mol/Lの順に高くなり、塩酸濃度の増加と共に浸出率は高くなることが明らかになった。 As shown in FIG. 7, at a hydrochloric acid concentration of 1.8 mol/L, the leaching rate was insufficient for any metal. At a hydrochloric acid concentration of 6.0 mol/L, the leaching rate of iron and copper was 95% or more, and the leaching rate of cobalt was about 80%. At a hydrochloric acid concentration of 12 mol/L, the leaching rate of any metal was over 95%. It was found that the leaching rate of cobalt increased in the order of hydrochloric acid concentrations of 1.8 mol/L, 6.0 mol/L and 12 mol/L, and that the leaching rate increased as the hydrochloric acid concentration increased.
但し、濃度が12 mol/Lの塩酸は高濃度であり、以降の反応や処理の危険性や以降の反応に用いられる試薬の量が増加することから、効率的に高濃度のコバルト沈殿物を回収するため、コバルトの十分な浸出率を得つつ塩酸の濃度を下げる方が好ましい。よって、塩酸濃度6.0 mol/L以上8.0 mol/L以下(好ましくは、6.0 mol/L)の塩酸により、固液比(スラッジ/塩酸)を1/18 g/mL以上1/22 g /mL以下(好ましくは、1/20 g/mL)の塩酸量で、温度45℃以上55℃以下(好ましくは、45℃以上50℃以下)で10時間以上14時間以下(好ましくは、12時間)撹拌することで、スラッジを溶解させた場合に、濾過後のスラッジの固体残渣がなく、スラッジが完全に溶解した。 However, hydrochloric acid with a concentration of 12 mol/L is highly concentrated, which increases the risk of subsequent reactions and treatments and increases the amount of reagents used in subsequent reactions. For recovery, it is preferable to reduce the concentration of hydrochloric acid while obtaining a sufficient leaching rate of cobalt. Therefore, with hydrochloric acid having a hydrochloric acid concentration of 6.0 mol / L or more and 8.0 mol / L or less (preferably 6.0 mol / L), the solid-liquid ratio (sludge / hydrochloric acid) is 1/18 g / mL or more. / 22 g / mL or less (preferably 1/20 g / mL) of hydrochloric acid, at a temperature of 45 ° C. or higher and 55 ° C. or lower (preferably 45 ° C. or higher and 50 ° C. or lower) for 10 hours or more and 14 hours or less (preferably , 12 hours), when the sludge was dissolved, the sludge was completely dissolved with no solid residue of sludge after filtration.
スラッジが最も溶解する酸溶液は塩酸であり、塩酸は酸溶液の中でも安全で、溶液の扱いが簡便といった点が工業化に適しているため、本実施形態では、スラッジを塩酸に溶解させ、様々な条件下でスラッジの含有金属について最適な浸出条件を検証した。 The acid solution in which sludge is most soluble is hydrochloric acid, and hydrochloric acid is safe among acid solutions and is suitable for industrialization in that it is easy to handle. The optimum leaching conditions for the metal content of the sludge under the conditions were verified.
次に、沈殿処理(ステップ51~ステップ54)について説明する。図8は、本実施形態の沈殿処理に用いる浸出液の組成を示した表である。塩酸濃度6.0 mol/Lの塩酸により、固液比(スラッジ/塩酸)を1/20 g/mLの塩酸量で、温度50℃で12時間撹拌することで、スラッジを溶解させた。
Next, the precipitation process (
図8に示すように、リサイクル原料であるスラッジを塩酸により溶解させた浸出液の主な組成物の重量%は、コバルトが51.7重量%、鉄が39.6重量%、銅が6.8重量%であった。 As shown in FIG. 8, the main composition of the leachate obtained by dissolving the recycled raw material sludge with hydrochloric acid is 51.7% by weight of cobalt, 39.6% by weight of iron, and 6.8% by weight of copper. % by weight.
スラッジの組成中でコバルトに次ぐ割合で多く含有されている金属は鉄である。鉄を効率的に除去するためには水酸化物沈殿によって水酸化鉄を析出させる方法が挙げられる。また、この水酸化物沈殿により銅の除去も可能である。金属イオンの加水分解反応に対する水素イオン指数(pH)依存性の実験結果から、水素イオン指数の増加に伴い、3価鉄、銅、2価鉄、及びコバルトの順で沈殿物が析出されることが示され、水素イオン指数を調整することで鉄及び銅の選択的な沈殿が可能である。 In the composition of sludge, iron is the second most abundant metal after cobalt. In order to remove iron efficiently, there is a method of precipitating iron hydroxide by hydroxide precipitation. Copper can also be removed by this hydroxide precipitation. From the experimental results of hydrogen ion exponent (pH) dependence for hydrolysis reaction of metal ions, it was found that as the hydrogen ion exponent increases, precipitates are deposited in the order of trivalent iron, copper, divalent iron, and cobalt. is shown, and selective precipitation of iron and copper is possible by adjusting the hydrogen ion exponent.
本実施形態では、不純物除去処理(ステップ51)において、濃度2.5 mol/Lの水酸化ナトリウム水溶液(Wako製)を浸出液に添加して、水素イオン濃度を変化させた。 In this embodiment, in the impurity removal process (step 51), a sodium hydroxide aqueous solution (manufactured by Wako) with a concentration of 2.5 mol/L was added to the leachate to change the hydrogen ion concentration.
そして、不純物回収処理(ステップ52)において、析出した沈殿物を遠心分離器で分離した。沈殿物の組成を測定するために、沈殿物を濃度12 mol/Lの塩酸20 mLに溶解させ、コバルト、鉄、銅、及びニッケルの重量についてICP-AESにより測定した。また、沈殿物分離後の浸出液におけるコバルト、鉄、銅、及びニッケルの重量についてICP-AESにより測定した。 Then, in the impurity recovery process (step 52), the deposited sediment was separated by a centrifugal separator. To determine the composition of the precipitate, the precipitate was dissolved in 20 mL of hydrochloric acid with a concentration of 12 mol/L and the weight of cobalt, iron, copper and nickel was determined by ICP-AES. In addition, the weights of cobalt, iron, copper and nickel in the leachate after sediment separation were measured by ICP-AES.
図9は、水酸化ナトリウム水溶液の添加による各金属の沈殿率を示すグラフである。図9では、水酸化ナトリウム添加によるコバルト、鉄、銅、及びニッケルの沈殿率に対する水素イオン指数(pH)の影響を示した。各金属の沈殿率は式(2)で算出される。 FIG. 9 is a graph showing the precipitation rate of each metal due to the addition of sodium hydroxide aqueous solution. FIG. 9 shows the effect of pH on the precipitation rate of cobalt, iron, copper, and nickel with sodium hydroxide addition. The precipitation rate of each metal is calculated by Equation (2).
沈殿率[%]=[WP/(WP+WS)]×100 ・・・・・(2) Sedimentation rate [%] = [WP / (WP + WS)] × 100 (2)
ここで、WPは各金属の沈殿物の重量[mg]であり、WSは沈殿物分離後の上澄み液(浸出液)における各金属の重量[mg]である。 Here, WP is the weight [mg] of the precipitate of each metal, and WS is the weight [mg] of each metal in the supernatant liquid (leaching liquid) after separation of the precipitate.
図9に示すように、沈殿の選択性は浸出液の水素イオン指数(pH)の増加に伴い、鉄、銅、及びコバルトの順となった。鉄は浸出液のpHが3以上でほぼ完全に沈殿し、銅は浸出液のpHが5以上でほぼ完全に沈殿した。 As shown in FIG. 9, the selectivity of precipitation was in order of iron, copper and cobalt with increasing pH of the leachate. Iron was almost completely precipitated at a leachate pH of 3 or higher, and copper was almost completely precipitated at a leachate pH of 5 or higher.
また、浸出液のpHが5.42において、鉄と銅は完全に沈殿した。この時のコバルトの沈殿率は21.2%となり、鉄と銅が完全に沈殿した浸出液の条件下では、コバルトの沈殿率が最も低かった。 Also, iron and copper were completely precipitated at a leachate pH of 5.42. The precipitation rate of cobalt at this time was 21.2%, and the precipitation rate of cobalt was the lowest under the conditions of the leachate in which iron and copper completely precipitated.
水酸化鉄(II)は浸出液のpHが3ではほとんど沈殿物が析出しないことが示されているが、この測定では、鉄は浸出液のpHが3でほぼ100%沈殿しているため、本実施形態における浸出液中の鉄は3価であったと考えられる。この理由は、浸出液中に含有されていた2価鉄は所定の温度(45℃以上55℃以下、好ましくは、45℃以上50℃以下)の塩酸に溶解した際に酸化されて3価鉄になったからであると推測される。したがって、本実施形態では、上記の浸出工程において、所定の温度の塩酸でスラッジを浸出させることで、浸出液中の鉄はほぼ3価として存在し、浸出液のpHを3以上にすることにより、鉄は水酸化鉄(III)として沈殿した。
It has been shown that iron (II) hydroxide hardly precipitates when the pH of the leachate is 3. However, in this measurement, almost 100% of iron precipitates when the pH of the leachate is 3. It is believed that the iron in the leachate in the morphology was trivalent. The reason for this is that the divalent iron contained in the leachate is oxidized into trivalent iron when dissolved in hydrochloric acid at a predetermined temperature (45° C. or higher and 55° C. or lower, preferably 45° C. or higher and 50° C. or lower). It is presumed that this is because Therefore, in the present embodiment, by leaching the sludge with hydrochloric acid at a predetermined temperature in the above-described leaching step, the iron in the leachate is present as approximately trivalent, and by making the pH of the
また、本実施形態では、浸出液のpHが5以上で銅がほぼ完全に沈殿したため、浸出液のpHを5以上にすることにより、銅を除去可能であることが明らかになった。 In addition, in the present embodiment, copper was almost completely precipitated when the pH of the leaching solution was 5 or higher. Therefore, it was found that the copper could be removed by increasing the pH of the leaching solution to 5 or higher.
しかし、少量のコバルト沈殿物が鉄や銅との沈殿物とともに析出した。コバルトの沈殿は、図9より浸出液のpHが3以上から始まった。この場合、浸出液のpHが3で鉄がほぼ完全に沈殿したことから、コバルトが水酸化鉄(III)と共沈したと推測される。また、浸出液のpHが5になるとコバルトの沈殿率は増加した。この場合、浸出液のpHが5で銅がほぼ完全に沈殿したことから、コバルトが水酸化銅(II)と共沈したと推測される。 However, a small amount of cobalt precipitate was deposited along with iron and copper precipitates. From FIG. 9, the precipitation of cobalt started when the pH of the leachate was 3 or higher. In this case, since the pH of the leachate was 3 and iron was almost completely precipitated, it is presumed that cobalt was coprecipitated with iron(III) hydroxide. Also, when the pH of the leachate reached 5, the cobalt precipitation rate increased. In this case, since copper was almost completely precipitated at a pH of 5 in the leachate, it is presumed that cobalt was coprecipitated with copper(II) hydroxide.
これらは、水酸化鉄(III)や水酸化銅(II)が沈殿する際に共存する重金属と共沈する作用があるためであると考えられる。よって、コバルトの沈殿が生じた理由は、浸出液の上澄み液中に残存しているコバルトが水酸化鉄(III)と水酸化銅(II)に誘発されて共沈が発生したためである。 This is considered to be due to the coprecipitation action of iron (III) hydroxide and copper (II) hydroxide together with coexisting heavy metals when they are precipitated. Therefore, the reason why the cobalt precipitated was that the cobalt remaining in the supernatant of the leachate was induced by iron(III) hydroxide and copper(II) hydroxide to co-precipitate.
以上のように、スラッジ溶解後の浸出液から水酸化ナトリウムを用いた鉄の除去は、所定の温度(45℃以上55℃以下、好ましくは、45℃以上50℃以下)の塩酸の酸化作用により、浸出液中の鉄はほぼ完全に水酸化鉄(III)として回収された。浸出液のpHが3以上である場合に、高い効率で鉄を沈殿回収することが可能であった。また、浸出液のpHが5以上である場合に、銅はで0.13%残存したが、高い効率で銅を沈殿回収することが可能であった。 As described above, the removal of iron from the leachate after dissolving the sludge by using sodium hydroxide is achieved by the oxidation action of hydrochloric acid at a predetermined temperature (45° C. or higher and 55° C. or lower, preferably 45° C. or higher and 50° C. or lower). Iron in the leachate was almost completely recovered as iron(III) hydroxide. When the pH of the leachate was 3 or higher, it was possible to precipitate and recover iron with high efficiency. Also, when the pH of the leachate was 5 or more, 0.13% of copper remained, but it was possible to precipitate and recover copper with high efficiency.
一方、浸出液のpHが増加するとコバルトが沈殿するため、高い効率で鉄及び銅を沈殿回収しつつ、コバルトの沈殿を抑制する必要がある。 On the other hand, since cobalt precipitates when the pH of the leachate increases, it is necessary to suppress the precipitation of cobalt while recovering iron and copper with high efficiency.
そこで、本実施形態では、不純物沈殿工程は、前記浸出液の水素イオン指数がpH5.0以上pH6.0以下(好ましくは、pH5.0以上pH5.5以下)になるように、水酸化ナトリウム水溶液を添加することにより前記浸出液中の前記不純物(鉄や銅等)を沈殿させる工程を含む。 Therefore, in the present embodiment, in the impurity precipitation step, an aqueous sodium hydroxide solution is added so that the hydrogen ion exponent of the leachate is pH 5.0 or more and pH 6.0 or less (preferably pH 5.0 or more and pH 5.5 or less). Precipitating said impurities (such as iron and copper) in said leachate by adding.
本実施形態では、水酸化ナトリウムを用いて、リサイクル原料であるスラッジの浸出液から不純物を除去する最適な不純物除去処理(ステップ51,52)の条件を検証した。 In this embodiment, sodium hydroxide is used to verify the conditions of the optimum impurity removal treatment (steps 51 and 52) for removing impurities from the leachate of the sludge, which is a recycled raw material.
スラッジ浸出液から鉄及び銅が除去され、液中に残る主な金属はコバルト及びニッケルとなった。ニッケルの成分はスラッジ中の組成で約1%と含有量が少ない。よって、本実施形態では、コバルト沈殿処理(ステップ53)において、コバルトを選択的に沈殿させることで、コバルト純度が高い沈殿物を回収する操作を行った。 Iron and copper were removed from the sludge leachate, leaving cobalt and nickel as the main metals remaining in the liquor. The content of nickel is as low as about 1% in the composition of the sludge. Therefore, in the present embodiment, in the cobalt precipitation process (step 53), an operation of selectively precipitating cobalt to recover a precipitate with high cobalt purity was performed.
コバルトを選択的に回収する方法として、次亜塩素酸ナトリウムによって沈殿物を得る方法を用いる。本実施形態では、次亜塩素酸ナトリウムを酸化剤として添加し、コバルトの沈殿回収を行った(ステップ54)。 As a method of selectively recovering cobalt, a method of obtaining a precipitate with sodium hypochlorite is used. In this embodiment, sodium hypochlorite was added as an oxidizing agent to precipitate and recover cobalt (step 54).
濃度6.0 mol/Lの塩酸により、固液比(スラッジ/塩酸)を1/20 g/mLの塩酸量で、温度50℃で12時間撹拌することでスラッジを溶解させ、濾過することによって得られた浸出液に、濃度2.5 mol/Lの水酸化ナトリウム水溶液を浸出液のpHが5以上6以下になるように添加し、鉄と銅の沈殿を析出させた。そして、遠心分離によって沈殿物を除去した後、上澄み液に次亜塩素酸ナトリウム(Wako製)を添加し、コバルトの沈殿を析出させた。遠心分離によって沈殿物を回収し、濃度12 mol/Lの塩酸20 mLにより回収物を溶解させ、ICP-AESによりコバルト、鉄、銅、及びニッケルについて測定し、各金属の重量と回収率を求めた。 The solid-liquid ratio (sludge/hydrochloric acid) is 1/20 g/mL with hydrochloric acid having a concentration of 6.0 mol/L, and the sludge is dissolved by stirring at a temperature of 50°C for 12 hours, followed by filtration. A sodium hydroxide aqueous solution with a concentration of 2.5 mol/L was added to the resulting leachate so that the pH of the leachate was 5 or more and 6 or less, thereby precipitating iron and copper. After removing the precipitate by centrifugation, sodium hypochlorite (manufactured by Wako) was added to the supernatant to precipitate cobalt. Collect the precipitate by centrifugation, dissolve the collected material with 20 mL of hydrochloric acid having a concentration of 12 mol / L, measure cobalt, iron, copper, and nickel by ICP-AES, and obtain the weight and recovery rate of each metal. rice field.
図10は、次亜塩素酸ナトリウム水溶液の添加によるpH変化に対する沈殿物中のコバルト重量を示したグラフである。不純物除去後の浸出液のpHが3.0以上3.3以下ではコバルトの沈殿量は比較的少なく、回収率も10%程度であった。不純物除去後の浸出液のpHが3.34のときにコバルトの沈殿量が最も多く、その後はpHの上昇に伴い、コバルトの沈殿量は減少した。 FIG. 10 is a graph showing the weight of cobalt in the precipitate with respect to pH change due to the addition of sodium hypochlorite aqueous solution. When the pH of the leachate after removing impurities was 3.0 or more and 3.3 or less, the amount of cobalt precipitated was relatively small, and the recovery rate was about 10%. The amount of cobalt precipitated was the largest when the pH of the leachate after removing impurities was 3.34, and thereafter decreased as the pH increased.
よって、不純物除去後の浸出液のpHが3.3以上3.5以下(好ましくは、3.3以上3.4以下)の間でコバルトは最も沈殿した。 Therefore, cobalt precipitated most when the pH of the leachate after impurity removal was between 3.3 and 3.5 (preferably between 3.3 and 3.4).
図11は、不純物除去前の浸出液中とコバルト沈殿物の浸出液中のコバルト、鉄、銅、及びニッケルにおける重量%を示すグラフである。図11(a)は、図8に示す不純物除去前の浸出液の組成の重量%を示したグラフである。図11(b)は、不純物除去後の浸出液に次亜塩素酸ナトリウムを5 mL添加し、pHが3.5になったときに沈殿したコバルト沈殿物を濃度12 mol/Lの塩酸20 mLにより浸出させ、ICP-AESにより塩酸に浸出させ、このコバルト沈殿物の浸出液の組成の重量%を示したグラフである。 FIG. 11 is a graph showing the weight percentages of cobalt, iron, copper, and nickel in the leachate before impurity removal and in the leachate of the cobalt precipitate. FIG. 11(a) is a graph showing the weight % of the composition of the leachate before the impurities shown in FIG. 8 are removed. FIG. 11(b) shows that 5 mL of sodium hypochlorite was added to the leachate after removing impurities, and the cobalt precipitate precipitated when the pH reached 3.5 was treated with 20 mL of hydrochloric acid having a concentration of 12 mol/L. 1 is a graph showing the weight percent composition of the leachate of the cobalt precipitate, leached and leached in hydrochloric acid by ICP-AES.
図11に示すように、次亜塩素酸ナトリウム添加後、コバルト沈殿物のコバルト純度は98.2%であった。不純物除去前の浸出液中のコバルト純度は51.7%であったことから、本実施形態では、高純度のコバルト沈殿物としてコバルトを回収することができた。 As shown in FIG. 11, the cobalt purity of the cobalt precipitate was 98.2% after sodium hypochlorite addition. Since the cobalt purity in the leachate before impurity removal was 51.7%, cobalt could be recovered as a high-purity cobalt precipitate in this embodiment.
また、本実施形態では、ニッケルの沈殿は析出されなかった。その理由として、次亜塩素酸ナトリウム添加によってコバルトは2価から酸化されて3価に遷移したが、ニッケルは2価のまま3価に酸化されなかったため、コバルトが選択的に析出し、コバルトの選択的な回収が可能になったと考えられる。この結果、ニッケルをほとんど含まない高純度のコバルト沈殿物としてコバルトを回収することができた。したがって、図11には示さないが、不純物除去後の浸出液におけるコバルト純度は96.5%であり、次亜塩素酸ナトリウム添加後、コバルト沈殿物のコバルト純度は98.2%にさらに高まった。 Also, in this embodiment, no precipitate of nickel was deposited. The reason for this is that cobalt was oxidized from divalent to trivalent by adding sodium hypochlorite, but nickel was not oxidized to trivalent while remaining divalent. It is thought that selective collection became possible. As a result, cobalt could be recovered as a high-purity cobalt precipitate containing little nickel. Therefore, although not shown in FIG. 11, the cobalt purity in the leachate after removing impurities was 96.5%, and after adding sodium hypochlorite, the cobalt purity of the cobalt precipitate further increased to 98.2%.
図12は、蛍光X線分析装置によって測定したコバルト沈殿物の組成を示したものである。図12に示すように、コバルト沈殿物の主な組成物の重量%は、コバルトが51.7重量%、ネオジムが5.43重量%、銅が1.20重量%、塩素が39.3重量%、及びその他が2.37重量%となった。したがって、回収物の金属はほぼコバルトであると言える。 FIG. 12 shows the composition of cobalt precipitates measured by a fluorescent X-ray spectrometer. As shown in FIG. 12, the main composition weight percent of the cobalt precipitate is 51.7 weight percent cobalt, 5.43 weight percent neodymium, 1.20 weight percent copper, and 39.3 weight percent chlorine. %, and others were 2.37% by weight. Therefore, it can be said that the recovered metal is mostly cobalt.
以上のように、不純物(鉄や銅等)の除去後の浸出液に次亜塩素酸ナトリウムを添加すると、高純度のコバルトの沈殿が析出することにより、高純度のコバルト沈殿物の回収が可能であった。不純物除去後の浸出液のpHとコバルトの沈殿量を比較すると、pHが3.3以上3.5以下(好ましくは、3.3以上3.4以下)でコバルトは最も沈殿した。この結果、不純物除去後の浸出液のpHが3.3以上3.5以下(好ましくは、3.3以上3.4以下)になるように、次亜塩素酸ナトリウムを添加することが最適な条件であることを明らかにした。 As described above, when sodium hypochlorite is added to the leachate after impurities (iron, copper, etc.) have been removed, a precipitate of high-purity cobalt precipitates, making it possible to recover high-purity cobalt precipitate. there were. Comparing the pH of the leachate after removing the impurities and the amount of cobalt precipitated, the most cobalt precipitated when the pH was 3.3 or more and 3.5 or less (preferably 3.3 or more and 3.4 or less). As a result, the optimal condition is to add sodium hypochlorite so that the pH of the leachate after removing impurities is 3.3 or more and 3.5 or less (preferably 3.3 or more and 3.4 or less). made it clear that
そこで、本実施形態では、コバルト沈殿工程(ステップ53)は、前記不純物が除去された前記浸出液の水素イオン指数がpH3.3以上pH3.5以下になるように、次亜塩素酸ナトリウム水溶液を添加することにより前記浸出液中の前記コバルトを沈殿させる工程を含む。 Therefore, in the present embodiment, in the cobalt precipitation step (step 53), a sodium hypochlorite aqueous solution is added so that the hydrogen ion exponent of the leachate from which the impurities have been removed becomes pH 3.3 or more and pH 3.5 or less. precipitating said cobalt in said leachate by:
以上、本発明にかかる実施形態について説明したが、本発明はこれらに限定されるものではなく、請求項に記載された範囲内において変更・変形することが可能である。 Although the embodiments according to the present invention have been described above, the present invention is not limited to these, and can be changed and modified within the scope described in the claims.
本発明は、コバルト純度が高いコバルト沈殿物を回収することができるコバルト回収方法として有用である。 INDUSTRIAL APPLICABILITY The present invention is useful as a cobalt recovery method capable of recovering cobalt precipitates with high cobalt purity.
50 浸出処理
51 不純物沈殿処理
52 不純物除去処理
53 コバルト沈殿処理
54 コバルト沈殿物回収処理
50
Claims (6)
前記リサイクル原料を酸溶液により溶解し、前記コバルトを前記酸溶液に浸出させる浸出工程と、
前記浸出により生じた浸出液に水酸化ナトリウム水溶液を添加することにより前記浸出液中の不純物を沈殿させる不純物沈殿工程と、
前記沈殿した不純物を除去する不純物除去工程と、
前記不純物が除去された前記浸出液に次亜塩素酸ナトリウム水溶液を添加することにより前記コバルトを沈殿させるコバルト沈殿工程と、
を備えることを特徴とするコバルト回収方法。 A cobalt recovery method for recovering cobalt from a recycled raw material containing cobalt,
a leaching step of dissolving the recycled raw material in an acid solution and leaching the cobalt into the acid solution;
an impurity precipitation step of precipitating impurities in the leachate by adding an aqueous sodium hydroxide solution to the leachate produced by the leachate;
an impurity removal step of removing the precipitated impurities;
a cobalt precipitation step of precipitating the cobalt by adding an aqueous sodium hypochlorite solution to the leachate from which the impurities have been removed;
A method for recovering cobalt, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021075948A JP2022170067A (en) | 2021-04-28 | 2021-04-28 | Cobalt recovery method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021075948A JP2022170067A (en) | 2021-04-28 | 2021-04-28 | Cobalt recovery method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022170067A true JP2022170067A (en) | 2022-11-10 |
Family
ID=83944373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021075948A Pending JP2022170067A (en) | 2021-04-28 | 2021-04-28 | Cobalt recovery method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022170067A (en) |
-
2021
- 2021-04-28 JP JP2021075948A patent/JP2022170067A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112441572B (en) | Method for recovering waste lithium iron phosphate anode material | |
CN109072335B (en) | Treatment method of lithium ion battery waste | |
JP2015183292A (en) | Recovery method of cobalt and nickel | |
WO2020196046A1 (en) | Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt | |
CN111278997A (en) | Method for producing cobalt and related oxides from various feed materials | |
CN111206153A (en) | Method for recovering positive electrode material of nickel-cobalt-manganese acid lithium battery | |
WO2016159001A1 (en) | Method for removing iron from iron-containing solution, and method for recovering valuable metals | |
JP2011214132A (en) | Recovery method for cobalt | |
JP6996723B1 (en) | Metal recovery method from lithium-ion batteries | |
CN109797294B (en) | Method for recovering nickel and cobalt from magnesium water | |
JP2013112859A (en) | Method for manufacturing manganese sulfate | |
AU2024201960A1 (en) | Process for removing impurities in the recycling of lithium-ion batteries | |
Zhang et al. | Recovery of manganese from manganese oxide ores in the EDTA solution | |
JP4215547B2 (en) | Cobalt recovery method | |
JP6314730B2 (en) | Method for recovering valuable metals from waste nickel metal hydride batteries | |
CN110540252A (en) | method for preparing battery-grade cobalt sulfate and high-purity germanium dioxide from white alloy | |
JP2016186114A (en) | Method for bleeding lithium ion battery scrap and method for recovering valuable metal | |
JP2022170067A (en) | Cobalt recovery method | |
JP2021161448A (en) | Manganese ion removal method | |
CN114941076B (en) | Method for extracting and recovering gold from aqueous solution | |
JP6397111B2 (en) | Lithium-ion battery scrap leaching method and valuable metal recovery method | |
JP4801372B2 (en) | Method for removing manganese from cobalt sulfate solution | |
US20240010525A1 (en) | Methods of obtaining water for downstream processes | |
CN114921649B (en) | Method for recycling soluble tungstate in tungsten-containing waste | |
KR102576614B1 (en) | Method for recovering valuable metals from waste lithium ion batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20231002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20231002 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20231027 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240419 |