JP2022038107A - 固体電解質、固体電解質の製造方法および複合体 - Google Patents
固体電解質、固体電解質の製造方法および複合体 Download PDFInfo
- Publication number
- JP2022038107A JP2022038107A JP2020142421A JP2020142421A JP2022038107A JP 2022038107 A JP2022038107 A JP 2022038107A JP 2020142421 A JP2020142421 A JP 2020142421A JP 2020142421 A JP2020142421 A JP 2020142421A JP 2022038107 A JP2022038107 A JP 2022038107A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- positive electrode
- hot plate
- minutes
- normal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 279
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title abstract description 78
- 239000000203 mixture Substances 0.000 claims abstract description 203
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 33
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 25
- 239000011149 active material Substances 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims description 161
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002994 raw material Substances 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 20
- 238000002156 mixing Methods 0.000 claims description 13
- 239000013543 active substance Substances 0.000 claims description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 120
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 120
- 229910052715 tantalum Inorganic materials 0.000 abstract description 20
- 239000000243 solution Substances 0.000 description 162
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 157
- 239000010410 layer Substances 0.000 description 125
- 239000003153 chemical reaction reagent Substances 0.000 description 86
- 239000007774 positive electrode material Substances 0.000 description 66
- 239000013078 crystal Substances 0.000 description 64
- 239000002243 precursor Substances 0.000 description 62
- 230000000052 comparative effect Effects 0.000 description 61
- -1 oxo acid compound Chemical class 0.000 description 58
- 239000003792 electrolyte Substances 0.000 description 55
- 208000005156 Dehydration Diseases 0.000 description 54
- 230000018044 dehydration Effects 0.000 description 54
- 238000006297 dehydration reaction Methods 0.000 description 54
- 239000012298 atmosphere Substances 0.000 description 48
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 48
- 238000011282 treatment Methods 0.000 description 46
- 239000002904 solvent Substances 0.000 description 43
- 238000003756 stirring Methods 0.000 description 43
- 239000000463 material Substances 0.000 description 41
- 239000000047 product Substances 0.000 description 41
- 229910052744 lithium Inorganic materials 0.000 description 40
- 239000002245 particle Substances 0.000 description 39
- 239000010955 niobium Substances 0.000 description 33
- 239000002002 slurry Substances 0.000 description 31
- 229910052726 zirconium Inorganic materials 0.000 description 31
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 29
- 229910052732 germanium Inorganic materials 0.000 description 29
- 239000000843 powder Substances 0.000 description 28
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical class [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 27
- 239000007773 negative electrode material Substances 0.000 description 27
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 24
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 24
- 239000010936 titanium Substances 0.000 description 24
- 238000010304 firing Methods 0.000 description 23
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 22
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical group C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 21
- SRHILFZTCUSLKY-UHFFFAOYSA-N lanthanum hexahydrate Chemical compound O.O.O.O.O.O.[La] SRHILFZTCUSLKY-UHFFFAOYSA-N 0.000 description 21
- 229960005235 piperonyl butoxide Drugs 0.000 description 21
- 239000003960 organic solvent Substances 0.000 description 19
- 239000012071 phase Substances 0.000 description 19
- 229910052719 titanium Inorganic materials 0.000 description 19
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 18
- 238000002485 combustion reaction Methods 0.000 description 18
- 229910052746 lanthanum Inorganic materials 0.000 description 18
- 239000008247 solid mixture Substances 0.000 description 18
- 239000011247 coating layer Substances 0.000 description 16
- 239000010408 film Substances 0.000 description 16
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 14
- 230000001590 oxidative effect Effects 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 238000002844 melting Methods 0.000 description 13
- 230000008018 melting Effects 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical class [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 12
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 230000007704 transition Effects 0.000 description 10
- 239000000470 constituent Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 9
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 239000005297 pyrex Substances 0.000 description 8
- 241000282994 Cervidae Species 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 239000003575 carbonaceous material Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 150000002736 metal compounds Chemical class 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- FKKAPNRSLATUGU-UHFFFAOYSA-N 1,1,2,2-tetrabutoxyethanol zirconium Chemical compound C(CCC)OC(C(O)(OCCCC)OCCCC)OCCCC.[Zr] FKKAPNRSLATUGU-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 238000001069 Raman spectroscopy Methods 0.000 description 4
- 229910006404 SnO 2 Inorganic materials 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 239000012752 auxiliary agent Substances 0.000 description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 239000011630 iodine Substances 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229910012820 LiCoO Inorganic materials 0.000 description 3
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 3
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 239000004909 Moisturizer Substances 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007600 charging Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 3
- 239000010416 ion conductor Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 229910052747 lanthanoid Inorganic materials 0.000 description 3
- 150000002602 lanthanoids Chemical group 0.000 description 3
- 150000002642 lithium compounds Chemical class 0.000 description 3
- 239000011855 lithium-based material Substances 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 230000001333 moisturizer Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920000379 polypropylene carbonate Polymers 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910018136 Li 2 Ti 3 O 7 Inorganic materials 0.000 description 2
- 229910010556 LiFeF Inorganic materials 0.000 description 2
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- 229910018598 Si-Co Inorganic materials 0.000 description 2
- 229910008071 Si-Ni Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910008453 Si—Co Inorganic materials 0.000 description 2
- 229910006639 Si—Mn Inorganic materials 0.000 description 2
- 229910006300 Si—Ni Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001463 antimony compounds Chemical class 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005234 chemical deposition Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000010344 co-firing Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000002593 electrical impedance tomography Methods 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 150000002291 germanium compounds Chemical class 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- ICIWUVCWSCSTAQ-UHFFFAOYSA-M iodate Chemical compound [O-]I(=O)=O ICIWUVCWSCSTAQ-UHFFFAOYSA-M 0.000 description 2
- 229940005633 iodate ion Drugs 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 150000002604 lanthanum compounds Chemical class 0.000 description 2
- YXEUGTSPQFTXTR-UHFFFAOYSA-K lanthanum(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[La+3] YXEUGTSPQFTXTR-UHFFFAOYSA-K 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000002822 niobium compounds Chemical class 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000005486 organic electrolyte Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- IKNCGYCHMGNBCP-UHFFFAOYSA-N propan-1-olate Chemical compound CCC[O-] IKNCGYCHMGNBCP-UHFFFAOYSA-N 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 2
- 230000036632 reaction speed Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 150000003482 tantalum compounds Chemical class 0.000 description 2
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 150000003755 zirconium compounds Chemical class 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- OXQGTIUCKGYOAA-UHFFFAOYSA-N 2-Ethylbutanoic acid Chemical compound CCC(CC)C(O)=O OXQGTIUCKGYOAA-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- SYGNFMCWKSOMRU-UHFFFAOYSA-N 2-methylpropan-1-olate;tantalum(5+) Chemical compound [Ta+5].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-] SYGNFMCWKSOMRU-UHFFFAOYSA-N 0.000 description 1
- YMJMHACKPJBWMC-UHFFFAOYSA-N 2-methylpropan-1-olate;zirconium(4+) Chemical compound [Zr+4].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-] YMJMHACKPJBWMC-UHFFFAOYSA-N 0.000 description 1
- BGGIUGXMWNKMCP-UHFFFAOYSA-N 2-methylpropan-2-olate;zirconium(4+) Chemical compound CC(C)(C)O[Zr](OC(C)(C)C)(OC(C)(C)C)OC(C)(C)C BGGIUGXMWNKMCP-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- DUFCMRCMPHIFTR-UHFFFAOYSA-N 5-(dimethylsulfamoyl)-2-methylfuran-3-carboxylic acid Chemical compound CN(C)S(=O)(=O)C1=CC(C(O)=O)=C(C)O1 DUFCMRCMPHIFTR-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- SSXMKVQKDYEHJP-UHFFFAOYSA-N C(CCC)OCCO.C=C Chemical compound C(CCC)OCCO.C=C SSXMKVQKDYEHJP-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- 229910020731 Li0.35La0.55TiO3 Inorganic materials 0.000 description 1
- 229910009274 Li1.4Al0.4Ti1.6 (PO4)3 Inorganic materials 0.000 description 1
- 229910009331 Li2S-SiS2-P2S5 Inorganic materials 0.000 description 1
- 229910007298 Li2S—SiS2—P2S5 Inorganic materials 0.000 description 1
- 229910012291 Li3.4V0.6Si0.4O4 Inorganic materials 0.000 description 1
- 229910011792 Li4GeO4—Li3VO4 Inorganic materials 0.000 description 1
- 229910011786 Li4GeO4—Zn2GeO2 Inorganic materials 0.000 description 1
- 229910012053 Li4SiO4-Li3VO4 Inorganic materials 0.000 description 1
- 229910012072 Li4SiO4—Li3VO4 Inorganic materials 0.000 description 1
- 229910012063 Li4SiO4—Li4ZrO4 Inorganic materials 0.000 description 1
- 229910011871 Li4SiO4—LiMoO4 Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910012653 LiNi0.5Co0.2Mn0.3 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- WRQNANDWMGAFTP-UHFFFAOYSA-N Methylacetoacetic acid Chemical compound COC(=O)CC(C)=O WRQNANDWMGAFTP-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- 239000002228 NASICON Substances 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 244000191761 Sida cordifolia Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- PFMCHTGBGDXTGF-UHFFFAOYSA-N [Ge].ClOCl Chemical compound [Ge].ClOCl PFMCHTGBGDXTGF-UHFFFAOYSA-N 0.000 description 1
- RJEIKIOYHOOKDL-UHFFFAOYSA-N [Li].[La] Chemical compound [Li].[La] RJEIKIOYHOOKDL-UHFFFAOYSA-N 0.000 description 1
- QQNFLTWZARVMMZ-UHFFFAOYSA-N [Nb].CC(=O)CC(C)=O Chemical class [Nb].CC(=O)CC(C)=O QQNFLTWZARVMMZ-UHFFFAOYSA-N 0.000 description 1
- XITGHTRVSNMXOD-UHFFFAOYSA-N [Nb].ClOCl Chemical compound [Nb].ClOCl XITGHTRVSNMXOD-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 229910000379 antimony sulfate Inorganic materials 0.000 description 1
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 1
- GUNJVIDCYZYFGV-UHFFFAOYSA-K antimony trifluoride Chemical compound F[Sb](F)F GUNJVIDCYZYFGV-UHFFFAOYSA-K 0.000 description 1
- RPJGYLSSECYURW-UHFFFAOYSA-K antimony(3+);tribromide Chemical compound Br[Sb](Br)Br RPJGYLSSECYURW-UHFFFAOYSA-K 0.000 description 1
- MVMLTMBYNXHXFI-UHFFFAOYSA-H antimony(3+);trisulfate Chemical compound [Sb+3].[Sb+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O MVMLTMBYNXHXFI-UHFFFAOYSA-H 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229940063013 borate ion Drugs 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- NYPANIKZEAZXAE-UHFFFAOYSA-N butan-1-olate;lanthanum(3+) Chemical compound [La+3].CCCC[O-].CCCC[O-].CCCC[O-] NYPANIKZEAZXAE-UHFFFAOYSA-N 0.000 description 1
- MYWGVEGHKGKUMM-UHFFFAOYSA-N carbonic acid;ethene Chemical compound C=C.C=C.OC(O)=O MYWGVEGHKGKUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229940005989 chlorate ion Drugs 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-M chlorite Chemical compound [O-]Cl=O QBWCMBCROVPCKQ-UHFFFAOYSA-M 0.000 description 1
- 229940005993 chlorite ion Drugs 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- ZNRKKSGNBIJSRT-UHFFFAOYSA-L dibromotantalum Chemical compound Br[Ta]Br ZNRKKSGNBIJSRT-UHFFFAOYSA-L 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- MHIBEGOZTWERHF-UHFFFAOYSA-N heptane-1,1-diol Chemical compound CCCCCCC(O)O MHIBEGOZTWERHF-UHFFFAOYSA-N 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- NGKVPZRZXGXWHD-UHFFFAOYSA-N lanthanum(3+) 2-methylpropan-1-olate Chemical compound [La+3].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-] NGKVPZRZXGXWHD-UHFFFAOYSA-N 0.000 description 1
- ILPVRBLJWLAMPB-UHFFFAOYSA-N lanthanum(3+) propan-1-olate Chemical compound [La+3].CCC[O-].CCC[O-].CCC[O-] ILPVRBLJWLAMPB-UHFFFAOYSA-N 0.000 description 1
- SORGMJIXNUWMMR-UHFFFAOYSA-N lanthanum(3+);propan-2-olate Chemical compound [La+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SORGMJIXNUWMMR-UHFFFAOYSA-N 0.000 description 1
- JLRJWBUSTKIQQH-UHFFFAOYSA-K lanthanum(3+);triacetate Chemical compound [La+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JLRJWBUSTKIQQH-UHFFFAOYSA-K 0.000 description 1
- VQEHIYWBGOJJDM-UHFFFAOYSA-H lanthanum(3+);trisulfate Chemical compound [La+3].[La+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VQEHIYWBGOJJDM-UHFFFAOYSA-H 0.000 description 1
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- JTEOOCAGEXVCBQ-BJILWQEISA-M lithium;(e)-4-oxopent-2-en-2-olate Chemical compound [Li+].C\C([O-])=C/C(C)=O JTEOOCAGEXVCBQ-BJILWQEISA-M 0.000 description 1
- WBIUOUBFNXEKBA-UHFFFAOYSA-N lithium;2-methylpropan-1-olate Chemical compound [Li]OCC(C)C WBIUOUBFNXEKBA-UHFFFAOYSA-N 0.000 description 1
- LZWQNOHZMQIFBX-UHFFFAOYSA-N lithium;2-methylpropan-2-olate Chemical group [Li+].CC(C)(C)[O-] LZWQNOHZMQIFBX-UHFFFAOYSA-N 0.000 description 1
- LTRVAZKHJRYLRJ-UHFFFAOYSA-N lithium;butan-1-olate Chemical compound [Li+].CCCC[O-] LTRVAZKHJRYLRJ-UHFFFAOYSA-N 0.000 description 1
- AZVCGYPLLBEUNV-UHFFFAOYSA-N lithium;ethanolate Chemical compound [Li+].CC[O-] AZVCGYPLLBEUNV-UHFFFAOYSA-N 0.000 description 1
- MXIRPJHGXWFUAE-UHFFFAOYSA-N lithium;propan-1-olate Chemical compound [Li+].CCC[O-] MXIRPJHGXWFUAE-UHFFFAOYSA-N 0.000 description 1
- HAUKUGBTJXWQMF-UHFFFAOYSA-N lithium;propan-2-olate Chemical compound [Li+].CC(C)[O-] HAUKUGBTJXWQMF-UHFFFAOYSA-N 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- XNHGKSMNCCTMFO-UHFFFAOYSA-D niobium(5+);oxalate Chemical compound [Nb+5].[Nb+5].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O XNHGKSMNCCTMFO-UHFFFAOYSA-D 0.000 description 1
- CGAFRZVAXRQUEI-UHFFFAOYSA-N niobium(5+);propan-1-olate Chemical compound [Nb+5].CCC[O-].CCC[O-].CCC[O-].CCC[O-].CCC[O-] CGAFRZVAXRQUEI-UHFFFAOYSA-N 0.000 description 1
- LZRGWUCHXWALGY-UHFFFAOYSA-N niobium(5+);propan-2-olate Chemical compound [Nb+5].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] LZRGWUCHXWALGY-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229940005654 nitrite ion Drugs 0.000 description 1
- 229940078552 o-xylene Drugs 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- LYTNHSCLZRMKON-UHFFFAOYSA-L oxygen(2-);zirconium(4+);diacetate Chemical compound [O-2].[Zr+4].CC([O-])=O.CC([O-])=O LYTNHSCLZRMKON-UHFFFAOYSA-L 0.000 description 1
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 1
- BZXLPZMNHQWSNR-UHFFFAOYSA-N propan-2-olate;tantalum(5+) Chemical compound [Ta+5].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] BZXLPZMNHQWSNR-UHFFFAOYSA-N 0.000 description 1
- ZGSOBQAJAUGRBK-UHFFFAOYSA-N propan-2-olate;zirconium(4+) Chemical compound [Zr+4].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] ZGSOBQAJAUGRBK-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002203 sulfidic glass Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- PKLMYPSYVKAPOX-UHFFFAOYSA-N tetra(propan-2-yloxy)germane Chemical compound CC(C)O[Ge](OC(C)C)(OC(C)C)OC(C)C PKLMYPSYVKAPOX-UHFFFAOYSA-N 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- GXMNGLIMQIPFEB-UHFFFAOYSA-N tetraethoxygermane Chemical compound CCO[Ge](OCC)(OCC)OCC GXMNGLIMQIPFEB-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- CENHPXAQKISCGD-UHFFFAOYSA-N trioxathietane 4,4-dioxide Chemical compound O=S1(=O)OOO1 CENHPXAQKISCGD-UHFFFAOYSA-N 0.000 description 1
- HYPTXUAFIRUIRD-UHFFFAOYSA-N tripropan-2-yl stiborite Chemical compound [Sb+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] HYPTXUAFIRUIRD-UHFFFAOYSA-N 0.000 description 1
- MOOXOWAGPRNWEG-UHFFFAOYSA-N tris(2-methylpropyl) stiborite Chemical compound CC(C)CO[Sb](OCC(C)C)OCC(C)C MOOXOWAGPRNWEG-UHFFFAOYSA-N 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G30/00—Compounds of antimony
- C01G30/02—Antimonates; Antimonites
- C01G30/026—Antimonates; Antimonites containing at least two metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G30/00—Compounds of antimony
- C01G30/002—Compounds containing antimony, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G33/00—Compounds of niobium
- C01G33/006—Compounds containing niobium, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G35/00—Compounds of tantalum
- C01G35/006—Compounds containing tantalum, with or without oxygen or hydrogen, and containing two or more other elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0407—Methods of deposition of the material by coating on an electrolyte layer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0085—Immobilising or gelification of electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Conductive Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
【課題】バルクのリチウムイオン伝導率に優れるとともに、十分に低い焼成温度で、粒界抵抗が十分に低い固体電解質の成形体を得ることが可能な固体電解質を提供すること、バルクのリチウムイオン伝導率に優れるとともに、十分に低い焼成温度で、粒界抵抗が十分に低い固体電解質の成形体を得ることが可能な固体電解質の製造方法を提供すること、また、活物質と固体電解質との間での粒界抵抗が十分に低い複合体を提供すること。【解決手段】本発明の固体電解質は、下記組成式(1)で示されることを特徴とする。Li7-yLa3(Zr2-x-yGexMy)O12・・・(1)(式(1)中、x、yは、0.00<x≦0.40、0.00<y≦1.50を満たし、Mは、Sbであるか、または、Sbに加えてNbおよびTaのうちの少なくとも1種の元素である。)【選択図】なし
Description
本発明は、固体電解質、固体電解質の製造方法および複合体に関する。
携帯型情報機器をはじめとする多くの電気機器の電源として、リチウム電池(一次電池および二次電池を含む)が利用されている。中でも、高エネルギー密度と安全性を両立したリチウム電池として、正・負極間のリチウムの伝導に固体電解質を用いた全固体型リチウム電池が提案されている(例えば、特許文献1参照)。
固体電解質は、有機電解液を用いることなくリチウムイオンを伝導することができ、電解液漏れや駆動発熱による電解液の揮発等が生じないため、安全性が高い材料として注目されている。
このような全固体型リチウム電池に用いられる固体電解質として、リチウムイオン伝導性が高く、絶縁性に優れ、また化学的安定性の高い酸化物系の固体電解質が広く知られている。このような酸化物として、ジルコン酸ランタンリチウム系の材料が特筆すべき高いリチウムイオン伝導率を有しており、電池への適用が期待されている。
このような固体電解質が粒子状をなす固体電解質粒子である場合、圧縮成形することにより所望の形状に合わせて成形されることが多い。しかし、固体電解質粒子は、非常に硬いため、得られる成形品では固体電解質粒子同士の接触が不十分で粒界抵抗が高くなり、リチウムイオン伝導度が低くなりやすい。
粒界抵抗を低減させる方法として、固体電解質粒子を圧縮成形した後に、1000℃以上の高温で焼結することで、粒子同士を溶着させる方法が知られている。しかし、このような方法では、高熱により組成が変化しやすく、所望の物性を有する固体電解質の成形体を製造することが困難である。
そこで、ジルコン酸ランタンリチウムにおいて一部の元素を置換することで、低温での焼結に適した材料とする試みがある。
しかしながら、十分に低い焼成温度で、粒界抵抗が十分に低い固体電解質の成形体を得ることが可能な固体電解質は得られていない。
本発明は、上述の課題を解決するためになされたものであり、以下の適用例として実現することができる。
本発明の適用例に係る固体電解質は、下記組成式(1)で示される。
Li7-yLa3(Zr2-x-yGexMy)O12・・・(1)
(式(1)中、x、yは、0.00<x≦0.40、0.00<y≦1.50を満たし、Mは、Sbであるか、または、Sbに加えてNbおよびTaのうちの少なくとも1種の元素である。)
Li7-yLa3(Zr2-x-yGexMy)O12・・・(1)
(式(1)中、x、yは、0.00<x≦0.40、0.00<y≦1.50を満たし、Mは、Sbであるか、または、Sbに加えてNbおよびTaのうちの少なくとも1種の元素である。)
また、本発明の適用例に係る固体電解質の製造方法は、下記組成式(1)に含まれる金属元素を含む複数種の原材料を混合して、混合物を得る混合工程と、
前記混合物に第1の加熱処理を施して仮焼成体とする第1の加熱工程と、
前記仮焼成体に第2の加熱処理を施して、下記組成式(1)で示される結晶質の固体電解質を形成する第2の加熱工程と、を備える。
Li7-yLa3(Zr2-x-yGexMy)O12・・・(1)
(式(1)中、x、yは、0.00<x≦0.40、0.00<y≦1.50を満たし、Mは、Sbであるか、または、Sbに加えてNbおよびTaのうちの少なくとも1種の元素である。)
前記混合物に第1の加熱処理を施して仮焼成体とする第1の加熱工程と、
前記仮焼成体に第2の加熱処理を施して、下記組成式(1)で示される結晶質の固体電解質を形成する第2の加熱工程と、を備える。
Li7-yLa3(Zr2-x-yGexMy)O12・・・(1)
(式(1)中、x、yは、0.00<x≦0.40、0.00<y≦1.50を満たし、Mは、Sbであるか、または、Sbに加えてNbおよびTaのうちの少なくとも1種の元素である。)
また、本発明の適用例に係る複合体は、活物質と、
前記活物質の表面の一部を被覆する本発明に係る固体電解質とを備える。
前記活物質の表面の一部を被覆する本発明に係る固体電解質とを備える。
以下、本発明の好適な実施形態について詳細に説明する。
[1]固体電解質
まず、本発明の固体電解質について説明する。
本発明の固体電解質は、下記組成式(1)で示されることを特徴とする。
[1]固体電解質
まず、本発明の固体電解質について説明する。
本発明の固体電解質は、下記組成式(1)で示されることを特徴とする。
Li7-yLa3(Zr2-x-yGexMy)O12・・・(1)
(式(1)中、x、yは、0.00<x≦0.40、0.00<y≦1.50を満たし、Mは、Sbであるか、または、Sbに加えてNbおよびTaのうちの少なくとも1種の元素である。)
(式(1)中、x、yは、0.00<x≦0.40、0.00<y≦1.50を満たし、Mは、Sbであるか、または、Sbに加えてNbおよびTaのうちの少なくとも1種の元素である。)
このような条件を満足することにより、バルクのリチウムイオン伝導率に優れるとともに、十分に低い焼成温度で、粒界抵抗が十分に低い固体電解質の成形体を得ることが可能な固体電解質を提供することができる。また、従来の固体電解質では、例えば、固体電解質を、コバルト酸リチウム等の活物質と共焼成した際に、各々の元素が相互拡散を起こし、リチウムイオン伝導度が低くなるという問題点があったが、本発明の固体電解質では、コバルト酸リチウム等の活物質と共焼成した場合でも、各々の元素が相互拡散を起こし、リチウムイオン伝導度が低くなるという問題の発生を効果的に抑制することができる。
これに対し、上記のような条件を満たさないと、上記のような優れた効果が得られない。
例えば、固体電解質がGeを含まないものであると、バルクのリチウムイオン伝導率を十分に優れたものとすることが困難になるとともに、十分に低い焼成温度で、粒界抵抗が十分に低い固体電解質の成形体を得ることが困難となる。
また、固体電解質が上記Mを含まないものであると、バルクのリチウムイオン伝導率を十分に優れたものとすることが困難になるとともに、十分に低い焼成温度で、粒界抵抗が十分に低い固体電解質の成形体を得ることが困難となる。
また、本発明において、上記Mは少なくともSbを含むものであり、固体電解質がNbおよびTaのうち少なくとも一方を含んでいたとしてもSbを含んでいないと、σ特性が劣り、バルクのリチウムイオン伝導率を十分に優れたものとすることが困難になる。
また、固体電解質がGeおよび上記Mを含むジルコン酸ランタンリチウム系の材料であっても、固体電解質中におけるGeの含有率が高すぎる、言い換えると、上記xの値が大きすぎると、バルクのリチウムイオン伝導率を十分に優れたものとすることが困難になるとともに、十分に低い焼成温度で、粒界抵抗が十分に低い固体電解質の成形体を得ることが困難となる。
また、固体電解質がGeおよび上記Mを含むジルコン酸ランタンリチウム系の材料であっても、固体電解質中における上記Mの含有率が高すぎる、言い換えると、上記yの値が大きすぎると、バルクのリチウムイオン伝導率を十分に優れたものとすることが困難になるとともに、十分に低い焼成温度で、粒界抵抗が十分に低い固体電解質の成形体を得ることが困難となる。
上記のように、上記組成式(1)において、xは、0.00<x≦0.40の条件を満たしていればよいが、0.03≦x≦0.35の条件を満たすのが好ましく、0.05≦x≦0.30の条件を満たすのがより好ましく、0.10≦x≦0.25の条件を満たすのがさらに好ましい。
これにより、前述した効果がより顕著に発揮される。
これにより、前述した効果がより顕著に発揮される。
上記のように、上記組成式(1)において、yは、0.00<y≦1.50の条件を満たしていればよいが、0.10≦y≦1.20の条件を満たすのが好ましく、0.20≦y≦1.00の条件を満たすのがより好ましく、0.25≦y≦0.80の条件を満たすのがさらに好ましい。
これにより、前述した効果がより顕著に発揮される。
これにより、前述した効果がより顕著に発揮される。
固体電解質中において、Liは、主に、基本骨格であるガーネット型リチウムイオン導電体Li7La3Zr2O12においてCサイト、および格子間位置に存在し、リチウムイオン導電性に寄与する。
固体電解質中において、Laは、主に、基本骨格であるガーネット型リチウムイオン導電体Li7La3Zr2O12を構成し、La3+としてAサイトを占める。
固体電解質中において、Zrは、主に、基本骨格であるガーネット型リチウムイオン導電体Li7La3Zr2O12を構成し、Zr4+としてBサイトを占める。
固体電解質中において、Geは、主に、含まない場合と比較して正方晶-立方晶転移温度および融点を低温化させる機能を発揮する。
固体電解質中において、上記Mは、主に、含まない場合と比較して正方晶-立方晶転移温度および融点が低温化し、これらMの酸化物が高誘電率であることで高Li導電性を付与するという機能を発揮する。
特に、上記Mは、Sb、Nb、Taのうち、Sbを必須成分として含んでいる。
これにより、バルクのリチウムイオン伝導率を特に優れたものとすることができるとともに、正方晶-立方晶転移温度および融点が低温化し、Sbの酸化物が高誘電率であることで高Li導電性を付与するという効果が得られる。
これにより、バルクのリチウムイオン伝導率を特に優れたものとすることができるとともに、正方晶-立方晶転移温度および融点が低温化し、Sbの酸化物が高誘電率であることで高Li導電性を付与するという効果が得られる。
また、上記MがSbとともに少なくともNbを含んでいると、含まない場合と比較して正方晶-立方晶転移温度および融点が低温化し、Nbの酸化物が高誘電率であることで高Li導電性を付与するという効果が得られる。
また、上記MがSbとともに少なくともTaを含んでいると、含まない場合と比較して正方晶-立方晶転移温度および融点が低温化し、Taの酸化物が高誘電率であることで高Li導電性を付与し、また、Taの酸化物が難結晶化であることから粒界の発生がより効果的に抑制されやすい。
また、上記MがSbとともに少なくともTaを含んでいると、Geは結晶バルク中に多く存在し、SbとTaは粒界部に多く存在する。特に、Taの酸化物が難結晶化であることからTaが粒界に多く存在することで粒界の非晶質化を引き起こし、粒界が無い状態となり、リチウムのデンドライト生成をより効果的に抑制する。
M全体に占めるSbの割合は、20原子%以上100原子%以下であるのが好ましく、40原子%以上100原子%以下であるのがより好ましく、50原子%以上100原子%以下であるのがさらに好ましい。
これにより、正方晶-立方晶転移温度および融点が低温化し、Sbの酸化物が高誘電率であることで高Li導電性を付与するという効果がより顕著に得られる。
上記MがSbとともに少なくともNbを含んでいる場合、M全体に占めるNbの割合は、2原子%以上80原子%以下であるのが好ましく、5原子%以上60原子%以下であるのがより好ましく、10原子%以上50原子%以下であるのがさらに好ましい。
これにより、正方晶-立方晶転移温度および融点が低温化し、Nbの酸化物が高誘電率であることで高Li導電性を付与するという効果がより顕著に得られる。
上記MがSbとともに少なくともTaを含んでいる場合、M全体に占めるTaの割合は、2原子%以上80原子%以下であるのが好ましく、5原子%以上60原子%以下であるのがより好ましく、10原子%以上50原子%以下であるのがさらに好ましい。
これにより、正方晶-立方晶転移温度および融点が低温化し、Taの酸化物が高誘電率であることで高Li導電性を付与し、また、Taの酸化物が難結晶化であることから粒界の発生がより効果的に抑制されやすい。
なお、本発明の固体電解質は、上記組成式(1)を構成する元素に加えて、他の元素、すなわち、Li、La、Zr、Ge、Sb、Nb、TaおよびO以外の元素を、微量であれば含んでいてもよい。当該他の元素は、1種であっても2種以上であってもよい。
本発明の固体電解質中に含まれる前記他の元素の含有率は、100ppm以下であるのが好ましく、50ppm以下であるのがより好ましい。
前記他の元素として2種以上の元素を含む場合には、これらの元素の含有率の和を前記他の元素の含有率として採用するものとする。
本発明の固体電解質の結晶相は、通常、立方晶ガーネット型結晶である。
本発明の固体電解質は、例えば、単独で用いられるものであってもよいし、他の成分と組み合わせて用いられるものであってもよい。より具体的には、本発明の固体電解質は、例えば、それ単独で、電池において、後述するような固体電解質層を構成するものとして用いられるものであってもよいし、他の固体電解質と混合状態で固体電解質層を構成するものであってもよい。また、例えば、本発明の固体電解質は、正極活物質と混合状態で正極層を構成するものであってもよいし、負極活物質と混合状態で負極層を構成するものであってもよい。
本発明の固体電解質は、例えば、単独で用いられるものであってもよいし、他の成分と組み合わせて用いられるものであってもよい。より具体的には、本発明の固体電解質は、例えば、それ単独で、電池において、後述するような固体電解質層を構成するものとして用いられるものであってもよいし、他の固体電解質と混合状態で固体電解質層を構成するものであってもよい。また、例えば、本発明の固体電解質は、正極活物質と混合状態で正極層を構成するものであってもよいし、負極活物質と混合状態で負極層を構成するものであってもよい。
[2]固体電解質の製造方法
次に、本発明の固体電解質の製造方法について説明する。
次に、本発明の固体電解質の製造方法について説明する。
本発明の固体電解質の製造方法は、上記組成式(1)に含まれる金属元素を含む複数種の原材料を混合して、混合物を得る混合工程と、前記混合物に第1の加熱処理を施して仮焼成体とする第1の加熱工程と、前記仮焼成体に第2の加熱処理を施して、上記組成式(1)で示される結晶質の固体電解質を形成する第2の加熱工程と、を備えることを特徴とする。
これにより、バルクのリチウムイオン伝導率に優れるとともに、十分に低い焼成温度で、粒界抵抗が十分に低い固体電解質の成形体を得ることが可能な固体電解質の製造方法を提供することができる。また、従来の固体電解質では、例えば、固体電解質を、コバルト酸リチウム等の活物質と共焼成した際に、各々の元素が相互拡散を起こし、リチウムイオン伝導度が低くなるという問題点があったが、本発明の固体電解質の製造方法では、コバルト酸リチウム等の活物質と共焼成に適用した場合でも、各々の元素が相互拡散を起こし、リチウムイオン伝導度が低くなるという問題の発生を効果的に抑制することができる。
[2-1]混合工程
混合工程では、上記組成式(1)に含まれる金属元素を含む複数種の原材料を混合して、混合物を得る。
混合工程では、上記組成式(1)に含まれる金属元素を含む複数種の原材料を混合して、混合物を得る。
本工程では、複数種の原材料を混合して得られる混合物全体として、上記組成式(1)に含まれる金属元素のうち2種以上の金属元素を含んでいればよい。
また、本工程で用いる複数種の原材料のうち少なくとも1種は、金属イオンとともに、オキソアニオンを含むオキソ酸化合物であってもよい。
これにより、比較的低温でかつ比較的短時間での熱処理により、所望の特性を有する固体電解質を安定的に形成することができる。より具体的には、本工程でオキソ酸化合物を用いることにより、後の工程で、仮焼成体を、最終的に得られる固体電解質とは異なる酸化物とオキソ酸化合物とを含むものとして得ることができる。その結果、前記酸化物の融点を低下させ、比較的低温、比較的短時間の熱処理である焼成処理で結晶成長を促進しつつ、被着物との密着界面を形成することができる。
オキソ酸化合物を構成するオキソアニオンは、金属元素を含まないものであり、例えば、ハロゲンオキソ酸;ホウ酸イオン;炭酸イオン;オルト炭酸イオン;カルボン酸イオン;ケイ酸イオン;亜硝酸イオン;硝酸イオン;亜リン酸イオン;リン酸イオン;ヒ酸イオン;亜硫酸イオン;硫酸イオン;スルホン酸イオン;スルフィン酸イオン等が挙げられる。ハロゲンオキソ酸としては、例えば、次亜塩素酸イオン、亜塩素酸イオン、塩素酸イオン、過塩素酸イオン、次亜臭素酸イオン、亜臭素酸イオン、臭素酸イオン、過臭素酸イオン、次亜ヨウ素酸イオン、亜ヨウ素酸イオン、ヨウ素酸イオン、過ヨウ素酸イオン等が挙げられる。中でも、オキソ酸化合物は、オキソアニオンとして、硝酸イオン、硫酸イオンのうちの少なくとも一方を含んでいるのが好ましく、硝酸イオンを含んでいるのがより好ましい。
これにより、後に詳述する第1の加熱工程で得られる仮焼成体中に含まれる金属酸化物の融点をより好適に降下させ、リチウム含有複酸化物の結晶成長をより効果的に促進することができる。その結果、後に詳述する第2の加熱工程を、より低温、より短時間とした場合であっても、イオン伝導性が特に優れた固体電解質を好適に得ることができる。以下の説明では、第1の加熱工程で得られる仮焼成体中に含まれる金属酸化物のことを、「前駆酸化物」ともいう。
金属元素を含む原材料としては、例えば、単体金属や合金を用いてもよいし、分子内に含まれる金属元素が1種のみである化合物を用いてもよいし、分子内に複数種の金属元素を含む化合物を用いてもよい。
Liを含む原料であるリチウム化合物としては、例えば、リチウム金属塩、リチウムアルコキシド等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。リチウム金属塩としては、例えば、塩化リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、水酸化リチウム、炭酸リチウム、(2,4-ペンタンジオナト)リチウム等が挙げられる。また、リチウムアルコキシドとしては、例えば、リチウムメトキシド、リチウムエトキシド、リチウムプロポキシド、リチウムイソプロポキシド、リチウムブトキシド、リチウムイソブトキシド、リチウムセカンダリーブトキシド、リチウムターシャリーブトキシド、ジピバロイルメタナトリチウム等が挙げられる。中でも、リチウム化合物としては、硝酸リチウム、硫酸リチウムおよび(2,4-ペンタンジオナト)リチウムよりなる群から選択される1種または2種以上であるのが好ましい。Liを含む原料としては、水和物を用いてもよい。
Laを含む原料であるランタン化合物としては、例えば、ランタン金属塩、ランタンアルコキシド、水酸化ランタン等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。ランタン金属塩としては、例えば、塩化ランタン、硝酸ランタン、硫酸ランタン、酢酸ランタン、トリス(2,4-ペンタンジオナト)ランタン等が挙げられる。ランタンアルコキシドとしては、例えば、ランタントリメトキシド、ランタントリエトキシド、ランタントリプロポキシド、ランタントリイソプロポキシド、ランタントリブトキシド、ランタントリイソブトキシド、ランタントリセカンダリーブトキシド、ランタントリターシャリーブトキシド、ジピバロイルメタナトランタン等が挙げられる。中でも、ランタン化合物としては、硝酸ランタン、トリス(2,4-ペンタンジオナト)ランタンおよび水酸化ランタンよりなる群から選択される少なくとも1種であるのが好ましい。Laを含む原料としては、水和物を用いてもよい。
Zrを含む原料であるジルコニウム化合物としては、例えば、ジルコニウム金属塩、ジルコニウムアルコキシド等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。ジルコニウム金属塩としては、例えば、塩化ジルコニウム、オキシ塩化ジルコニウム、オキシ硝酸ジルコニウム、オキシ硫酸ジルコニウム、オキシ酢酸ジルコニウム、酢酸ジルコニウム等が挙げられる。また、ジルコニウムアルコキシドとしては、例えば、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラプロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラノルマルブトキシド、ジルコニウムテトライソブトキシド、ジルコニウムテトラセカンダリーブトキシド、ジルコニウムテトラターシャリーブトキシド、ジピバロイルメタナトジルコニウム等が挙げられる。中でも、ジルコニウム化合物としては、ジルコニウムテトラノルマルブトキシドが好ましい。Zrを含む原料としては、水和物を用いてもよい。
Geを含む原料であるゲルマニウム化合物としては、例えば、ゲルマニウム金属塩、ゲルマニウムアルコキシド等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。ゲルマニウム金属塩としては、例えば、塩化ゲルマニウム、オキシ塩化ゲルマニウム等が挙げられる。また、ゲルマニウムアルコキシドとしては、例えば、ゲルマニウムテトラエトキシド等のゲルマニウムエトキシド、ゲルマニウムイソプロポキシド等が挙げられる。中でも、ゲルマニウム化合物としては、ゲルマニウムテトラエトキシドが好ましい。Geを含む原料としては、水和物を用いてもよい。
Sbを含む原料であるアンチモン化合物としては、例えば、アンチモン金属塩、アンチモンアルコキシド等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。アンチモン金属塩としては、例えば、臭化アンチモン、塩化アンチモン、フッ化アンチモン、硫酸アンチモン等が挙げられる。また、アンチモンアルコキシドとしては、例えば、アンチモントリメトキシド、アンチモントリエトキシド、アンチモントリイソプロポキシド、アンチモントリノルマルプロポキシド、アンチモントリイソブトキシド、アンチモントリノルマルブトキシド等が挙げられる。中でも、アンチモン化合物としては、アンチモントリイソブトキシド、アンチモントリノルマルブトキシドが好ましい。Sbを含む原料としては、水和物を用いてもよい。
Nbを含む原料であるニオブ化合物としては、例えば、ニオブ金属塩、ニオブアルコキシド、ニオブアセチルアセトン等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。ニオブ金属塩としては、例えば、塩化ニオブ、オキシ塩化ニオブ、蓚酸ニオブ等が挙げられる。また、ニオブアルコキシドとしては、例えば、ニオブペンタエトキシド等のニオブエトキシド、ニオブプロポキシド、ニオブイソプロポキシド、ニオブセカンダリーブトキシド等が挙げられる。中でも、ニオブ化合物としては、ニオブペンタエトキシドが好ましい。Nbを含む原料としては、水和物を用いてもよい。
Taを含む原料であるタンタル化合物としては、例えば、タンタル金属塩、タンタルアルコキシド等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。タンタル金属塩としては、例えば、塩化タンタル、臭化タンタル等が挙げられる。また、タンタルアルコキシドとしては、例えば、タンタルペンタメトキシド、タンタルペンタエトキシド、タンタルペンタイソプロポキシド、タンタルペンタノルマルプロポキシド、タンタルペンタイソブトキシド、タンタルペンタノルマルブトキシド、タンタルペンタセカンダリーブトキシド、タンタルペンタターシャリーブトキシド等が挙げられる。中でも、タンタル化合物としては、タンタルペンタエトキシドが好ましい。Taを含む原料としては、水和物を用いてもよい。
前記混合物の調製には、溶媒を用いてもよい。
これにより、上記組成式(1)に含まれる金属元素を含む複数種の原材料をより好適に混合することができる。
これにより、上記組成式(1)に含まれる金属元素を含む複数種の原材料をより好適に混合することができる。
前記溶媒としては、特に限定されず、例えば、各種の有機溶媒を用いることができるが、より具体的には、例えば、アルコール類、グリコール類、ケトン類、エステル類、エーテル類、有機酸類、芳香族類、アミド類等が挙げられ、これらから選択される1種または2種以上の組み合わせである混合溶媒を用いることができる。アルコール類としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、アリルアルコール、2-n-ブトキシエタノール等が挙げられる。グリコール類としては、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、ジプロピレングリコール等が挙げられる。ケトン類としては、例えば、ジメチルケトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン等が挙げられる。エステル類としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、アセト酢酸メチル等が挙げられる。エーテル類としては、例えば、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル等が挙げられる。有機酸類としては、例えば、ギ酸、酢酸、2-エチル酪酸、プロピオン酸等が挙げられる。芳香族類としては、例えば、トルエン、o-キシレン、p-キシレン等が挙げられる。アミド類としては、例えば、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。中でも、溶媒としては、2-n-ブトキシエタノールおよびプロピオン酸のうちの少なくとも一方であるのが好ましい。
前記混合物の調製に溶媒を用いる場合、当該溶媒は、後に詳述する第1の加熱工程に先立って、その少なくとも一部が除去されてもよい。
第1の加熱工程に先立つ溶媒の除去は、例えば、前記混合物を加熱したり、減圧環境下においたり、常温常圧下におくことにより、行うことができる。溶媒の少なくとも一部を除去することにより、混合物を好適にゲル化させることができる。なお、本明細書において、常温常圧とは、25℃、1気圧のことを言う。
以下、溶媒の除去を加熱処理により行う場合、当該加熱処理を予備加熱処理ともいう。
予備加熱処理の条件は、溶媒の沸点や蒸気圧等によるが、予備加熱処理の加熱温度は、50℃以上250℃以下であるのが好ましく、60℃以上230℃以下であるのがより好ましく、80℃以上200℃以下であるのがさらに好ましい。予備加熱処理中において、加熱温度は変更してもよい。例えば、予備加熱処理は、比較的低温に保持して熱処理を行う第1の段階と、第1の段階後に昇温して比較的高温での熱処理を行う第2の段階とを有するものであってもよい。このような場合、予備加熱処理時における最高温度が前述した範囲に含まれているのが好ましい。
予備加熱処理の条件は、溶媒の沸点や蒸気圧等によるが、予備加熱処理の加熱温度は、50℃以上250℃以下であるのが好ましく、60℃以上230℃以下であるのがより好ましく、80℃以上200℃以下であるのがさらに好ましい。予備加熱処理中において、加熱温度は変更してもよい。例えば、予備加熱処理は、比較的低温に保持して熱処理を行う第1の段階と、第1の段階後に昇温して比較的高温での熱処理を行う第2の段階とを有するものであってもよい。このような場合、予備加熱処理時における最高温度が前述した範囲に含まれているのが好ましい。
また、予備加熱処理での加熱時間は、10分間以上180分間以下であるのが好ましく、20分間以上120分間以下であるのがより好ましく、30分間以上60分間以下であるのがさらに好ましい。
予備加熱処理は、いかなる雰囲気で行ってもよく、空気中や酸素ガス雰囲気中等の酸化性雰囲気中で行ってもよいし、窒素ガス、ヘリウムガス、アルゴンガス等の不活性ガス等の非酸化性雰囲気中で行ってもよい。また、予備加熱処理は、減圧または真空下、加圧下で行ってもよい。
また、予備加熱処理中において、雰囲気は、実質的に同一の条件に保持してもよいし、異なる条件に変更してもよい。例えば、予備加熱処理は、常圧環境下で熱処理を行う第1の段階と、第1の段階後に減圧環境下で熱処理を行う第2の段階とを有するものであってもよい。
[2-2]第1の加熱工程
第1の加熱工程では、混合工程で得られた混合物、例えば、ゲル化した混合物に、第1の加熱処理を施して仮焼成体とする。
第1の加熱工程では、混合工程で得られた混合物、例えば、ゲル化した混合物に、第1の加熱処理を施して仮焼成体とする。
特に、原材料の一部に、オキソ酸化合物を用いた場合、最終的に得られる固体電解質とは異なる酸化物である前駆酸化物と、オキソ酸化合物とを含む仮焼成体が得られる。
第1の加熱工程での加熱温度は、特に限定されないが、500℃以上650℃以下であるのが好ましく、510℃以上650℃以下であるのがより好ましく、520℃以上600℃以下であるのがさらに好ましい。
これにより、最終的に得られる固体電解質を構成すべき金属元素が不本意に気化すること、特に、金属材料の中では揮発しやすいLiが気化すること等をより効果的に防止することができ、最終的に得られる固体電解質の組成をより厳密に制御することができるとともに、固体電解質をより効率よく製造することができる。
第1の加熱工程中において、加熱温度は変更してもよい。例えば、第1の加熱工程は、比較的低温に保持して熱処理を行う第1の段階と、第1の段階後に昇温して比較的高温での熱処理を行う第2の段階とを有するものであってもよい。このような場合、第1の加熱工程における最高温度が前述した範囲に含まれているのが好ましい。
また、第1の加熱工程での加熱時間、特に、加熱温度が500℃以上650℃以下での加熱時間は、5分間以上180分間以下であるのが好ましく、10分間以上120分間以下であるのがより好ましく、15分間以上90分間以下であるのがさらに好ましい。
第1の加熱工程は、いかなる雰囲気で行ってもよく、空気中や酸素ガス雰囲気中等の酸化性雰囲気中で行ってもよいし、窒素ガス、ヘリウムガス、アルゴンガス等の不活性ガス等の非酸化性雰囲気中で行ってもよい。また、第1の加熱工程は、減圧または真空下、加圧下で行ってもよい。特に、第1の加熱工程は、酸化性雰囲気中で行うのが好ましい。
また、第1の加熱工程中において、雰囲気は、実質的に同一の条件に保持してもよいし、異なる条件に変更してもよい。例えば、第1の加熱工程は、不活性ガス雰囲気中で熱処理を行う第1の段階と、第1の段階後に酸化性雰囲気中で熱処理を行う第2の段階とを有するものであってもよい。
上記のようにして得られる仮焼成体は、通常、最終的に得られる固体電解質、すなわち、常温常圧において上記組成式(1)で示される固体電解質とは異なる結晶相を有する前駆酸化物を含んでいる。なお、本明細書において、結晶相について「異なる」とは、結晶相の型が同一でないことの他、型が同じでも少なくとも1つの格子定数が異なるもの等をも含む広い概念である。
前駆酸化物の結晶相としては、例えば、パイロクロア型結晶、ペロブスカイト構造、岩塩型構造、ダイヤモンド構造、蛍石型構造、スピネル型構造等の立方晶、ラムスデライト型等の斜方晶、コランダム型等の三方晶型等が挙げられるが、パイロクロア型結晶であるのが好ましい。
これにより、後述する第2の加熱工程での条件を、より低温、より短時間とした場合であっても、イオン伝導性が特に優れた固体電解質を好適に得ることができる。
前駆酸化物の結晶粒径は、特に限定されないが、10nm以上200nm以下であるのが好ましく、15nm以上180nm以下であるのがより好ましく、20nm以上160nm以下であるのがさらに好ましい。
これにより、表面エネルギーの増大に伴う融点降下現象である、いわゆる、Gibbs-Thomson効果によって、前駆酸化物の溶融温度や、第2の加熱工程での焼成温度をさらに低下させることができる。また、本発明の方法を用いて製造される固体電解質と、異種材料との接合を向上させたり、欠陥密度を低減したりするうえでも有利である。
前駆酸化物は、実質的に単独の結晶相で構成されているものであるのが好ましい。
前駆酸化物は、実質的に単独の結晶相で構成されているものであるのが好ましい。
これにより、本発明の方法を用いて固体電解質を製造する際、すなわち、高温結晶相が生成する際に経る結晶相遷移が実質的に1回になるため、結晶相転移にともなう元素の偏析や熱分解による夾雑結晶の生成が抑制され、製造される固体電解質の各種特性がさらに向上する。
なお、第1の加熱工程で得られる仮焼成体について、TG-DTAで昇温レート10℃/分で測定した際に、300℃以上1,000℃以下の範囲における発熱ピークが1つのみ観測される場合には、「実質的に単独の結晶相で構成されている」と判断することができる。
前駆酸化物の組成は、特に限定されないが、前駆酸化物は、複酸化物であるのが好ましい。特に、前駆酸化物は、LiおよびLaを含む複酸化物であるのが好ましい。
これにより、後述する第2の加熱工程での熱処理を、より低温、より短時間とした場合であっても、イオン伝導性が特に優れた固体電解質を好適に得ることができる。また、例えば、全固体二次電池において、形成される固体電解質の正極活物質や負極活物質に対する密着性をより優れたものとすることができ、より良好な密着界面をもつように合材化することができ、全固体二次電池の特性、信頼性をより優れたものとすることができる。
また、上記のようにして得られる仮焼成体は、通常、その製造過程で用いた溶媒のほとんどが除去されたものであるが、一部の溶媒が残存していてもよい。ただし、仮焼成体中における溶媒の含有率は、1.0質量%以下であるのが好ましく、0.1質量%以下であるのがより好ましい。
[2-3]第2の加熱工程
第2の加熱工程では、第1の加熱工程で得られた仮焼成体に第2の加熱処理を施して、上記組成式(1)で示される結晶質の固体電解質を形成する。
第2の加熱工程では、第1の加熱工程で得られた仮焼成体に第2の加熱処理を施して、上記組成式(1)で示される結晶質の固体電解質を形成する。
特に、第1の加熱工程で得られる仮焼成体がオキソ酸化合物を含むものであると、前駆酸化物の融点を好適に降下させ、リチウム含有複酸化物の結晶成長を促進することができ、比較的低温でかつ比較的短時間での熱処理により、所望の特性を有する固体電解質を安定的に形成することができる。また、形成される固体電解質と被着物との密着性を良好なものとすることができる。
なお、第2の加熱工程は、前述した仮焼成体に他の成分を混合した後に行ってもよい。
なお、第2の加熱工程は、前述した仮焼成体に他の成分を混合した後に行ってもよい。
例えば、仮焼成体とオキソ酸化合物との混合物に対して、第2の加熱工程を行ってもよい。
このような場合であっても、前述したのと同様の効果が得られる。
このような場合であっても、前述したのと同様の効果が得られる。
ここで、仮焼成体と混合することができるオキソ酸化合物の具体例としては、前述した混合物の原材料として例示した金属化合物に含まれるオキソ酸化合物等が挙げられる。
第2の加熱工程では、前述した仮焼成体を、正極活物質や負極活物質のような活物質と混合した状態で、加熱工程に供してもよい。
これにより、正極や負極のような電極を、活物質とともに固体電解質を含む状態で、好適に製造することができる。正極活物質、負極活物質については、後に詳述する。
第2の加熱工程に供される組成物は、全体として、固体電解質の構成元素として複数種の金属元素を含んでおり、通常、これらの含有率の比率が、目的とする固体電解質での組成、すなわち、上記組成式(1)での各金属元素の含有比率に対応している。
本工程に供される組成物がオキソ酸化合物を含むものである場合、当該組成物中におけるオキソ酸化合物の含有率は、特に限定されないが、0.1質量%以上20質量%以下であるのが好ましく、1.5質量%以上15質量%以下であるのがより好ましく、2.0質量%以上10質量%以下であるのがさらに好ましい。
これにより、最終的に得られる固体電解質中に、オキソ酸化合物が不本意に残存することをより確実に防止しつつ、第2の加熱工程での熱処理を、より低温、より短時間で好適に行うことができ、得られる固体電解質のイオン伝導性を特に優れたものとすることができる。
本工程に供される組成物中における前駆酸化物の含有率は、特に限定されないが、35質量%以上90質量%以下であるのが好ましく、45質量%以上85質量%以下であるのがより好ましい。
本工程に供される組成物中における前駆酸化物の含有率をXP[質量%]、本工程に供される組成物中におけるオキソ酸化合物の含有率をXO[質量%]としたとき、0.013≦XO/XP≦0.58の関係を満足するのが好ましく、0.023≦XO/XP≦0.34の関係を満足するのがより好ましく、0.03≦XO/XP≦0.19の関係を満足するのがさらに好ましい。
これにより、最終的に得られる固体電解質中に、オキソ酸化合物が不本意に残存することをより確実に防止しつつ、第2の加熱工程での熱処理を、より低温、より短時間で好適に行うことができ、得られる固体電解質のイオン伝導性を特に優れたものとすることができる。
第2の加熱工程での加熱温度は、特に限定されないが、通常は第1の加熱工程での加熱温度よりも高い温度であり、800℃以上1000℃以下であるのが好ましく、810℃以上980℃以下であるのがより好ましく、820℃以上950℃以下であるのがさらに好ましい。
これにより、比較的低温でかつ比較的短時間での熱処理により、所望の特性を有する固体電解質を安定的に形成することができる。また、比較的低温、比較的短時間の熱処理で固体電解質を製造することができるため、例えば、固体電解質や固体電解質を備える全固体電池の生産性をより優れたものとすることができるとともに、省エネルギーの観点からも好ましい。
第2の加熱工程中において、加熱温度は変更してもよい。例えば、第2の加熱工程は、比較的低温に保持して熱処理を行う第1の段階と、第1の段階後に昇温して比較的高温での熱処理を行う第2の段階とを有するものであってもよい。このような場合、第2の加熱工程における最高温度が前述した範囲に含まれているのが好ましい。
第2の加熱工程での加熱時間、特に、加熱温度が800℃以上1000℃以下での加熱時間は、特に限定されないが、5分間以上600分間以下であるのが好ましく、10分間以上540分間以下であるのがより好ましく、15分間以上500分間以下であるのがさらに好ましい。
これにより、比較的低温でかつ比較的短時間での熱処理により、所望の特性を有する固体電解質を安定的に形成することができる。また、比較的低温、比較的短時間の熱処理で固体電解質を製造することができるため、例えば、固体電解質や固体電解質を備える全固体電池の生産性をより優れたものとすることができるとともに、省エネルギーの観点からも好ましい。
第2の加熱工程は、いかなる雰囲気で行ってもよく、空気中や酸素ガス雰囲気中等の酸化性雰囲気中で行ってもよいし、窒素ガス、ヘリウムガス、アルゴンガス等の不活性ガス等の非酸化性雰囲気中で行ってもよい。また、加熱工程は、減圧または真空下、加圧下で行ってもよい。特に、第2の加熱工程は、酸化性雰囲気中で行うのが好ましい。
また、第2の加熱工程中において、雰囲気は、実質的に同一の条件に保持してもよいし、異なる条件に変更してもよい。
原材料としてオキソ酸化合物を用いた場合であっても、上記のようにして得られる固体電解質は、通常、オキソ酸化合物を実質的に含まないものである。より具体的には、得られる固体電解質中におけるオキソ酸化合物の含有率は、通常、100ppm以下であり、特に、50ppm以下であるのが好ましく、10ppm以下であるのがより好ましい。
これにより、固体電解質中における好ましくない不純物の含有率を抑制することができ、固体電解質の特性、信頼性をより優れたものとすることができる。
[3]複合体
次に、本発明の複合体について説明する。
次に、本発明の複合体について説明する。
本発明の複合体は、活物質と、前記活物質の表面の一部を被覆する本発明の固体電解質とを備える。
これにより、活物質と固体電解質との間での粒界抵抗が十分に低い複合体を提供することができる。このような複合体は、後述するような二次電池の正極合材や負極合材に好適に適用することができる。その結果、二次電池全体としての特性、信頼性を優れたものとすることができる。
本発明の複合体を構成する活物質としては、正極活物質、負極活物質が挙げられる。
正極活物質としては、例えば、少なくともLiを含み、V、Cr、Mn、Fe、Co、Ni、Cuからなる群より選択されるいずれか1種以上の元素により構成されるリチウムの複酸化物等を用いることができる。このような複酸化物としては、例えば、LiCoO2、LiNiO2、LiMn2O4、Li2Mn2O3、LiCr0.5Mn0.5O2、LiFePO4、Li2FeP2O7、LiMnPO4、LiFeBO3、Li3V2(PO4)3、Li2CuO2、Li2FeSiO4、Li2MnSiO4等が挙げられる。また、正極活物質としては、例えば、LiFeF3等のフッ化物、LiBH4やLi4BN3H10等のホウ素化物錯体化合物、ポリビニルピリジン-ヨウ素錯体等のヨウ素錯体化合物、硫黄等の非金属化合物等を用いることもできる。
正極活物質としては、例えば、少なくともLiを含み、V、Cr、Mn、Fe、Co、Ni、Cuからなる群より選択されるいずれか1種以上の元素により構成されるリチウムの複酸化物等を用いることができる。このような複酸化物としては、例えば、LiCoO2、LiNiO2、LiMn2O4、Li2Mn2O3、LiCr0.5Mn0.5O2、LiFePO4、Li2FeP2O7、LiMnPO4、LiFeBO3、Li3V2(PO4)3、Li2CuO2、Li2FeSiO4、Li2MnSiO4等が挙げられる。また、正極活物質としては、例えば、LiFeF3等のフッ化物、LiBH4やLi4BN3H10等のホウ素化物錯体化合物、ポリビニルピリジン-ヨウ素錯体等のヨウ素錯体化合物、硫黄等の非金属化合物等を用いることもできる。
また、負極活物質としては、例えば、Nb2O5、V2O5、TiO2、In2O3、ZnO、SnO2、NiO、ITO、AZO、GZO、ATO、FTO、Li4Ti5O12、Li2Ti3O7等のリチウムの複酸化物等が挙げられる。また、例えば、Li、Al、Si、Si-Mn、Si-Co、Si―Ni、Sn、Zn、Sb、Bi、In、Au等の金属および合金、炭素材料、LiC24、LiC6等のような炭素材料の層間にリチウムイオンが挿入された物質等が挙げられる。
本発明の複合体は、例えば、上記[2]で説明した固体電解質の製造方法を適用することにより、好適に製造することができる。より具体的には、例えば、前述した仮焼成体と活物質との混合物を焼成する、すなわち、前記混合物に第2の加熱処理を施すことにより、好適に製造することができる。
[4]二次電池
次に、本発明を適用した二次電池について説明する。
次に、本発明を適用した二次電池について説明する。
本発明に係る二次電池は、前述したような本発明に係る固体電解質を含むものであり、例えば、前述した本発明の固体電解質の製造方法を適用して製造することができる。
このような二次電池は、優れた充放電特性を有するものとなる。
このような二次電池は、優れた充放電特性を有するものとなる。
[4-1]第1実施形態の二次電池
以下、第1実施形態に係る二次電池について説明する。
図1は、第1実施形態の二次電池としてのリチウムイオン電池の構成を模式的に示す概略斜視図である。
以下、第1実施形態に係る二次電池について説明する。
図1は、第1実施形態の二次電池としてのリチウムイオン電池の構成を模式的に示す概略斜視図である。
図1に示すように、二次電池としてのリチウムイオン電池100は、正極10と、正極10に対して順に積層された固体電解質層20と、負極30とを有している。また、正極10の固体電解質層20に対向する面とは反対の面側に正極10に接する集電体41を有し、負極30の固体電解質層20に対向する面とは反対の面側に負極30に接する集電体42を有している。正極10、固体電解質層20、負極30は、いずれも固相で構成されていることから、リチウムイオン電池100は、充放電可能な全固体二次電池である。
リチウムイオン電池100の形状は、特に限定されず、例えば、多角形の盤状等であってもよいが、図示の構成では、円盤状である。リチウムイオン電池100の大きさは、特に限定されないが、例えば、リチウムイオン電池100の直径は、例えば、10mm以上20mm以下であり、リチウムイオン電池100の厚さは、例えば、0.1mm以上1.0mm以下である。
リチウムイオン電池100が、このように、小型、薄型であると、充放電可能であって全固体であることと相まって、スマートフォン等の携帯情報端末の電源として好適に用いることができる。なお、後述するように、リチウムイオン電池100は、携帯情報端末の電源以外の用途のものであってもよい。
以下、リチウムイオン電池100の各構成について説明する。
[4-1-1]固体電解質層
固体電解質層20は、前述した本発明の固体電解質を含む材料で構成されている。
これにより、当該固体電解質層20についてのリチウムイオン伝導率は優れたものとなる。また、正極10や負極30に対する固体電解質層20の密着性を優れたものとすることができる。以上のようなことから、リチウムイオン電池100全体としての特性、信頼性を特に優れたものとすることができる。
[4-1-1]固体電解質層
固体電解質層20は、前述した本発明の固体電解質を含む材料で構成されている。
これにより、当該固体電解質層20についてのリチウムイオン伝導率は優れたものとなる。また、正極10や負極30に対する固体電解質層20の密着性を優れたものとすることができる。以上のようなことから、リチウムイオン電池100全体としての特性、信頼性を特に優れたものとすることができる。
固体電解質層20は、前述した本発明の固体電解質以外の成分を含んでいてもよい。例えば、固体電解質層20は、前述した本発明の固体電解質とともに、他の固体電解質を含んでいてもよい。
ただし、固体電解質層20中における本発明の固体電解質の含有率は、80質量%以上であるのが好ましく、90質量%以上であるのがより好ましく、95質量%以上であるのがさらに好ましい。
これにより、前述したような本発明による効果がより顕著に発揮される。
これにより、前述したような本発明による効果がより顕著に発揮される。
固体電解質層20の厚さは、特に限定されないが、充放電レートの観点から、0.3μm以上1000μm以下であるのが好ましく、0.5μm以上100μm以下であるのがより好ましい。
また、負極30側に析出するリチウムの樹枝状結晶体による正極10と負極30との短絡を防ぐ観点から、固体電解質層20の測定重量を、固体電解質層20の見かけ体積に固体電解質材料の理論密度を乗じた値で除した値、すなわち焼結密度を50%以上とすることが好ましく、90%以上とすることがより好ましい。
固体電解質層20の形成方法としては、例えば、グリーンシート法、プレス焼成法、鋳込み焼成法等が挙げられる。固体電解質層20の形成方法の具体例については後に詳述する。なお、固体電解質層20と正極10および負極30との密着性の向上や、比表面積の増大によるリチウムイオン電池100の出力や電池容量の向上等を目的として、例えば、正極10や負極30と接触する固体電解質層20の表面に、ディンプル、トレンチ、ピラー等の三次元的なパターン構造を形成してもよい。
[4-1-2]正極
正極10は、電気化学的なリチウムイオンの吸蔵・放出を繰り返すことが可能な正極活物質で構成されるものであればいかなるものであってもよい。
正極10は、電気化学的なリチウムイオンの吸蔵・放出を繰り返すことが可能な正極活物質で構成されるものであればいかなるものであってもよい。
具体的には、正極10を構成する正極活物質としては、例えば、少なくともLiを含み、V、Cr、Mn、Fe、Co、Ni、Cuからなる群より選択されるいずれか1種以上の元素により構成されるリチウムの複酸化物等を用いることができる。このような複酸化物としては、例えば、LiCoO2、LiNiO2、LiMn2O4、Li2Mn2O3、LiCr0.5Mn0.5O2、LiFePO4、Li2FeP2O7、LiMnPO4、LiFeBO3、Li3V2(PO4)3、Li2CuO2、Li2FeSiO4、Li2MnSiO4等が挙げられる。また、正極10を構成する正極活物質としては、例えば、LiFeF3等のフッ化物、LiBH4やLi4BN3H10等のホウ素化物錯体化合物、ポリビニルピリジン-ヨウ素錯体等のヨウ素錯体化合物、硫黄等の非金属化合物等を用いることもできる。
正極10は、導電性やイオン拡散距離を鑑みると、固体電解質層20の一方の表面に薄膜として形成されているのが好ましい。
当該薄膜による正極10の厚さは、特に限定されないが、0.1μm以上500μm以下であるのが好ましく、0.3μm以上100μm以下であるのがより好ましい。
正極10の形成方法としては、例えば、真空蒸着法、スパッタリング法、CVD法、PLD法、ALD法、エアロゾルデポジション法等の気相堆積法、ゾルゲル法やMOD法といった溶液を用いた化学堆積法等が挙げられる。また、例えば、正極活物質の微粒子を適当なバインダーとともにスラリー化して、スキージーやスクリーン印刷を行って塗膜を形成し、塗膜を乾燥および焼成して固体電解質層20の表面に焼き付けてもよい。
[4-1-3]負極
負極30は、正極10として選択された材料よりも低い電位において電気化学的なリチウムイオンの吸蔵・放出を繰り返すいわゆる負極活物質で構成されるものであればいかなるものであってもよい。
負極30は、正極10として選択された材料よりも低い電位において電気化学的なリチウムイオンの吸蔵・放出を繰り返すいわゆる負極活物質で構成されるものであればいかなるものであってもよい。
具体的には、負極30を構成する負極活物質としては、例えば、Nb2O5、V2O5、TiO2、In2O3、ZnO、SnO2、NiO、ITO、AZO、GZO、ATO、FTO、Li4Ti5O12、Li2Ti3O7等のリチウムの複酸化物等が挙げられる。また、例えば、Li、Al、Si、Si-Mn、Si-Co、Si―Ni、Sn、Zn、Sb、Bi、In、Au等の金属および合金、炭素材料、LiC24、LiC6等のような炭素材料の層間にリチウムイオンが挿入された物質等が挙げられる。
負極30は、導電性やイオン拡散距離を鑑みると、固体電解質層20の一方の表面に薄膜として形成されているのが好ましい。
当該薄膜による負極30の厚さは、特に限定されないが、0.1μm以上500μm以下であるのが好ましく、0.3μm以上100μm以下であるのがより好ましい。
負極30の形成方法としては、例えば、真空蒸着法、スパッタリング法、CVD法、PLD法、ALD法、エアロゾルデポジション法等の気相堆積法、ゾルゲル法やMOD法といった溶液を用いた化学堆積法等が挙げられる。また、例えば、負極活物質の微粒子を適当なバインダーとともにスラリー化して、スキージーやスクリーン印刷を行って塗膜を形成し、塗膜を乾燥および焼成して固体電解質層20の表面に焼き付けてもよい。
[4-1-4]集電体
集電体41,42は、正極10または負極30に対する電子の授受を担うよう設けられた導電体である。集電体としては、通常、十分に電気抵抗が小さく、また充放電によって電気伝導特性やその機械構造が実質的に変化しない材料で構成されるものが用いられる。具体的には、正極10の集電体41の構成材料としては、例えば、Al、Ti、Pt、Au等が用いられる。また、負極30の集電体42の構成材料としては、例えば、Cu等が好適に用いられる。
集電体41,42は、正極10または負極30に対する電子の授受を担うよう設けられた導電体である。集電体としては、通常、十分に電気抵抗が小さく、また充放電によって電気伝導特性やその機械構造が実質的に変化しない材料で構成されるものが用いられる。具体的には、正極10の集電体41の構成材料としては、例えば、Al、Ti、Pt、Au等が用いられる。また、負極30の集電体42の構成材料としては、例えば、Cu等が好適に用いられる。
集電体41,42は、通常、それぞれ、正極10、負極30との接触抵抗が小さくなるように設けられている。集電体41,42の形状としては、例えば、板状、メッシュ状等が挙げられる。
集電体41,42の厚さは、特に限定されないが、7μm以上85μm以下であるのが好ましく、10μm以上60μm以下であるのがより好ましい。
図示の構成では、リチウムイオン電池100は、一対の集電体41,42を有しているが、例えば、複数のリチウムイオン電池100を積層し、電気的に直列に接続して用いる場合、リチウムイオン電池100は、集電体41,42のうち集電体41だけを備える構成とすることもできる。
リチウムイオン電池100は、いかなる用途のものであってもよい。リチウムイオン電池100が電源として適用される電子機器としては、例えば、パーソナルコンピューター、デジタルカメラ、携帯電話、スマートフォン、音楽プレイヤー、タブレット端末、時計、スマートウォッチ、インクジェットプリンター等の各種プリンター、テレビ、プロジェクター、ヘッドアップディスプレイ、ワイヤレスヘッドホン、ワイヤレスイヤホン、スマートグラス、ヘッドマウントディスプレイ等のウェアラブル端末、ビデオカメラ、ビデオテープレコーダー、カーナビゲーション装置、ドライブレコーダー、ページャー、電子手帳、電子辞書、電子翻訳機、電卓、電子ゲーム機器、玩具、ワードプロセッサー、ワークステーション、ロボット、テレビ電話、防犯用テレビモニター、電子双眼鏡、POS端末、医療機器、魚群探知機、各種測定機器、移動体端末基地局用機器、車両、鉄道車輌、航空機、ヘリコプター、船舶等の各種計器類、フライトシミュレーター、ネットワークサーバー等が挙げられる。また、リチウムイオン電池100は、例えば、自動車や船舶等の移動体に適用してもよい。より具体的には、例えば、電気自動車、プラグインハイブリッド自動車、ハイブリッド自動車、燃料電池自動車等の蓄電池として、好適に適用することができる。また、例えば、家庭用電源、工業用電源、太陽光発電の蓄電池等にも適用することができる。
[4-2]第2実施形態の二次電池
次に、第2実施形態に係る二次電池について説明する。
次に、第2実施形態に係る二次電池について説明する。
図2は、第2実施形態の二次電池としてのリチウムイオン電池の構成を模式的に示す概略斜視図、図3は、第2実施形態の二次電池としてのリチウムイオン電池の構造を模式的に示す概略断面図である。
以下、これらの図を参照して第2実施形態に係る二次電池について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
図2に示すように、本実施形態の二次電池としてのリチウムイオン電池100は、正極として機能する正極合材210と、正極合材210に対して順に積層された、電解質層220と、負極30とを有している。また、正極合材210の電解質層220に対向する面とは反対の面側に正極合材210に接する集電体41を有し、負極30の電解質層220に対向する面とは反対の面側に負極30に接する集電体42を有している。
以下、前述した実施形態に係るリチウムイオン電池100が有する構成と異なる正極合材210および電解質層220について説明する。
[4-2-1]正極合材
図3に示すように、本実施形態のリチウムイオン電池100における正極合材210は、粒子状の正極活物質211と、固体電解質212とを含む。このような正極合材210では、粒子状の正極活物質211と固体電解質212とが接する界面面積を大きくして、リチウムイオン電池100における電池反応速度をより高めることが可能となっている。
図3に示すように、本実施形態のリチウムイオン電池100における正極合材210は、粒子状の正極活物質211と、固体電解質212とを含む。このような正極合材210では、粒子状の正極活物質211と固体電解質212とが接する界面面積を大きくして、リチウムイオン電池100における電池反応速度をより高めることが可能となっている。
正極活物質211の平均粒径は、特に限定されないが、0.1μm以上150μm以下であるのが好ましく、0.3μm以上60μm以下であるのがより好ましい。
これにより、正極活物質211の理論容量に近い実容量密度と高い充放電レートとを両立しやすくなる。
なお、本明細書において、平均粒径とは、体積基準の平均粒径を言い、例えば、サンプルをメタノールに添加し、超音波分散器で3分間分散した分散液をコールターカウンター法粒度分布測定器(COULTER ELECTRONICS INS製TA-II型)にて、50μmのアパチャーを用いて測定することにより求めることができる。
正極活物質211の粒度分布は、特に限定されず、例えば、1つのピークを有する粒度分布において、当該ピークの半値幅が0.15μm以上19μm以下とすることができる。また、正極活物質211の粒度分布におけるピークは、2以上あってもよい。
なお、図3では、粒子状の正極活物質211の形状を球状として示したが、正極活物質211の形状は、球状に限定されず、例えば、柱状、板状、鱗片状、中空状、不定形等の様々な形態をとることができ、また、これらのうちの2種以上が混合されていてもよい。
正極活物質211としては、前記第1実施形態で正極10の構成材料として挙げたものと同様のものを挙げることができる。
また、正極活物質211は、例えば、固体電解質212との界面抵抗の低減や電子伝導性の向上等を目的として、表面に被覆層が形成されていてもよい。例えば、LiCoO2からなる正極活物質211の粒子の表面に、LiNbO3、Al2O3、ZrO2、Ta2O5等の薄膜を形成することで、リチウムイオン伝導の界面抵抗をさらに低減することができる。前記被覆層の厚さは、特に限定されないが、3nm以上1μm以下であるのが好ましい。
本実施形態において、正極合材210は、前述した正極活物質211に加えて、固体電解質212を含む。固体電解質212は、正極活物質211の粒子間を埋めるように、または、正極活物質211の表面に接触、特に密着するように存在する。
固体電解質212は、前述した本発明の固体電解質を含む材料で構成されている。
固体電解質212は、前述した本発明の固体電解質を含む材料で構成されている。
これにより、当該固体電解質212についてのリチウムイオン伝導率は特に優れたものとなる。また、正極活物質211や電解質層220に対する固体電解質212の密着性は優れたものとなる。以上のようなことから、リチウムイオン電池100全体としての特性、信頼性を特に優れたものとすることができる。
正極合材210中における正極活物質211の含有率をXA[質量%]、正極合材210中における固体電解質212の含有率をXS[質量%]としたとき、0.1≦XS/XA≦8.3の関係を満足するのが好ましく、0.3≦XS/XA≦2.8の関係を満足するのがより好ましく、0.6≦XS/XA≦1.4の関係を満足するのがさらに好ましい。
また、正極合材210は、正極活物質211、固体電解質212のほかに、導電助剤、結着剤等を含んでいてもよい。
ただし、正極合材210中における正極活物質211、固体電解質212以外の成分の含有率は、10質量%以下であるのが好ましく、7質量%以下であるのがより好ましく、5質量%以下であるのがさらに好ましい。
導電助剤としては、正極反応電位において電気化学的な相互作用が無視できる導電体であれば、いかなるものを用いてもよく、より具体的には、例えば、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ等の炭素材料、パラジウム、プラチナ等の貴金属、SnO2、ZnO、RuO2やReO3、Ir2O3等の導電性酸化物等を用いることができる。
正極合材210の厚さは、特に限定されないが、0.1μm以上500μm以下であるのが好ましく、0.3μm以上100μm以下であるのがより好ましい。
[4-2-2]電解質層
電解質層220は、正極合材210との界面インピーダンスの観点から、固体電解質212と同一または同種の材料で構成されることが好ましいが、固体電解質212とは異なる材料で構成されるものであってもよい。例えば、電解質層220は、前述した本発明の固体電解質を含むものの固体電解質212とは異なる組成を有する材料で構成されるものであってもよい。また、電解質層220は、本発明の固体電解質ではない他の酸化物固体電解質、硫化物固体電解質、窒化物固体電解質、ハロゲン化物固体電解質、水素化物固体電解質、ドライポリマー電解質、擬固体電解質の結晶質または非晶質であってもよく、これらから選択される2種以上を組み合わせた材料で構成されていてもよい。
電解質層220は、正極合材210との界面インピーダンスの観点から、固体電解質212と同一または同種の材料で構成されることが好ましいが、固体電解質212とは異なる材料で構成されるものであってもよい。例えば、電解質層220は、前述した本発明の固体電解質を含むものの固体電解質212とは異なる組成を有する材料で構成されるものであってもよい。また、電解質層220は、本発明の固体電解質ではない他の酸化物固体電解質、硫化物固体電解質、窒化物固体電解質、ハロゲン化物固体電解質、水素化物固体電解質、ドライポリマー電解質、擬固体電解質の結晶質または非晶質であってもよく、これらから選択される2種以上を組み合わせた材料で構成されていてもよい。
電解質層220が本発明の固体電解質を含む材料で構成されている場合、電解質層220中における本発明の固体電解質の含有率は、80質量%以上であるのが好ましく、90質量%以上であるのがより好ましく、95質量%以上であるのがさらに好ましい。
これにより、前述したような本発明による効果がより顕著に発揮される。
これにより、前述したような本発明による効果がより顕著に発揮される。
結晶質の酸化物としては、例えば、Li0.35La0.55TiO3、Li0.2La0.27NbO3、および、これらの結晶を構成する元素の一部をN、F、Al、Sr、Sc、Nb、Ta、Sb、ランタノイド元素等で置換したペロブスカイト型結晶またはペロブスカイト類似型結晶、Li7La3Zr2O12、Li5La3Nb2O12、Li5BaLa2TaO12、および、これらの結晶を構成する元素の一部をN、F、Al、Sr、Sc、Nb、Ta、Sb、ランタノイド元素等で置換したガーネット型結晶またはガーネット類似型結晶、Li1.3Ti1.7Al0.3(PO4)3、Li1.4Al0.4Ti1.6(PO4)3、Li1.4Al0.4Ti1.4Ge0.2(PO4)3、および、これらの結晶を構成する元素の一部をN、F、Al、Sr、Sc、Nb、Ta、Sb、ランタノイド元素等で置換したNASICON型結晶、Li14ZnGe4O16等のLISICON型結晶、Li3.4V0.6Si0.4O4、Li3.6V0.4Ge0.6O4、Li2+xC1-xBxO3等のその他の結晶質等を挙げることができる。
結晶質の硫化物としては、例えば、Li10GeP2S12、Li9.6P3S12、Li9.54Si1.74P1.44S11.7Cl0.3、Li3PS4等を挙げることができる。
また、その他の非晶質としては、例えば、Li2O-TiO2、La2O3-Li2O-TiO2、LiNbO3、LiSO4、Li4SiO4、Li3PO4-Li4SiO4、Li4GeO4-Li3VO4、Li4SiO4-Li3VO4、Li4GeO4-Zn2GeO2、Li4SiO4-LiMoO4、Li4SiO4-Li4ZrO4、SiO2-P2O5-Li2O、SiO2-P2O5-LiCl、Li2O-LiCl-B2O3、LiAlCl4、LiAlF4、LiF-Al2O3、LiBr-Al2O3、Li2.88PO3.73N0.14、Li3N-LiCl、Li6NBr3、Li2S-SiS2、Li2S-SiS2-P2S5等を挙げることができる。
電解質層220が結晶質で構成されている場合、当該結晶質は、リチウムイオン伝導の方向の結晶面異方性が小さい立方晶等の結晶構造を有するものであるのが好ましい。また、電解質層220が非晶質で構成されている場合、リチウムイオン伝導の異方性が小さくなる。このため、上記のような結晶質、非晶質は、いずれも、電解質層220を構成する固体電解質として好ましい。
電解質層220の厚さは、0.1μm以上100μm以下であるのが好ましく、0.2μm以上10μm以下であるのがより好ましい。電解質層220の厚さが前記範囲内の値であると、電解質層220の内部抵抗をさらに低くするとともに、正極合材210と負極30との間での短絡の発生をより効果的に防止することができる。
電解質層220と負極30との密着性の向上や、比表面積の増大によるリチウムイオン電池100の出力や電池容量の向上等を目的として、例えば、電解質層220の負極30と接する表面には、例えば、ディンプル、トレンチ、ピラー等の三次元的なパターン構造を形成してもよい。
[4-3]第3実施形態の二次電池
次に、第3実施形態に係る二次電池について説明する。
次に、第3実施形態に係る二次電池について説明する。
図4は、第3実施形態の二次電池としてのリチウムイオン電池の構成を模式的に示す概略斜視図、図5は、第3実施形態の二次電池としてのリチウムイオン電池の構造を模式的に示す概略断面図である。
以下、これらの図を参照して第3実施形態に係る二次電池について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
図4に示すように、本実施形態の二次電池としてのリチウムイオン電池100は、正極10と、正極10に対して順に積層された、電解質層220と、負極として機能する負極合材330とを有している。また、正極10の電解質層220に対向する面とは反対の面側に正極10に接する集電体41を有し、負極合材330の電解質層220に対向する面とは反対の面側に負極合材330に接する集電体42を有している。
以下、前述した実施形態に係るリチウムイオン電池100が有する構成と異なる負極合材330について説明する。
[4-3-1]負極合材
図5に示すように、本実施形態のリチウムイオン電池100における負極合材330は、粒子状の負極活物質331と、固体電解質212とを含む。このような負極合材330では、粒子状の負極活物質331と固体電解質212とが接する界面面積を大きくして、リチウムイオン電池100における電池反応速度をより高めることが可能となっている。
図5に示すように、本実施形態のリチウムイオン電池100における負極合材330は、粒子状の負極活物質331と、固体電解質212とを含む。このような負極合材330では、粒子状の負極活物質331と固体電解質212とが接する界面面積を大きくして、リチウムイオン電池100における電池反応速度をより高めることが可能となっている。
負極活物質331の平均粒径は、特に限定されないが、0.1μm以上150μm以下であるのが好ましく、0.3μm以上60μm以下であるのがより好ましい。
これにより、負極活物質331の理論容量に近い実容量密度と高い充放電レートを両立しやすくなる。
負極活物質331の粒度分布は、特に限定されず、例えば、1つのピークを有する粒度分布において、当該ピークの半値幅が0.1μm以上18μm以下とすることができる。また、負極活物質331の粒度分布におけるピークは、2以上あってもよい。
なお、図5では、粒子状の負極活物質331の形状を球状として示したが、負極活物質331の形状は、球状に限定されず、例えば、柱状、板状、鱗片状、中空状、不定形等の様々な形態をとることができ、また、これらのうちの2種以上が混合されていてもよい。
負極活物質331としては、前記第1実施形態で負極30の構成材料として挙げたものと同様のものを挙げることができる。
本実施形態において、負極合材330は、前述した負極活物質331に加えて、固体電解質212を含む。固体電解質212は、負極活物質331の粒子間を埋めるように、または、負極活物質331の表面に接触、特に密着するように存在する。
固体電解質212は、前述した本発明の固体電解質を含む材料で構成されている。
固体電解質212は、前述した本発明の固体電解質を含む材料で構成されている。
これにより、当該固体電解質212についてのリチウムイオン伝導率は特に優れたものとなる。また、負極活物質331や電解質層220に対する固体電解質212の密着性を優れたものとすることができる。以上のようなことから、リチウムイオン電池100全体としての特性、信頼性を特に優れたものとすることができる。
負極合材330中における負極活物質331の含有率をXB[質量%]、負極合材330中における固体電解質212の含有率をXS[質量%]としたとき、0.14≦XS/XB≦26の関係を満足するのが好ましく、0.44≦XS/XB≦4.1の関係を満足するのがより好ましく、0.89≦XS/XB≦2.1の関係を満足するのがさらに好ましい。
また、負極合材330は、負極活物質331、固体電解質212のほかに、導電助剤、結着剤等を含んでいてもよい。
ただし、負極合材330中における負極活物質331、固体電解質212以外の成分の含有率は、10質量%以下であるのが好ましく、7質量%以下であるのがより好ましく、5質量%以下であるのがさらに好ましい。
導電助剤としては、正極反応電位において電気化学的な相互作用が無視できる導電体であれば、いかなるものを用いてもよく、より具体的には、例えば、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ等の炭素材料、パラジウム、プラチナ等の貴金属、SnO2、ZnO、RuO2やReO3、Ir2O3等の導電性酸化物等を用いることができる。
負極合材330の厚さは、特に限定されないが、0.1μm以上500μm以下であるのが好ましく、0.3μm以上100μm以下であるのがより好ましい。
[4-4]第4実施形態の二次電池
次に、第4実施形態に係る二次電池について説明する。
次に、第4実施形態に係る二次電池について説明する。
図6は、第4実施形態の二次電池としてのリチウムイオン電池の構成を模式的に示す概略斜視図、図7は、第4実施形態の二次電池としてのリチウムイオン電池の構造を模式的に示す概略断面図である。
以下、これらの図を参照して第4実施形態に係る二次電池について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
図6に示すように、本実施形態の二次電池としてのリチウムイオン電池100は、正極合材210と、正極合材210に対して順に積層された、固体電解質層20と、負極合材330とを有している。また、正極合材210の固体電解質層20に対向する面とは反対の面側に正極合材210に接する集電体41を有し、負極合材330の固体電解質層20に対向する面とは反対の面側に負極合材330に接する集電体42を有している。
これらの各部は、前述した実施形態での対応する各部位について説明したのと同様の条件を満足しているのが好ましい。
なお、前記第1~第4実施形態において、リチウムイオン電池100を構成する各層の層間または層の表面には、他の層が設けられていてもよい。このような層としては、例えば、接着層、絶縁層、保護層等が挙げられる。
[5]二次電池の製造方法
次に、前述した二次電池についての製造方法について説明する。
次に、前述した二次電池についての製造方法について説明する。
[5-1]第1実施形態の二次電池の製造方法
以下、第1実施形態に係る二次電池の製造方法について説明する。
以下、第1実施形態に係る二次電池の製造方法について説明する。
図8は、第1実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート、図9および図10は、第1実施形態の二次電池としてのリチウムイオン電池の製造方法を模式的に示す概略図、図11は、固体電解質層の他の形成方法を模式的に示す概略断面図である。
図8に示すように、本実施形態のリチウムイオン電池100の製造方法は、ステップS1と、ステップS2と、ステップS3と、ステップS4とを備えている。
ステップS1は、固体電解質層20の形成工程である。ステップS2は、正極10の形成工程である。ステップS3は、負極30の形成工程である。ステップS4は、集電体41,42の形成工程である。
[5-1-1]ステップS1
ステップS1の固体電解質層20の形成工程では、前述したような本発明に係る仮焼成体、すなわち、前駆酸化物とオキソ酸化合物とを含む仮焼成体を用いて、例えば、グリーンシート法により固体電解質層20を形成する。より具体的には、以下のようにして固体電解質層20を形成することができる。
ステップS1の固体電解質層20の形成工程では、前述したような本発明に係る仮焼成体、すなわち、前駆酸化物とオキソ酸化合物とを含む仮焼成体を用いて、例えば、グリーンシート法により固体電解質層20を形成する。より具体的には、以下のようにして固体電解質層20を形成することができる。
すなわち、まず、例えば、ポリプロピレンカーボネート等の結着剤を、1,4-ジオキサン等の溶媒に溶解した溶液を用意し、当該溶液と、本発明に係る仮焼成体とを混合することでスラリー20mを得る。スラリー20mの調製には、必要に応じて、さらに、分散剤や希釈剤、保湿剤等を用いてもよい。
次に、スラリー20mを用いて固体電解質形成用シート20sを形成する。より具体的には、図9に示すように、例えば、全自動フィルムアプリケーター500を用いて、ポリエチレンテレフタレートフィルム等の基材506上に、スラリー20mを所定の厚さで塗布して固体電解質形成用シート20sとする。全自動フィルムアプリケーター500は、塗布ローラー501とドクターローラー502とを有している。ドクターローラー502に対して上方から接するようにスキージー503が設けられている。塗布ローラー501の下方において対向する位置に搬送ローラー504が設けられており、塗布ローラー501と搬送ローラー504との間に基材506が載置されたステージ505を挿入することによりステージ505が一定の方向に搬送される。ステージ505の搬送方向に隙間を置いて配置された塗布ローラー501とドクターローラー502との間においてスキージー503が設けられた側にスラリー20mが投入される。上記隙間からスラリー20mを下方に押し出すように、塗布ローラー501とドクターローラー502とを回転させて、塗布ローラー501の表面に所定の厚さのスラリー20mを塗工する。そして、それとともに、搬送ローラー504を回転させ、スラリー20mが塗工された塗布ローラー501に基材506が接するようにステージ505を搬送する。これにより、塗布ローラー501に塗工されたスラリー20mは、基材506にシート状に転写され、固体電解質形成用シート20sとなる。
その後、基材506に形成された固体電解質形成用シート20sから溶媒を除去し、当該固体電解質形成用シート20sを基材506から剥離し、図10に示すように、抜き型を用いて所定の大きさに打ち抜き、成形物20fを形成する。
その後、成形物20fに対して、700℃以上1000℃以下の温度での加熱工程を行うことにより、本焼成体としての固体電解質層20を得る。当該加熱工程での加熱時間、雰囲気は、前述したとおりである。
なお、焼成後の固体電解質層20の焼結密度が90%以上となるように、塗布ローラー501とドクターローラー502とによってスラリー20mを加圧し押し出して所定の厚さの固体電解質形成用シート20sとしてもよい。
[5-1-2]ステップS2
ステップS1の後、ステップS2へ進む。
ステップS2の正極10の形成工程では、固体電解質層20の一方の面に正極10を形成する。より具体的には、例えば、まず、スパッタ装置を使用し、アルゴンガス等の不活性ガス中で、LiCoO2をターゲットとしてスパッタリングを行うことにより、固体電解質層20の表面にLiCoO2層を形成する。その後、酸化雰囲気中で、固体電解質層20上に形成されたLiCoO2層を焼成することにより、LiCoO2層の結晶を高温相結晶に転化させ、LiCoO2層を正極10とすることができる。LiCoO2層の焼成条件は、特に限定されないが、加熱温度を400℃以上600℃以下とし、加熱時間を1時間以上3時間以下とすることができる。
ステップS1の後、ステップS2へ進む。
ステップS2の正極10の形成工程では、固体電解質層20の一方の面に正極10を形成する。より具体的には、例えば、まず、スパッタ装置を使用し、アルゴンガス等の不活性ガス中で、LiCoO2をターゲットとしてスパッタリングを行うことにより、固体電解質層20の表面にLiCoO2層を形成する。その後、酸化雰囲気中で、固体電解質層20上に形成されたLiCoO2層を焼成することにより、LiCoO2層の結晶を高温相結晶に転化させ、LiCoO2層を正極10とすることができる。LiCoO2層の焼成条件は、特に限定されないが、加熱温度を400℃以上600℃以下とし、加熱時間を1時間以上3時間以下とすることができる。
[5-1-3]ステップS3
ステップS2の後、ステップS3へ進む。
ステップS3の負極30の形成工程では、固体電解質層20の他方の面、すなわち、正極10が形成された面とは反対側の面に負極30を形成する。より具体的には、例えば、真空蒸着装置等を使用して、固体電解質層20の正極10が形成された面とは反対側の面に、金属Liの薄膜を形成して負極30とすることができる。負極30の厚さは、例えば、0.1μm以上500μm以下とすることができる。
ステップS2の後、ステップS3へ進む。
ステップS3の負極30の形成工程では、固体電解質層20の他方の面、すなわち、正極10が形成された面とは反対側の面に負極30を形成する。より具体的には、例えば、真空蒸着装置等を使用して、固体電解質層20の正極10が形成された面とは反対側の面に、金属Liの薄膜を形成して負極30とすることができる。負極30の厚さは、例えば、0.1μm以上500μm以下とすることができる。
[5-1-4]ステップS4
ステップS3の後、ステップS4へ進む。
ステップS4の集電体41,42の形成工程では、正極10に接するように集電体41を形成し、負極30に接するように集電体42を形成する。より具体的には、例えば、型抜き等により円形としたアルミニウム箔を正極10に押圧して接合し集電体41とすることができる。また、例えば、型抜き等により円形とした銅箔を負極30に押圧して接合し集電体42とすることができる。集電体41,42の厚さは、特に限定されないが、例えば、10μm以上60μm以下とすることができる。なお、本工程では、集電体41,42のうち一方のみを形成してもよい。
ステップS3の後、ステップS4へ進む。
ステップS4の集電体41,42の形成工程では、正極10に接するように集電体41を形成し、負極30に接するように集電体42を形成する。より具体的には、例えば、型抜き等により円形としたアルミニウム箔を正極10に押圧して接合し集電体41とすることができる。また、例えば、型抜き等により円形とした銅箔を負極30に押圧して接合し集電体42とすることができる。集電体41,42の厚さは、特に限定されないが、例えば、10μm以上60μm以下とすることができる。なお、本工程では、集電体41,42のうち一方のみを形成してもよい。
なお、固体電解質層20の形成方法は、ステップS1に示したグリーンシート法に限定されない。固体電解質層20の他の形成方法としては、例えば、以下のような方法を採用することができる。すなわち、図11に示すように、粉末状の本発明に係る仮焼成体、すなわち、前駆酸化物とオキソ酸化合物とを含む仮焼成体を、ペレットダイス80に充填し、蓋81を用いて閉塞し、蓋81を押圧することにより、一軸プレス成型を行うことにより、成形物20fを得てもよい。その後の成形物20fに対する処理は、前記と同様にして行うことができる。ペレットダイス80としては、図示しない排気ポートを備えたものを好適に用いることができる。
[5-2]第2実施形態の二次電池の製造方法
次に、第2実施形態に係る二次電池の製造方法について説明する。
次に、第2実施形態に係る二次電池の製造方法について説明する。
図12は、第2実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート、図13および図14は、第2実施形態の二次電池としてのリチウムイオン電池の製造方法を模式的に示す概略図である。
以下、これらの図を参照して第2実施形態に係る二次電池の製造方法について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
図12に示すように、本実施形態のリチウムイオン電池100の製造方法は、ステップS11と、ステップS12と、ステップS13と、ステップS14とを備えている。
ステップS11は、正極合材210の形成工程である。ステップS12は、電解質層220の形成工程である。ステップS13は、負極30の形成工程である。ステップS14は、集電体41,42の形成工程である。
[5-2-1]ステップS11
ステップS11の正極合材210の形成工程では、正極合材210を形成する。
正極合材210は、例えば、以下のようにして形成することができる。
ステップS11の正極合材210の形成工程では、正極合材210を形成する。
正極合材210は、例えば、以下のようにして形成することができる。
すなわち、まず、例えば、LiCoO2等の正極活物質211と、前述したような本発明に係る仮焼成体、すなわち、前駆酸化物とオキソ酸化合物とを含む仮焼成体と、ポリプロピレンカーボネート等の結着剤と、1,4-ジオキサン等の溶媒との混合物としてのスラリー210mを得る。スラリー210mの調製には、必要に応じて、さらに、分散剤や希釈剤、保湿剤等を用いてもよい。
次に、スラリー210mを用いて正極合材形成用シート210sを形成する。より具体的には、図13に示すように、例えば、全自動フィルムアプリケーター500を用いて、ポリエチレンテレフタレートフィルム等の基材506上に、スラリー210mを所定の厚さで塗布して正極合材形成用シート210sとする。
その後、基材506に形成された正極合材形成用シート210sから溶媒を除去し、当該正極合材形成用シート210sを基材506から剥離し、図14に示すように、抜き型を用いて所定の大きさに打ち抜き、成形物210fを形成する。
その後、成形物210fに対して、700℃以上1000℃以下の温度での加熱工程を行うことにより、固体電解質を含有する正極合材210を得る。当該加熱工程での加熱時間、雰囲気は、前述したとおりである。
[5-2-2]ステップS12
ステップS11の後、ステップS12へ進む。
ステップS12の電解質層220の形成工程では、正極合材210の一方の面210bに電解質層220を形成する。より具体的には、例えば、スパッタ装置を使用し、アルゴンガス等の不活性ガス中で、LiCoO2をターゲットとしてスパッタリングを行うことにより、正極合材210の表面にLiCoO2層を形成する。その後、酸化雰囲気中で、正極合材210上に形成されたLiCoO2層を焼成することにより、LiCoO2層の結晶を高温相結晶に転化させ、LiCoO2層を電解質層220とすることができる。LiCoO2層の焼成条件は、特に限定されないが、加熱温度を400℃以上600℃以下とし、加熱時間を1時間以上3時間以下とすることができる。
ステップS11の後、ステップS12へ進む。
ステップS12の電解質層220の形成工程では、正極合材210の一方の面210bに電解質層220を形成する。より具体的には、例えば、スパッタ装置を使用し、アルゴンガス等の不活性ガス中で、LiCoO2をターゲットとしてスパッタリングを行うことにより、正極合材210の表面にLiCoO2層を形成する。その後、酸化雰囲気中で、正極合材210上に形成されたLiCoO2層を焼成することにより、LiCoO2層の結晶を高温相結晶に転化させ、LiCoO2層を電解質層220とすることができる。LiCoO2層の焼成条件は、特に限定されないが、加熱温度を400℃以上600℃以下とし、加熱時間を1時間以上3時間以下とすることができる。
[5-2-3]ステップS13
ステップS12の後、ステップS13へ進む。
ステップS13の負極30の形成工程では、電解質層220の正極合材210と対向する面とは反対の面側に負極30を形成する。より具体的には、例えば、真空蒸着装置等を使用して、電解質層220の正極合材210と対向する面とは反対の面側に、金属Liの薄膜を形成して負極30とすることができる。
ステップS12の後、ステップS13へ進む。
ステップS13の負極30の形成工程では、電解質層220の正極合材210と対向する面とは反対の面側に負極30を形成する。より具体的には、例えば、真空蒸着装置等を使用して、電解質層220の正極合材210と対向する面とは反対の面側に、金属Liの薄膜を形成して負極30とすることができる。
[5-2-4]ステップS14
ステップS13の後、ステップS14へ進む。
ステップS14の集電体41,42の形成工程では、正極合材210の他方の面、すなわち、電解質層220が形成された面210bとは反対側の面210aに接するように集電体41を形成し、負極30に接するように集電体42を形成する。
ステップS13の後、ステップS14へ進む。
ステップS14の集電体41,42の形成工程では、正極合材210の他方の面、すなわち、電解質層220が形成された面210bとは反対側の面210aに接するように集電体41を形成し、負極30に接するように集電体42を形成する。
なお、正極合材210および電解質層220の形成方法は、上記の方法に限定されない。例えば、正極合材210および電解質層220は、以下のように形成してもよい。すなわち、まず、本発明に係る仮焼成体、すなわち、前駆酸化物とオキソ酸化合物とを含む仮焼成体と、結着剤と、溶媒との混合物としてのスラリーを得る。そして、得られた当該スラリーを全自動フィルムアプリケーター500に投入し、基材506上に塗工して、電解質形成用シートを形成する。その後、当該電解質形成用シートと、上記で説明したのと同様にして形成した正極合材形成用シート210sとを重ねた状態で加圧し、これらを貼り合せる。その後、貼り合せて得られた積層シートを型抜きして成形物とし、当該成形物に対して、酸化雰囲気中で焼成を行い、正極合材210と電解質層220との積層体を得てもよい。
[5-3]第3実施形態の二次電池の製造方法
次に、第3実施形態に係る二次電池の製造方法について説明する。
図15は、第3実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート、図16および図17は、第3実施形態の二次電池としてのリチウムイオン電池の製造方法を模式的に示す概略図である。
次に、第3実施形態に係る二次電池の製造方法について説明する。
図15は、第3実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート、図16および図17は、第3実施形態の二次電池としてのリチウムイオン電池の製造方法を模式的に示す概略図である。
以下、これらの図を参照して第3実施形態に係る二次電池の製造方法について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
図15に示すように、本実施形態のリチウムイオン電池100の製造方法は、ステップS21と、ステップS22と、ステップS23と、ステップS24とを備えている。
ステップS21は、負極合材330の形成工程である。ステップS22は、電解質層220の形成工程である。ステップS23は、正極10の形成工程である。ステップS24は、集電体41,42の形成工程である。
[5-3-1]ステップS21
ステップS21の負極合材330の形成工程では、負極合材330を形成する。
負極合材330は、例えば、以下のようにして形成することができる。
ステップS21の負極合材330の形成工程では、負極合材330を形成する。
負極合材330は、例えば、以下のようにして形成することができる。
すなわち、まず、例えば、Li4Ti5O12等の負極活物質331と、本発明に係る仮焼成体、すなわち、前駆酸化物とオキソ酸化合物とを含む仮焼成体と、ポリプロピレンカーボネート等の結着剤と、1,4-ジオキサン等の溶媒との混合物としてのスラリー330mを得る。スラリー330mの調製には、必要に応じて、さらに、分散剤や希釈剤、保湿剤等を用いてもよい。
次に、スラリー330mを用いて負極合材形成用シート330sを形成する。より具体的には、図16に示すように、例えば、全自動フィルムアプリケーター500を用いて、ポリエチレンテレフタレートフィルム等の基材506上に、スラリー330mを所定の厚さで塗布して負極合材形成用シート330sとする。
その後、基材506に形成された負極合材形成用シート330sから溶媒を除去し、当該負極合材形成用シート330sを基材506から剥離し、図17に示すように、抜き型を用いて所定の大きさに打ち抜き、成形物330fを形成する。
その後、成形物330fに対して、700℃以上1000℃以下の温度での加熱工程を行うことにより、固体電解質を含有する負極合材330を得る。当該加熱工程での加熱時間、雰囲気は、前述したとおりである。
[5-3-2]ステップS22
ステップS21の後、ステップS22へ進む。
ステップS22の電解質層220の形成工程では、負極合材330の一方の面330aに電解質層220を形成する。より具体的には、例えば、スパッタ装置を使用し、アルゴンガス等の不活性ガス中で、Li2CO3とLi3BO3の固溶体Li2.2C0.8B0.2O3をターゲットとしてスパッタリングを行うことにより、負極合材330の表面にLi2.2C0.8B0.2O3層を形成する。その後、酸化雰囲気中で、負極合材330上に形成されたLi2.2C0.8B0.2O3層を焼成することにより、Li2.2C0.8B0.2O3層の結晶を高温相結晶に転化させ、Li2.2C0.8B0.2O3層を電解質層220とすることができる。Li2.2C0.8B0.2O3層の焼成条件は、特に限定されないが、加熱温度を400℃以上600℃以下とし、加熱時間を1時間以上3時間以下とすることができる。
ステップS21の後、ステップS22へ進む。
ステップS22の電解質層220の形成工程では、負極合材330の一方の面330aに電解質層220を形成する。より具体的には、例えば、スパッタ装置を使用し、アルゴンガス等の不活性ガス中で、Li2CO3とLi3BO3の固溶体Li2.2C0.8B0.2O3をターゲットとしてスパッタリングを行うことにより、負極合材330の表面にLi2.2C0.8B0.2O3層を形成する。その後、酸化雰囲気中で、負極合材330上に形成されたLi2.2C0.8B0.2O3層を焼成することにより、Li2.2C0.8B0.2O3層の結晶を高温相結晶に転化させ、Li2.2C0.8B0.2O3層を電解質層220とすることができる。Li2.2C0.8B0.2O3層の焼成条件は、特に限定されないが、加熱温度を400℃以上600℃以下とし、加熱時間を1時間以上3時間以下とすることができる。
[5-3-3]ステップS23
ステップS22の後、ステップS23へ進む。
ステップS23の正極10の形成工程では、電解質層220の一方の面220a側、すなわち、電解質層220の負極合材330に対向する面とは反対の面側に、正極10を形成する。より具体的には、例えば、まず、真空蒸着装置等を使用して、電解質層220の一方の面220aに、LiCoO2層を形成する。その後、LiCoO2層が形成された電解質層220と負極合材330との積層体を焼成することにより、LiCoO2層の結晶を高温相結晶に転化させ、LiCoO2層を正極10とすることができる。LiCoO2層の焼成条件は、特に限定されないが、加熱温度を400℃以上600℃以下とし、加熱時間を1時間以上3時間以下とすることができる。
ステップS22の後、ステップS23へ進む。
ステップS23の正極10の形成工程では、電解質層220の一方の面220a側、すなわち、電解質層220の負極合材330に対向する面とは反対の面側に、正極10を形成する。より具体的には、例えば、まず、真空蒸着装置等を使用して、電解質層220の一方の面220aに、LiCoO2層を形成する。その後、LiCoO2層が形成された電解質層220と負極合材330との積層体を焼成することにより、LiCoO2層の結晶を高温相結晶に転化させ、LiCoO2層を正極10とすることができる。LiCoO2層の焼成条件は、特に限定されないが、加熱温度を400℃以上600℃以下とし、加熱時間を1時間以上3時間以下とすることができる。
[5-3-4]ステップS24
ステップS23の後、ステップS24へ進む。
ステップS24の集電体41,42の形成工程では、正極10の一方の面10a、すなわち、正極10の電解質層220が形成された面とは反対側の面10aに接するように集電体41を形成し、負極合材330の他方の面、すなわち、負極合材330の電解質層220が形成された面330aとは反対側の面330bに接するように集電体42を形成する。
ステップS23の後、ステップS24へ進む。
ステップS24の集電体41,42の形成工程では、正極10の一方の面10a、すなわち、正極10の電解質層220が形成された面とは反対側の面10aに接するように集電体41を形成し、負極合材330の他方の面、すなわち、負極合材330の電解質層220が形成された面330aとは反対側の面330bに接するように集電体42を形成する。
なお、負極合材330および電解質層220の形成方法は、上記の方法に限定されない。例えば、負極合材330および電解質層220は、以下のように形成してもよい。すなわち、まず、本発明に係る仮焼成体、すなわち、前駆酸化物とオキソ酸化合物とを含む仮焼成体と、結着剤と、溶媒との混合物としてのスラリーを得る。そして、得られた当該スラリーを全自動フィルムアプリケーター500に投入し、基材506上に塗工して、電解質形成用シートを形成する。その後、当該電解質形成用シートと、上記で説明したのと同様にして形成した負極合材形成用シート330sとを重ねた状態で加圧し、これらを貼り合せる。その後、貼り合せて得られた積層シートを型抜きして成形物とし、当該成形物に対して、酸化雰囲気中で焼成を行い、負極合材330と電解質層220との積層体を得てもよい。
[5-4]第4実施形態の二次電池の製造方法
次に、第4実施形態に係る二次電池の製造方法について説明する。
図18は、第4実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート、図19は、第4実施形態の二次電池としてのリチウムイオン電池の製造方法を模式的に示す概略図である。
次に、第4実施形態に係る二次電池の製造方法について説明する。
図18は、第4実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート、図19は、第4実施形態の二次電池としてのリチウムイオン電池の製造方法を模式的に示す概略図である。
以下、これらの図を参照して第4実施形態に係る二次電池の製造方法について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
図18に示すように、本実施形態のリチウムイオン電池100の製造方法は、ステップS31と、ステップS32と、ステップS33と、ステップS34と、ステップS35と、ステップS36とを備えている。
ステップS31は、正極合材210形成用シート形成工程である。ステップS32は、負極合材330形成用シート形成工程である。ステップS33は、固体電解質層20形成用シート形成工程である。ステップS34は、正極合材210形成用のシートと、負極合材330形成用のシートと、固体電解質層20形成用のシートとの積層体を所定の形状に成形する成形物450fの形成工程である。ステップS35は、成形物450fの焼成工程である。ステップS36は、集電体41,42の形成工程である。
以下の説明では、ステップS31の後にステップS32を行い、ステップS32の後にステップS33を行うものとして説明するが、ステップS31、ステップS32、ステップS33の順番は、これに限定されず、これらの順番を入れ替えて行ってもよいし、同時進行的に行ってもよい。
[5-4-1]ステップS31
ステップS31の正極合材210形成用シート形成工程では、正極合材210形成用のシートである正極合材形成用シート210sを形成する。
ステップS31の正極合材210形成用シート形成工程では、正極合材210形成用のシートである正極合材形成用シート210sを形成する。
正極合材形成用シート210sは、例えば、前記第2実施形態で説明したのと同様の方法により形成することができる。
なお、本工程で得られる正極合材形成用シート210sは、当該正極合材形成用シート210sの形成に用いられたスラリー210mから溶媒を除去したものであるのが好ましい。
[5-4-2]ステップS32
ステップS31の後、ステップS32へ進む。
ステップS32の負極合材330形成用シート形成工程では、負極合材330形成用のシートである負極合材形成用シート330sを形成する。
ステップS31の後、ステップS32へ進む。
ステップS32の負極合材330形成用シート形成工程では、負極合材330形成用のシートである負極合材形成用シート330sを形成する。
負極合材形成用シート330sは、例えば、前記第3実施形態で説明したのと同様の方法により形成することができる。
なお、本工程で得られる負極合材形成用シート330sは、当該負極合材形成用シート330sの形成に用いられたスラリー330mから溶媒を除去したものであるのが好ましい。
[5-4-3]ステップS33
ステップS32の後、ステップS33へ進む。
ステップS33の固体電解質層20形成用シート形成工程では、固体電解質層20形成用のシートである固体電解質形成用シート20sを形成する。
ステップS32の後、ステップS33へ進む。
ステップS33の固体電解質層20形成用シート形成工程では、固体電解質層20形成用のシートである固体電解質形成用シート20sを形成する。
固体電解質形成用シート20sは、例えば、前記第1実施形態で説明したのと同様の方法により形成することができる。
なお、本工程で得られる固体電解質形成用シート20sは、当該固体電解質形成用シート20sの形成に用いられたスラリー20mから溶媒を除去したものであるのが好ましい。
[5-4-4]ステップS34
ステップS33の後、ステップS34へ進む。
ステップS34の成形物450fの形成工程では、正極合材形成用シート210s、固体電解質形成用シート20s、および、負極合材形成用シート330sをこの順に重ねた状態で加圧し、これらを貼り合せる。その後、図19に示すように、貼り合せて得られた積層シートを型抜きして成形物450fを得る。
ステップS33の後、ステップS34へ進む。
ステップS34の成形物450fの形成工程では、正極合材形成用シート210s、固体電解質形成用シート20s、および、負極合材形成用シート330sをこの順に重ねた状態で加圧し、これらを貼り合せる。その後、図19に示すように、貼り合せて得られた積層シートを型抜きして成形物450fを得る。
[5-4-5]ステップS35
ステップS34の後、ステップS35へ進む。
ステップS35の成形物450fの焼成工程では、成形物450fに対して、700℃以上1000℃以下の温度での加熱工程を行う。これにより、正極合材形成用シート210sで構成される部位は正極合材210となり、固体電解質形成用シート20sで構成される部位は固体電解質層20となり、負極合材形成用シート330sで構成される部位は負極合材330となる。すなわち、成形物450fの焼成体は、正極合材210、固体電解質層20、負極合材330の積層体である。当該加熱工程での加熱時間、雰囲気は、前述したとおりである。
ステップS34の後、ステップS35へ進む。
ステップS35の成形物450fの焼成工程では、成形物450fに対して、700℃以上1000℃以下の温度での加熱工程を行う。これにより、正極合材形成用シート210sで構成される部位は正極合材210となり、固体電解質形成用シート20sで構成される部位は固体電解質層20となり、負極合材形成用シート330sで構成される部位は負極合材330となる。すなわち、成形物450fの焼成体は、正極合材210、固体電解質層20、負極合材330の積層体である。当該加熱工程での加熱時間、雰囲気は、前述したとおりである。
[5-4-6]ステップS36
ステップS35の後、ステップS36へ進む。
ステップS36の集電体41,42の形成工程では、正極合材210の面210aに接するように集電体41を形成し、負極合材330の面330bに接するように集電体42を形成する。
ステップS35の後、ステップS36へ進む。
ステップS36の集電体41,42の形成工程では、正極合材210の面210aに接するように集電体41を形成し、負極合材330の面330bに接するように集電体42を形成する。
以上、本発明の好適な実施形態について説明したが、本発明は、これらに限定されるものではない。
例えば、固体電解質の製造方法は、上述したような工程に加え、さらに他の工程を有していてもよい。
また、本発明を二次電池に適用する場合、当該二次電池の構成は、前述した実施形態のものに限定されない。
例えば、本発明を二次電池に適用する場合、当該二次電池は、リチウムイオン電池に限定されず、例えば、正極合材と負極との間に多孔質なセパレーターを設け、セパレーターに電解液を含浸させた二次電池であってもよい。
また、本発明を二次電池に適用する場合、その製造方法は、前述した実施形態のものに限定されない。例えば、二次電池の製造における工程の順番は、前述した実施形態と異なるものとしてもよい。
また、前述した実施形態では、本発明に係る固体電解質は、二次電池の一部を構成するもの、特に、全固体二次電池である全固体リチウム二次電池の一部を構成するものとして説明したが、本発明に係る固体電解質は、例えば、全固体二次電池以外の一部を構成するもの、二次電池以外の一部を構成するものであってもよい。
次に、本発明の具体的実施例について説明する。なお、以下の説明では、室温とは、25℃のことを言う。また、温度の条件を特に示していない処理・測定は、25℃で行ったものであり、圧力の条件を特に示していない処理・測定は、1気圧環境下で行ったものである。
[6]仮焼成体の製造
まず、後述する各実施例および各比較例の固体電解質の製造に用いる仮焼成体を製造した。
各仮焼成体の調製には、以下に述べる金属化合物の溶液を用いた。
まず、後述する各実施例および各比較例の固体電解質の製造に用いる仮焼成体を製造した。
各仮焼成体の調製には、以下に述べる金属化合物の溶液を用いた。
[6-1]仮焼成体の製造に用いる金属化合物の溶液の調製
[6-1-1]硝酸リチウムの2-ノルマルブトキシエタノール溶液の調製
磁石式撹拌子を入れた30gのパイレックス(Pyrex:CORNING社商標。パイレックス、Pyrexは登録商標。)製の試薬瓶へ、関東化学社製の3N5 純度99.95%の硝酸リチウム1.3789gと、関東化学社製の鹿特級 2-ノルマルブトキシエタノール(エチレングルコールモノブチルエーテル)18.6211gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、170℃にて1時間撹拌しながら、硝酸リチウムを2-ノルマルブトキシエタノールに完全に溶解し、室温まで徐冷して、1mol/kg濃度の硝酸リチウムの2-ノルマルブトキシエタノール溶液を得た。
[6-1-1]硝酸リチウムの2-ノルマルブトキシエタノール溶液の調製
磁石式撹拌子を入れた30gのパイレックス(Pyrex:CORNING社商標。パイレックス、Pyrexは登録商標。)製の試薬瓶へ、関東化学社製の3N5 純度99.95%の硝酸リチウム1.3789gと、関東化学社製の鹿特級 2-ノルマルブトキシエタノール(エチレングルコールモノブチルエーテル)18.6211gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、170℃にて1時間撹拌しながら、硝酸リチウムを2-ノルマルブトキシエタノールに完全に溶解し、室温まで徐冷して、1mol/kg濃度の硝酸リチウムの2-ノルマルブトキシエタノール溶液を得た。
[6-1-2]硝酸ランタンの2-ノルマルブトキシエタノール溶液の調製
磁石式撹拌子を入れた30gのパイレックス製の試薬瓶へ、関東化学社製の4N 硝酸ランタン・六水和物8.6608gと、関東化学社製の鹿特級 2-ノルマルブトキシエタノール11.3392gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、140℃にて30分間撹拌しながら、硝酸ランタン・六水和物を2-ノルマルブトキシエタノールに完全に溶解し、室温まで徐冷して、1mol/kg濃度の硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液を得た。
磁石式撹拌子を入れた30gのパイレックス製の試薬瓶へ、関東化学社製の4N 硝酸ランタン・六水和物8.6608gと、関東化学社製の鹿特級 2-ノルマルブトキシエタノール11.3392gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、140℃にて30分間撹拌しながら、硝酸ランタン・六水和物を2-ノルマルブトキシエタノールに完全に溶解し、室温まで徐冷して、1mol/kg濃度の硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液を得た。
[6-1-3]ジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液の調製
磁石式撹拌子を入れた20gのパイレックス製の試薬瓶へ、高純度化学研究所製のジルコニウムテトラノルマルブトキシド3.8368gと、関東化学社製の鹿特級 2-ノルマルブトキシエタノール6.1632gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、室温にて30分間撹拌しながら、ジルコニウムテトラノルマルブトキシドを2-ノルマルブトキシエタノールに完全に溶解して、1mol/kg濃度のジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液を得た。
磁石式撹拌子を入れた20gのパイレックス製の試薬瓶へ、高純度化学研究所製のジルコニウムテトラノルマルブトキシド3.8368gと、関東化学社製の鹿特級 2-ノルマルブトキシエタノール6.1632gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、室温にて30分間撹拌しながら、ジルコニウムテトラノルマルブトキシドを2-ノルマルブトキシエタノールに完全に溶解して、1mol/kg濃度のジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液を得た。
[6-1-4]ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液の調製
磁石式撹拌子を入れた20gのパイレックス製の試薬瓶へ、富士フィルム和光純薬社製の3N ゲルマニウムテトラエトキシド2.5287gと、関東化学社の鹿特級 2-ノルマルブトキシエタノール5.9085gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、室温にて30分間撹拌しながら、ゲルマニウムテトラエトキシドを2-ノルマルブトキシエタノールに完全に溶解して、1mol/kg濃度のゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液を得た。
磁石式撹拌子を入れた20gのパイレックス製の試薬瓶へ、富士フィルム和光純薬社製の3N ゲルマニウムテトラエトキシド2.5287gと、関東化学社の鹿特級 2-ノルマルブトキシエタノール5.9085gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、室温にて30分間撹拌しながら、ゲルマニウムテトラエトキシドを2-ノルマルブトキシエタノールに完全に溶解して、1mol/kg濃度のゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液を得た。
[6-1-5]アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液の調製
磁石式撹拌子を入れた20gのパイレックス製の試薬瓶へ、富士フィルム和光純薬社製のアンチモントリノルマルブトキシド3.4110gと、関東化学社製の鹿特級 2-ノルマルブトキシエタノール6.5890gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、室温にて30分間撹拌しながら、アンチモントリノルマルブトキシドを2-ノルマルブトキシエタノールに完全に溶解して、1mol/kg濃度のアンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液を得た。
磁石式撹拌子を入れた20gのパイレックス製の試薬瓶へ、富士フィルム和光純薬社製のアンチモントリノルマルブトキシド3.4110gと、関東化学社製の鹿特級 2-ノルマルブトキシエタノール6.5890gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、室温にて30分間撹拌しながら、アンチモントリノルマルブトキシドを2-ノルマルブトキシエタノールに完全に溶解して、1mol/kg濃度のアンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液を得た。
[6-1-6]ニオブペンタエトキシドの2-ノルマルブトキシエタノール溶液の調製
磁石式撹拌子を入れた20gのパイレックス製の試薬瓶へ、高純度化学研究所製の4N ニオブペンタエトキシド3.1821gと、関東化学社製の鹿特級 2-ノルマルブトキシエタノール6.8179gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、室温にて30分間撹拌しながら、ニオブペンタエトキシドを2-ノルマルブトキシエタノールに完全に溶解して、1mol/kg濃度のニオブペンタエトキシドの2-ノルマルブトキシエタノール溶液を得た。
磁石式撹拌子を入れた20gのパイレックス製の試薬瓶へ、高純度化学研究所製の4N ニオブペンタエトキシド3.1821gと、関東化学社製の鹿特級 2-ノルマルブトキシエタノール6.8179gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、室温にて30分間撹拌しながら、ニオブペンタエトキシドを2-ノルマルブトキシエタノールに完全に溶解して、1mol/kg濃度のニオブペンタエトキシドの2-ノルマルブトキシエタノール溶液を得た。
[6-1-7]タンタルペンタエトキシドの2-ノルマルブトキシエタノール溶液の調製
磁石式撹拌子を入れた20gのパイレックス製の試薬瓶へ、高純度化学研究所製の5N タンタルペンタエトキシド4.0626gと、関東化学社製の鹿特級 2-ノルマルブトキシエタノール5.9374gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、室温にて30分間撹拌しながら、タンタルペンタエトキシドを2-ノルマルブトキシエタノールに完全に溶解して、1mol/kg濃度のタンタルペンタエトキシドの2-ノルマルブトキシエタノール溶液を得た。
磁石式撹拌子を入れた20gのパイレックス製の試薬瓶へ、高純度化学研究所製の5N タンタルペンタエトキシド4.0626gと、関東化学社製の鹿特級 2-ノルマルブトキシエタノール5.9374gとを秤量した。次いで、試薬瓶をマグネチックスターラー機能付きホットプレート上に載せ、室温にて30分間撹拌しながら、タンタルペンタエトキシドを2-ノルマルブトキシエタノールに完全に溶解して、1mol/kg濃度のタンタルペンタエトキシドの2-ノルマルブトキシエタノール溶液を得た。
[6-2]各実施例および比較例に係る仮焼成体の製造
上記のようにして得られた各金属化合物の溶液を用いて、以下のようにして、各実施例および各比較例に係る仮焼成体を製造した。
上記のようにして得られた各金属化合物の溶液を用いて、以下のようにして、各実施例および各比較例に係る仮焼成体を製造した。
(実施例1)
本実施例では、以下のようにして、組成Li6.5La3(Zr1.35Ge0.15Sb0.50)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本実施例では、以下のようにして、組成Li6.5La3(Zr1.35Ge0.15Sb0.50)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液7.800g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本実施例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.350g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.150g、アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.500gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(実施例2)
本実施例では、以下のようにして、組成Li6.5La3(Zr1.10Ge0.40Sb0.50)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本実施例では、以下のようにして、組成Li6.5La3(Zr1.10Ge0.40Sb0.50)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液7.800g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本実施例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.100g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.400g、アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.500gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(実施例3)
本実施例では、以下のようにして、組成Li6.6La3(Zr1.55Ge0.05Sb0.40)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本実施例では、以下のようにして、組成Li6.6La3(Zr1.55Ge0.05Sb0.40)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液7.920g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本実施例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.550g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.050g、アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.400gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(実施例4)
本実施例では、以下のようにして、組成Li6La3(Zr0.85Ge0.15Sb1.00)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本実施例では、以下のようにして、組成Li6La3(Zr0.85Ge0.15Sb1.00)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液7.200g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本実施例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.850g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.150g、アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.000gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(実施例5)
本実施例では、以下のようにして、組成Li6.7La3(Zr1.50Ge0.20Sb0.30)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本実施例では、以下のようにして、組成Li6.7La3(Zr1.50Ge0.20Sb0.30)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液8.040g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本実施例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.500g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.200g、アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.300gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(実施例6)
本実施例では、以下のようにして、組成Li6.3La3(Zr1.25Ge0.05Sb0.50Ta0.20)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本実施例では、以下のようにして、組成Li6.3La3(Zr1.25Ge0.05Sb0.50Ta0.20)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液7.560g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本実施例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.250g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.050g、アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.500g、タンタルペンタエトキシドの2-ノルマルブトキシエタノール溶液0.200gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(実施例7)
本実施例では、以下のようにして、組成Li5.85La3(Zr0.55Ge0.30Sb0.50Nb0.25Ta0.40)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本実施例では、以下のようにして、組成Li5.85La3(Zr0.55Ge0.30Sb0.50Nb0.25Ta0.40)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液7.020g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本実施例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.550g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.300g、アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.500g、ニオブペンタエトキシドの2-ノルマルブトキシエタノール溶液0.250g、タンタルペンタエトキシドの2-ノルマルブトキシエタノール溶液0.400gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(実施例8)
本実施例では、以下のようにして、組成Li5.6La3(Zr0.40Ge0.20Sb0.60Nb0.35Ta0.45)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本実施例では、以下のようにして、組成Li5.6La3(Zr0.40Ge0.20Sb0.60Nb0.35Ta0.45)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液6.720g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本実施例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.400g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.200g、アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.600g、ニオブペンタエトキシドの2-ノルマルブトキシエタノール溶液0.350g、タンタルペンタエトキシドの2-ノルマルブトキシエタノール溶液0.450gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(実施例9)
本実施例では、以下のようにして、組成Li6.35La3(Zr1.20Ge0.15Sb0.40Nb0.25)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本実施例では、以下のようにして、組成Li6.35La3(Zr1.20Ge0.15Sb0.40Nb0.25)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液7.620g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本実施例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.200g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.150g、アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.400g、ニオブペンタエトキシドの2-ノルマルブトキシエタノール溶液0.250gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(比較例1)
本比較例では、以下のようにして、組成Li6La3(Zr1.00Sb1.00)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本比較例では、以下のようにして、組成Li6La3(Zr1.00Sb1.00)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液7.200g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本比較例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.000g、アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.000gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(比較例2)
本比較例では、以下のようにして、組成Li6.4La3(Zr0.95Ge0.45Sb0.60)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本比較例では、以下のようにして、組成Li6.4La3(Zr0.95Ge0.45Sb0.60)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液7.680g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本比較例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.950g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.450g、アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.600gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(比較例3)
本比較例では、以下のようにして、組成Li6.8La3(Zr1.40Ge0.40Ta0.20)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本比較例では、以下のようにして、組成Li6.8La3(Zr1.40Ge0.40Ta0.20)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液8.160g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本比較例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.400g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.400g、タンタルペンタエトキシドの2-ノルマルブトキシエタノール溶液0.200gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(比較例4)
本比較例では、以下のようにして、組成Li6.8La3(Zr1.65Ge0.15Ta0.20)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本比較例では、以下のようにして、組成Li6.8La3(Zr1.65Ge0.15Ta0.20)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液8.160g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本比較例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.650g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.150g、タンタルペンタエトキシドの2-ノルマルブトキシエタノール溶液0.200gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(比較例5)
本比較例では、以下のようにして、組成Li6.75La3(Zr1.35Ge0.40Nb0.25)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本比較例では、以下のようにして、組成Li6.75La3(Zr1.35Ge0.40Nb0.25)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液8.100g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本比較例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.350g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.400g、ニオブペンタエトキシドの2-ノルマルブトキシエタノール溶液0.250gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(比較例6)
本比較例では、以下のようにして、組成Li6.75La3(Zr1.60Ge0.15Nb0.25)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本比較例では、以下のようにして、組成Li6.75La3(Zr1.60Ge0.15Nb0.25)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液8.100g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本比較例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.600g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.150g、ニオブペンタエトキシドの2-ノルマルブトキシエタノール溶液0.250gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(比較例7)
本比較例では、以下のようにして、組成Li6.3La3(Zr1.30Sb0.50Ta0.20)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本比較例では、以下のようにして、組成Li6.3La3(Zr1.30Sb0.50Ta0.20)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液7.560g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本比較例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.300g、アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液0.500g、タンタルペンタエトキシドの2-ノルマルブトキシエタノール溶液0.200gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(比較例8)
本比較例では、以下のようにして、組成Li6.9La3(Zr1.68Ge0.22Nb0.05Ta0.05)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本比較例では、以下のようにして、組成Li6.9La3(Zr1.68Ge0.22Nb0.05Ta0.05)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液8.280g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本比較例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.680g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.220g、ニオブペンタエトキシドの2-ノルマルブトキシエタノール溶液0.050g、タンタルペンタエトキシドの2-ノルマルブトキシエタノール溶液0.050gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
(比較例9)
本比較例では、以下のようにして、組成Li5.45La3(Zr1.25Ge0.20Sb1.55)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
本比較例では、以下のようにして、組成Li5.45La3(Zr1.25Ge0.20Sb1.55)O12で示される固体電解質の製造に用いる仮焼成体を製造した。
まず、パイレックス製の試薬瓶へ、上記のようにして調製した硝酸リチウムの2-ノルマルブトキシエタノール溶液6.540g、硝酸ランタン・六水和物の2-ノルマルブトキシエタノール溶液3.000g、有機溶媒としての2-ノルマルブトキシエタノール2mLを秤量した。そこに、磁石式撹拌子を投入して、マグネチックスターラー機能付きホットプレート上に載置した。
ホットプレートの設定温度を160℃とし、回転速度を500rpmとして加熱・撹拌を30分間行った。
次に、2-ノルマルブトキシエタノール2mLを追加して、再び加熱・撹拌を30分間行った。30分間の加熱・撹拌を1回の脱水処理とすると、本比較例では2回の脱水処理が行われたことになる。
脱水処理後に、試薬瓶に蓋をして密封した。
脱水処理後に、試薬瓶に蓋をして密封した。
次に、ホットプレートの設定温度を25℃とし、回転速度を500rpmとして撹拌し、室温まで徐冷した。
次に、試薬瓶を乾燥雰囲気下に移し、当該試薬瓶に、上記のようにして調製したジルコニウムテトラノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.250g、ゲルマニウムテトラエトキシドの2-ノルマルブトキシエタノール溶液0.200g、アンチモントリノルマルブトキシドの2-ノルマルブトキシエタノール溶液1.550gを秤量した。そこに、磁石式撹拌子を投入した。
次いで、マグネチックスターラーの回転速度を500rpmとして室温にて30分間撹拌し、前駆体溶液を得た。
次に、内径50mm×高さ20mmのチタン製シャーレに、上記の前駆体溶液を入れた。これをホットプレートに載せ、ホットプレートの設定温度を160℃として1時間加熱し、続いて、180℃として30分間加熱し、溶媒を除去した。
続いて、ホットプレートの設定温度を360℃として30分間加熱し、含まれる有機成分の大部分を燃焼により分解させた。
その後、ホットプレートの設定温度を540℃として1時間加熱し、残存する有機成分を燃焼、分解させた。そして、ホットプレート上で室温まで徐冷して仮焼成体としての固体組成物を得た。
[6-3]固体電解質の製造
上記のようにして得られた各実施例および各比較例に係る仮焼成体を用いて、それぞれ、以下のようにして固体電解質を製造した。
上記のようにして得られた各実施例および各比較例に係る仮焼成体を用いて、それぞれ、以下のようにして固体電解質を製造した。
まず、前記の仮焼成体を、メノウ乳鉢に移して充分に粉砕した。このようにして得られた仮焼成体の粉砕物を0.150g秤量し、成形型として内径10mmの排気ポート付きペレットダイスに投入して、0.624kN/mm2の圧力にて5分間加圧し、円盤状の成形物である仮焼成体ペレットを作製した。
さらに、仮焼成体ペレットを酸化マグネシウム製の坩堝に入れ、酸化マグネシウム製の蓋をして、ヤマト科学社製の電気マッフル炉FP311にて本焼成を施した。本焼成条件は、実施例1~5および比較例1~6については、900℃で8時間、実施例6~9および比較例7~9については、850℃で8時間とした。次いで、電気マッフル炉を室温まで徐冷して、坩堝から、直径約9.5mm、厚さ約600μmの円盤状の固体電解質を取り出した。
前記各実施例および各比較例の固体電解質の組成および結晶相を表1にまとめて示す。固体電解質の結晶相は、フィリップス社製のX線回折装置X’Pert-PROを用いた測定により得られたX線回折パターンから特定した。表1中、正方晶の結晶構造を「t」、立方晶の結晶構造を「c」と示した。なお、前記各実施例および各比較例の固体電解質中におけるオキソ酸化合物の含有率は、いずれも、10ppm以下であった。また、前記各実施例および各比較例に係る仮焼成体は、いずれも、溶媒の含有率が0.1質量%以下であった。また、前記各実施例に係る仮焼成体の一部について、TG-DTAで昇温レート10℃/分で測定したところ、300℃以上1,000℃以下の範囲における発熱ピークは、いずれも、1つのみ観測された。このことから、前記各実施例に係る仮焼成体は、実質的に単独の結晶相で構成されているといえる。
[6-4]固体電解質についての評価
[6-4-1]総リチウムイオン伝導率の評価
前記各実施例および各比較例の円盤状の固体電解質について、それぞれ両面に、直径が5mmの円形の金属リチウム箔を押圧して活性化電極とした。
[6-4-1]総リチウムイオン伝導率の評価
前記各実施例および各比較例の円盤状の固体電解質について、それぞれ両面に、直径が5mmの円形の金属リチウム箔を押圧して活性化電極とした。
そして、交流インピーダンスアナライザーSolatron1260(Solatron Anailtical社製)を用いて電気化学インピーダンスを測定して総リチウムイオン伝導率を求めた。
電気化学インピーダンス測定は、交流振幅10mVにて、107Hzから10-1Hzの周波数領域にて行った。電気化学インピーダンス測定によって得られた総リチウムイオン伝導率は、固体電解質におけるバルクのリチウムイオン伝導率と粒界のリチウムイオン伝導率とを含むものである。
これらの結果を、表2にまとめて示す。
これらの結果を、表2にまとめて示す。
表2から明らかなように、Geおよび上記Mを所定の割合で含む前記実施例は、いずれも、優れたリチウムイオン伝導率を有していた。一方、Geを含まない比較例1および7、Geの含有率が高すぎる比較例2、Sbを含まない比較例3~6および8、上記Mの含有率が高すぎる比較例9のいずれも、リチウムイオン伝導率が劣っていた。
[6-4-2]電位窓の評価
前記各実施例の円盤状の固体電解質について、それぞれ、一方の面にリチウム金属箔を貼り付け、他方の面に銅箔を貼り付けたものを電気化学測定セルとして用いた。CV測定は、電気化学測定装置AUTOLAB(Metrohm Autolab社製)を用いて行った。参照極および対極をリチウム金属箔に接続するとともに、作用極を銅箔に接続し、リチウム金属の電位(-3.06V vs.SHE)を0Vとして、-1~5Vの範囲において0.04V/secの速度で電位掃引して応答電流を測定した。
前記各実施例の円盤状の固体電解質について、それぞれ、一方の面にリチウム金属箔を貼り付け、他方の面に銅箔を貼り付けたものを電気化学測定セルとして用いた。CV測定は、電気化学測定装置AUTOLAB(Metrohm Autolab社製)を用いて行った。参照極および対極をリチウム金属箔に接続するとともに、作用極を銅箔に接続し、リチウム金属の電位(-3.06V vs.SHE)を0Vとして、-1~5Vの範囲において0.04V/secの速度で電位掃引して応答電流を測定した。
CV測定を実施し、リチウムイオンの濃度分布が平衡化される2サイクル目のときの、掃引電位-応答電流を図20のようにプロットした。測定の結果、酸化還元応答電流に二つのピークが観測され、電位掃引方向0⇒-1Vのときリチウムイオンがリチウム金属として還元析出する還元電流が、また電位掃引方向0⇒1Vのとき、リチウム金属がイオン化するのに伴う酸化電流がそれぞれのピークに対応すると見られた。いずれの電流も電位0Vから若干のずれが見られるが、これは酸化還元反応に伴う活性化エネルギーや電極との界面抵抗を含む過電圧やオーミックドロップによるものと推測される。
一方、リチウム金属の酸化還元以外の応答電流は-1~5Vの間で検出限界未満であったことから、前記各実施例の固体電解質は、電池の作動電位範囲である0~4V(vs.SHE)においてリチウムイオンのみを伝導する安定な固体電解質であると考えられる。
ちなみに、図20で示すCV曲線の番号2から番号3付近のピークは、リチウムイオンからリチウム金属への還元析出電流を、番号4から番号5付近のピークは、リチウム金属がイオン化して溶解する酸化溶解電流を表していると考えられる。前記各実施例の固体電解質の結晶成分自体の酸化還元応答電流に帰属されるピーク電流は観測されていない。なお、リチウムイオン⇔リチウム金属が起きる電位では、実用上電池動作を行わない。
[6-4-3]ラマン散乱スペクトルの評価
前記各実施例および各比較例の円盤状の固体電解質について、日本電子社製のラマン分光装置S-2000を用いて測定を行い、ラマン散乱スペクトルを得た。ラマン散乱スペクトルから晶系(立方晶、正方晶)を確認した。
前記各実施例および各比較例の円盤状の固体電解質について、日本電子社製のラマン分光装置S-2000を用いて測定を行い、ラマン散乱スペクトルを得た。ラマン散乱スペクトルから晶系(立方晶、正方晶)を確認した。
その結果、比較例7では、200cm-1~300cm-1の領域と、300cm-1~400cm-1の領域とで、各々3本ずつにピークがスプリットしていたのに対し、前記各実施例では、いずれも縮退を起こし、ブロードな山型のピークを示した。比較例7では、リチウムが本来のサイトに固定されているのに対して、前記各実施例では、リチウムが自由に動くことができるために縮退したスペクトルとなっていると考えられる。比較例7ではリチウムイオン伝導率の低い正方晶(t)であり、前記各実施例ではリチウム伝導率が桁違いに高い立方晶(c)である。
[7]固体電解質被覆正極活物質粉末の製造
(実施例10)
前記実施例1で述べたのと同様にして調製した前駆体溶液と、リチウムイオン二次電池用正極活物質としてのLiCoO2粒子とを用意し、これらを所定の割合で混合したうえで、アズワン社製の温調機能付超音波洗浄器US-1を用いて、55℃にて、発振周波数38kHz、出力80Wの条件にて2時間、超音波分散を行った。
(実施例10)
前記実施例1で述べたのと同様にして調製した前駆体溶液と、リチウムイオン二次電池用正極活物質としてのLiCoO2粒子とを用意し、これらを所定の割合で混合したうえで、アズワン社製の温調機能付超音波洗浄器US-1を用いて、55℃にて、発振周波数38kHz、出力80Wの条件にて2時間、超音波分散を行った。
その後、遠心分離機にて10,000rpmで3分間の遠心分離を行い、上澄み液を除去した。
得られた沈殿物を酸化マグネシウム製の坩堝に移し、蓋をして雰囲気制御炉を用いて1L/分間の流量で乾燥空気を供給しつつ、360℃で30分間焼成し、その後、540℃で1時間焼成し、さらに、900℃で3時間焼成を行い、室温まで冷却した。これにより、母粒子であるLiCoO2粒子がLi6.5La3(Zr1.35Ge0.15Sb0.50)O12で表されるガーネット型の固体電解質で構成された被覆層で被覆された構成粒子を多数含む固体電解質被覆正極活物質粉末が得られた。
(実施例11、12)
前駆体溶液と、LiCoO2粒子との混合比率を調整することにより、被覆層の厚さを変更した以外は、前記実施例10と同様にして固体電解質被覆正極活物質粉末を製造した。
前駆体溶液と、LiCoO2粒子との混合比率を調整することにより、被覆層の厚さを変更した以外は、前記実施例10と同様にして固体電解質被覆正極活物質粉末を製造した。
(実施例13)
リチウムイオン二次電池用正極活物質として、LiCoO2粒子の代わりに、LiNi0.5Co0.2Mn0.3O2粒子を用いるとともに、当該LiNi0.5Co0.2Mn0.3O2粒子と前駆体溶液との混合比率を調整した以外は、前記実施例10と同様にして固体電解質被覆正極活物質粉末を製造した。
リチウムイオン二次電池用正極活物質として、LiCoO2粒子の代わりに、LiNi0.5Co0.2Mn0.3O2粒子を用いるとともに、当該LiNi0.5Co0.2Mn0.3O2粒子と前駆体溶液との混合比率を調整した以外は、前記実施例10と同様にして固体電解質被覆正極活物質粉末を製造した。
(比較例10)
本比較例では、リチウムイオン二次電池用正極活物質としてのLiCoO2粒子に被覆層を形成することなく、当該LiCoO2粒子の集合体をそのまま、正極活物質粉末とした。言い換えると、固体電解質被覆正極活物質粉末の代わりに、固体電解質で被覆されていない正極活物質粉末を用意した。
本比較例では、リチウムイオン二次電池用正極活物質としてのLiCoO2粒子に被覆層を形成することなく、当該LiCoO2粒子の集合体をそのまま、正極活物質粉末とした。言い換えると、固体電解質被覆正極活物質粉末の代わりに、固体電解質で被覆されていない正極活物質粉末を用意した。
(比較例11)
スパッタ装置を用いて、リチウムイオン二次電池用正極活物質としてのLiCoO2粒子の表面に固体電解質であるLiNbO3で構成された被覆層を2.9nm成膜して、固体電解質被覆正極活物質粉末を用意した。
スパッタ装置を用いて、リチウムイオン二次電池用正極活物質としてのLiCoO2粒子の表面に固体電解質であるLiNbO3で構成された被覆層を2.9nm成膜して、固体電解質被覆正極活物質粉末を用意した。
(比較例12)
本比較例では、リチウムイオン二次電池用正極活物質としてのLiNi0.5Co0.2Mn0.3O2粒子に被覆層を形成することなく、当該LiNi0.5Co0.2Mn0.3O2粒子の集合体をそのまま、正極活物質粉末とした。言い換えると、固体電解質被覆正極活物質粉末の代わりに、固体電解質で被覆されていない正極活物質粉末を用意した。
本比較例では、リチウムイオン二次電池用正極活物質としてのLiNi0.5Co0.2Mn0.3O2粒子に被覆層を形成することなく、当該LiNi0.5Co0.2Mn0.3O2粒子の集合体をそのまま、正極活物質粉末とした。言い換えると、固体電解質被覆正極活物質粉末の代わりに、固体電解質で被覆されていない正極活物質粉末を用意した。
上記のようにして得られた実施例10~13および比較例11に係る固体電解質被覆正極活物質粉末、比較例10、12に係る正極活物質粉末は、いずれも溶媒の含有率が0.1質量%以下、オキソアニオンの含有率が100ppm以下であった。また、EDS付フィールドエミッション型走査電子顕微鏡(日本電子社製)を用いた測定により、反射電子像を得たところ、被覆層が形成されていない正極活物質粉末では、表面に何も観察されなかった。
LiCoO2粒子の表面にLi6.5La3(Zr1.35Ge0.15Sb0.50)O12の被覆層が形成された固体電解質被覆正極活物質粉末の構成粒子では、表面に、白いコントラストが観察された。濃度が増加するにつれて白いコントラストは増加していた。これは、前駆体から生成したLi6.5La3(Zr1.35Ge0.15Sb0.50)O12であると考えられる。X線回折装置からは、いずれもLiCoO2に帰属される回折線のみ確認されたことから、Li6.5La3(Zr1.35Ge0.15Sb0.50)O12由来の回折強度が検出下限を下回るほど、被覆層の膜厚は薄いと考えられる。上述のEDS付フィールドエミッション型走査電子顕微鏡(日本電子社製)によると、被覆層が薄く、含有率の低いGeとSbが検出されなかったが、LiCoO2粒子の表面にLaおよびZrが検出された。Li6.5La3(Zr1.35Ge0.15Sb0.50)O12の組成比からLaとZrの組成比は3:1.35であり、この測定により検出されたLaとZrの含有率の比は、モル比で、3.1:1.45であったことから、おおよそ組成比が一致しており、Li6.5La3(Zr1.35Ge0.15Sb0.50)O12が生成していると考えられる。また、前記実施例10~13の固体電解質被覆正極活物質粉末の製造過程の第1の加熱工程後の被覆層について、TG-DTAを用いて昇温速度10℃/分で測定を行ったところ、300℃以上1,000℃以下の範囲における発熱ピークは、いずれも、1つのみ観測された。このことから、前記実施例10~13では第1の加熱工程後の被覆層は、実質的に単独の結晶相で形成されているといえる。前記実施例10~13では、最終的に得られた固体電解質被覆正極活物質粉末の構成粒子の被覆層がガーネット型の結晶相を有する固体電解質で構成されたものであったのに対して、第1の加熱工程後の被覆層を構成する前駆酸化物は、パイロクロア型の結晶を有するものであった。また、前記実施例10~13では第1の加熱工程後の組成物中に含まれる液体成分の含有率は、いずれも、0.1質量%以下であった。また、前記実施例10~13では、いずれも、第1の加熱工程後の被覆層に含まれる酸化物の結晶粒径は、20nm以上160nm以下であった。
実施例10~13および比較例11に係る固体電解質被覆正極活物質粉末、比較例10、12に係る正極活物質粉末の構成を表3にまとめて示す。
[8]固体電解質被覆正極活物質粉末の評価
上記のようにして得られた実施例10~13および比較例11に係る固体電解質被覆正極活物質粉末をそれぞれ用いて、以下のようにして電気測定セルを製造した。また、以下の説明については、固体電解質被覆正極活物質粉末を用いた場合について説明するが、固体電解質被覆正極活物質粉末の代わりに正極活物質粉末を用いた以外は、比較例10、12についても同様に、電気測定セルを製造した。
上記のようにして得られた実施例10~13および比較例11に係る固体電解質被覆正極活物質粉末をそれぞれ用いて、以下のようにして電気測定セルを製造した。また、以下の説明については、固体電解質被覆正極活物質粉末を用いた場合について説明するが、固体電解質被覆正極活物質粉末の代わりに正極活物質粉末を用いた以外は、比較例10、12についても同様に、電気測定セルを製造した。
まず、固体電解質被覆正極活物質粉末を、導電助剤のアセチレンブラック(デンカ社製、デンカブラック)と粉体混合した後に、さらに、10質量%のポリフッ化ビニリデン(シグマアルドリッチジャパン社製)のn-メチルピロリジノン溶液を加えて、スラリーを得た。得られたスラリー中における固体電解質被覆正極活物質粉末、アセチレンブラック、ポリフッ化ビニリデンの含有量比は、質量比で、90:5:5であった。
次に、アルミニウム箔上に前記スラリーを塗布し真空乾燥し、正極を形成した。
形成された正極を直径13mmの円盤状に打ち抜き、セパレーターとしてのセルガード#2400(旭化成社製)を重ねて、溶質としてLiPF6を含み、かつ、非水溶媒としてエチレンカーボネートとジエチレンカーボネートとを含む有機電解液を注液し、本城金属社製のリチウム金属箔を負極として、CR2032型コインセルに封入して電気測定セルを得た。有機電解液としては、キシダ化学社製のLBG-96533を用いた。
形成された正極を直径13mmの円盤状に打ち抜き、セパレーターとしてのセルガード#2400(旭化成社製)を重ねて、溶質としてLiPF6を含み、かつ、非水溶媒としてエチレンカーボネートとジエチレンカーボネートとを含む有機電解液を注液し、本城金属社製のリチウム金属箔を負極として、CR2032型コインセルに封入して電気測定セルを得た。有機電解液としては、キシダ化学社製のLBG-96533を用いた。
その後、得られた電気測定セルを北斗電工社製の電池充放電評価システムHJ1001SD8に接続し、CCCV充電、CC放電として0.2C:8回、0.5C:5回、1C:5回、2C:5回、3C:5回、5C:5回、8C:5回、10C:5回、16C:5回および0.2C:5回行った。同じCレートでサイクルを繰り返した後、Cレートを増やす方法により、充放電特性を評価した。このときの充電・放電電流は、各セルの正極活物質重量から、LiCoO2は実用量として137mAh/g、NCM523は160mAh/gとして算出して設定した。
5サイクル目の16C放電時の放電容量を表4にまとめて示す。この数値が大きいほど、高負荷での充放電性能に優れているといえる。
表4から明らかなように、本発明では優れた結果が得られた。これに対し、比較例では、満足のいく結果は得られなかった。より具体的には、リチウムイオン二次電池用正極活物質としてLiCoO2粒子を用いた実施例10~12と比較例10、11との比較では、比較例10、11に比べて、実施例10~12では明らかに優れた結果が得られた。リチウムイオン二次電池用正極活物質としてLiNi0.5Co0.2Mn0.3O2粒子を用いた実施例13と比較例12との比較では、比較例12に比べて、実施例13では明らかに優れた結果が得られた。
また、前記実施例1で述べたのと同様にして調製した前駆体溶液の代わりに、前記実施例2~9で述べたのと同様にして調製した前駆体溶液を用いた以外は、前記実施例10~13と同様にして固体電解質被覆正極活物質粉末を製造し、当該固体電解質被覆正極活物質粉末について、上記[8]と同様にして評価を行ったところ、前記実施例10~13と同様の結果が得られた。
100…リチウムイオン電池、10…正極、10a…面、20…固体電解質層、30…負極、41,42…集電体、210…正極合材、210a…面、210b…面、211…正極活物質、212…固体電解質、220…電解質層、220a…面、330…負極合材、330a…面、330b…面、331…負極活物質、500…全自動フィルムアプリケーター、501…塗布ローラー、502…ドクターローラー、503…スキージー、504…搬送ローラー、505…ステージ、506…基材、80…ペレットダイス、81…蓋、20m…スラリー、20s…固体電解質形成用シート、20f…成形物、210m…スラリー、210s…正極合材形成用シート、210f…成形物、330m…スラリー、330s…負極合材形成用シート、330f…成形物、450f…成形物、S1~S4…ステップ、S11~S14…ステップ、S21~S24…ステップ、S31~S36…ステップ
Claims (5)
- 下記組成式(1)で示されることを特徴とする固体電解質。
Li7-yLa3(Zr2-x-yGexMy)O12・・・(1)
(式(1)中、x、yは、0.00<x≦0.40、0.00<y≦1.50を満たし、Mは、Sbであるか、または、Sbに加えてNbおよびTaのうちの少なくとも1種の元素である。) - 下記組成式(1)に含まれる金属元素を含む複数種の原材料を混合して、混合物を得る混合工程と、
前記混合物に第1の加熱処理を施して仮焼成体とする第1の加熱工程と、
前記仮焼成体に第2の加熱処理を施して、下記組成式(1)で示される結晶質の固体電解質を形成する第2の加熱工程と、を備えることを特徴とする固体電解質の製造方法。
Li7-yLa3(Zr2-x-yGexMy)O12・・・(1)
(式(1)中、x、yは、0.00<x≦0.40、0.00<y≦1.50を満たし、Mは、Sbであるか、または、Sbに加えてNbおよびTaのうちの少なくとも1種の元素である。) - 前記第1の加熱工程での加熱温度が500℃以上650℃以下である請求項2に記載の固体電解質の製造方法。
- 前記第2の加熱工程での加熱温度が800℃以上1000℃以下である請求項2または3に記載の固体電解質の製造方法。
- 活物質と、
前記活物質の表面の一部を被覆する請求項1に記載の固体電解質とを備えることを特徴とする複合体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020142421A JP2022038107A (ja) | 2020-08-26 | 2020-08-26 | 固体電解質、固体電解質の製造方法および複合体 |
CN202110968579.0A CN114122501B (zh) | 2020-08-26 | 2021-08-23 | 固体电解质、固体电解质的制造方法及复合体 |
US17/411,504 US12074278B2 (en) | 2020-08-26 | 2021-08-25 | Solid electrolyte, method for producing solid electrolyte, and composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020142421A JP2022038107A (ja) | 2020-08-26 | 2020-08-26 | 固体電解質、固体電解質の製造方法および複合体 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022038107A true JP2022038107A (ja) | 2022-03-10 |
Family
ID=80357176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020142421A Pending JP2022038107A (ja) | 2020-08-26 | 2020-08-26 | 固体電解質、固体電解質の製造方法および複合体 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12074278B2 (ja) |
JP (1) | JP2022038107A (ja) |
CN (1) | CN114122501B (ja) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4930857B2 (ja) | 2008-03-12 | 2012-05-16 | 住友電気工業株式会社 | 電解質粒子 |
JP5287499B2 (ja) * | 2009-05-21 | 2013-09-11 | 株式会社豊田中央研究所 | 全固体型リチウムイオン二次電池 |
JP2017004672A (ja) * | 2015-06-08 | 2017-01-05 | セイコーエプソン株式会社 | 電極複合体、電極複合体の製造方法およびリチウム電池 |
KR101709203B1 (ko) * | 2015-07-14 | 2017-02-22 | 재단법인 포항산업과학연구원 | 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
CN105489859A (zh) * | 2015-12-11 | 2016-04-13 | 上海动力储能电池系统工程技术有限公司 | 表面改性的高电压镍锰酸锂材料及其制备方法 |
CN109888374A (zh) * | 2019-01-22 | 2019-06-14 | 华南理工大学 | 一种多掺杂的石榴石型固体电解质材料及其制备方法 |
CN110176627B (zh) * | 2019-06-18 | 2023-02-28 | 济宁克莱泰格新能源科技有限公司 | 可抑制锂枝晶的锂镧锆氧基固体电解质材料及其制备方法和应用 |
-
2020
- 2020-08-26 JP JP2020142421A patent/JP2022038107A/ja active Pending
-
2021
- 2021-08-23 CN CN202110968579.0A patent/CN114122501B/zh active Active
- 2021-08-25 US US17/411,504 patent/US12074278B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US12074278B2 (en) | 2024-08-27 |
US20220069341A1 (en) | 2022-03-03 |
CN114122501A (zh) | 2022-03-01 |
CN114122501B (zh) | 2023-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210135282A1 (en) | Solid Electrolyte Composite Particle, Powder, And Method For Producing Composite Solid Electrolyte Molded Body | |
JP7331641B2 (ja) | 正極活物質複合粒子および粉末 | |
US11735766B2 (en) | Solid electrolyte, method for producing solid electrolyte, and composite | |
US11916194B2 (en) | Solid electrolyte, method for producing solid electrolyte, and composite | |
US20220069342A1 (en) | Solid Electrolyte, Method for Producing Solid Electrolyte, and Composite | |
US11641032B2 (en) | Solid electrolyte, method for producing solid electrolyte, and composite body | |
US11777140B2 (en) | Solid electrolyte, method for producing solid electrolyte, and composite body | |
JP7331640B2 (ja) | 正極活物質複合体 | |
US20210320325A1 (en) | Solid Composition And Method For Producing Solid Electrolyte Molded Body | |
US20210280900A1 (en) | Method For Producing Solid Composition And Method For Producing Solid Electrolyte | |
JP7342628B2 (ja) | 固体組成物および固体電解質の製造方法 | |
JP2022015857A (ja) | 負極活物質の前駆体溶液、負極活物質の前駆体粉末および負極活物質の製造方法 | |
JP2022092507A (ja) | 前駆体溶液、前駆体粉末、電極の製造方法および電極 | |
US12074278B2 (en) | Solid electrolyte, method for producing solid electrolyte, and composite | |
US11641031B2 (en) | Solid electrolyte, method for producing solid electrolyte, and composite body | |
CN113381061B (zh) | 固体电解质、固体电解质的制造方法及复合体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20210914 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20211101 |