[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2022156415A - Optical unit with shake correction function - Google Patents

Optical unit with shake correction function Download PDF

Info

Publication number
JP2022156415A
JP2022156415A JP2021060090A JP2021060090A JP2022156415A JP 2022156415 A JP2022156415 A JP 2022156415A JP 2021060090 A JP2021060090 A JP 2021060090A JP 2021060090 A JP2021060090 A JP 2021060090A JP 2022156415 A JP2022156415 A JP 2022156415A
Authority
JP
Japan
Prior art keywords
optical axis
axis direction
annular plate
movable body
plate portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021060090A
Other languages
Japanese (ja)
Inventor
章吾 笠原
Shogo Kasahara
伸司 南澤
Shinji Minamizawa
努 新井
Tsutomu Arai
猛 須江
Takeshi Sue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP2021060090A priority Critical patent/JP2022156415A/en
Priority to CN202210346060.3A priority patent/CN115145089B/en
Publication of JP2022156415A publication Critical patent/JP2022156415A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

To provide an optical unit with a shake correction function that includes a rotation support mechanism to support a movable body with a leaf spring, in which the breakage of a leaf spring part that rotatably supports the movable body around the optical axis is prevented.SOLUTION: An optical unit 1 which comes with a shake correction function includes a rotation support mechanism 12 to rotatably support a movable body 10 around an optical axis L. The rotation support mechanism 12 connects a first annular plate part 26 and a second annular plate part 46 facing each other in the optical axis direction by a metal member 50 that includes a leaf spring part 53. A radial direction stopper part 64 extending in a +Z direction and facing an edge of the first annular plate part 26 in the radial direction is provided at an edge of the second annular plate part 46. An optical axis direction stopper part 65 extending in a -Z direction from a circumferential edge of a first protrusion plate part 28 that protrudes from the first annular plate part 26 to the outer circumference side faces a second protrusion plate part 48 that protrudes from the first annular plate part 26 to the outer circumference side or a second extension part 47 in a Z-axis direction (optical axis direction).SELECTED DRAWING: Figure 6

Description

本発明は、カメラモジュールを光軸回りに回転させて振れを補正する振れ補正機能付き光学ユニットに関する。 The present invention relates to an optical unit with a shake correction function that corrects shake by rotating a camera module around its optical axis.

携帯端末や移動体に搭載される光学ユニットの中には、携帯端末や移動体の移動時の撮影画像の乱れを抑制するために、カメラモジュールを備える可動体を、光軸回り、光軸と交差する第1軸回り、並びに光軸および第1軸と交差する第2軸回りに回転させるものがある。特許文献1には、この種の振れ補正機能付き光学ユニットが記載される。 In optical units mounted on mobile terminals and moving bodies, movable bodies equipped with camera modules are rotated around and along the optical axis in order to suppress disturbance of captured images when mobile terminals and moving bodies move. There is rotation about a first axis that intersects and about a second axis that intersects the optical axis and the first axis. Patent Document 1 describes this type of optical unit with a shake correction function.

特許文献1の振れ補正機能付き光学ユニットは、固定体と、固定体に対して光軸回りに回転可能に支持される可動体を有する。可動体は、レンズを備えるカメラモジュールと、カメラモジュールの周りを囲む支持体と、支持体の内側で、カメラモジュールを第1軸回りおよび第2軸回りに回転可能に支持するジンバル機構を備える。また、振れ補正機能付き光学ユニットは、可動体を光軸回りに回転可能に支持する回転支持機構を備える。回転支持機構は、可動体の底部から光軸方向の後ろ側に突出した凸部と、凸部を囲むボールベアリングを備える。 The optical unit with a shake correction function disclosed in Patent Document 1 has a fixed body and a movable body rotatably supported by the fixed body around the optical axis. The movable body includes a camera module having a lens, a support surrounding the camera module, and a gimbal mechanism inside the support that supports the camera module rotatably about the first axis and the second axis. Further, the optical unit with a shake correction function includes a rotation support mechanism that supports the movable body so as to be rotatable around the optical axis. The rotation support mechanism includes a projection projecting rearward in the optical axis direction from the bottom of the movable body, and a ball bearing surrounding the projection.

本発明者らは、特願2020-36404号において、可動体の外部にジンバル機構を設け、ジンバル機構と可動体との間に回転支持機構を設けた振れ補正機能付き光学ユニットを出願している。特願2020-36404号の回転支持機構は、光軸方向に対向する2本の環状のレール部材の間に転動体を挿入したボールベアリングをカメラモジュールの鏡筒部を囲むように配置し、一方のレールを可動体の被写体側の端面に固定し、他方のレールをジンバル機構によって第1軸回りに回転可能に支持する構成である。 In Japanese Patent Application No. 2020-36404, the present inventors have filed an application for an optical unit with a shake correction function, in which a gimbal mechanism is provided outside the movable body and a rotation support mechanism is provided between the gimbal mechanism and the movable body. . In the rotation support mechanism of Japanese Patent Application No. 2020-36404, ball bearings with rolling elements inserted between two annular rail members facing each other in the optical axis direction are arranged so as to surround the lens barrel of the camera module. One rail is fixed to the end surface of the movable body on the subject side, and the other rail is rotatably supported around the first axis by a gimbal mechanism.

特願2020-36404号の回転支持機構は、振れ補正機能付き光学ユニットの光軸方向の高さを小さくできる。また、ジンバルフレームは光軸回りに回転しないため、光軸回りに回転する部分の外形が小さい。従って、回転スペースを大きく確保する必要がないので、振れ補正機能付き光学ユニットの外形を小さくすることができる。 The rotation support mechanism of Japanese Patent Application No. 2020-36404 can reduce the height of the optical unit with a shake correction function in the optical axis direction. In addition, since the gimbal frame does not rotate around the optical axis, the outer shape of the portion that rotates around the optical axis is small. Therefore, since it is not necessary to secure a large rotation space, the outer shape of the optical unit with a shake correction function can be reduced.

特開2015-82072号公報JP 2015-82072 A

しかしながら、特願2020-36404号の回転支持機構は、2本のレール部材、リテーナ、および複数の転動体を用いて構成され、さらに、与圧機構を構成するマグネットを複数個用いる複雑な構成であるため、部品コストが高く、組立作業も複雑である。 However, the rotation support mechanism of Japanese Patent Application No. 2020-36404 is configured using two rail members, a retainer, and a plurality of rolling elements, and furthermore, has a complicated configuration using a plurality of magnets that constitute the pressurizing mechanism. Therefore, the parts cost is high and the assembly work is complicated.

そこで、光軸方向に対向する環状部材の間に転動体およびリテーナを配置してベアリングを構成するように組み立てる代わりに、光軸回りに弾性変形する板ばねによって接続する構成とすれば、与圧機構は不要であり、組立作業も容易である。しかしながら、板ばねによる接続では、衝撃等が加わったときに板ばねが意図しない形状に変形し、環状部材が径方向にずれるおそれがある。また、与圧機構を廃止すると、2本の環状部材が光軸方向に大きく離間もしくは接近するおそれがある。そのため、板ばねが破損するおそれがある。 Therefore, instead of arranging the rolling elements and the retainer between the annular members facing each other in the direction of the optical axis and assembling them to form a bearing, if a plate spring elastically deforming around the optical axis is used for connection, pressurization can be achieved. No mechanism is required, and assembly work is easy. However, when a leaf spring is used for connection, the leaf spring may be deformed into an unintended shape when an impact or the like is applied, and the annular member may be displaced in the radial direction. Also, if the pressurizing mechanism is abolished, there is a possibility that the two annular members will be greatly separated from each other or come close to each other in the optical axis direction. Therefore, the leaf spring may be damaged.

本発明の課題は、このような点に鑑みて、板ばねを用いた回転支持機構を備える振れ補正機能付き光学ユニットにおいて、可動体を光軸回りに回転可能に支持する板ばねの破損を防止することにある。 In view of the above points, an object of the present invention is to prevent breakage of a leaf spring that supports a movable body so as to be rotatable about an optical axis in an optical unit with a shake correction function that includes a rotation support mechanism using a leaf spring. to do.

上記の課題を解決するために、本発明の振れ補正機能付き光学ユニットは、カメラモジュールを備える可動体と、固定体と、前記固定体に対して前記可動体を前記カメラモジュールの光軸を中心として回転可能に支持する回転支持機構と、を有し、前記可動体は第1部材を備え、前記第1部材は、前記光軸を囲み前記光軸方向から見て前記カメラモジュールと重なる第1環状板部を備え、前記回転支持機構は、前記第1環状板部と前記光軸方向で対向する第2環状板部を備えるとともに前記固定体に接続される第2部材と、前記第1環状板部に固定される可動体側固定部、前記第2環状板部に固定される固定体側固定部、および、前記可動体側固定部と前記固定体側固定部とを接続し前記光軸回りの周方向に弾性変形可能な板ばね部を備える金属部材と、前記第1環状板部および前記第2環状板部の一方の縁から前記光軸方向へ延びて前記第1環状板部および前記第2環状板部の他方の縁と径方向に対向する径方向ストッパ部と、を備えることを特徴とする。 In order to solve the above-described problems, an optical unit with a shake correction function of the present invention includes a movable body including a camera module, a fixed body, and the movable body with respect to the fixed body as the optical axis of the camera module. and a rotation support mechanism that rotatably supports the movable body as a first member that surrounds the optical axis and overlaps the camera module when viewed from the optical axis direction. The rotation support mechanism comprises: a second member connected to the fixed body; a movable-body-side fixed portion fixed to a plate portion, a fixed-body-side fixed portion fixed to the second annular plate portion, and a circumferential direction around the optical axis connecting the movable-body-side fixed portion and the fixed-body-side fixed portion; and a metal member including a leaf spring portion that can be elastically deformed to the outside, and a metal member extending in the optical axis direction from one edge of the first annular plate portion and the second annular plate portion and the first annular plate portion and the second annular plate portion. A radial direction stopper portion facing the other edge of the plate portion in a radial direction is provided.

本発明によれば、可動体と固定体を接続する回転支持機構が、可動体に設けられた第1環状板部と光軸方向に対向する第2環状板部と、第1環状板部と第2環状板部とを接続し周方向に弾性変形可能な板ばね部を備えている。従って、可動体を光軸回りに回転可能に支持できる。また、板ばね部の弾性力によって可動体を原点位置に復帰させることができるため、原点復帰用の磁気ばねが不要である。よって、回転支持機構の構成を簡素化できる。また、第1環状板部および第2環状板部の一方の縁から光軸方向へ延びて第1環状板部および第2環状板部の他方の縁と径方向に対向する径方向ストッパ部を備えているので、第1環状板部と第2環状板部が径方向に大きく相対移動することを規制できる。従って、可動体を光軸回りに回転可能に支持する板ばね部の破損を防止することができる。 According to the present invention, the rotation support mechanism that connects the movable body and the fixed body includes the second annular plate portion that faces the first annular plate portion provided on the movable body in the optical axis direction, and the first annular plate portion. A plate spring portion is provided which connects with the second annular plate portion and is elastically deformable in the circumferential direction. Therefore, the movable body can be rotatably supported around the optical axis. In addition, since the movable body can be returned to the origin position by the elastic force of the plate spring portion, a magnetic spring for returning to the origin is not required. Therefore, the configuration of the rotation support mechanism can be simplified. Further, a radial direction stopper portion extending in the optical axis direction from one edge of the first annular plate portion and the second annular plate portion and radially facing the other edge of the first annular plate portion and the second annular plate portion is provided. Since it has, it can control that a 1st annular plate part and a 2nd annular plate part move relative to the radial direction largely. Therefore, it is possible to prevent damage to the leaf spring portion that supports the movable body so as to be rotatable about the optical axis.

本発明において、前記第1部材と前記第2部材の一方から前記光軸方向に延びて前記第1部材と前記第2部材の他方と前記光軸方向に対向する光軸方向ストッパ部を備えることが好ましい。このようにすると、第1環状板部と第2環状板部が光軸方向に接近することを規制できる。従って、可動体を光軸回りに回転可能に支持する板ばね部の破損を防止することができる。 In the present invention, an optical axis direction stopper portion extending in the optical axis direction from one of the first member and the second member and facing the other of the first member and the second member in the optical axis direction is provided. is preferred. By doing so, it is possible to restrict the approach of the first annular plate portion and the second annular plate portion in the optical axis direction. Therefore, it is possible to prevent damage to the leaf spring portion that supports the movable body so as to be rotatable about the optical axis.

本発明において、前記可動体は、前記カメラモジュールを保持するホルダを備え、前記第2環状板部は、前記第1環状板部と前記カメラモジュールとの前記光軸方向の隙間に配置され、前記ホルダは、前記光軸方向に突出するホルダ凸部を備え、前記ホルダ凸部の先端面と前記第2部材との前記光軸方向の隙間は、前記カメラモジュールと前記第2部材との前記光軸方向の隙間よりも狭いことが好ましい。このようにすると、第1環状板部と第2環状板部が光軸方向に大きく離間することを規制できる。従って、可動体を光軸回りに回転可能に支持する板ばね部の破損を防止することができる。 In the present invention, the movable body includes a holder that holds the camera module, the second annular plate portion is arranged in a gap in the optical axis direction between the first annular plate portion and the camera module, and the The holder has a holder protrusion projecting in the optical axis direction, and a gap in the optical axis direction between the tip surface of the holder protrusion and the second member is the light beam between the camera module and the second member. It is preferably narrower than the axial clearance. By doing so, it is possible to prevent the first annular plate portion and the second annular plate portion from being greatly separated in the optical axis direction. Therefore, it is possible to prevent damage to the leaf spring portion that supports the movable body so as to be rotatable about the optical axis.

本発明において、前記可動体の前記光軸回りの回転範囲を規制する回転規制機構を備え、前記回転規制機構は、前記第1環状板部と前記第2環状板部の一方の外周縁から外周側へ延びる第1回転規制部と、前記第1環状板部と前記第2環状板部の他方の外周縁から前記光軸方向に延びる第2回転規制部と、を備え、前記第1回転規制部と前記第2回転規制部の一方は、前記第1回転規制部と前記第2回転規制部の他方の周方向の両側に配置されることが好ましい。このようにすると、第1環状板部と第2環状板部の間に周方向に対向する回転規制機構を構成できる。従って、可動体の回転範囲を規制できる。また、第1回転規制部と第2回転規制部の配置を容易に変更できるので、回転範囲の管理が容易である
。さらに、回転規制機構を外周側に配置するため、回転範囲を精度良く管理できる。
In the present invention, a rotation restricting mechanism is provided for restricting the rotation range of the movable body about the optical axis, and the rotation restricting mechanism extends from the outer peripheral edge of one of the first annular plate portion and the second annular plate portion to the outer circumference. a first rotation restricting portion extending toward the side; and a second rotation restricting portion extending in the optical axis direction from the outer peripheral edge of the other of the first annular plate portion and the second annular plate portion. It is preferable that one of the portion and the second rotation restricting portion is arranged on both circumferential sides of the other of the first rotation restricting portion and the second rotation restricting portion. In this way, the rotation restricting mechanism facing in the circumferential direction can be formed between the first annular plate portion and the second annular plate portion. Therefore, the rotation range of the movable body can be regulated. In addition, since the arrangement of the first rotation restricting portion and the second rotation restricting portion can be easily changed, it is easy to manage the rotation range. Furthermore, since the rotation restricting mechanism is arranged on the outer peripheral side, the rotation range can be controlled with high accuracy.

本発明において、前記板ばね部は、板厚方向が前記周方向を向く第1板ばね部を備え、前記第1板ばね部は、前記光軸を中心として径方向に延びる第1アーム部と、前記第1アーム部に対して前記光軸方向に隣り合う位置で前記径方向に延びる第2アーム部と、前記第1アーム部と前記第2アーム部を前記径方向に折り返した形状に接続する接続部と、を備えることが好ましい。このようにすると、第1板ばね部が径方向に長いため、周方向に弾性変形するときのばね定数が小さい。従って、可動体を光軸回りに回転させるために必要な駆動力を小さくすることができ、ローリング補正用の磁気駆動機構を小型化できる。また、第1板ばね部は光軸方向に変形しにくいので、可動体の荷重を支持でき、可動体を吊ることができる。よって、回転支持機構の構成を簡素化できるので、部品コストを削減でき、組立作業を容易化できる。 In the present invention, the plate spring portion includes a first plate spring portion whose plate thickness direction faces the circumferential direction, and the first plate spring portion includes a first arm portion extending radially about the optical axis. a second arm portion extending in the radial direction at a position adjacent to the first arm portion in the optical axis direction; It is preferable to provide a connecting portion for With this configuration, since the first plate spring portion is radially long, the spring constant when elastically deformed in the circumferential direction is small. Therefore, the driving force required to rotate the movable body around the optical axis can be reduced, and the magnetic drive mechanism for rolling correction can be miniaturized. Further, since the first plate spring portion is less likely to deform in the optical axis direction, it is possible to support the load of the movable body and suspend the movable body. Therefore, since the configuration of the rotation support mechanism can be simplified, the parts cost can be reduced and the assembly work can be facilitated.

本発明において、前記板ばね部は、板厚方向が前記径方向を向く第2板ばね部を備え、前記第2板ばね部は、前記可動体側固定部と前記第1板ばね部とを接続するか、あるいは、前記固定体側固定部と前記第1板ばね部とを接続することが好ましい。このようにすると、落下等による衝撃が加わったときに、第2板ばね部が弾性変形することによって第1板ばね部に加わる径方向の衝撃が緩和される。従って、第1板ばね部の塑性変形を抑制できるので、耐衝撃性を高めることができる。 In the present invention, the plate spring portion includes a second plate spring portion whose plate thickness direction faces the radial direction, and the second plate spring portion connects the movable body side fixing portion and the first plate spring portion. Alternatively, it is preferable to connect the fixed body side fixing portion and the first plate spring portion. With this configuration, when an impact such as a drop is applied, the second leaf spring portion elastically deforms, thereby mitigating the radial impact applied to the first leaf spring portion. Therefore, the plastic deformation of the first plate spring portion can be suppressed, so that the impact resistance can be enhanced.

本発明において、前記金属部材は、環状の前記固定体側固定部、および、前記固定体側固定部に設けられた第1切欠き部の縁から前記光軸方向に屈曲して前記径方向に延びる前記第1板ばね部を備える第1金属部材と、環状の前記可動体側固定部、および、前記可動体側固定部に設けられた第2切欠き部の縁から前記光軸方向に屈曲して前記光軸回りの周方向に延びる前記第2板ばね部を備える第2金属部材と、を有し、前記第2板ばね部の先端と前記第1板ばね部とが接合されることが好ましい。このように、板ばね部を備える金属部材を2部品に分けて接合することにより、各部品では、複数の板ばね部の一部を固定体側固定部、あるいは可動体側固定部と一体化できる。従って、部品点数を削減でき、回転支持機構の組立が容易である。また、各ばね部の位置精度を高めることができる。 In the present invention, the metal member extends in the radial direction by bending in the optical axis direction from an edge of the annular fixed body side fixing portion and a first notch portion provided in the fixed body side fixing portion. A first metal member having a first leaf spring portion, an annular movable body side fixing portion, and a second cutout portion provided in the movable body side fixing portion bends in the optical axis direction from an edge of the light beam. and a second metal member having the second leaf spring portion extending in the circumferential direction around the axis, and the tip of the second leaf spring portion and the first leaf spring portion are joined. In this way, by dividing the metal member having the leaf spring portion into two parts and joining them together, in each part, part of the plurality of leaf spring parts can be integrated with the stationary body side fixing part or the movable body side fixing part. Therefore, the number of parts can be reduced, and assembly of the rotation support mechanism is easy. Moreover, the positional accuracy of each spring part can be improved.

本発明において、前記周方向に分散配置される少なくとも3個の前記板ばね部を備え、前記3個の前記板ばね部は、前記光軸方向から見て前記カメラモジュールと重なる位置に配置されることが好ましい。このようにすると、径方向に延びる板ばね部を少なくとも3箇所に放射状に配置できるので、可動体をバランス良く支持できる。また、光軸方向から見て板ばね部とカメラモジュールとが重なるので、光軸方向から見た振れ補正機能付き光学ユニットの外形を小さくすることができる。 In the present invention, at least three leaf spring portions are provided dispersedly in the circumferential direction, and the three leaf spring portions are arranged at positions overlapping the camera module when viewed from the optical axis direction. is preferred. With this configuration, the radially extending leaf spring portions can be radially arranged at at least three locations, so that the movable body can be supported in a well-balanced manner. In addition, since the leaf spring portion and the camera module overlap when viewed from the optical axis direction, the outer shape of the optical unit with a shake correction function when viewed from the optical axis direction can be reduced.

本発明において、前記回転支持機構を前記光軸と交差する第1軸回りに回転可能に支持するとともに、前記回転支持機構を前記光軸および前記第1軸と交差する第2軸回りに回転可能に支持するジンバル機構を有し、前記第2部材は、前記ジンバル機構によって前記第1軸回りに回転可能に支持され、前記固定体は、前記回転支持機構および前記ジンバル機構を介して前記可動体を支持することが好ましい。このようにすると、光軸回りに回転するユニットがジンバル機構を含まないので、回転スペースを大きく確保する必要がない。従って、振れ補正機能付き光学ユニットの外形を小さくすることができる。 In the present invention, the rotation support mechanism is rotatably supported around a first axis that intersects with the optical axis, and the rotation support mechanism is rotatable around a second axis that intersects with the optical axis and the first axis. The second member is rotatably supported about the first axis by the gimbal mechanism, and the fixed body is supported by the movable body via the rotation support mechanism and the gimbal mechanism is preferred. With this configuration, the unit that rotates about the optical axis does not include a gimbal mechanism, so there is no need to secure a large rotation space. Therefore, the outer shape of the optical unit with a shake correction function can be reduced.

本発明において、前記第2部材は、前記第2環状板部から前記第1軸方向の両側へ突出する一対の第2延設部、および、前記第2環状板部から前記第2軸方向の両側へ突出する一対の第2突出板部を備え、前記一対の第2延設部は前記ジンバル機構に接続され、前記第1部材は、前記第1環状板部から前記第1軸方向の両側、および、前記第2軸方向の両側へ突出する4箇所の第1突出板部を備え、前記光軸方向ストッパ部は、前記第1突出板
部の前記周方向の縁から前記光軸方向に延びて前記第2突出板部または前記第2延設部と前記光軸方向に対向することが好ましい。このようにすると、光軸方向ストッパ部が周方向に均等配置されるので、第1環状板部と第2環状板部が光軸方向に大きく接近することを規制できる。従って、可動体の位置精度の低下を抑制できる。また、ジンバル機構との接続用の形状(第2延設部)を利用してストッパ機部を構成できるので、第2部材の部品形状が複雑化することを避けることができる。
In the present invention, the second member includes a pair of second extending portions projecting from the second annular plate portion to both sides in the first axial direction, and a pair of second extending portions extending from the second annular plate portion in the second axial direction. A pair of second protruding plate portions projecting to both sides is provided, the pair of second extending portions are connected to the gimbal mechanism, and the first member extends from the first annular plate portion to both sides in the first axial direction. , and four first projecting plate portions projecting to both sides in the second axial direction, and the optical axis direction stopper portion extends from the circumferential edge of the first projecting plate portion in the optical axis direction. It is preferable to extend and face the second protruding plate portion or the second extended portion in the optical axis direction. With this arrangement, the optical axis direction stopper portions are evenly arranged in the circumferential direction, so that it is possible to restrict the first annular plate portion and the second annular plate portion from coming too close to each other in the optical axis direction. Therefore, it is possible to suppress the deterioration of the positional accuracy of the movable body. In addition, since the shape for connection with the gimbal mechanism (the second extending portion) can be used to configure the stopper mechanism portion, it is possible to avoid complicating the shape of the second member.

本発明において、前記周方向に分散配置される4個の前記第1板ばね部を備え、前記一対の第2延設部、および、前記一対の第2突出板部のそれぞれには、前記径方向に延びて前記第2環状板部の内周縁に開口するスリットが設けられ、前記光軸方向ストッパ部は、前記第1突出板部の前記周方向の両側の縁から前記光軸方向に延びて、前記スリットに配置される前記第1板ばね部の周方向の両側を囲うことが好ましい。このようにすると、第1板ばね部と光軸方向ストッパ部とが干渉しない。また、第2部材と第1板ばね部を光軸方向と交差する方向から見て重なる位置に配置できる。従って、回転支持機構の光軸方向の高さを低くすることができ、振れ補正機能付き光学ユニットの光軸方向の高さを低くすることができる。 In the present invention, the four first plate spring portions distributed in the circumferential direction are provided, and the pair of second extension portions and the pair of second projecting plate portions each have the diameter The optical axis direction stopper portion extends in the optical axis direction from both edges of the first projecting plate portion in the circumferential direction. It is preferable that both sides in the circumferential direction of the first leaf spring portion disposed in the slit are surrounded by the groove. With this configuration, the first plate spring portion and the optical axis direction stopper portion do not interfere with each other. Also, the second member and the first plate spring portion can be arranged at overlapping positions when viewed from the direction intersecting the optical axis direction. Therefore, the height of the rotation support mechanism in the optical axis direction can be reduced, and the height of the optical unit with a shake correction function in the optical axis direction can be reduced.

本発明において、前記ホルダ凸部は、前記第2軸方向の両側の角部、および、前記第1軸方向の両側の角部に設けられ、前記第2軸方向の両側の角部に設けられた前記ホルダ凸部は、前記第2突出板部と前記光軸方向に対向し、前記第1軸方向の両側の角部に設けられた前記ホルダ凸部は、前記第2延設部と前記光軸方向に対向することが好ましい。このようにすると、ジンバル機構との接続用の形状(第2延設部)を利用して光軸方向のストッパ機構を構成できるので、第2部材の部品形状が複雑化することを避けることができる。また、4箇所の光軸方向のストッパ機構が周方向に均等配置されるので、可動体か傾くことを規制できる。従って、第1環状板部と第2環状板部が光軸方向に大きく接近することを規制でき、可動体の位置精度の低下を抑制できる。 In the present invention, the holder projections are provided at the corners on both sides in the second axial direction, the corners on both sides in the first axial direction, and the corners on both sides in the second axial direction. The holder convex portion is opposed to the second protruding plate portion in the optical axis direction, and the holder convex portions provided at both corner portions in the first axial direction are arranged between the second elongated portion and the It is preferable that they are opposed to each other in the optical axis direction. In this way, the shape (the second extending portion) for connection with the gimbal mechanism can be used to configure the stopper mechanism in the optical axis direction, thus avoiding complication of the component shape of the second member. can. In addition, since the four stopper mechanisms in the optical axis direction are evenly arranged in the circumferential direction, tilting of the movable body can be restricted. Therefore, it is possible to prevent the first annular plate portion and the second annular plate portion from coming too close to each other in the optical axis direction, thereby suppressing deterioration in the positional accuracy of the movable body.

本発明によれば、可動体と固定体を接続する回転支持機構が、可動体に設けられた第1環状板部と光軸方向に対向する第2環状板部と、第1環状板部と第2環状板部とを接続し周方向に弾性変形可能な板ばね部を備えている。従って、可動体を光軸回りに回転可能に支持できる。また、板ばね部の弾性力によって可動体を原点位置に復帰させることができるため、原点復帰用の磁気ばねが不要である。よって、回転支持機構の構成を簡素化できる。また、第1環状板部および第2環状板部の一方の縁から光軸方向へ延びて第1環状板部および第2環状板部の他方の縁と径方向に対向する径方向ストッパ部を備えているので、第1環状板部と第2環状板部が径方向に大きく相対移動することを規制できる。従って、可動体を光軸回りに回転可能に支持する板ばね部の破損を防止することができる。 According to the present invention, the rotation support mechanism that connects the movable body and the fixed body includes the second annular plate portion that faces the first annular plate portion provided on the movable body in the optical axis direction, and the first annular plate portion. A plate spring portion is provided which connects with the second annular plate portion and is elastically deformable in the circumferential direction. Therefore, the movable body can be rotatably supported around the optical axis. In addition, since the movable body can be returned to the origin position by the elastic force of the plate spring portion, a magnetic spring for returning to the origin is not required. Therefore, the configuration of the rotation support mechanism can be simplified. Further, a radial direction stopper portion extending in the optical axis direction from one edge of the first annular plate portion and the second annular plate portion and radially facing the other edge of the first annular plate portion and the second annular plate portion is provided. Since it has, it can control that a 1st annular plate part and a 2nd annular plate part move relative to the radial direction largely. Therefore, it is possible to prevent damage to the leaf spring portion that supports the movable body so as to be rotatable about the optical axis.

本発明を適用した振れ補正機能付き光学ユニットの斜視図である。1 is a perspective view of an optical unit with a shake correction function to which the present invention is applied; FIG. 図1の振れ補正機能付き光学ユニットの分解斜視図である。FIG. 2 is an exploded perspective view of the optical unit with a shake correction function in FIG. 1; カバーを外した振れ補正機能付き光学ユニットを被写体側から見た平面図である。FIG. 3 is a plan view of the optical unit with a shake correction function with the cover removed, viewed from the object side; 図3のA-A位置で切断した振れ補正機能付き光学ユニットの断面図である。FIG. 4 is a cross-sectional view of the optical unit with a shake correction function taken along line AA in FIG. 3; 図3のB-B位置で切断した振れ補正機能付き光学ユニットの断面図である。FIG. 4 is a cross-sectional view of the optical unit with a shake correction function taken along line BB in FIG. 3; 可動体および回転支持機構を被写体側から見た斜視図である。FIG. 4 is a perspective view of the movable body and the rotation support mechanism as seen from the subject side; 可動体および回転支持機構を被写体側から見た平面図である。FIG. 4 is a plan view of the movable body and the rotation support mechanism as seen from the subject side; 可動体および回転支持機構の側面図である。4 is a side view of a movable body and a rotation support mechanism; FIG. 回転支持機構および第1部材の分解斜視図である。4 is an exploded perspective view of the rotation support mechanism and the first member; FIG.

以下に、図面を参照して、本発明を適用した振れ補正機能付き光学ユニットの実施形態を説明する。 An embodiment of an optical unit with a shake correction function to which the present invention is applied will be described below with reference to the drawings.

(全体構成)
図1は、本発明を適用した振れ補正機能付き光学ユニットの斜視図である。図2は、図1の振れ補正機能付き光学ユニットの分解斜視図である。図3は、カバーを外した振れ補正機能付き光学ユニットを被写体側から見た平面図である。
(overall structure)
FIG. 1 is a perspective view of an optical unit with a shake correction function to which the present invention is applied. 2 is an exploded perspective view of the optical unit with a shake correction function in FIG. 1. FIG. FIG. 3 is a plan view of the optical unit with a shake correction function with the cover removed, viewed from the object side.

図1に示すように、振れ補正機能付き光学ユニット1は、カメラモジュール2を備える可動体10と、可動体10を支持する固定体11と、を備える。固定体11は、可動体10を外周側から囲む枠状のケース3と、ケース3に被写体側から固定されるカバー4と、ケース3に反被写体側から固定されて可動体を反被写体側から覆うベース5を備える。また、振れ補正機能付き光学ユニット1は、可動体10から引き出されるフレキシブルプリント基板6と、ケース3の外周面に沿って引き回されるフレキシブルプリント基板7を備える。 As shown in FIG. 1 , the optical unit 1 with a shake correction function includes a movable body 10 having a camera module 2 and a fixed body 11 supporting the movable body 10 . The fixed body 11 includes a frame-shaped case 3 that surrounds the movable body 10 from the outer peripheral side, a cover 4 that is fixed to the case 3 from the subject side, and a fixed body 11 that is fixed to the case 3 from the side opposite to the subject and moves the movable body from the side opposite to the subject. A covering base 5 is provided. The optical unit 1 with a shake correction function also includes a flexible printed circuit board 6 pulled out from the movable body 10 and a flexible printed circuit board 7 routed along the outer peripheral surface of the case 3 .

振れ補正機能付き光学ユニット1は、例えば、カメラ付き携帯電話機、ドライブレコーダー等の光学機器や、ヘルメット、自転車、ラジコンヘリコプター等の移動体に搭載されるアクションカメラやウエアラブルカメラ等の光学機器に用いられる。このような光学機器では、撮影時に光学機器の振れが発生すると、撮像画像に乱れが発生する。振れ補正機能付き光学ユニット1は、撮影画像が傾くことを回避するため、ジャイロスコープ等の検出手段によって検出された加速度や角速度、振れ量等に基づき、カメラモジュール2の傾きを補正する。 The optical unit 1 with a shake correction function is used, for example, in optical equipment such as camera-equipped mobile phones and drive recorders, and in optical equipment such as action cameras and wearable cameras mounted on mobile objects such as helmets, bicycles, and radio-controlled helicopters. . In such an optical device, if the optical device shakes during shooting, the captured image is disturbed. The optical unit 1 with a shake correction function corrects the inclination of the camera module 2 based on the acceleration, angular velocity, amount of shake, etc. detected by a detection means such as a gyroscope in order to avoid tilting of the photographed image.

カメラモジュール2は、レンズ2aと、レンズ2aの光軸L上に配置された撮像素子2bを備える(図4、図5参照)。振れ補正機能付き光学ユニット1は、レンズ2aの光軸L回り、光軸Lと直交する第1軸R1回り、並びに、光軸Lおよび第1軸R1と直交する第2軸R2回りにカメラモジュール2を回転させて振れ補正を行う。 The camera module 2 includes a lens 2a and an imaging element 2b arranged on the optical axis L of the lens 2a (see FIGS. 4 and 5). The optical unit 1 with a shake correction function rotates around the optical axis L of the lens 2a, around a first axis R1 orthogonal to the optical axis L, and around a second axis R2 orthogonal to the optical axis L and the first axis R1. 2 is rotated to perform shake correction.

以下の説明では、互いに直交する3軸をX軸方向、Y軸方向、Z軸方向とする。また、X軸方向の一方側を-X方向、他方側を+X方向とする。Y軸方向の一方側を-Y方向、他方側を+Y方向とする。Z軸方向の一方側を-Z方向、他方側を+Z方向とする。Z軸方向は、光軸方向である。-Z方向は、カメラモジュール2の反被写体側であり、+Z方向は、カメラモジュール2の被写体側である。第1軸R1および第2軸R2は、Z軸回り(光軸回り)で、X軸およびY軸に対して45度傾斜する。 In the following description, the three mutually orthogonal axes are the X-axis direction, the Y-axis direction, and the Z-axis direction. One side of the X-axis direction is assumed to be the -X direction, and the other side thereof is assumed to be the +X direction. One side of the Y-axis direction is the -Y direction, and the other side is the +Y direction. One side of the Z-axis direction is the -Z direction, and the other side is the +Z direction. The Z-axis direction is the optical axis direction. The −Z direction is the side of the camera module 2 opposite to the subject, and the +Z direction is the side of the camera module 2 that is the subject. The first axis R1 and the second axis R2 are inclined 45 degrees with respect to the X axis and the Y axis around the Z axis (around the optical axis).

振れ補正機能付き光学ユニット1は、可動体10をZ軸回りに回転可能に支持する回転支持機構12と、ジンバル機構13とを有する。ジンバル機構13は、回転支持機構12を第1軸R1回りに回転可能に支持するとともに、回転支持機構12を第2軸R2回りに回転可能に支持する揺動支持機構である。可動体10は、回転支持機構12およびジンバル機構13を介して、第1軸R1回りおよび第2軸R2回りに回転可能な状態で固定体11に支持される。 The optical unit 1 with a shake correction function has a rotation support mechanism 12 that supports a movable body 10 so as to be rotatable around the Z axis, and a gimbal mechanism 13 . The gimbal mechanism 13 is a swing support mechanism that supports the rotation support mechanism 12 rotatably about the first axis R1 and supports the rotation support mechanism 12 rotatably about the second axis R2. Movable body 10 is supported by fixed body 11 via rotation support mechanism 12 and gimbal mechanism 13 so as to be rotatable about first axis R<b>1 and second axis R<b>2 .

図3に示すように、ジンバル機構13は、ジンバルフレーム14と、ジンバルフレーム14と回転支持機構12とを第1軸R1回りに回転可能に接続する第1接続機構15を備える。第1接続機構15は、ジンバルフレーム14の第1軸R1方向の両側に設けられている。また、ジンバル機構13は、ジンバルフレーム14と固定体11とを第2軸R2回りに回転可能に接続する第2接続機構16を備える。第2接続機構16は、ジンバルフレーム14の第2軸R2方向の両側に設けられている。 As shown in FIG. 3, the gimbal mechanism 13 includes a gimbal frame 14 and a first connection mechanism 15 that connects the gimbal frame 14 and the rotation support mechanism 12 so as to be rotatable about a first axis R1. The first connection mechanisms 15 are provided on both sides of the gimbal frame 14 in the direction of the first axis R1. The gimbal mechanism 13 also includes a second connection mechanism 16 that connects the gimbal frame 14 and the fixed body 11 rotatably around the second axis R2. The second connection mechanisms 16 are provided on both sides of the gimbal frame 14 in the direction of the second axis R2.

また、振れ補正機能付き光学ユニット1は、可動体10を第1軸R1回りおよび第2軸R2回りに回転させる振れ補正用磁気駆動機構20を備える。図3に示すように、振れ補正用磁気駆動機構20は、可動体10に対してX軸回りの駆動力を発生させる第1振れ補正用磁気駆動機構21と、可動体10に対してY軸回りの駆動力を発生させる第2振れ補正用磁気駆動機構22を備える。第1振れ補正用磁気駆動機構21と第2振れ補正用磁気駆動機構22とは、Z軸回りの周方向に配列されている。本例では、第1振れ補正用磁気駆動機構21は、カメラモジュール2の-Y方向に配置される。第2振れ補正用磁気駆動機構22は、カメラモジュール2の-X方向に配置される。 The optical unit 1 with a shake correcting function also includes a shake correcting magnetic drive mechanism 20 that rotates the movable body 10 around the first axis R1 and the second axis R2. As shown in FIG. 3, the shake correction magnetic drive mechanism 20 includes a first shake correction magnetic drive mechanism 21 that generates a driving force around the X axis for the movable body 10 and a Y axis drive force for the movable body 10 . A second anti-shake magnetic drive mechanism 22 is provided to generate a rotating driving force. The first shake correction magnetic drive mechanism 21 and the second shake correction magnetic drive mechanism 22 are arranged in the circumferential direction around the Z-axis. In this example, the first magnetic drive mechanism for shake correction 21 is arranged in the -Y direction of the camera module 2 . The second shake correction magnetic drive mechanism 22 is arranged in the −X direction of the camera module 2 .

可動体10は、第1軸R1回りの回転および第2軸R2回りの回転を合成することにより、X軸回りおよびY軸回りに回転する。これにより、振れ補正機能付き光学ユニット1は、X軸回りのピッチング補正、およびY軸回りのヨーイング補正を行う。 The movable body 10 rotates about the X-axis and the Y-axis by synthesizing rotation about the first axis R1 and rotation about the second axis R2. Thereby, the optical unit 1 with a shake correction function performs pitching correction about the X-axis and yawing correction about the Y-axis.

さらに、振れ補正機能付き光学ユニット1は、可動体10をZ軸回りに回転させるローリング補正用磁気駆動機構23を有する。図3に示すように、第1振れ補正用磁気駆動機構21、第2振れ補正用磁気駆動機構22、および、ローリング補正用磁気駆動機構23は、Z軸回りの周方向に配列されている。本例では、ローリング補正用磁気駆動機構23は、カメラモジュール2の+Y方向に配置される。ローリング補正用磁気駆動機構23は、光軸Lを間に挟んで、第1振れ補正用磁気駆動機構21とは反対側に位置する。 Further, the optical unit 1 with a shake correction function has a rolling correction magnetic driving mechanism 23 that rotates the movable body 10 around the Z-axis. As shown in FIG. 3, the first shake correction magnetic drive mechanism 21, the second shake correction magnetic drive mechanism 22, and the rolling correction magnetic drive mechanism 23 are arranged in the circumferential direction around the Z-axis. In this example, the rolling correction magnetic drive mechanism 23 is arranged in the +Y direction of the camera module 2 . The rolling correction magnetic drive mechanism 23 is located on the opposite side of the first shake correction magnetic drive mechanism 21 with the optical axis L interposed therebetween.

(固定体)
固定体11において、カバー4およびベース5は板状であり、非磁性の金属からなる。図2に示すように、カバー4およびベース5の外周縁には、ケース3の側に略直角に屈曲したフック8が形成されている。ケース3は樹脂製である。フック8は、ケース3の外周面に設けられた突起9に係止される。図1に示すように、ジンバル機構13およびカメラモジュール2は、カバー4の開口部4aの内側に配置され、カバー4から+Z方向に突出している。
(fixed body)
In the fixed body 11, the cover 4 and the base 5 are plate-shaped and made of non-magnetic metal. As shown in FIG. 2, the cover 4 and the base 5 have hooks 8 bent substantially at right angles toward the case 3 on the outer peripheral edges thereof. The case 3 is made of resin. The hook 8 is engaged with a projection 9 provided on the outer peripheral surface of the case 3 . As shown in FIG. 1, the gimbal mechanism 13 and the camera module 2 are arranged inside the opening 4a of the cover 4 and protrude from the cover 4 in the +Z direction.

ケース3は、可動体10および回転支持機構12を外周側から囲む矩形の枠部18と、枠部18の+X方向に配置される矩形の配線収容部19を備える。枠部18は、Y軸方向で対向する第1側板部181および第2側板部182と、X軸方向で対向する第3側板部183および第4側板部184を備える。第1側板部181は第2側板部182の-Y方向に位置する。第3側板部183は、第4側板部184の+X方向に位置する。 The case 3 includes a rectangular frame portion 18 surrounding the movable body 10 and the rotation support mechanism 12 from the outer peripheral side, and a rectangular wire housing portion 19 arranged in the +X direction of the frame portion 18 . The frame portion 18 includes a first side plate portion 181 and a second side plate portion 182 facing each other in the Y-axis direction, and a third side plate portion 183 and a fourth side plate portion 184 facing each other in the X-axis direction. The first side plate portion 181 is positioned in the -Y direction of the second side plate portion 182 . The third side plate portion 183 is positioned in the +X direction of the fourth side plate portion 184 .

枠部18は、第3側板部183の-Z方向の端縁を切り欠いた切欠き部183aを備える(図3参照)。可動体10の-Z方向の端部分からは、撮像素子2bに接続されるフレキシブルプリント基板6が+X方向に引き出されている。フレキシブルプリント基板6は、第3側板部183の切欠き部183aを通って枠部18の+X方向に引き出され、配線収容部19に収容される。 The frame portion 18 includes a notch portion 183a obtained by notching the −Z direction edge of the third side plate portion 183 (see FIG. 3). A flexible printed circuit board 6 connected to the imaging element 2b is pulled out in the +X direction from the end portion of the movable body 10 in the -Z direction. The flexible printed circuit board 6 is pulled out in the +X direction of the frame portion 18 through the notch portion 183 a of the third side plate portion 183 and accommodated in the wiring accommodation portion 19 .

配線収容部19は、Y軸方向で対向する第1壁部191および第2壁部192と、枠部18の第3側板部183とX軸方向で対向する第3壁部193を備える。配線収容部19は、第3壁部193の-Z方向の端縁を切り欠いた切欠き部193aを備える。図3に示すように、フレキシブルプリント基板6は、配線収容部19の内側で第3側板部183、第1壁部191、および第3壁部193の内面に沿う方向に引き回され、切欠き部193aを通って配線収容部19の外側へ引き出される。 The wire housing portion 19 includes a first wall portion 191 and a second wall portion 192 facing each other in the Y-axis direction, and a third wall portion 193 facing the third side plate portion 183 of the frame portion 18 in the X-axis direction. The wire housing portion 19 includes a notch portion 193a obtained by notching the edge of the third wall portion 193 in the -Z direction. As shown in FIG. 3, the flexible printed circuit board 6 is routed along the inner surfaces of the third side plate portion 183, the first wall portion 191, and the third wall portion 193 inside the wiring accommodating portion 19, and the notch is formed. It is pulled out to the outside of the wiring accommodating portion 19 through the portion 193a.

図2に示すように、ケース3の第1側板部181には、第1コイル固定孔181aが設けられている。第1コイル固定孔181aには、第1コイル21Cが固定される。ケース
3の第4側板部184には、第2コイル固定孔184aが設けられている。第2コイル固定孔184aには、第2コイル22Cが固定される。また、第2側板部182には、第3コイル固定孔182aが設けられている。第3コイル固定孔182aには、第3コイル23Cが配置されている。第1コイル21C、第2コイル22C、および第3コイル23Cは、周方向に長い長円形の空芯コイルである。
As shown in FIG. 2, the first side plate portion 181 of the case 3 is provided with a first coil fixing hole 181a. A first coil 21C is fixed to the first coil fixing hole 181a. A fourth side plate portion 184 of the case 3 is provided with a second coil fixing hole 184a. A second coil 22C is fixed to the second coil fixing hole 184a. Further, the second side plate portion 182 is provided with a third coil fixing hole 182a. A third coil 23C is arranged in the third coil fixing hole 182a. The first coil 21C, the second coil 22C, and the third coil 23C are oval air-core coils elongated in the circumferential direction.

図3に示すように、第1側板部181に固定された第1コイル21Cと可動体10の-Y方向の側面に固定された第1磁石21MとはY方向で対向しており、第1振れ補正用磁気駆動機構21を構成する。また、第4側板部184に固定された第2コイル22Cと可動体10の-X方向の側面に固定された第2磁石22MとはX方向で対向しており、第2振れ補正用磁気駆動機構22を構成する。そして、第2側板部182に固定された第3コイル23Cと可動体10の+Y方向の側面に固定された第3磁石23MとはY方向で対向しており、ローリング補正用磁気駆動機構23を構成する。 As shown in FIG. 3, the first coil 21C fixed to the first side plate portion 181 and the first magnet 21M fixed to the -Y direction side surface of the movable body 10 face each other in the Y direction. A magnetic drive mechanism 21 for shake correction is configured. In addition, the second coil 22C fixed to the fourth side plate portion 184 and the second magnet 22M fixed to the side surface of the movable body 10 in the -X direction face each other in the X direction. A mechanism 22 is constructed. The third coil 23C fixed to the second side plate portion 182 and the third magnet 23M fixed to the side surface of the movable body 10 in the +Y direction face each other in the Y direction. Configure.

第1コイル21C、第2コイル22C、および第3コイル23Cは、フレキシブルプリント基板7に電気的に接続される。フレキシブルプリント基板7は、枠部18の外周面に固定される。本形態では、フレキシブルプリント基板7は、枠部18における第1側板部181、第4側板部184、および第2側板部182の外周面に沿って、この順番に引き回されている。図1、図2では図示を省略しているが、フレキシブルプリント基板7は、第2側板部182から配線収容部19の側面に延びて、配線収容部19に固定される給電基板(図示省略)に接続される。 The first coil 21C, the second coil 22C, and the third coil 23C are electrically connected to the flexible printed circuit board 7 . The flexible printed circuit board 7 is fixed to the outer peripheral surface of the frame portion 18 . In this embodiment, the flexible printed circuit board 7 is routed along the outer peripheral surfaces of the first side plate portion 181, the fourth side plate portion 184, and the second side plate portion 182 of the frame portion 18 in this order. Although not shown in FIGS. 1 and 2, the flexible printed circuit board 7 extends from the second side plate portion 182 to the side surface of the wiring accommodating portion 19 and is fixed to the wiring accommodating portion 19 as a power supply board (not shown). connected to

フレキシブルプリント基板7において、第1コイル21Cの中心と重なる位置、および、第2コイル22Cの中心と重なる位置の2箇所に磁性板17(図2参照)が固定される。第1コイル21Cと重なる磁性板17と第1磁石21Mとは、可動体10をX軸回りの回転方向における基準角度位置に復帰させるための磁気バネを構成する。また、第2コイル22Cと重なる磁性板17と第2磁石22Mとは、可動体10をY軸回りの回転方向における基準角度位置に復帰させるための磁気バネを構成する。さらに、フレキシブルプリント基板7には、各コイルの中心に、角度位置センサSが配置される。振れ補正機能付き光学ユニット1は、角度位置センサSの出力に基づき、可動体10のX軸回り、Y軸回り、Z軸回りの回転方向における角度位置を取得する。 Magnetic plates 17 (see FIG. 2) are fixed to the flexible printed circuit board 7 at two positions, one overlapping with the center of the first coil 21C and one overlapping with the center of the second coil 22C. The magnetic plate 17 overlapping the first coil 21C and the first magnet 21M constitute a magnetic spring for returning the movable body 10 to the reference angular position in the rotation direction around the X axis. The magnetic plate 17 overlapping the second coil 22C and the second magnet 22M constitute a magnetic spring for returning the movable body 10 to the reference angular position in the rotation direction around the Y-axis. Further, an angular position sensor S is arranged on the flexible printed circuit board 7 at the center of each coil. Based on the output of the angular position sensor S, the optical unit 1 with a shake correction function acquires the angular position of the movable body 10 in the directions of rotation about the X axis, the Y axis, and the Z axis.

(ジンバル機構)
図4、図5は、振れ補正機能付き光学ユニット1の断面図である。図4は、図3のA-A位置で切断した断面図であり、図5は、図3のB-B位置で切断した断面図である。図3、図5に示すように、枠部18の第2軸R2方向の対角位置には、それぞれ、ジンバルフレーム14と固定体11とを第2軸R2回りに回転可能に接続する第2接続機構16が設けられる。枠部18の第2軸R2方向の対角位置に設けられた一対の凹部161には、それぞれ、第2ジンバルフレーム受け部材162が固定される。図5に示すように、第2ジンバルフレーム受け部材162は、球体163と、球体163が固定される第2スラスト受け部材164を備える。第2ジンバルフレーム受け部材162を凹部161に固定することにより、球体163が第2軸R2上の位置で固定体11に支持される。ジンバル機構13を組み立てる際、第2ジンバルフレーム受け部材162の内周側にジンバルフレーム14を挿入して第2軸R2上で球体163に点接触させる。これにより、第2接続機構16が構成される。
(Gimbal mechanism)
4 and 5 are sectional views of the optical unit 1 with a shake correction function. 4 is a cross-sectional view cut along line AA in FIG. 3, and FIG. 5 is a cross-sectional view cut along line BB in FIG. As shown in FIGS. 3 and 5, at diagonal positions of the frame portion 18 in the direction of the second axis R2, there are provided second mounting plates that connect the gimbal frame 14 and the fixed body 11 so as to be rotatable about the second axis R2. A connection mechanism 16 is provided. A second gimbal frame receiving member 162 is fixed to each of a pair of recessed portions 161 provided at diagonal positions in the direction of the second axis R2 of the frame portion 18 . As shown in FIG. 5, the second gimbal frame receiving member 162 includes a sphere 163 and a second thrust receiving member 164 to which the sphere 163 is fixed. By fixing the second gimbal frame receiving member 162 to the recess 161, the sphere 163 is supported by the fixed body 11 at a position on the second axis R2. When assembling the gimbal mechanism 13, the gimbal frame 14 is inserted into the inner peripheral side of the second gimbal frame receiving member 162 and brought into point contact with the sphere 163 on the second axis R2. Thereby, the second connection mechanism 16 is configured.

図3、図4に示すように、可動体10に対して第1軸R1方向の両側には、それぞれ、ジンバルフレーム14と回転支持機構12とを第1軸R1回りに回転可能に接続する第1接続機構15が設けられる。第1接続機構15は、可動体10に対して第1軸R1方向の両側において回転支持機構12に固定される第1ジンバルフレーム受け部材151を備え
る。図4に示すように、第1ジンバルフレーム受け部材151は、球体152と、球体152が固定される第1スラスト受け部材153を備える。第1スラスト受け部材153を回転支持機構12に固定することにより、球体152が第1軸R1上の位置で回転支持機構12によって支持される。ジンバル機構13を組み立てる際、第1ジンバルフレーム受け部材151の内周側にジンバルフレーム14を挿入して第1軸R1上で球体152に点接触させる。これにより、第1接続機構15が構成される。
As shown in FIGS. 3 and 4, on both sides of the movable body 10 in the first axis R1 direction, gimbal frames 14 and rotation support mechanisms 12 are connected to each other so as to be rotatable about the first axis R1. 1 connection mechanism 15 is provided. The first connection mechanism 15 includes first gimbal frame receiving members 151 fixed to the rotation support mechanism 12 on both sides of the movable body 10 in the direction of the first axis R1. As shown in FIG. 4, the first gimbal frame receiving member 151 includes a sphere 152 and a first thrust receiving member 153 to which the sphere 152 is fixed. By fixing the first thrust receiving member 153 to the rotation support mechanism 12, the ball 152 is supported by the rotation support mechanism 12 at a position on the first axis R1. When assembling the gimbal mechanism 13, the gimbal frame 14 is inserted into the inner peripheral side of the first gimbal frame receiving member 151 and brought into point contact with the sphere 152 on the first axis R1. Thus, the first connection mechanism 15 is configured.

ジンバルフレーム14は、金属製の板バネからなる。図1、図4、図5に示すように、ジンバルフレーム14は、可動体10の+Z方向に位置するジンバルフレーム本体部140と、ジンバルフレーム本体部140から第1軸R1方向の両側に向かって突出して-Z方向に延びる一対の第1軸側延設部141と、ジンバルフレーム本体部140から第2軸R2方向の両側に向かって突出して-Z方向に延びる一対の第2軸側延設部142を備える。ジンバルフレーム14は、ジンバルフレーム本体部140の中央をZ軸方向に貫通する開口部143を備える。 The gimbal frame 14 is made of a metal leaf spring. As shown in FIGS. 1, 4, and 5, the gimbal frame 14 includes a gimbal frame main body portion 140 positioned in the +Z direction of the movable body 10, and a gimbal frame main body portion 140 extending from the gimbal frame main body portion 140 toward both sides in the first axis R1 direction. A pair of first axis side extensions 141 projecting and extending in the -Z direction, and a pair of second axis side extensions projecting from the gimbal frame main body 140 toward both sides in the second axis R2 direction and extending in the -Z direction. A portion 142 is provided. The gimbal frame 14 has an opening 143 passing through the center of the gimbal frame main body 140 in the Z-axis direction.

図2、図4に示すように、一対の第1軸側延設部141のそれぞれは、第1軸R1上において、第1軸R1方向を可動体10の側に向かって内周側に窪む第1軸側凹曲面144を備える。また、第1軸側延設部141は、第1軸側凹曲面144の-Z方向に、外周側へ向かう方向へ突出する突出部146を備える。次に、一対の第2軸側延設部142のそれぞれは、第2軸R2上において、第2軸R2方向を可動体10の側に向かって内周側に窪む第2軸側凹曲面147を備える。また、第2軸側凹曲面147の+Z方向に、周方向の両側の側縁を切り欠いた一対の切欠き148を備える。 As shown in FIGS. 2 and 4, each of the pair of first-axis-side extensions 141 is recessed inwardly toward the movable body 10 on the first axis R1 in the direction of the first axis R1. A first shaft side concave surface 144 is provided. Further, the first shaft side extension portion 141 includes a projecting portion 146 that projects in the −Z direction of the first shaft side concave curved surface 144 toward the outer peripheral side. Next, on the second axis R2, each of the pair of second axis side extensions 142 has a second axis side concave curved surface that is recessed inward toward the movable body 10 in the direction of the second axis R2. 147. In addition, a pair of notches 148 are provided in the +Z direction of the second axis side concave curved surface 147 by notching both side edges in the circumferential direction.

第1スラスト受け部材153は、Z軸方向に延びる板部154と、板部154の周方向の両側の側縁から可動体10側へ屈曲した一対の腕部155と、一対の腕部155の-Z方向において板部154の周方向の両側の側縁から可動体10側へ屈曲した一対の腕部156を備える(図4、図6参照)。板部154には球体152が溶接により固定される。後述するように、回転支持機構12は、可動体10の第1軸R1方向の両側において-Z方向に延びる一対の第2延設部47を備えており、第1ジンバルフレーム受け部材151は、腕部155、156の先端が第2延設部47の先端部に溶接により固定される。第2延設部47の先端部は、周方向の両側の側縁から外周側へ屈曲した一対の突出部157を備えており、腕部155、156の間に突出部157が嵌合する。 The first thrust receiving member 153 includes a plate portion 154 extending in the Z-axis direction, a pair of arm portions 155 bent toward the movable body 10 from both circumferential side edges of the plate portion 154, and a pair of arm portions 155. A pair of arm portions 156 are provided that are bent toward the movable body 10 side from both circumferential side edges of the plate portion 154 in the −Z direction (see FIGS. 4 and 6). A ball 152 is fixed to the plate portion 154 by welding. As will be described later, the rotation support mechanism 12 includes a pair of second extensions 47 extending in the -Z direction on both sides of the movable body 10 in the direction of the first axis R1. The tips of the arms 155 and 156 are fixed to the tip of the second extended portion 47 by welding. The distal end portion of the second extended portion 47 is provided with a pair of projecting portions 157 bent outward from both side edges in the circumferential direction.

ジンバル機構13を組み立てる際には、ジンバルフレーム14の第1軸側延設部141を内周側に撓ませて第1ジンバルフレーム受け部材151の内周側に挿入する。これにより、第1軸側延設部141は外周側へ付勢されるので、各第1軸側延設部141の第1軸側凹曲面144と第1ジンバルフレーム受け部材151の球体152とは、接触した状態を維持できる。また、第1軸側延設部141の先端に設けられた突出部146は、板部154の-Z方向側から径方向外側へ突出する(図4参照)。これにより、第1ジンバルフレーム受け部材151からジンバルフレーム14が+Z方向に抜けることが防止される。 When assembling the gimbal mechanism 13 , the first axis side extension 141 of the gimbal frame 14 is bent inward and inserted into the first gimbal frame receiving member 151 . As a result, the first axis-side extensions 141 are biased toward the outer periphery, so that the first axis-side concave curved surfaces 144 of the first axis-side extensions 141 and the spheres 152 of the first gimbal frame receiving members 151 can maintain contact. A protruding portion 146 provided at the tip of the first axis side extending portion 141 protrudes radially outward from the -Z direction side of the plate portion 154 (see FIG. 4). This prevents the gimbal frame 14 from coming off the first gimbal frame receiving member 151 in the +Z direction.

第2スラスト受け部材164は、Z軸方向に延びる板部165と、板部165の周方向の両側の側縁から可動体10側へ屈曲した一対の腕部167を備える。板部165には球体163が溶接により固定される。 The second thrust receiving member 164 includes a plate portion 165 extending in the Z-axis direction, and a pair of arm portions 167 bent from both side edges of the plate portion 165 in the circumferential direction toward the movable body 10 . A ball 163 is fixed to the plate portion 165 by welding.

ジンバル機構13を組み立てる際には、ジンバルフレーム14の第2軸側延設部142を内周側に撓ませて第2ジンバルフレーム受け部材162の内周側に挿入する。これにより、第2軸側延設部142は外周側へ付勢されるので、各第2軸側延設部142の第2軸側凹曲面147と第2ジンバルフレーム受け部材162の球体163とは、接触した状態を維持できる。また、第2軸側延設部142の切欠き148に第2スラスト受け部材16
4の腕部167が嵌合する。これにより、第2ジンバルフレーム受け部材162からジンバルフレーム14が+Z方向に抜けることが防止される。
When assembling the gimbal mechanism 13 , the second axis side extension 142 of the gimbal frame 14 is bent inward and inserted into the second gimbal frame receiving member 162 . As a result, the second axis side extensions 142 are biased toward the outer circumference, so that the second axis side concave surfaces 147 of the second axis side extensions 142 and the spheres 163 of the second gimbal frame receiving members 162 can maintain contact. Also, the second thrust receiving member 16 is inserted into the notch 148 of the second shaft side extension portion 142 .
4 arms 167 are fitted. This prevents the gimbal frame 14 from coming off the second gimbal frame receiving member 162 in the +Z direction.

(可動体)
図6は、可動体10および回転支持機構12を被写体側から見た斜視図である。図7は、可動体10および回転支持機構12を被写体側から見た平面図である。図8は、可動体10および回転支持機構12の側面図であり、第2軸R2方向から見た図である。図9は、回転支持機構12および第1部材25の分解斜視図である。図4、図5、図6に示すように、可動体10は、カメラモジュール2と、カメラモジュール2を保持する枠状のホルダ24と、ホルダ24に固定される第1部材25を備える。ホルダ24は樹脂製であり、第1部材25は磁性金属からなる。
(movable body)
FIG. 6 is a perspective view of the movable body 10 and the rotation support mechanism 12 as seen from the object side. FIG. 7 is a plan view of the movable body 10 and the rotation support mechanism 12 as seen from the object side. FIG. 8 is a side view of the movable body 10 and the rotation support mechanism 12, viewed from the direction of the second axis R2. 9 is an exploded perspective view of the rotation support mechanism 12 and the first member 25. FIG. As shown in FIGS. 4, 5, and 6, the movable body 10 includes a camera module 2, a frame-shaped holder 24 holding the camera module 2, and a first member 25 fixed to the holder 24. As shown in FIGS. The holder 24 is made of resin, and the first member 25 is made of magnetic metal.

図6,図9に示すように、第1部材25は、光軸Lを囲みカメラモジュール2の外周部分に+Z方向から重なる第1環状板部26と、第1環状板部26から外周側へ突出しカメラモジュール2の外周側において-Z方向へ屈曲してホルダ24に接続される第1延設部27を備える。本形態では、第1環状板部26とカメラモジュール2とのZ軸方向(光軸方向)の隙間に回転支持機構12が配置される。また、第1部材25は、光軸L周りの4箇所に設けられた第1突出板部28を備える。第1突出板部28は、第1環状板部26から第1軸R1方向の両側、および、第2軸R2方向の両側の4方向に突出する。 As shown in FIGS. 6 and 9, the first member 25 includes a first annular plate portion 26 that surrounds the optical axis L and overlaps the outer peripheral portion of the camera module 2 from the +Z direction, and an outer peripheral portion from the first annular plate portion 26 . A first extending portion 27 that is bent in the −Z direction and connected to the holder 24 is provided on the outer peripheral side of the projecting camera module 2 . In this embodiment, the rotation support mechanism 12 is arranged in the gap between the first annular plate portion 26 and the camera module 2 in the Z-axis direction (optical axis direction). Further, the first member 25 includes first projecting plate portions 28 provided at four locations around the optical axis L. As shown in FIG. The first protruding plate portion 28 protrudes from the first annular plate portion 26 in four directions: both sides in the direction of the first axis R1 and both sides in the direction of the second axis R2.

第1延設部27は、第1環状板部26の-X方向、+Y方向、-Y方向の3箇所に配置される。第1延設部27が配置される角度位置は、振れ補正用磁気駆動機構20の第1磁石21Mおよび第2磁石22Mと、ローリング補正用磁気駆動機構23の第3磁石23Mが配置される角度位置である。第1延設部27は、第1環状板部26から外周側へ延びて-Z方向へ屈曲する第1延設部第1部分271と、第1延設部第1部分271の-Z方向の先端に接続され第1延設部第1部分271よりも周方向の幅が広い矩形の第1延設部第2部分272を備える。第1延設部第2部分272はホルダ24に固定される。 The first extending portions 27 are arranged at three locations of the first annular plate portion 26 in the −X direction, +Y direction, and −Y direction. The angular position at which the first extended portion 27 is arranged is the angle at which the first magnet 21M and the second magnet 22M of the anti-shake magnetic drive mechanism 20 and the third magnet 23M of the rolling correction magnetic drive mechanism 23 are arranged. position. The first extension portion 27 includes a first extension portion first portion 271 that extends from the first annular plate portion 26 to the outer peripheral side and is bent in the -Z direction, and the -Z direction of the first extension portion first portion 271. and a rectangular first extension second portion 272 that is wider in the circumferential direction than the first extension portion first portion 271 . The first extension second portion 272 is fixed to the holder 24 .

図4、図5に示すように、カメラモジュール2は、カメラモジュール本体部30Aと、カメラモジュール本体部30Aの中央から+Z方向に突出するカメラモジュール円筒部30Bを備える。カメラモジュール円筒部30Bにはレンズ2aが収容される。ホルダ24は、カメラモジュール本体部30Aを外周側から囲んでいる。カメラモジュール円筒部30Bは、第1環状板部26の中央に設けられた円形穴26a(図6、図9参照)から+Z方向に突出し、ジンバルフレーム14の開口部143に配置される(図1参照)。 As shown in FIGS. 4 and 5, the camera module 2 includes a camera module main body portion 30A and a camera module cylindrical portion 30B projecting in the +Z direction from the center of the camera module main body portion 30A. The lens 2a is housed in the camera module cylindrical portion 30B. The holder 24 surrounds the camera module main body 30A from the outer peripheral side. The camera module cylindrical portion 30B protrudes in the +Z direction from a circular hole 26a (see FIGS. 6 and 9) provided in the center of the first annular plate portion 26, and is arranged in the opening 143 of the gimbal frame 14 (see FIG. 1). reference).

図7に示すように、カメラモジュール本体部30Aおよびホルダ24は、+Z方向から見た場合の輪郭形状が略8角形である。ホルダ24は、X方向に平行に延びる第1側壁31および第2側壁32と、Y方向に平行に延びる第3側壁33および第4側壁34を備える。第1側壁31は、第2側壁32の-Y方向に位置する。第3側壁33は、第4側壁34の+X方向に位置する。第3側壁33の-Z方向の端縁には、カメラモジュール2の-Z方向の端部から+X方向へ引き出されるフレキシブルプリント基板6を通す切欠き部33aが設けられている。 As shown in FIG. 7, the camera module main body 30A and the holder 24 have a substantially octagonal profile when viewed from the +Z direction. The holder 24 has a first sidewall 31 and a second sidewall 32 extending parallel to the X direction, and a third sidewall 33 and a fourth sidewall 34 extending parallel to the Y direction. The first sidewall 31 is positioned in the -Y direction of the second sidewall 32 . The third sidewall 33 is positioned in the +X direction of the fourth sidewall 34 . A notch portion 33a is provided on the edge of the third side wall 33 in the −Z direction, through which the flexible printed circuit board 6 pulled out in the +X direction from the end of the camera module 2 in the −Z direction is passed.

さらに、ホルダ24は、第1軸R1方向の対角に位置する第5側壁35および第6側壁36と、第2軸R2方向の対角に位置する第7側壁37および第8側壁38を備える。第5側壁35は、第6側壁36の-X方向に位置する。第7側壁37は、第8側壁38の-X方向に位置する。図6に示すように、第5側壁35、第6側壁36、第7側壁37、および第8側壁38の+Z方向の端面には、+Z方向に突出するホルダ凸部39が形成される。 Further, the holder 24 includes a fifth side wall 35 and a sixth side wall 36 positioned diagonally in the first axis R1 direction, and a seventh side wall 37 and an eighth side wall 38 positioned diagonally in the second axis R2 direction. . The fifth sidewall 35 is positioned in the −X direction of the sixth sidewall 36 . The seventh side wall 37 is positioned in the -X direction of the eighth side wall 38 . As shown in FIG. 6 , holder projections 39 projecting in the +Z direction are formed on the +Z direction end surfaces of the fifth side wall 35 , the sixth side wall 36 , the seventh side wall 37 , and the eighth side wall 38 .

図7に示すように、ホルダ24の第1側壁31には第1磁石21Mが固定され、第3側壁33には第2磁石22Mが固定される。第1磁石21Mおよび第2磁石22Mは、Z軸方向に2極着磁されている。第1磁石21Mおよび第2磁石22Mの着磁分極線は、周方向に延びている。第1磁石21Mおよび第2磁石22Mは、Z軸方向に同一の極を向けて配置されている。ホルダ24の第4側壁34には、第3磁石23Mが固定される。第3磁石23Mは、周方向に極着磁されている。第1磁石21M、第2磁石22M、および第3磁石23Mは、光軸L回りの周方向に配列される。第3磁石23Mは、光軸Lを挟んで第1磁石21Mと反対側に配置される。 As shown in FIG. 7, the first side wall 31 of the holder 24 is fixed with the first magnet 21M, and the third side wall 33 is fixed with the second magnet 22M. The first magnet 21M and the second magnet 22M are two-pole magnetized in the Z-axis direction. The magnetization polarization lines of the first magnet 21M and the second magnet 22M extend in the circumferential direction. The first magnet 21M and the second magnet 22M are arranged with the same pole facing the Z-axis direction. A third magnet 23M is fixed to the fourth side wall 34 of the holder 24 . The third magnet 23M is pole-magnetized in the circumferential direction. The first magnet 21M, the second magnet 22M, and the third magnet 23M are arranged in the circumferential direction around the optical axis L. The third magnet 23M is arranged on the opposite side of the optical axis L from the first magnet 21M.

図7に示すように、ホルダ24の第1側壁31、第2側壁32、および第4側壁34の外周面には、内周側に凹む凹部40が形成されており、第1磁石21M、第2磁石22M、および第3磁石23Mは、凹部40に収容される。第1磁石21M、第2磁石22M、および第3磁石23Mは、各凹部40の-Z方向の端部に設けられた底面41(図8参照)に+Z方向から当接することによってZ軸方向に位置決めされる。 As shown in FIG. 7, the outer peripheral surfaces of the first side wall 31, the second side wall 32, and the fourth side wall 34 of the holder 24 are formed with recesses 40 that are recessed inward. The second magnet 22M and the third magnet 23M are accommodated in the recess 40. As shown in FIG. The first magnet 21M, the second magnet 22M, and the third magnet 23M move in the Z-axis direction by coming into contact with the bottom surface 41 (see FIG. 8) provided at the end in the -Z direction of each recess 40 from the +Z direction. Positioned.

3箇所の凹部40は、それそれ、周方向の両側の内面に溝部42が形成されている。図7に示すように、各凹部40には、第1延設部27の-Z方向の先端に設けられた第1延設部第2部分272が挿入される。第1延設部第2部分272は、周方向の両端が溝部42に挿入されており、接着剤により各凹部40に固定される。第1延設部第2部分272は、第1磁石21M、第2磁石22M、および第3磁石23Mの径方向内側に挿入されている。第1延設部第2部分272は磁性金属からなるため、各磁石に対するヨークとして機能する。 Groove portions 42 are formed on inner surfaces on both sides in the circumferential direction of each of the three recess portions 40 . As shown in FIG. 7, a first extending portion second portion 272 provided at the tip of the first extending portion 27 in the -Z direction is inserted into each recess 40 . Both ends of the first extending portion second portion 272 in the circumferential direction are inserted into the groove portions 42 and fixed to the respective recess portions 40 with an adhesive. The first extended portion second portion 272 is inserted radially inward of the first magnet 21M, the second magnet 22M, and the third magnet 23M. Since the first extension second portion 272 is made of magnetic metal, it functions as a yoke for each magnet.

(回転支持機構)
図9に示すように、回転支持機構12は、第1部材25の第1環状板部26とZ軸方向で対向する第2環状板部46が設けられた第2部材45と、第1環状板部26と第2環状板部46とを接続する金属部材50を備える。金属部材50は、第1環状板部26に固定される環状の可動体側固定部51、第2環状板部46に固定される環状の固定体側固定部52、および、可動体側固定部51と固定体側固定部52とを接続する板ばね部53を備える。板ばね部53は、光軸回りの周方向に弾性変形する第1板ばね部54と、光軸を中心として径方向に弾性変形する第2板ばね部55を備える。
(rotation support mechanism)
As shown in FIG. 9, the rotation support mechanism 12 includes a second member 45 provided with a second annular plate portion 46 facing the first annular plate portion 26 of the first member 25 in the Z-axis direction; A metal member 50 that connects the plate portion 26 and the second annular plate portion 46 is provided. The metal member 50 is fixed to an annular movable-body-side fixing portion 51 fixed to the first annular plate portion 26 , an annular fixed-body-side fixing portion 52 fixed to the second annular plate portion 46 , and a movable-body-side fixing portion 51 . A leaf spring portion 53 that connects with the body side fixing portion 52 is provided. The leaf spring portion 53 includes a first leaf spring portion 54 that elastically deforms in the circumferential direction around the optical axis, and a second leaf spring portion 55 that elastically deforms in the radial direction around the optical axis.

第2部材45は、光軸Lを囲む第2環状板部46と、第2環状板部46から第1軸R1方向の両側に突出する一対の第2延設部47と、第2環状板部46から第2軸R2方向の両側に突出する一対の第2突出板部48を備える。一対の第2延設部47には、ジンバルフレーム14の第1軸側延設部141が第1軸R1回りに回転可能に接続される(図4参照)。従って、第2部材45は、ジンバル機構13によって第1軸R1回りに回転可能に支持される。 The second member 45 includes a second annular plate portion 46 surrounding the optical axis L, a pair of second extending portions 47 projecting from the second annular plate portion 46 to both sides in the direction of the first axis R1, and the second annular plate. A pair of second protruding plate portions 48 protruding from the portion 46 on both sides in the direction of the second axis R2 are provided. The first axis side extension part 141 of the gimbal frame 14 is connected to the pair of second extension parts 47 so as to be rotatable about the first axis R1 (see FIG. 4). Therefore, the second member 45 is rotatably supported by the gimbal mechanism 13 about the first axis R1.

一対の第2延設部47は、それぞれ、第2環状板部46から第1軸R1方向に延びる第2延設部第1部分471と、可動体10の外周側をZ軸方向に延びる第2延設部第2部分472を備える。図4に示すように、第2延設部第2部分472は、可動体10の第1軸R1方向の外側で、僅かな隙間を開けて可動体10と対向する。図4、図7に示すように、第2延設部第2部分472には、可動体10とは反対側の面に第1ジンバルフレーム受け部材151が固定される。 The pair of second extension portions 47 includes a second extension portion first portion 471 extending from the second annular plate portion 46 in the first axis R1 direction, and a second extension portion first portion 471 extending in the Z-axis direction along the outer peripheral side of the movable body 10 . 2 extension second portion 472 is provided. As shown in FIG. 4, the second portion 472 of the second extending portion faces the movable body 10 with a small gap on the outer side of the movable body 10 in the direction of the first axis R1. As shown in FIGS. 4 and 7 , the first gimbal frame receiving member 151 is fixed to the surface of the second extending portion second portion 472 opposite to the movable body 10 .

(金属部材)
図9に示すように、金属部材50は、第2環状板部46に固定される第1金属部材56と、第1環状板部26に固定される第2金属部材57の2部品を組み立てて構成される。第1金属部材56および第2金属部材57は、エッチング加工した金属板を折り曲げて製
造される。第1金属部材56と第2金属部材57は、板厚が異なっており、第1金属部材56の板厚は、第2金属部材57の板厚よりも小さい。例えば、本形態では、第1金属部材56の板厚は30μmであり、第2金属部材57の板厚は70μmである。このため、第1金属部材56に設けられた第1板ばね部54のばね定数は、第2金属部材57に設けられた第2板ばね部55のばね定数よりも小さい。
(Metal member)
As shown in FIG. 9, the metal member 50 is formed by assembling two parts, a first metal member 56 fixed to the second annular plate portion 46 and a second metal member 57 fixed to the first annular plate portion 26. Configured. The first metal member 56 and the second metal member 57 are manufactured by bending an etched metal plate. The first metal member 56 and the second metal member 57 have different plate thicknesses, and the plate thickness of the first metal member 56 is smaller than the plate thickness of the second metal member 57 . For example, in this embodiment, the plate thickness of the first metal member 56 is 30 μm, and the plate thickness of the second metal member 57 is 70 μm. Therefore, the spring constant of the first plate spring portion 54 provided on the first metal member 56 is smaller than the spring constant of the second plate spring portion 55 provided on the second metal member 57 .

(第1金属部材)
第1金属部材56は、環状の固定体側固定部52と、固定体側固定部52の外周縁を切り欠いた第1切欠き部58の縁に接続される第1板ばね部54を備える。第1切欠き部58は、固定体側固定部52の径方向に延びる第1縁部59を備えており、第1板ばね部54は、第1縁部59から略直角に屈曲して、板厚方向が固定体側固定部52の周方向を向くように折り曲げられ、固定体側固定部52の径方向外側に向かって延びている。固定体側固定部52を第2環状板部46に固定すると、第1板ばね部54は、第2環状板部46に対して+Z方向へ立ち上がり、板厚方向が光軸回りの周方向を向くとともに、光軸Lを中心として径方向外側へ延びるように配置される。従って、第1板ばね部54は、光軸Lを中心として周方向に弾性変形する。
(First metal member)
The first metal member 56 includes an annular fixed body side fixing portion 52 and a first plate spring portion 54 connected to the edge of a first notch portion 58 formed by cutting out the outer peripheral edge of the fixed body side fixing portion 52 . The first cutout portion 58 has a first edge portion 59 extending in the radial direction of the fixed body side fixing portion 52 , and the first leaf spring portion 54 is bent substantially at a right angle from the first edge portion 59 to form a plate. It is bent so that the thickness direction faces the circumferential direction of the fixed body side fixing portion 52 and extends radially outward of the fixed body side fixing portion 52 . When the fixed body side fixing portion 52 is fixed to the second annular plate portion 46, the first leaf spring portion 54 rises in the +Z direction with respect to the second annular plate portion 46, and the plate thickness direction faces the circumferential direction around the optical axis. In addition, it is arranged so as to extend radially outward with the optical axis L as the center. Therefore, the first plate spring portion 54 is elastically deformed in the circumferential direction with the optical axis L as the center.

固定体側固定部52の外周縁には、4箇所の第1切欠き部58が周方向に間隔を空けて設けられており、各第1切欠き部58の第1縁部59からは、第1板ばね部54が径方向外側へ延びている。ここで、固定体側固定部52が固定される相手部材である第2部材45には、第2環状板部46の内周縁から径方向外側へ延びる第2スリット49が4箇所に形成される。第2スリット49は、一対の第2延設部47および一対の第2突出板部48のそれぞれにおける周方向の中央において径方向に延びている。従って、第2部材45には、第1軸R1方向の両側および第2軸R2方向の両側の4箇所に、放射状に延びる4本の第2スリット49が設けられている。第1金属部材56は、4個の第1板ばね部54が、それぞれ第2スリット49に配置されるように位置決めされて第2環状板部46に固定される。これにより、4個の第1板ばね部54は、光軸Lを中心として、第1軸R1方向の両側、および、第2軸R2方向の両側に放射状に配置される。 Four first notches 58 are provided at intervals in the circumferential direction on the outer peripheral edge of the stationary body side fixing portion 52 . A leaf spring portion 54 extends radially outward. Here, second slits 49 extending radially outward from the inner peripheral edge of the second annular plate portion 46 are formed at four locations in the second member 45 which is a mating member to which the fixed body side fixing portion 52 is fixed. The second slit 49 extends radially at the center in the circumferential direction of each of the pair of second extending portions 47 and the pair of second protruding plate portions 48 . Accordingly, the second member 45 is provided with four radially extending second slits 49 at four locations on both sides in the direction of the first axis R1 and on both sides in the direction of the second axis R2. The first metal member 56 is positioned and fixed to the second annular plate portion 46 such that the four first plate spring portions 54 are arranged in the second slits 49 respectively. As a result, the four first plate spring portions 54 are arranged radially on both sides of the optical axis L in the direction of the first axis R1 and on both sides in the direction of the second axis R2.

第1金属部材56は、4個の第1板ばね部54が固定体側固定部52に接続される箇所の金属板の曲げ方向が同一方向に揃わないように構成されている。具体的には、周方向で隣り合う2箇所の第1板ばね部54は、固定体側固定部52から+Z方向へ曲がる箇所の金属板の曲げ方向が逆向きである。図9に示すように、本形態では、周方向で隣り合う2箇所の第1切欠き部58では、第1板ばね部54が接続される第1縁部59の位置が周方向で逆になっている。従って、周方向で隣り合う第1板ばね部54の一方は、第1切欠き部58の周方向の一方側の縁(第1縁部59)から+Z方向へ屈曲し、周方向で隣り合う第1板ばね部54の他方は、第1切欠き部58の周方向の他方側の縁(第1縁部59)から+Z方向へ屈曲している。 The first metal member 56 is configured so that the bending directions of the metal plates at the locations where the four first leaf spring portions 54 are connected to the fixed body side fixing portion 52 are not aligned in the same direction. Specifically, in the two first plate spring portions 54 adjacent in the circumferential direction, the bending directions of the metal plates at the portions bent in the +Z direction from the fixed body side fixing portion 52 are opposite. As shown in FIG. 9, in this embodiment, in the two first notch portions 58 adjacent in the circumferential direction, the positions of the first edge portions 59 to which the first plate spring portions 54 are connected are reversed in the circumferential direction. It's becoming Therefore, one of the first leaf spring portions 54 adjacent in the circumferential direction is bent in the +Z direction from the edge (first edge portion 59) on one side in the circumferential direction of the first notch portion 58, and is adjacent in the circumferential direction. The other side of the first leaf spring portion 54 is bent in the +Z direction from the edge (first edge portion 59 ) on the other side in the circumferential direction of the first notch portion 58 .

第1板ばね部54の曲げ方向が同一方向に揃っている場合には、第1金属部材56の製造時に第1板ばね部54の曲げ角度の誤差があると、第1板ばね部54の周方向の位置ずれが同一方向に発生するため、第1部材25と第2部材45が周方向に位置ずれする。その結果、無通電時の可動体10の回転位置(初期位置)がずれるという問題がある。しかしながら、本形態では、周方向に隣り合う第1板ばね部54の曲げ方向が周方向で逆向きであるため、曲げ角度の誤差があったとしても、第1部材25と第2部材45の周方向の位置ずれを回避でき、無通電時の可動体10の回転位置(初期位置)がずれることを回避できる。 When the bending directions of the first plate spring portions 54 are aligned in the same direction, if there is an error in the bending angle of the first plate spring portions 54 when manufacturing the first metal member 56, the first plate spring portions 54 Since the circumferential displacement occurs in the same direction, the first member 25 and the second member 45 are displaced in the circumferential direction. As a result, there is a problem that the rotational position (initial position) of the movable body 10 is shifted when the power is not supplied. However, in this embodiment, since the bending directions of the first plate spring portions 54 that are adjacent in the circumferential direction are opposite in the circumferential direction, even if there is an error in the bending angle, the first member 25 and the second member 45 are bent. Positional displacement in the circumferential direction can be avoided, and displacement of the rotational position (initial position) of the movable body 10 during non-energization can be avoided.

第1板ばね部54は、光軸Lを中心として径方向に延びる第1アーム部541および第2アーム部542と、第1アーム部541と第2アーム部542を接続する接続部543
を備える。本形態では、第1アーム部541、第2アーム部542、および接続部543は同一面内に配置される。第1アーム部541と第2アーム部542は光軸方向に隣り合う位置で径方向に延びており、接続部543は第1アーム部541と第2アーム部542の径方向外側の端部を径方向で逆向きに折り返した形状に接続する。第1アーム部541は第2アーム部542の-Z方向に位置し、固定体側固定部52の第1縁部59に接続される。第2アーム部542の径方向内側の端部には、第2板ばね部55に溶接等により接合される矩形の第1接合部544が設けられている。
The first leaf spring portion 54 includes a first arm portion 541 and a second arm portion 542 extending radially about the optical axis L, and a connecting portion 543 connecting the first arm portion 541 and the second arm portion 542.
Prepare. In this embodiment, the first arm portion 541, the second arm portion 542, and the connecting portion 543 are arranged in the same plane. The first arm portion 541 and the second arm portion 542 extend in the radial direction at positions adjacent to each other in the optical axis direction. Connect in a shape that is folded in the opposite direction in the radial direction. The first arm portion 541 is positioned in the −Z direction of the second arm portion 542 and is connected to the first edge portion 59 of the stationary body side fixing portion 52 . A rectangular first joint portion 544 that is joined to the second plate spring portion 55 by welding or the like is provided at the radially inner end portion of the second arm portion 542 .

図4、図5に示すように、第1板ばね部54は、径方向の中央部分が-Z方向に湾曲しており、第2延設部第1部分471もしくは第2突出板部48に設けられた第2スリット49に収容される。第1板ばね部54の先端部は、+Z方向に傾斜しながら径方向外側に延びており、第2スリット49の先端よりも径方向外側において、第2延設部第1部分471もしくは第2突出板部48の+Z方向に位置する。第1板ばね部54の+Z方向に配置される第1突出板部28は、径方向の長さが第1板ばね部54よりも短いので、第1板ばね部54の先端部は第1突出板部28とは干渉しない。このような構成により、第1板ばね部54の径方向の長さを確保しながら、回転支持機構12の光軸方向の高さを低くし、且つ、光軸方向から見た外径を小さくして、回転支持機構12をコンパクトな構成にすることができる。 As shown in FIGS. 4 and 5, the first leaf spring portion 54 is curved in the -Z direction at the center portion in the radial direction. It is accommodated in the provided second slit 49 . The tip portion of the first plate spring portion 54 extends radially outward while being inclined in the +Z direction, and the tip portion of the second elongated portion 471 or the second extension portion 471 extends radially outward from the tip of the second slit 49 . It is positioned in the +Z direction of the projecting plate portion 48 . The first protruding plate portion 28 arranged in the +Z direction of the first plate spring portion 54 has a radial length shorter than that of the first plate spring portion 54, so the tip portion of the first plate spring portion 54 is located at the first It does not interfere with the projecting plate portion 28 . With such a configuration, the height of the rotation support mechanism 12 in the optical axis direction can be reduced while ensuring the radial length of the first plate spring portion 54, and the outer diameter when viewed in the optical axis direction can be reduced. As a result, the rotary support mechanism 12 can be made compact.

(第2金属部材)
第2金属部材57は、環状の可動体側固定部51と、可動体側固定部51の内周縁を切り欠いた第2切欠き部60の縁に接続される第2板ばね部55を備える。第2切欠き部60は、可動体側固定部51の径方向に対して交差する第2縁部61を備えており、第2板ばね部55は、第2縁部61から略直角に屈曲して、板厚方向が可動体側固定部51の径方向を向いた状態で、径方向と交差する平面内を可動体側固定部51の周方向に延びている。可動体側固定部51を第1環状板部26の+Z方向の面に固定すると、第2板ばね部55は、第1環状板部26に対して-Z方向へ延びて、板厚方向が光軸を中心とする径方向を向いた状態で、径方向と交差する平面内において周方向へ延びるように配置される。従って、第2板ばね部55は、光軸Lを中心とする径方向に弾性変形する。
(Second metal member)
The second metal member 57 includes an annular movable body side fixing portion 51 and a second plate spring portion 55 connected to the edge of a second notch portion 60 formed by cutting the inner peripheral edge of the movable body side fixing portion 51 . The second cutout portion 60 has a second edge portion 61 that intersects the radial direction of the movable body side fixing portion 51 , and the second leaf spring portion 55 is bent substantially at a right angle from the second edge portion 61 . , and extends in the circumferential direction of the movable-body-side fixed portion 51 in a plane intersecting the radial direction in a state in which the plate thickness direction faces the radial direction of the movable-body-side fixed portion 51 . When the movable body side fixing portion 51 is fixed to the surface of the first annular plate portion 26 in the +Z direction, the second leaf spring portion 55 extends in the -Z direction with respect to the first annular plate portion 26, and the plate thickness direction is the light beam. It is arranged to extend circumferentially in a plane that intersects the radial direction while being oriented in the radial direction about the axis. Therefore, the second leaf spring portion 55 is elastically deformed in the radial direction with the optical axis L as the center.

可動体側固定部51の内周縁には、周方向に間隔を空けて配置される4箇所の第2切欠き部60が設けられている。また、各第2切欠き部60の第2縁部61に対して周方向で隣合う部位を外周側へ大きく切り欠いた第3切欠き部62が4箇所に設けられている。さらに、可動体側固定部51の外周縁には、各第3切欠き部62の外周側を径方向外側へ突出させた突出部63が4箇所に設けられている。第2板ばね部55の先端には、径方向外側へ略直角に屈曲した矩形の第2接合部551が設けられている。第2接合部551と、第1板ばね部54の第1接合部544とが溶接により接合されることにより、第1板ばね部54と第2板ばね部55とが接続され、板ばね部53が形成される。第2板ばね部55は、第2縁部61から略直角に屈曲した後、第3切欠き部62の側へ周方向に延びるため、第2接合部551と第1接合部544との溶接個所は第3切欠き部62に配置され、可動体側固定部51の内周縁と干渉しないように構成されている。 Four second notch portions 60 are provided on the inner peripheral edge of the movable body side fixing portion 51 at intervals in the circumferential direction. Moreover, the 3rd notch part 62 which notched the site|part adjacent to the 2nd edge part 61 of each 2nd notch part 60 in the circumferential direction largely to the outer peripheral side is provided in four places. Further, four protruding portions 63 are provided on the outer peripheral edge of the movable body side fixing portion 51 so that the outer peripheral side of each third notch portion 62 protrudes radially outward. At the tip of the second plate spring portion 55, a rectangular second joint portion 551 is provided that is bent radially outward at a substantially right angle. By joining the second joint portion 551 and the first joint portion 544 of the first leaf spring portion 54 by welding, the first leaf spring portion 54 and the second leaf spring portion 55 are connected, and the leaf spring portion 53 are formed. Since the second plate spring portion 55 extends in the circumferential direction toward the third notch portion 62 after being bent at a substantially right angle from the second edge portion 61 , the welding between the second joint portion 551 and the first joint portion 544 is prevented. The portion is arranged in the third notch portion 62 and is configured so as not to interfere with the inner peripheral edge of the movable body side fixing portion 51 .

ここで、可動体側固定部51が固定される相手部材である第1部材25には、第1環状板部26の内周縁から径方向外側へ延びる第1スリット29が4箇所に設けられている。第1スリット29は、第1環状板部26から第1軸R1方向の両側、および、第2軸R2方向の両側の4方向に突出する第1突出板部28の周方向の中央において径方向に延びている。従って、第1部材25には、第1軸R1方向の両側および第2軸R2方向の両側の4箇所に、放射状に延びる4本の第1スリット29が設けられている。4本の第1スリット29は、それぞれ、第2部材45に設けられた第2スリット49と光軸方向から見て重なる。また、第1部材25には、各第1スリット29と周方向で隣り合う部分を切り欠い
た切欠き部69が4箇所に設けられている。切欠き部69は、可動体側固定部51の第3切欠き部62と重なる位置に設けられている。第2金属部材57は、4個の第2板ばね部55が切欠き部69に配置されるとともに、第2板ばね部55の先端に設けられた第2接合部551が第1スリット29の周方向の中央に配置されるように位置決めされて第1環状板部26に固定される。
Here, first slits 29 extending radially outward from the inner peripheral edge of the first annular plate portion 26 are provided at four locations in the first member 25 which is a mating member to which the movable body side fixing portion 51 is fixed. . The first slit 29 is formed radially at the center in the circumferential direction of the first projecting plate portion 28 projecting from the first annular plate portion 26 in four directions: both sides in the direction of the first axis R1 and both sides in the direction of the second axis R2. extends to Accordingly, the first member 25 is provided with four radially extending first slits 29 at four locations on both sides in the direction of the first axis R1 and on both sides in the direction of the second axis R2. The four first slits 29 respectively overlap the second slits 49 provided in the second member 45 when viewed from the optical axis direction. Further, the first member 25 is provided with four notch portions 69 obtained by notching portions adjacent to the first slits 29 in the circumferential direction. The notch portion 69 is provided at a position overlapping the third notch portion 62 of the movable body side fixing portion 51 . The second metal member 57 has four second plate spring portions 55 arranged in the notch portion 69 and a second joint portion 551 provided at the tip of the second plate spring portion 55 that is connected to the first slit 29 . It is positioned so as to be arranged in the center in the circumferential direction and fixed to the first annular plate portion 26 .

第2金属部材57では、第1金属部材56と同様に、4箇所の第2板ばね部55が可動体側固定部51に接続される箇所の金属板の曲げ方向が同一方向に揃わないように構成されている。具体的には、周方向で隣り合う2箇所の第2板ばね部55は、可動体側固定部51から-Z方向へ曲がる箇所の金属板の曲げ方向が逆向きである。図9に示すように、本形態では、周方向で隣り合う2箇所の第2切欠き部60では、第2板ばね部55が接続される第2縁部61の位置が周方向で逆になっている。従って、周方向で隣り合う第2板ばね部55の一方は、第2切欠き部60の周方向の一方側の縁(第2縁部61)から-Z方向へ屈曲し、周方向で隣り合う第2板ばね部55の他方は、第2切欠き部60の周方向の他方側の縁(第2縁部61)から-Z方向へ屈曲している。 In the second metal member 57, similarly to the first metal member 56, the bending directions of the metal plates at the locations where the four second leaf spring portions 55 are connected to the movable body side fixing portion 51 are not aligned in the same direction. It is configured. Specifically, in the two second leaf spring portions 55 adjacent in the circumferential direction, the bending directions of the metal plates of the portions bent in the −Z direction from the movable body side fixing portion 51 are opposite. As shown in FIG. 9, in this embodiment, in the two second notch portions 60 adjacent in the circumferential direction, the positions of the second edge portions 61 to which the second plate spring portions 55 are connected are reversed in the circumferential direction. It's becoming Therefore, one of the second leaf spring portions 55 adjacent in the circumferential direction is bent in the −Z direction from the edge (second edge portion 61) on one side in the circumferential direction of the second notch portion 60, and is adjacent in the circumferential direction. The other of the mating second leaf spring portions 55 is bent in the −Z direction from the other edge (second edge 61) of the second notch 60 in the circumferential direction.

第2板ばね部55の曲げ方向が同一方向に揃っている場合には、第2金属部材57の製造時に第2板ばね部55の曲げ角度の誤差があると、第2板ばね部55の周方向の位置ずれが同一方向に発生するため、第1部材25と第2部材45が周方向に位置ずれする。その結果、無通電時の可動体10の回転位置(初期位置)がずれるという問題がある。しかしながら、本形態では、周方向に隣り合う第2板ばね部55の曲げ方向が周方向で逆向きであるため、曲げ角度の誤差があったとしても、第1部材25と第2部材45の周方向の位置ずれを回避でき、無通電時の可動体10の回転位置(初期位置)がずれることを回避できる。 When the bending directions of the second plate spring portions 55 are aligned in the same direction, if there is an error in the bending angle of the second plate spring portions 55 when manufacturing the second metal member 57, the second plate spring portions 55 Since the circumferential displacement occurs in the same direction, the first member 25 and the second member 45 are displaced in the circumferential direction. As a result, there is a problem that the rotational position (initial position) of the movable body 10 is shifted when the power is not supplied. However, in this embodiment, since the bending directions of the second leaf spring portions 55 adjacent in the circumferential direction are opposite in the circumferential direction, even if there is an error in the bending angle, the first member 25 and the second member 45 are bent. Positional displacement in the circumferential direction can be avoided, and displacement of the rotational position (initial position) of the movable body 10 during non-energization can be avoided.

(径方向のストッパ機構)
回転支持機構12は、第2環状板部46の外周縁から+Z方向に屈曲して第1環状板部26の外周側まで延びる径方向ストッパ部64を備える。径方向ストッパ部64と、第2環状板部46の外周縁とが衝突することにより、第1環状板部26と第2環状板部46の径方向の位置ずれが規制される。本形態では、径方向ストッパ部64と第1環状板部26の外周端面との径方向の隙間T1は0.1mmに設定される(図7参照)。
(Radial stopper mechanism)
The rotation support mechanism 12 includes a radial stopper portion 64 that bends in the +Z direction from the outer peripheral edge of the second annular plate portion 46 and extends to the outer peripheral side of the first annular plate portion 26 . Collision between the radial stopper portion 64 and the outer peripheral edge of the second annular plate portion 46 restricts the radial displacement of the first annular plate portion 26 and the second annular plate portion 46 . In this embodiment, the radial gap T1 between the radial stopper portion 64 and the outer peripheral end face of the first annular plate portion 26 is set to 0.1 mm (see FIG. 7).

図7、図9に示すように、径方向ストッパ部64は、周方向で隣り合う第1延設部27と第2延設部47との間、および、周方向で隣り合う第1延設部27と第2突出板部48との間にそれぞれ1箇所ずつ配置される。また、径方向ストッパ部64は、後述する第1回転規制部71と第2延設部47との間、および、第1回転規制部71と第2突出板部48との間にそれぞれ1箇所ずつ配置される。従って、径方向ストッパ部64は、8箇所に配置される。8箇所の径方向ストッパ部64は、光軸回りに略均等配置される。 As shown in FIGS. 7 and 9 , the radial stopper portion 64 is located between the circumferentially adjacent first extending portion 27 and the second extending portion 47 and between the circumferentially adjacent first extending portions 27 and 47 . One each is arranged between the portion 27 and the second protruding plate portion 48 . In addition, one radial direction stopper portion 64 is provided between a first rotation restricting portion 71 and a second extending portion 47 and between the first rotation restricting portion 71 and a second projecting plate portion 48, which will be described later. placed one by one. Therefore, the radial stopper portions 64 are arranged at eight locations. The eight radial stopper portions 64 are arranged substantially evenly around the optical axis.

(光軸方向のストッパ機構)
回転支持機構12は、第2部材45の+Z方向の移動範囲を規制するストッパ機構として、第1部材25に設けられた光軸方向ストッパ部65と、第2部材45に設けられ、光軸方向ストッパ部65とZ軸方向(光軸方向)に対向する延出部66を備える。図6、図8、図9に示すように、光軸方向ストッパ部65は、第1突出板部28の周方向の縁から略直角に屈曲して-Z方向に延びている。延出部66は、第2延設部第1部分471の周方向の端部、および、第2突出板部48の周方向の端部に設けられている。光軸方向ストッパ部65と延出部66とが衝突することにより、第1部材25に対する第2部材45の+Z方向の移動範囲が規制される。本形態では、光軸方向ストッパ部65と延出部66とのZ軸方向の隙間T2は、0.1mmに設定される(図8参照)。
(Stopper mechanism in optical axis direction)
The rotation support mechanism 12 includes an optical axis direction stopper portion 65 provided on the first member 25 and a stopper portion 65 provided on the second member 45 as a stopper mechanism for restricting the movement range of the second member 45 in the +Z direction. An extending portion 66 facing the stopper portion 65 in the Z-axis direction (optical axis direction) is provided. As shown in FIGS. 6, 8, and 9, the optical axis direction stopper portion 65 extends in the -Z direction by bending at a substantially right angle from the circumferential edge of the first protruding plate portion . The extending portion 66 is provided at the circumferential end portion of the second extending portion first portion 471 and the circumferential end portion of the second projecting plate portion 48 . The collision between the optical axis direction stopper portion 65 and the extension portion 66 restricts the movement range of the second member 45 in the +Z direction with respect to the first member 25 . In this embodiment, the gap T2 in the Z-axis direction between the optical axis direction stopper portion 65 and the extending portion 66 is set to 0.1 mm (see FIG. 8).

本形態では、各第1突出板部28の周方向の両側の縁に一対の光軸方向ストッパ部65が設けられている。図6、図8に示すように、第1突出板部28および一対の光軸方向ストッパ部65は、径方向から見て門型の形状をしており、第2スリット49に配置される第1板ばね部54を周方向の両側および+Z方向から囲むように配置される。延出部66は、第2延設部第1部分471の周方向の両端、および、第2突出板部48の周方向の両端に設けられている。このため、第2延設部第1部分471および第2突出板部48は、延出部66が設けられた径方向内側の部分が、延出部66が設けられていない径方向外側の部分よりも周方向の幅が広い形状となっている。 In this embodiment, a pair of optical axis direction stopper portions 65 are provided on both edges of each first projecting plate portion 28 in the circumferential direction. As shown in FIGS. 6 and 8, the first protruding plate portion 28 and the pair of optical axis direction stopper portions 65 have a portal shape when viewed from the radial direction, and are arranged in the second slit 49 . It is arranged so as to surround one leaf spring portion 54 from both sides in the circumferential direction and from the +Z direction. The extending portions 66 are provided at both circumferential ends of the second extending portion first portion 471 and at both circumferential ends of the second projecting plate portion 48 . For this reason, in the second extending portion first portion 471 and the second protruding plate portion 48, the radially inner portion where the extending portion 66 is provided is the radially outer portion where the extending portion 66 is not provided. It has a shape with a wider width in the circumferential direction.

また、回転支持機構12は、第2部材45の-Z方向の移動範囲を規制するストッパ機構として、ホルダ24の第1軸R1方向の対角位置および第2軸R2方向の対角位置の4箇所に設けられたホルダ凸部39と、第2部材45に設けられ、ホルダ凸部39とZ軸方向に対向する位置まで延びた第2突出板部48の先端部、および、第2延設部第1部分471を備える。 Further, the rotation support mechanism 12 functions as a stopper mechanism for restricting the movement range of the second member 45 in the -Z direction. holder convex portion 39 provided at a location, a tip portion of a second protruding plate portion 48 provided on the second member 45 and extending to a position facing the holder convex portion 39 in the Z-axis direction, and a second extension A first portion 471 is provided.

図8に示すように、ホルダ凸部39の+Z方向の先端は、カメラモジュール本体部30Aの+Z方向の端面よりも+Z方向に突出している。従って、ホルダ凸部39の先端面と第2突出板部48もしくは第2延設部第1部分471とのZ軸方向の隙間は、カメラモジュール2と第2突出板部48もしくは第2延設部第1部分471とのZ軸方向の隙間よりも狭い。よって、ホルダ凸部39と第2突出板部48もしくは第2延設部第1部分471とが衝突することにより、第2部材45の-Z方向の移動範囲が規制される。本形態では、ホルダ凸部39と第2突出板部48とのZ軸方向の隙間T3は、0.1mmに設定される(図8参照)。また、ホルダ凸部39と第2延設部第1部分471とのZ軸方向の隙間も同様に、0.1mmに設定される。 As shown in FIG. 8, the tip of the holder convex portion 39 in the +Z direction protrudes in the +Z direction from the end surface of the camera module body portion 30A in the +Z direction. Therefore, the gap in the Z-axis direction between the tip surface of the holder convex portion 39 and the second protruding plate portion 48 or the second extending portion first portion 471 is narrower than the gap in the Z-axis direction with the first portion 471 . Therefore, the movement range of the second member 45 in the -Z direction is regulated by the collision between the holder convex portion 39 and the second projecting plate portion 48 or the first portion 471 of the second extending portion. In this embodiment, the gap T3 in the Z-axis direction between the holder convex portion 39 and the second protruding plate portion 48 is set to 0.1 mm (see FIG. 8). Similarly, the gap in the Z-axis direction between the holder convex portion 39 and the second extended portion first portion 471 is also set to 0.1 mm.

(回転規制機構)
回転支持機構12は、可動体10の光軸L回りの回転範囲を規制する回転規制機構70を備える。図6、図7に示すように、回転規制機構70は、第1部材25に設けられた第1回転規制部71と、第2部材45に設けられた第2回転規制部72を備える。第1回転規制部71は、第1環状板部26から外周側(本形態では、+X方向)へ突出して-Z方向へ屈曲する。第1回転規制部71の-Z方向の先端は、ホルダ24の第3側壁33に固定される。
(Rotation regulation mechanism)
The rotation support mechanism 12 includes a rotation restriction mechanism 70 that restricts the rotation range of the movable body 10 around the optical axis L. As shown in FIG. As shown in FIGS. 6 and 7 , the rotation restricting mechanism 70 includes a first rotation restricting portion 71 provided on the first member 25 and a second rotation restricting portion 72 provided on the second member 45 . The first rotation restricting portion 71 protrudes from the first annular plate portion 26 to the outer peripheral side (+X direction in this embodiment) and bends in the -Z direction. The tip of the first rotation restricting portion 71 in the −Z direction is fixed to the third side wall 33 of the holder 24 .

第2回転規制部72は、第2環状板部46の外周縁から+Z方向(光軸方向)へ屈曲して第1回転規制部71と周方向で対向する位置まで延びる突出部である。第2回転規制部72は、第1回転規制部71の周方向の両側に1箇所ずつ設けられている。本形態では、第1回転規制部71は、第1環状板部26と第2環状板部46の径方向の位置ずれを規制する径方向ストッパ部64と一体に形成されている。2箇所の第2回転規制部72は、第1回転規制部71の周方向の両側を囲う。従って、第1回転規制部71と第2回転規制部72とが衝突することにより、第2部材45に対する可動体10の光軸L回りの回転範囲が規制される。 The second rotation restricting portion 72 is a protruding portion that bends in the +Z direction (optical axis direction) from the outer peripheral edge of the second annular plate portion 46 and extends to a position facing the first rotation restricting portion 71 in the circumferential direction. One second rotation restricting portion 72 is provided on each side of the first rotation restricting portion 71 in the circumferential direction. In this embodiment, the first rotation restricting portion 71 is formed integrally with a radial direction stopper portion 64 that restricts radial displacement between the first annular plate portion 26 and the second annular plate portion 46 . The two second rotation restricting portions 72 surround both sides of the first rotation restricting portion 71 in the circumferential direction. Therefore, the first rotation restricting portion 71 and the second rotation restricting portion 72 collide, thereby restricting the rotation range of the movable body 10 about the optical axis L with respect to the second member 45 .

(本形態の主な作用効果)
以上のように、本形態の振れ補正機能付き光学ユニット1は、カメラモジュール2を備える可動体10と、固定体11と、固定体11に対して可動体10をカメラモジュール2の光軸Lを中心として回転可能に支持する回転支持機構12と、を有する。可動体10は第1部材25を備え、第1部材25は、光軸Lを囲みZ軸方向(光軸方向)から見てカメラモジュール2と重なる第1環状板部26を備える。回転支持機構12は、第1環状板部26とZ軸方向(光軸方向)で対向する第2環状板部46を備えるとともに固定体11に接続される第2部材45と、第1環状板部26に固定される可動体側固定部51、第2環
状板部46に固定される固定体側固定部52、および、可動体側固定部51と固定体側固定部52とを接続し光軸回りの周方向に弾性変形可能な板ばね部53を備える金属部材50と、第2環状板部46の縁から+Z方向へ延びて第1環状板部26の縁と径方向に対向する径方向ストッパ部64を備える。
(Main functions and effects of this embodiment)
As described above, the optical unit 1 with a shake correction function of this embodiment includes a movable body 10 having a camera module 2 , a fixed body 11 , and an optical axis L of the camera module 2 with the movable body 10 relative to the fixed body 11 . and a rotation support mechanism 12 for rotatably supporting the center. The movable body 10 includes a first member 25, and the first member 25 includes a first annular plate portion 26 that surrounds the optical axis L and overlaps the camera module 2 when viewed from the Z-axis direction (optical axis direction). The rotation support mechanism 12 includes a second annular plate portion 46 facing the first annular plate portion 26 in the Z-axis direction (optical axis direction), and a second member 45 connected to the fixed body 11; A movable body side fixing part 51 fixed to the part 26, a fixed body side fixing part 52 fixed to the second annular plate part 46, and a peripheral part around the optical axis connecting the movable body side fixing part 51 and the fixed body side fixing part 52. and a radial stopper portion 64 extending in the +Z direction from the edge of the second annular plate portion 46 and facing the edge of the first annular plate portion 26 in the radial direction. Prepare.

本形態によれば、可動体10と固定体11を接続する回転支持機構12が、2枚の環状板部(第1環状板部26、第2環状板部46)を周方向に弾性変形可能な板ばね部53で接続して構成される。従って、可動体10を光軸回りに回転可能に支持できる。また、板ばね部53の弾性力によって可動体10を原点位置に復帰させることができるため、原点復帰用の磁気ばねが不要である。よって、回転支持機構12の構成を簡素化できる。さらに、第2環状板部46の縁から+Z方向へ延びて第1環状板部26の縁と径方向に対向する径方向ストッパ部64を備えているので、第1環状板部26と第2環状板部46が径方向に大きく相対移動することを規制できる。従って、可動体10を光軸回りに回転可能に支持する板ばね部53の破損を防止できる。また、可動体10の位置精度の低下を抑制できる。 According to this embodiment, the rotation support mechanism 12 that connects the movable body 10 and the fixed body 11 can elastically deform the two annular plate portions (the first annular plate portion 26 and the second annular plate portion 46) in the circumferential direction. It is configured by connecting with a flat plate spring portion 53 . Therefore, the movable body 10 can be rotatably supported around the optical axis. Further, since the movable body 10 can be returned to the origin position by the elastic force of the plate spring portion 53, a magnetic spring for returning to the origin is not required. Therefore, the configuration of the rotation support mechanism 12 can be simplified. Further, since the radial direction stopper portion 64 extending in the +Z direction from the edge of the second annular plate portion 46 and facing the edge of the first annular plate portion 26 in the radial direction is provided, the first annular plate portion 26 and the second annular plate portion 26 Large relative movement of the annular plate portion 46 in the radial direction can be restricted. Therefore, breakage of the plate spring portion 53 that supports the movable body 10 so as to be rotatable about the optical axis can be prevented. Also, it is possible to suppress the deterioration of the positional accuracy of the movable body 10 .

なお、径方向ストッパ部は、第1環状板部26の縁に設けることもできる。すなわち、第1環状板部26の縁から-Z方向に延びて第1環状板部26の縁と径方向に対向する径方向ストッパ部を設ける構成を採用してもよい。また、径方向ストッパ部は、第1環状板部26もしくは第2環状板部46の外周縁でなく内周縁に設けられていてもよい。このような構成でも、第1環状板部26と第2環状板部46が径方向に位置ずれすることを規制できる。従って、板ばね部53の破損を防止でき、可動体10の位置精度の低下を抑制できる。 Note that the radial direction stopper portion can also be provided at the edge of the first annular plate portion 26 . That is, a configuration may be adopted in which a radial stopper portion extending in the −Z direction from the edge of the first annular plate portion 26 and facing the edge of the first annular plate portion 26 in the radial direction is provided. Further, the radial direction stopper portion may be provided not on the outer peripheral edge of the first annular plate portion 26 or the second annular plate portion 46 but on the inner peripheral edge thereof. With such a configuration as well, it is possible to prevent radial displacement between the first annular plate portion 26 and the second annular plate portion 46 . Therefore, damage to the leaf spring portion 53 can be prevented, and deterioration in the positional accuracy of the movable body 10 can be suppressed.

本形態では、第1部材25から-Z方向に延びて第2部材45とZ軸方向(光軸方向)に対向する光軸方向ストッパ部65を備えるため、第1環状板部26と第2環状板部46がZ軸方向(光軸方向)に接近することを規制できる。従って、板ばね部53の破損を防止でき、可動体10の位置精度の低下を抑制できる。 In this embodiment, since the optical axis direction stopper portion 65 extending in the −Z direction from the first member 25 and facing the second member 45 in the Z-axis direction (optical axis direction) is provided, the first annular plate portion 26 and the second The annular plate portion 46 can be restricted from approaching in the Z-axis direction (optical axis direction). Therefore, damage to the leaf spring portion 53 can be prevented, and deterioration in the positional accuracy of the movable body 10 can be suppressed.

なお、光軸方向ストッパ部は、第2部材45から+Z方向に延びて第1部材25とZ軸方向(光軸方向)に対向する構成であってもよい。このような構成でも、第1環状板部26と第2環状板部46がZ軸方向(光軸方向)に接近することを規制できる。従って、板ばね部53の破損を防止でき、可動体10の位置精度の低下を抑制できる。 The optical axis direction stopper portion may be configured to extend in the +Z direction from the second member 45 and face the first member 25 in the Z axis direction (optical axis direction). Even with such a configuration, it is possible to restrict the approach of the first annular plate portion 26 and the second annular plate portion 46 in the Z-axis direction (optical axis direction). Therefore, damage to the leaf spring portion 53 can be prevented, and deterioration in the positional accuracy of the movable body 10 can be suppressed.

本形態では、可動体10は、カメラモジュール2を保持するホルダ24を備える。第2環状板部46は、第1環状板部26とカメラモジュール2とのZ軸方向(光軸方向)の隙間に配置される。ホルダ24は、Z軸方向(光軸方向)に突出するホルダ凸部39を備え、ホルダ凸部39の先端面と第2部材45とのZ軸方向(光軸方向)の隙間は、カメラモジュール2と第2部材45とのZ軸方向(光軸方向)の隙間よりも狭い。従って、第1環状板部26と第2環状板部46がZ軸方向(光軸方向)に大きく離間することを規制できるため、可動体10の位置精度の低下を抑制できる。また、ホルダ凸部39の高さは容易に変更できるため、光軸方向の隙間の管理が容易である。 In this embodiment, the movable body 10 has a holder 24 that holds the camera module 2 . The second annular plate portion 46 is arranged in a gap in the Z-axis direction (optical axis direction) between the first annular plate portion 26 and the camera module 2 . The holder 24 has a holder convex portion 39 that protrudes in the Z-axis direction (optical axis direction). 2 and the second member 45 in the Z-axis direction (optical axis direction). Therefore, it is possible to prevent the first annular plate portion 26 and the second annular plate portion 46 from being greatly separated in the Z-axis direction (optical axis direction). Moreover, since the height of the holder convex portion 39 can be easily changed, it is easy to manage the gap in the optical axis direction.

本形態では、可動体10の光軸L回りの回転範囲を規制する回転規制機構70を備え、回転規制機構70は、第1環状板部26から外周側へ延びる第1回転規制部71と、第2環状板部46の外周縁からZ軸方向(光軸方向)に延びる第2回転規制部72と、を備える。第1回転規制部71と第2回転規制部72の一方は、第1回転規制部71と第2回転規制部72の他方の周方向の両側に配置される。このようにすると、第1環状板部26と第2環状板部46の間に周方向に対向する回転規制機構70を構成できる。従って、可動体10の回転範囲を規制できる。また、第1回転規制部71と第2回転規制部72の配置
を容易に変更できるので、回転範囲の管理が容易である。さらに、回転規制機構70を外周側に配置できるため、回転範囲を精度良く管理できる。
In this embodiment, a rotation restricting mechanism 70 that restricts the rotation range of the movable body 10 around the optical axis L is provided. and a second rotation restricting portion 72 extending in the Z-axis direction (optical axis direction) from the outer peripheral edge of the second annular plate portion 46 . One of the first rotation restricting portion 71 and the second rotation restricting portion 72 is arranged on both circumferential sides of the other of the first rotation restricting portion 71 and the second rotation restricting portion 72 . In this way, the rotation restricting mechanism 70 can be formed between the first annular plate portion 26 and the second annular plate portion 46 so as to face each other in the circumferential direction. Therefore, the rotation range of the movable body 10 can be restricted. In addition, since the arrangement of the first rotation restricting portion 71 and the second rotation restricting portion 72 can be easily changed, it is easy to manage the rotation range. Furthermore, since the rotation restricting mechanism 70 can be arranged on the outer peripheral side, the rotation range can be controlled with high accuracy.

なお、第2回転規制部72が第1回転規制部71の周方向の両側を囲う構成に代えて、第1回転規制部71が第2回転規制部72の周方向の両側を囲う構成を採用してもよい。すなわち、回転規制機構70は、第1回転規制部71と第2回転規制部72の一方が、第1回転規制部71と第2回転規制部72の他方の周方向の両側を囲う構成であればよい。また、第1回転規制部71が光軸方向に延びて、第2回転規制部72が外周側へ延びる構成を採用してもよい。 Instead of the configuration in which the second rotation restricting portion 72 surrounds both sides of the first rotation restricting portion 71 in the circumferential direction, a configuration in which the first rotation restricting portion 71 surrounds both sides of the second rotation restricting portion 72 in the circumferential direction is adopted. You may That is, in the rotation restricting mechanism 70, one of the first rotation restricting portion 71 and the second rotation restricting portion 72 surrounds both sides of the other of the first rotation restricting portion 71 and the second rotation restricting portion 72 in the circumferential direction. Just do it. Alternatively, a configuration may be adopted in which the first rotation restricting portion 71 extends in the optical axis direction and the second rotation restricting portion 72 extends outward.

本形態では、板ばね部53は、板厚方向が周方向を向く第1板ばね部54を備える。第1板ばね部54は、光軸Lを中心として径方向に延びる第1アーム部541と、第1アーム部541に対してZ軸方向(光軸方向)に隣り合う位置で径方向に延びる第2アーム部542と、第1アーム部541と第2アーム部542を径方向に折り返した形状に接続する接続部543と、を備える。このように、板厚方向が周方向を向き、径方向に長い板ばね形状は、周方向に弾性変形しやすい。従って、可動体10を光軸回りに回転させるために必要な駆動力を小さくすることができ、ローリング補正用磁気駆動機構23を小型化できる。また、第1板ばね部54はZ軸方向(光軸方向)に変形しにくいので、可動体10の荷重を支持でき、可動体10を吊ることができる。よって、回転支持機構12の構成を簡素化できるので、部品コストを削減でき、組立作業を容易化できる。 In this embodiment, the plate spring portion 53 includes a first plate spring portion 54 whose plate thickness direction faces the circumferential direction. The first leaf spring portion 54 extends radially at a position adjacent to the first arm portion 541 extending radially about the optical axis L and the first arm portion 541 in the Z-axis direction (optical axis direction). It includes a second arm portion 542 and a connection portion 543 that connects the first arm portion 541 and the second arm portion 542 in a radially folded shape. In this manner, the leaf spring shape, in which the plate thickness direction faces the circumferential direction and is long in the radial direction, is likely to be elastically deformed in the circumferential direction. Therefore, the driving force required to rotate the movable body 10 around the optical axis can be reduced, and the magnetic driving mechanism 23 for rolling correction can be miniaturized. In addition, since the first plate spring portion 54 is less likely to deform in the Z-axis direction (optical axis direction), the load of the movable body 10 can be supported and the movable body 10 can be suspended. Therefore, since the configuration of the rotation support mechanism 12 can be simplified, the parts cost can be reduced and the assembly work can be facilitated.

本形態では、板ばね部53は、板厚方向が径方向を向く第2板ばね部55を備えており、第2板ばね部55は、可動体側固定部51と第1板ばね部54とを接続する。従って、落下等による衝撃が加わったときに、第2板ばね部55が弾性変形することによって第1板ばね部54に加わる径方向の衝撃が緩和される。よって、第1板ばね部54の塑性変形を抑制でき、径方向に長い第1板ばね部54の座屈を抑制できるので、耐衝撃性を高めることができる。 In this embodiment, the plate spring portion 53 includes a second plate spring portion 55 whose plate thickness direction faces the radial direction. to connect. Therefore, when an impact due to dropping or the like is applied, the radial impact applied to the first leaf spring portion 54 is alleviated by the elastic deformation of the second leaf spring portion 55 . Therefore, the plastic deformation of the first plate spring portion 54 can be suppressed, and the buckling of the first plate spring portion 54 that is long in the radial direction can be suppressed, so that the impact resistance can be enhanced.

なお、可動体側固定部51と第1板ばね部54との間でなく、固定体側固定部52と第1板ばね部54との間に第2板ばね部55を配置し、第2板ばね部55が固定体側固定部52と第1板ばね部54とを接続する構成を採用してもよい。例えば、第1金属部材56に第2板ばね部55を設け、第2金属部材57に第1板ばね部54を設けることができる。この構成でも、上記形態と同様に、第2板ばね部55が弾性変形することによって第1板ばね部54の塑性変形を抑制できる。 Note that the second leaf spring portion 55 is arranged not between the movable body side fixing portion 51 and the first leaf spring portion 54, but between the fixed body side fixing portion 52 and the first leaf spring portion 54, and the second leaf spring A configuration in which the portion 55 connects the fixed body side fixing portion 52 and the first leaf spring portion 54 may be employed. For example, the first metal member 56 may be provided with the second leaf spring portion 55 and the second metal member 57 may be provided with the first leaf spring portion 54 . Also in this configuration, plastic deformation of the first leaf spring portion 54 can be suppressed by elastically deforming the second leaf spring portion 55 in the same manner as in the above embodiment.

本形態では、金属部材50は、環状の固定体側固定部52、および、固定体側固定部52に設けられた第1切欠き部58の縁(第1縁部59)から光軸方向に屈曲して径方向に延びる第1板ばね部54を備える第1金属部材56と、環状の可動体側固定部51、および、可動体側固定部51に設けられた第2切欠き部60の縁(第2縁部61)から光軸方向に屈曲して光軸回りの周方向に延びる第2板ばね部55を備える第2金属部材57と、を有しており、第2板ばね部55の先端と第1板ばね部54とが接合されている。このように、板ばね部53を備える金属部材50を2部品に分けて接合することにより、各部品では、複数の板ばね部53の一部を固定体側固定部52、あるいは可動体側固定部51と一体化できる。従って、部品点数を削減でき、回転支持機構12の組立が容易である。また、各板ばね部53の位置精度を高めることができる。 In this embodiment, the metal member 50 is bent in the optical axis direction from the annular fixed body side fixing portion 52 and the edge (first edge portion 59) of the first notch portion 58 provided in the fixed body side fixing portion 52. A first metal member 56 having a first leaf spring portion 54 radially extending through the first metal member 56 , an annular movable-body-side fixing portion 51 , and an edge of a second notch portion 60 provided in the movable-body-side fixing portion 51 (second a second metal member 57 having a second leaf spring portion 55 that bends in the optical axis direction from the edge portion 61) and extends in the circumferential direction around the optical axis; The first plate spring portion 54 is joined. In this way, by dividing the metal member 50 having the plate spring portions 53 into two parts and joining them together, in each part, part of the plurality of plate spring portions 53 can be fixed to the fixed body side fixing portion 52 or the movable body side fixing portion 51 . can be integrated with Therefore, the number of parts can be reduced, and assembly of the rotation support mechanism 12 is easy. In addition, the positional accuracy of each plate spring portion 53 can be enhanced.

本形態では、周方向に分散配置される4個の板ばね部53を備え、4個の板ばね部53は、光軸方向から見てカメラモジュール2と重なる位置に配置される。従って、径方向に延びる4個の第1板ばね部54が放射状に配置されるので、可動体10をバランス良く支持できる。また、Z軸方向(光軸方向)から見て第1板ばね部54とカメラモジュール2
とが重なるので、Z軸方向(光軸方向)から見た振れ補正機能付き光学ユニットの外形を小さくすることができる。
In this embodiment, four leaf spring portions 53 are provided dispersedly in the circumferential direction, and the four leaf spring portions 53 are arranged at positions overlapping the camera module 2 when viewed from the optical axis direction. Therefore, since the four radially extending first plate spring portions 54 are radially arranged, the movable body 10 can be supported in a well-balanced manner. Also, when viewed from the Z-axis direction (optical axis direction), the first leaf spring portion 54 and the camera module 2
, the outer shape of the optical unit with a shake correction function when viewed from the Z-axis direction (optical axis direction) can be reduced.

なお、板ばね部53は、光軸回りの少なくとも3箇所に分散配置されていればよく、5箇所以上に配置してもよい。少なくとも3個所に板ばね部53を配置すれば、可動体10をバランス良く支持でき、可動体10が光軸Lに対して傾くことを規制できる。 Note that the plate spring portions 53 may be dispersedly arranged at at least three locations around the optical axis, and may be arranged at five or more locations. By arranging the leaf spring portions 53 in at least three positions, the movable body 10 can be supported in a well-balanced manner, and tilting of the movable body 10 with respect to the optical axis L can be restricted.

本形態では、回転支持機構12を光軸Lと交差する第1軸R1回りに回転可能に支持するとともに、回転支持機構12を光軸Lおよび第1軸R1と交差する第2軸R2回りに回転可能に支持するジンバル機構13を有し、第2部材45は、ジンバル機構13によって第1軸R1回りに回転可能に支持され、固定体11は、回転支持機構12およびジンバル機構13を介して可動体10を支持する。このようにすると、光軸回りに回転するユニットがジンバル機構13を含まないので、回転スペースを大きく確保する必要がない。従って、振れ補正機能付き光学ユニット1の外形を小さくすることができる。 In this embodiment, the rotation support mechanism 12 is rotatably supported about a first axis R1 that intersects the optical axis L, and the rotation support mechanism 12 is supported about a second axis R2 that intersects the optical axis L and the first axis R1. The second member 45 is rotatably supported about the first axis R1 by the gimbal mechanism 13, and the fixed body 11 is supported via the rotation support mechanism 12 and the gimbal mechanism 13. The movable body 10 is supported. With this arrangement, the unit that rotates around the optical axis does not include the gimbal mechanism 13, so there is no need to secure a large rotation space. Therefore, the outer shape of the optical unit 1 with a shake correction function can be reduced.

本形態では、第2部材45は、第2環状板部46から第1軸R1方向の両側へ突出する一対の第2延設部47、および、第2環状板部46から第2軸R2方向の両側へ突出する一対の第2突出板部48を備え、一対の第2延設部47はジンバル機構13に接続され、第1部材25は、第1環状板部26から第1軸R1方向の両側、および、第2軸R2方向の両側へ突出する4箇所の第1突出板部28を備え、光軸方向ストッパ部65は、第1突出板部28の周方向の縁からZ軸方向(光軸方向)に延びて第2突出板部48または第2延設部47とZ軸方向(光軸方向)に対向する。このようにすると、光軸方向ストッパ部65が周方向に均等配置されるので、第1環状板部26と第2環状板部46がZ軸方向(光軸方向)に大きく接近することを規制できる。従って、可動体10の位置精度の低下を抑制できる。また、ジンバル機構13との接続用の形状(第2延設部47)を利用してストッパ機部を構成できるので、第2部材45の部品形状が複雑化することを避けることができる。 In this embodiment, the second member 45 includes a pair of second extending portions 47 projecting from the second annular plate portion 46 to both sides in the first axis R1 direction, and a pair of second extending portions 47 projecting from the second annular plate portion 46 in the second axis R2 direction. The pair of second projecting plate portions 48 are connected to the gimbal mechanism 13, and the first member 25 extends from the first annular plate portion 26 in the direction of the first axis R1. and four first projecting plate portions 28 projecting to both sides in the direction of the second axis R2. It extends in the (optical axis direction) and faces the second projecting plate portion 48 or the second extended portion 47 in the Z-axis direction (optical axis direction). With this arrangement, the optical axis direction stopper portions 65 are evenly arranged in the circumferential direction, so that the first annular plate portion 26 and the second annular plate portion 46 are prevented from coming too close to each other in the Z-axis direction (optical axis direction). can. Therefore, the deterioration of the positional accuracy of the movable body 10 can be suppressed. In addition, since the shape for connection with the gimbal mechanism 13 (the second extending portion 47) can be used to configure the stopper mechanism portion, it is possible to avoid complicating the component shape of the second member 45. FIG.

本形態では、周方向に分散配置される4個の第1板ばね部54を備え、一対の第2延設部47、および、一対の第2突出板部48のそれぞれには、径方向に延びて第2環状板部46の内周縁に開口するスリット(第2スリット49)が設けられ、光軸方向ストッパ部65は、第1突出板部28の周方向の両側の縁からZ軸方向(光軸方向)に延びて、スリット(第2スリット49)に配置される第1板ばね部54の周方向の両側を囲う。このようにすると、第1板ばね部54と光軸方向ストッパ部65とが干渉しない。また、第2部材45と第1板ばね部54をZ軸方向(光軸方向)と交差する方向から見て重なる位置に配置できる。従って、回転支持機構12のZ軸方向(光軸方向)の高さを低くすることができ、振れ補正機能付き光学ユニット1のZ軸方向(光軸方向)の高さを低くすることができる。 In this embodiment, four first plate spring portions 54 are provided dispersedly in the circumferential direction. A slit (second slit 49) that extends and opens to the inner peripheral edge of the second annular plate portion 46 is provided. It extends in the (optical axis direction) and surrounds both sides in the circumferential direction of the first plate spring portion 54 arranged in the slit (second slit 49). By doing so, the first leaf spring portion 54 and the optical axis direction stopper portion 65 do not interfere with each other. In addition, the second member 45 and the first plate spring portion 54 can be arranged at overlapping positions when viewed from the direction intersecting the Z-axis direction (optical axis direction). Therefore, the height of the rotation support mechanism 12 in the Z-axis direction (optical axis direction) can be reduced, and the height of the optical unit 1 with a shake correction function in the Z-axis direction (optical axis direction) can be reduced. .

本形態では、ホルダ凸部39は、第2軸R2方向の両側の角部、および、第1軸R1方向の両側の角部に設けられ、第2軸R2方向の両側の角部に設けられたホルダ凸部39は、第2突出板部48とZ軸方向(光軸方向)に対向し、第1軸R1方向の両側の角部に設けられたホルダ凸部39は、第2延設部47とZ軸方向(光軸方向)に対向する。このようにすると、ジンバル機構13との接続用の形状(第2延設部47)を利用してZ軸方向(光軸方向)のストッパ機構を構成できるので、第2部材45の部品形状が複雑化することを避けることができる。また、4箇所のストッパ機構が周方向に均等配置されるので、可動体10か傾くことを規制できる。従って、第1環状板部26と第2環状板部46がZ軸方向(光軸方向)に大きく接近することを規制でき、板ばね部53の破損を防止できる。また、可動体10の位置精度の低下を抑制できる。 In this embodiment, the holder protrusions 39 are provided at the corners on both sides in the second axis R2 direction, the corners on both sides in the first axis R1 direction, and the corners on both sides in the second axis R2 direction. The holder convex portion 39 faces the second protruding plate portion 48 in the Z-axis direction (optical axis direction). It faces the portion 47 in the Z-axis direction (optical axis direction). In this way, a stopper mechanism in the Z-axis direction (optical axis direction) can be configured using the shape (second extending portion 47) for connection with the gimbal mechanism 13, so that the component shape of the second member 45 can be Avoid complications. In addition, since the four stopper mechanisms are evenly arranged in the circumferential direction, tilting of the movable body 10 can be restricted. Therefore, it is possible to prevent the first annular plate portion 26 and the second annular plate portion 46 from coming too close to each other in the Z-axis direction (optical axis direction), thereby preventing the leaf spring portion 53 from being damaged. Also, it is possible to suppress the deterioration of the positional accuracy of the movable body 10 .

1…振れ補正機能付き光学ユニット、2…カメラモジュール、2a…レンズ、2b…撮像素子、3…ケース、4…カバー、4a…開口部、5…ベース、6、7…フレキシブルプリント基板、8…フック、9…突起、10…可動体、11…固定体、12…回転支持機構、13…ジンバル機構、14…ジンバルフレーム、15…第1接続機構、16…第2接続機構、17…磁性板、18…枠部、19…配線収容部、20…振れ補正用磁気駆動機構、21…第1振れ補正用磁気駆動機構、21C…第1コイル、21M…第1磁石、22…第2振れ補正用磁気駆動機構、22C…第2コイル、22M…第2磁石、23…ローリング補正用磁気駆動機構、23C…第3コイル、23M…第3磁石、24…ホルダ、25…第1部材、26…第1環状板部、26a…円形穴、27…第1延設部、28…第1突出板部、29…スリット、30A…カメラモジュール本体部、30B…カメラモジュール円筒部、31…第1側壁、32…第2側壁、33…第3側壁、33a…切欠き部、34…第4側壁、35…第5側壁、36…第6側壁、37…第7側壁、38…第8側壁、39…ホルダ凸部、40…凹部、41…底面、42…溝部、45…第2部材、46…第2環状板部、47…第2延設部、48…第2突出板部、49…第2スリット、50…金属部材、51…可動体側固定部、52…固定体側固定部、53…板ばね部、54…第1板ばね部、55…第2板ばね部、56…第1金属部材、57…第2金属部材、58…第1切欠き部、59…第1縁部、60…第2切欠き部、61…第2縁部、62…第3切欠き部、63…突出部、64…径方向ストッパ部、65…光軸方向ストッパ部、66…延出部、69…切欠き部、70…回転規制機構、71…第1回転規制部、72…第2回転規制部、140…ジンバルフレーム本体部、141…第1軸側延設部、142…第2軸側延設部、143…開口部、144…第1軸側凹曲面、146…突出部、147…第2軸側凹曲面、148…切欠き、151…第1ジンバルフレーム受け部材、152…球体、153…第1スラスト受け部材、154…板部、155、156…腕部、157…突出部、161…凹部、162…第2ジンバルフレーム受け部材、163…球体、164…第2スラスト受け部材、165…板部、167…腕部、181…第1側板部、181a…第1コイル固定孔、182…第2側板部、182a…第3コイル固定孔、183…第3側板部、183a…切欠き部、184…第4側板部、184a…第2コイル固定孔、191…第1壁部、192…第2壁部、193…第3壁部、193a…切欠き部、271…第1延設部第1部分、272…第1延設部第2部分、471…第2延設部第1部分、472…第2延設部第2部分、541…第1アーム部、542…第2アーム部、543…接続部、544…第1接合部、551…第2接合部、L…光軸、R1…第1軸、R2…第2軸、S…角度位置センサ、T1、T2、T3…隙間 DESCRIPTION OF SYMBOLS 1... Optical unit with shake correction function 2... Camera module 2a... Lens 2b... Imaging element 3... Case 4... Cover 4a... Opening 5... Base 6, 7... Flexible printed circuit board 8... Hook 9 Projection 10 Movable body 11 Fixed body 12 Rotation support mechanism 13 Gimbal mechanism 14 Gimbal frame 15 First connection mechanism 16 Second connection mechanism 17 Magnetic plate , 18... Frame portion 19... Wiring housing portion 20... Shake correction magnetic drive mechanism 21... First shake correction magnetic drive mechanism 21C... First coil 21M... First magnet 22... Second shake correction 22C... second coil 22M... second magnet 23... magnetic drive mechanism for rolling correction 23C... third coil 23M... third magnet 24... holder 25... first member 26... First annular plate portion 26a...Circular hole 27...First extension part 28...First projecting plate part 29...Slit 30A...Camera module body part 30B...Camera module cylindrical part 31...First side wall , 32 . ... holder convex portion 40 ... concave portion 41 ... bottom surface 42 ... groove portion 45 ... second member 46 ... second annular plate portion 47 ... second extended portion 48 ... second projecting plate portion 49 ... second 2 slits, 50... Metal member, 51... Movable body side fixing part, 52... Fixed body side fixing part, 53... Leaf spring part, 54... First leaf spring part, 55... Second leaf spring part, 56... First metal member , 57... Second metal member, 58... First notch, 59... First edge, 60... Second notch, 61... Second edge, 62... Third notch, 63... Protruding part , 64... Radial direction stopper part, 65... Optical axis direction stopper part, 66... Extension part, 69... Notch part, 70... Rotation restriction mechanism, 71... First rotation restriction part, 72... Second rotation restriction part, 140... Gimbal frame main body 141... First axis side extension part 142... Second axis side extension part 143... Opening 144... First axis side concave curved surface 146... Protruding part 147... Second axis side Shaft-side concave surface 148 Notch 151 First gimbal frame receiving member 152 Sphere 153 First thrust receiving member 154 Plate 155, 156 Arm 157 Projection 161 Recess 162 Second gimbal frame receiving member 163 Sphere 164 Second thrust receiving member 165 Plate 167 Arm 181 First side plate 181a First coil fixing hole 182 Second side plate , 182a...Third coil fixing hole 183...Third side plate part 183a...Notch part 184...Fourth side plate part 184a...Second coil fixing hole 191...First wall part 192...Second wall part , 193...Third wall portion 193a...Notch portion 271...First extension portion first portion 272...First extension portion second portion 471...Second extension portion first portion 472...Second portion 2 extension part second part 541... first arm part 542... second arm part 543... connection part 544... first joint part 551... second joint part L... optical axis R1... first Axis, R2...Second axis, S...Angular position sensor, T1, T2, T3...Gap

Claims (12)

カメラモジュールを備える可動体と、固定体と、前記固定体に対して前記可動体を前記カメラモジュールの光軸を中心として回転可能に支持する回転支持機構と、を有し、
前記可動体は第1部材を備え、前記第1部材は、前記光軸を囲み前記光軸方向から見て前記カメラモジュールと重なる第1環状板部を備え、
前記回転支持機構は、
前記第1環状板部と前記光軸方向で対向する第2環状板部を備えるとともに前記固定体に接続される第2部材と、
前記第1環状板部に固定される可動体側固定部、前記第2環状板部に固定される固定体側固定部、および、前記可動体側固定部と前記固定体側固定部とを接続し前記光軸回りの周方向に弾性変形可能な板ばね部を備える金属部材と、
前記第1環状板部および前記第2環状板部の一方の縁から前記光軸方向へ延びて前記第1環状板部および前記第2環状板部の他方の縁と径方向に対向する径方向ストッパ部と、を備えることを特徴とする振れ補正機能付き光学ユニット。
a movable body including a camera module; a fixed body; and a rotation support mechanism that supports the movable body with respect to the fixed body so as to be rotatable about an optical axis of the camera module;
The movable body includes a first member, the first member includes a first annular plate portion that surrounds the optical axis and overlaps the camera module when viewed from the optical axis direction,
The rotation support mechanism is
a second member including a second annular plate portion facing the first annular plate portion in the optical axis direction and connected to the fixed body;
a movable body side fixed part fixed to the first annular plate part, a fixed body side fixed part fixed to the second annular plate part, and the optical axis connecting the movable body side fixed part and the fixed body side fixed part; a metal member provided with a plate spring portion that is elastically deformable in the circumferential direction;
Radially extending from one edge of the first annular plate portion and the second annular plate portion in the optical axis direction and radially facing the other edge of the first annular plate portion and the second annular plate portion and a stopper portion. An optical unit with a shake correction function.
前記第1部材と前記第2部材の一方から前記光軸方向に延びて前記第1部材と前記第2部材の他方と前記光軸方向に対向する光軸方向ストッパ部を備えることを特徴とする請求項1に記載の振れ補正機能付き光学ユニット。 An optical axis direction stopper portion extending in the optical axis direction from one of the first member and the second member and facing the other of the first member and the second member in the optical axis direction is provided. 2. The optical unit with a shake correction function according to claim 1. 前記可動体は、前記カメラモジュールを保持するホルダを備え、
前記第2環状板部は、前記第1環状板部と前記カメラモジュールとの前記光軸方向の隙間に配置され、
前記ホルダは、前記光軸方向に突出するホルダ凸部を備え、前記ホルダ凸部の先端面と前記第2部材との前記光軸方向の隙間は、前記カメラモジュールと前記第2部材との前記光軸方向の隙間よりも狭いことを特徴とする請求項2に記載の振れ補正機能付き光学ユニット。
the movable body includes a holder that holds the camera module,
The second annular plate portion is arranged in a gap in the optical axis direction between the first annular plate portion and the camera module,
The holder has a holder protrusion projecting in the optical axis direction, and the gap in the optical axis direction between the tip end surface of the holder protrusion and the second member is the above-described gap between the camera module and the second member. 3. The optical unit with a shake correction function according to claim 2, wherein the gap is narrower than the gap in the optical axis direction.
前記可動体の前記光軸回りの回転範囲を規制する回転規制機構を備え、
前記回転規制機構は、
前記第1環状板部と前記第2環状板部の一方の外周縁から外周側へ延びる第1回転規制部と、
前記第1環状板部と前記第2環状板部の他方の外周縁から前記光軸方向に延びる第2回転規制部と、を備え、
前記第1回転規制部と前記第2回転規制部の一方は、前記第1回転規制部と前記第2回転規制部の他方の周方向の両側に配置されることを特徴とする請求項3に記載の振れ補正機能付き光学ユニット。
a rotation restriction mechanism that restricts a rotation range of the movable body around the optical axis;
The rotation restricting mechanism is
a first rotation restricting portion extending outward from an outer peripheral edge of one of the first annular plate portion and the second annular plate portion;
a second rotation restricting portion extending in the optical axis direction from the other outer peripheral edges of the first annular plate portion and the second annular plate portion;
One of the first rotation restricting portion and the second rotation restricting portion is disposed on both circumferential sides of the other of the first rotation restricting portion and the second rotation restricting portion. Optical unit with image stabilization function.
前記板ばね部は、板厚方向が前記周方向を向く第1板ばね部を備え、
前記第1板ばね部は、
前記光軸を中心として径方向に延びる第1アーム部と、
前記第1アーム部に対して前記光軸方向に隣り合う位置で前記径方向に延びる第2アーム部と、
前記第1アーム部と前記第2アーム部を前記径方向に折り返した形状に接続する接続部と、を備えることを特徴とする請求項4に記載の振れ補正機能付き光学ユニット。
The plate spring portion includes a first plate spring portion having a plate thickness direction facing the circumferential direction,
The first leaf spring portion is
a first arm portion extending radially about the optical axis;
a second arm portion extending in the radial direction at a position adjacent to the first arm portion in the optical axis direction;
5. The optical unit with a shake correction function according to claim 4, further comprising a connecting portion that connects the first arm portion and the second arm portion in a folded shape in the radial direction.
前記板ばね部は、板厚方向が前記径方向を向く第2板ばね部を備え、
前記第2板ばね部は、前記可動体側固定部と前記第1板ばね部とを接続するか、あるいは、前記固定体側固定部と前記第1板ばね部とを接続することを特徴とする請求項5に記載の振れ補正機能付き光学ユニット。
The plate spring portion includes a second plate spring portion having a plate thickness direction facing the radial direction,
The second plate spring portion connects the movable body side fixed portion and the first plate spring portion, or connects the fixed body side fixed portion and the first plate spring portion. Item 6. The optical unit with a shake correction function according to item 5.
前記金属部材は、
環状の前記固定体側固定部、および、前記固定体側固定部に設けられた第1切欠き部の縁から前記光軸方向に屈曲して前記径方向に延びる前記第1板ばね部を備える第1金属部材と、
環状の前記可動体側固定部、および、前記可動体側固定部に設けられた第2切欠き部の縁から前記光軸方向に屈曲して前記光軸回りの周方向に延びる前記第2板ばね部を備える第2金属部材と、を有し、
前記第2板ばね部の先端と前記第1板ばね部とが接合されることを特徴とする請求項6に記載の振れ補正機能付き光学ユニット。
The metal member is
A first plate spring portion that is bent in the optical axis direction and extends in the radial direction from an edge of a first notch portion provided in the fixed body side fixing portion, and an annular fixed body side fixing portion. a metal member;
and the second leaf spring portion that bends in the optical axis direction from the edge of the second notch provided in the annular movable body side fixing portion and extends in the circumferential direction around the optical axis. a second metal member comprising
7. The optical unit with shake correction function according to claim 6, wherein the tip of the second leaf spring portion and the first leaf spring portion are joined.
前記周方向に分散配置される少なくとも3個の前記板ばね部を備え、
前記3個の前記板ばね部は、前記光軸方向から見て前記カメラモジュールと重なる位置に配置されることを特徴とする請求項5から7の何れか一項に記載の振れ補正機能付き光学ユニット。
At least three leaf spring portions distributed in the circumferential direction,
8. The optical system with shake correction function according to claim 5, wherein the three leaf spring portions are arranged at positions overlapping with the camera module when viewed from the optical axis direction. unit.
前記回転支持機構を前記光軸と交差する第1軸回りに回転可能に支持するとともに、前記回転支持機構を前記光軸および前記第1軸と交差する第2軸回りに回転可能に支持するジンバル機構を有し、
前記第2部材は、前記ジンバル機構によって前記第1軸回りに回転可能に支持され、
前記固定体は、前記回転支持機構および前記ジンバル機構を介して前記可動体を支持することを特徴とする請求項8に記載の振れ補正機能付き光学ユニット。
A gimbal that rotatably supports the rotation support mechanism about a first axis intersecting the optical axis and rotatably supports the rotation support mechanism about a second axis that intersects the optical axis and the first axis. have a mechanism,
the second member is rotatably supported about the first axis by the gimbal mechanism;
9. The optical unit with shake correction function according to claim 8, wherein the fixed body supports the movable body via the rotation support mechanism and the gimbal mechanism.
前記第2部材は、前記第2環状板部から前記第1軸方向の両側へ突出する一対の第2延設部、および、前記第2環状板部から前記第2軸方向の両側へ突出する一対の第2突出板部を備え、前記一対の第2延設部は前記ジンバル機構に接続され、
前記第1部材は、前記第1環状板部から前記第1軸方向の両側、および、前記第2軸方向の両側へ突出する4箇所の第1突出板部を備え、
前記光軸方向ストッパ部は、前記第1突出板部の前記周方向の縁から前記光軸方向に延びて前記第2突出板部または前記第2延設部と前記光軸方向に対向することを特徴とする請求項9に記載の振れ補正機能付き光学ユニット。
The second member includes a pair of second extension portions projecting from the second annular plate portion to both sides in the first axial direction, and a second member projecting from the second annular plate portion to both sides in the second axial direction. comprising a pair of second projecting plate portions, the pair of second extending portions being connected to the gimbal mechanism;
The first member includes four first protruding plate portions that protrude from the first annular plate portion to both sides in the first axial direction and to both sides in the second axial direction,
The optical axis direction stopper portion extends in the optical axis direction from the circumferential edge of the first projecting plate portion and faces the second projecting plate portion or the second extended portion in the optical axis direction. 10. The optical unit with a shake correction function according to claim 9.
前記周方向に分散配置される4個の前記第1板ばね部を備え、
前記一対の第2延設部、および、前記一対の第2突出板部のそれぞれには、前記径方向に延びて前記第2環状板部の内周縁に開口するスリットが設けられ、
前記光軸方向ストッパ部は、前記第1突出板部の前記周方向の両側の縁から前記光軸方向に延びて、前記スリットに配置される前記第1板ばね部の周方向の両側を囲うことを特徴とする請求項10に記載の振れ補正機能付き光学ユニット。
comprising four of the first leaf spring portions distributed in the circumferential direction,
Each of the pair of second extending portions and the pair of second protruding plate portions is provided with a slit that extends in the radial direction and opens to the inner peripheral edge of the second annular plate portion,
The optical axis direction stopper portion extends in the optical axis direction from both edges of the first projecting plate portion in the circumferential direction, and surrounds both sides in the circumferential direction of the first leaf spring portion disposed in the slit. 11. The optical unit with a shake correction function according to claim 10, wherein:
前記ホルダ凸部は、前記第2軸方向の両側の角部、および、前記第1軸方向の両側の角部に設けられ、
前記第2軸方向の両側の角部に設けられた前記ホルダ凸部は、前記第2突出板部と前記光軸方向に対向し、
前記第1軸方向の両側の角部に設けられた前記ホルダ凸部は、前記第2延設部と前記光軸方向に対向することを特徴とする請求項10または11に記載の振れ補正機能付き光学ユニット。
The holder protrusions are provided at corners on both sides in the second axial direction and corners on both sides in the first axial direction,
The holder protrusions provided at the corners on both sides in the second axial direction are opposed to the second projecting plate in the optical axis direction,
12. The image stabilization function according to claim 10, wherein the holder projections provided at the corners on both sides in the first axis direction face the second extensions in the optical axis direction. optical unit with.
JP2021060090A 2021-03-31 2021-03-31 Optical unit with shake correction function Pending JP2022156415A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021060090A JP2022156415A (en) 2021-03-31 2021-03-31 Optical unit with shake correction function
CN202210346060.3A CN115145089B (en) 2021-03-31 2022-03-31 Optical unit with jitter correction function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021060090A JP2022156415A (en) 2021-03-31 2021-03-31 Optical unit with shake correction function

Publications (1)

Publication Number Publication Date
JP2022156415A true JP2022156415A (en) 2022-10-14

Family

ID=83405776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021060090A Pending JP2022156415A (en) 2021-03-31 2021-03-31 Optical unit with shake correction function

Country Status (2)

Country Link
JP (1) JP2022156415A (en)
CN (1) CN115145089B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3694914B2 (en) * 1994-07-15 2005-09-14 ソニー株式会社 Objective lens driving apparatus and recording / reproducing apparatus using the same
CN102016708B (en) * 2008-04-30 2013-07-31 日本电产三协株式会社 Optical unit having deflection correcting function
JP5846346B2 (en) * 2009-08-21 2016-01-20 ミツミ電機株式会社 Camera shake correction device
JP2011123091A (en) * 2009-12-08 2011-06-23 Nidec Sankyo Corp Linear drive device and optical element drive apparatus
JP2013083692A (en) * 2011-10-06 2013-05-09 Sony Corp Blur correction device and imaging apparatus
JP6086290B2 (en) * 2012-09-20 2017-03-01 大日本印刷株式会社 Leaf spring, camera module drive mechanism and electronic device terminal
JP7096108B2 (en) * 2018-08-31 2022-07-05 日本電産サンキョー株式会社 Optical unit
JP7290444B2 (en) * 2019-03-28 2023-06-13 ニデックインスツルメンツ株式会社 Optical unit with anti-shake function
CN111752066B (en) * 2019-03-28 2022-05-03 日本电产三协株式会社 Optical unit with shake correction function

Also Published As

Publication number Publication date
CN115145089B (en) 2023-05-16
CN115145089A (en) 2022-10-04

Similar Documents

Publication Publication Date Title
CN108873563B (en) Optical unit with shake correction function
JP7325257B2 (en) Optical unit with anti-shake function
CN111752067B (en) Optical unit with shake correction function
JP7323428B2 (en) Optical unit with anti-shake function
JP7303699B2 (en) OPTICAL UNIT WITH STABILIZATION FUNCTION AND MANUFACTURING METHOD THEREOF
CN112703449B (en) Unit with shake correction function
JP2021092655A (en) Optical unit with a shake correction function
JP2022158798A (en) Optical unit with shake correction function
JP7344784B2 (en) Optical unit with shake correction function
JP7360914B2 (en) Optical unit with shake correction function
JP2022156415A (en) Optical unit with shake correction function
JP7369605B2 (en) Optical unit with shake correction function
CN115145086B (en) Optical unit with jitter correction function
CN114675471B (en) Optical unit with shake correction function
CN114675469B (en) Optical unit with jitter correction function
CN114675470B (en) Optical unit with jitter correction function
CN115145088B (en) Optical unit with jitter correction function
CN114675468B (en) Optical unit with jitter correction function
CN115248520B (en) Optical unit with jitter correction function
JP7467287B2 (en) Optical unit with shake correction function
CN114815445B (en) Optical unit with jitter correction function
JP7344785B2 (en) Optical unit with shake correction function
JP7467286B2 (en) Optical unit with shake correction function
CN117641101A (en) Optical unit with jitter correction function
CN115707182A (en) Optical unit with shake correction function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241015