[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2022075849A - Flow rate adjustment valve - Google Patents

Flow rate adjustment valve Download PDF

Info

Publication number
JP2022075849A
JP2022075849A JP2022044843A JP2022044843A JP2022075849A JP 2022075849 A JP2022075849 A JP 2022075849A JP 2022044843 A JP2022044843 A JP 2022044843A JP 2022044843 A JP2022044843 A JP 2022044843A JP 2022075849 A JP2022075849 A JP 2022075849A
Authority
JP
Japan
Prior art keywords
valve
valve port
flow rate
diameter
surface portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022044843A
Other languages
Japanese (ja)
Other versions
JP7264548B2 (en
Inventor
威 菅沼
Takeshi Suganuma
泰利 猪野
Yasutoshi Ino
絵理 大森
Eri Omori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020114575A external-priority patent/JP7050347B2/en
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2022044843A priority Critical patent/JP7264548B2/en
Publication of JP2022075849A publication Critical patent/JP2022075849A/en
Priority to JP2023062158A priority patent/JP2023080169A/en
Application granted granted Critical
Publication of JP7264548B2 publication Critical patent/JP7264548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Valve Housings (AREA)
  • Lift Valve (AREA)
  • Details Of Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow rate adjustment valve capable of effectively reducing noise generated due to pressure fluctuation and a refrigerant separation phenomenon in passing through a valve port, and reducing pressure loss and the like.
SOLUTION: In a flow rate adjustment valve 1 including a valve main body 5 provided with: a valve chest 6 and a valve port 10; and a valve body 30 designed to obtain an equal percent characteristic or a characteristic approximate thereto as flow rate characteristics and having a curved surface portion 33 for changing a flow rate of fluid flowing through the valve port 10 according to a lifting amount, and increased in curvature or control angle of the curved surface portion 33 continuously or gradually toward a tip, a diameter of the valve port 10 is successively increased in three or more stages in accordance with separation from the valve chest 6. Concretely, a first valve port portion 11 having a diameter D1, a second valve port portion 12 having a diameter D2 (>D1), and a third valve port portion 13 having a diameter D3(>D2) are successively disposed from the valve chest 6 side. More preferably, D1, D2, D3 are determined so that (valve port ratio: D2/D1) and (valve port ratio: D3/D2) are kept within prescribed ranges.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、弁室及び弁口(オリフィス)が設けられた弁本体と、リフト量に応じて前記弁口を流れる流体の流量を変化させる弁体とを備えた流量調整弁に係り、特に、ヒートポンプ式冷暖房システム等において冷媒流量を調整するのに好適な流量調整弁に関する。 The present invention relates to a flow rate adjusting valve including a valve body provided with a valve chamber and a valve port (orifice) and a valve body that changes the flow rate of the fluid flowing through the valve port according to the lift amount. The present invention relates to a flow rate adjusting valve suitable for adjusting a refrigerant flow rate in a heat pump type heating / cooling system or the like.

流量調整弁における弁開度(リフト量)と流量との関係、すなわち、流量特性としては、リニア特性とイコールパーセント特性とがよく知られている。リニア特性は、弁開度の変化に対する流量の変化率が一定である特性を言い、イコールパーセント特性は、弁開度の変化率が流量に比例する特性を言う。 The relationship between the valve opening (lift amount) and the flow rate in the flow rate adjusting valve, that is, the linear characteristic and the equal percent characteristic are well known as the flow rate characteristics. The linear characteristic refers to a characteristic in which the rate of change in flow rate with respect to a change in valve opening is constant, and the equal percentage characteristic refers to a characteristic in which the rate of change in valve opening is proportional to the flow rate.

図5は、イコールパーセント特性が得られるようにされた流量調整弁の一例の要部を示している。図示例の流量調整弁1’は、ヒートポンプ式冷暖房システム等において冷媒流量を調整するために使用されるもので、弁室6、逆立円錐台面からなる弁座8、及び円筒面からなる弁口15が設けられた弁本体5と、弁座8からのリフト量に応じて弁口15を流れる流体の流量を変化させる弁体20とを備え、弁体20は、例えば特許文献1等に所載の如くの、雄ねじが設けられた弁軸、雌ねじが設けられたガイドステム、及びステッピングモータ等で構成されるねじ送り式昇降駆動機構により、弁座8に接離するように昇降せしめられる。 FIG. 5 shows the main part of an example of a flow control valve in which equal percent characteristics are obtained. The flow rate adjusting valve 1'in the illustrated example is used to adjust the flow rate of the refrigerant in a heat pump type heating / cooling system or the like, and has a valve chamber 6, a valve seat 8 made of an inverted conical base surface, and a valve port made of a cylindrical surface. A valve body 5 provided with 15 and a valve body 20 that changes the flow rate of the fluid flowing through the valve port 15 according to the amount of lift from the valve seat 8 are provided, and the valve body 20 is described in, for example, Patent Document 1. As shown in the above, a screw feed type elevating drive mechanism including a valve shaft provided with a male screw, a guide stem provided with a female screw, a stepping motor, and the like is used to raise and lower the valve seat 8 so as to be in contact with and separated from the valve seat 8.

弁体20は、弁座8に着接する着接面部22と、該着接面部22の下側に連なる、流量特性としてイコールパーセント特性を得るための楕球状の曲面部23とを有する。曲面部23は、卵の下半分に類似した形状を有しており、その外周面は上端23aから下端23bにかけて次第に曲がり具合がきつく(曲率が大きく)なっている。 The valve body 20 has a contact surface portion 22 that is in contact with the valve seat 8 and an elliptical curved surface portion 23 that is connected to the lower side of the contact surface portion 22 and is connected to the lower side to obtain an equal percent characteristic as a flow rate characteristic. The curved surface portion 23 has a shape similar to the lower half of the egg, and the outer peripheral surface thereof is gradually bent from the upper end 23a to the lower end 23b (the curvature is large).

かかるイコールパーセント特性が得られるようにされた流量調整弁1’においては、図5において太線矢印で示される如くに、冷媒流れ方向が弁室6→弁口15であるとき、冷媒が曲面部23に沿って流れるが、弁口15通過時に急激な圧力変動、冷媒剥離現象が生じやすく、それに伴い、渦やキャビテーションが発生・成長しやすくなり、比較的大きな騒音が発生するという問題があった。 In the flow control valve 1'in which the equal percent characteristic is obtained, as shown by the thick arrow in FIG. 5, when the refrigerant flow direction is from the valve chamber 6 to the valve port 15, the refrigerant is the curved surface portion 23. However, there is a problem that sudden pressure fluctuations and refrigerant separation phenomena are likely to occur when passing through the valve port 15, and as a result, vortices and cavitation are likely to occur and grow, and relatively loud noise is generated.

なお、上記のようにイコールパーセント特性を得るために、弁体20に楕球状の曲面部23を設けることは加工コスト、費用対効果等の面から問題があるので、図6に示される如くの、イコールパーセント特性に近似した特性が得られるようにされた流量調整弁1’’が開発されている。図示例の流量調整弁1’’は、弁室形成部材6Aが固着されるとともに、短円筒面からなる第1弁口部17Aと円錐台面からなる第2弁口部17Bとからなる弁口17が設けられ、第2弁口部17Bの下部外周に導管が接続される管継手14が連結された弁本体5と、弁座8からのリフト量に応じて弁口17を流れる流体の流量を変化させる弁体30とを備える。 It should be noted that providing the elliptical curved surface portion 23 on the valve body 20 in order to obtain the equal percent characteristic as described above has problems in terms of processing cost, cost effectiveness, etc., and is therefore shown in FIG. , A flow control valve 1'' has been developed so that characteristics close to the equal percent characteristics can be obtained. In the flow rate adjusting valve 1'' of the illustrated example, the valve chamber forming member 6A is fixed, and the valve port 17 is composed of a first valve port 17A formed of a short cylindrical surface and a second valve port 17B formed of a conical base surface. The flow rate of the fluid flowing through the valve port 17 according to the lift amount from the valve seat 8 and the valve body 5 to which the pipe joint 14 to which the conduit is connected is connected to the lower outer periphery of the second valve port portion 17B is provided. It is provided with a valve body 30 to be changed.

弁体30は、弁座8に着座する着座面部32と、該着座面部32の下側に連なる、流量特性としてイコールパーセント特性に近似した特性を得るための曲面部33とを有する。曲面部33は、楕球面を疑似するように先端に近づくに従って制御角(弁体30の中心軸線Oと平行な線との交差角)が段階的に大きくされた複数段(ここでは5段)の円錐テーパ面部33A~33Eを有しており、最上段の円錐テーパ面部33Aの第1制御角θ1は、通常、3°<θ1<15°(ここでは5°)に設定され、最下段の円錐テーパ面部33Eは先の尖った円錐面となっている。 The valve body 30 has a seating surface portion 32 seated on the valve seat 8 and a curved surface portion 33 connected to the lower side of the seating surface portion 32 to obtain a characteristic similar to an equal percent characteristic as a flow rate characteristic. The curved surface portion 33 has a plurality of stages (here, 5 stages) in which the control angle (intersection angle between the central axis O of the valve body 30 and the line parallel to the line) is gradually increased as it approaches the tip so as to imitate an elliptical spherical surface. The first control angle θ1 of the uppermost conical tapered surface portion 33A is usually set to 3 ° <θ1 <15 ° (here, 5 °), and the lowermost conical tapered surface portion 33A to 33E is provided. The conical tapered surface portion 33E is a conical surface with a sharp point.

一方、特許文献2には、通常のリニア特性が得られるようにされた流量調整弁において、弁口の寸法形状を特定のものとして、上記した如くの、弁口通過時における圧力変動や冷媒剥離現象等に起因して発生する騒音を抑制するようにしたものが開示されている。 On the other hand, in Patent Document 2, in a flow rate adjusting valve in which a normal linear characteristic can be obtained, the dimensional shape of the valve opening is specified, and as described above, the pressure fluctuation and the refrigerant separation when passing through the valve opening are specified. A device that suppresses noise generated due to a phenomenon or the like is disclosed.

特開2012-172839号公報Japanese Unexamined Patent Publication No. 2012-172839 特許第5696093号公報Japanese Patent No. 5696093

しかしながら、特許文献2に所載の流量調整弁においては、弁口長を相当長く設定する必要があるため、圧力損失が大きくなり、適正な冷媒流量が得られ難いという問題があり、さらに、弁口の寸法形状は、リニア特性用の弁体に合わせたものであるので、上記したイコールパーセント特性及びそれに近似した特性を持つ流量調整弁に適用しても、十分な騒音低減効果は得られない。 However, in the flow rate adjusting valve described in Patent Document 2, since it is necessary to set the valve port length considerably long, there is a problem that the pressure loss becomes large and it is difficult to obtain an appropriate flow rate of the refrigerant, and further, the valve. Since the size and shape of the mouth are matched to the valve body for linear characteristics, even if it is applied to the flow control valve having the above-mentioned equal percent characteristics and characteristics similar to it, a sufficient noise reduction effect cannot be obtained. ..

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、弁口通過時における圧力変動や冷媒剥離現象に起因して発生する騒音を効果的に低減できるとともに、圧力損失の低減等も図ることのできる流量調整弁を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to be able to effectively reduce noise generated due to pressure fluctuation and refrigerant separation phenomenon when passing through a valve port, and to reduce pressure loss. The purpose of the present invention is to provide a flow rate adjusting valve that can reduce the amount of noise.

前記目的を達成すべく、本発明に係る流量調整弁は、基本的には、弁室を形成する弁室形成部材および前記弁室形成部材に固着されるとともに弁座が設けられた弁口を有する弁本体と、前記弁座からのリフト量に応じて前記弁口を流れる流体の流量を変化させる弁体と、前記弁本体に連結された管継手と、を備え、前記弁口は、前記弁室側から順次、口径がD1の円筒の第1弁口部、口径がD2の円筒の第2弁口部を有し、D1<D2であり、前記弁室形成部材は、前記弁本体の軸線に直交する底面部を有し、前記弁本体は、前記底面部に差し込まれるように固着されており、前記軸線に直交する方向からみたとき、前記底面部の弁室側の面は、前記弁座の弁室側の面よりも弁室側に位置していることを特徴としている。 In order to achieve the above object, the flow rate adjusting valve according to the present invention basically has a valve chamber forming member forming a valve chamber and a valve opening fixed to the valve chamber forming member and provided with a valve seat. The valve body includes a valve body, a valve body that changes the flow rate of the fluid flowing through the valve port according to the amount of lift from the valve seat, and a pipe joint connected to the valve body, and the valve port is the valve port. Sequentially from the valve chamber side, it has a first valve opening portion of a cylinder having a diameter of D1 and a second valve opening portion of a cylinder having a diameter of D2, D1 <D2, and the valve chamber forming member is the valve body of the valve body. The valve body has a bottom surface orthogonal to the axis, and the valve body is fixed so as to be inserted into the bottom surface. When viewed from a direction orthogonal to the axis, the surface of the bottom surface on the valve chamber side is the same. It is characterized in that it is located on the valve chamber side rather than the valve chamber side surface of the valve seat.

好ましい態様では、前記軸線に直交する方向からみたとき、前記底面部と前記弁口の前記第1弁口部とが重なる。 In a preferred embodiment, the bottom surface portion and the first valve port portion of the valve port overlap each other when viewed from a direction orthogonal to the axis line.

他の好ましい態様では、前記弁口は、前記弁室側から順次、口径がD1の円筒の第1弁口部、口径がD2の円筒の第2弁口部、および口径がD3の円筒の第3弁口部を有し、D1<D2<D3であり、前記管継手は、少なくとも前記第3弁口部が当該管継手の内側に配置されるように前記弁本体に連結される。 In another preferred embodiment, the valve port is a first valve port portion of a cylinder having a diameter of D1, a second valve port portion of a cylinder having a diameter of D2, and a cylinder having a diameter of D3, sequentially from the valve chamber side. It has three valve openings, D1 <D2 <D3, and the pipe joint is connected to the valve body so that at least the third valve port is arranged inside the pipe joint.

本発明に係る流量調整弁では、弁口の口径が弁室側から下端側にかけて3段階以上で順次大きくされるので、弁口通過時において冷媒圧力が徐々に回復し、圧力変動が抑えられるとともに整流化が図られる。また、(D2/D1)、(D3/D2)が特定の範囲内に設定されることにより、圧力変動や冷媒剥離現象に伴う渦やキャビテーションの発生・成長が抑えられる。さらに、(D2/D1)<(D3/D2)<(D4/D3)とされることにより、流れが一層円滑となるので、例えばイコールパーセント特性及びそれに近似した特性を持つ流量調整弁において、騒音レベルを相当低くすることができる。 In the flow rate adjusting valve according to the present invention, the diameter of the valve opening is sequentially increased in three or more steps from the valve chamber side to the lower end side, so that the refrigerant pressure is gradually recovered when passing through the valve opening, and the pressure fluctuation is suppressed. Rectification is achieved. Further, by setting (D2 / D1) and (D3 / D2) within a specific range, the generation / growth of vortices and cavitation due to pressure fluctuation and refrigerant separation phenomenon can be suppressed. Further, by setting (D2 / D1) <(D3 / D2) <(D4 / D3), the flow becomes smoother. The level can be lowered considerably.

さらに、(L2/D1)、(L4/D1)が特定の範囲に設定されることにより、弁口長L2が特許文献2に所載のものや図5に示されるイコールパーセント特性を持つ流量調整弁1’より短くなるので、圧力損失が小さくなり、適正な冷媒流量を得ることができる。 Further, by setting (L2 / D1) and (L4 / D1) in a specific range, the valve opening length L2 is described in Patent Document 2 and the flow rate adjustment having the equal percent characteristic shown in FIG. Since it is shorter than the valve 1', the pressure loss is small and an appropriate refrigerant flow rate can be obtained.

本発明に係る流量調整弁の一実施形態における主要部を示す要部断面図。The cross-sectional view of the main part which shows the main part in one Embodiment of the flow rate control valve which concerns on this invention. 本発明の作用効果を確認・立証するための、(A)仕様・諸元の一部を変更した検証用弁No.1~4の実測値データを示す一覧表、(B)検証条件A~Gを示す一覧表。A list showing actual measurement data of (A) verification valves Nos. 1 to 4 with partially changed specifications and specifications for confirming and proving the operation and effect of the present invention, (B) verification conditions A to A list showing G. (A)横軸に口径比:D2/D1をとり、縦軸に騒音レベル[dB]をとって、検証用弁No.1~4の実測値を検証条件A~G毎に示すグラフ、(B)横軸に口径比:D3/D2をとり、縦軸に騒音レベル[dB]をとって、検証用弁No.1~4の実測値を検証条件A~G毎に示すグラフ。(A) A graph showing the measured values of the verification valves Nos. 1 to 4 for each of the verification conditions A to G, with the diameter ratio: D2 / D1 on the horizontal axis and the noise level [dB] on the vertical axis. B) The graph showing the measured values of the verification valves Nos. 1 to 4 for each of the verification conditions A to G, with the diameter ratio: D3 / D2 on the horizontal axis and the noise level [dB] on the vertical axis. 本発明の作用効果を確認・立証するための、(A)仕様・諸元の一部を変更した検証用弁No.5~8の実測値データを示す一覧表、(B)検証条件H、Iを示す一覧表、(C)横軸に弁口長比:L4/D1をとり、縦軸に音圧レベル[dB]をとって、検証用弁No.5~8の実測値を検証条件H、I毎に示すグラフ。(A) A list showing the measured value data of the verification valves Nos. 5 to 8 with partially changed specifications and specifications, (B) Verification condition H, for confirming and proving the operation and effect of the present invention. List showing I, (C) Valve opening length ratio: L4 / D1 is taken on the horizontal axis, sound pressure level [dB] is taken on the vertical axis, and the measured values of the verification valves No. 5 to 8 are the verification conditions. Graph shown for each of H and I. イコールパーセント特性が得られるようにされた流量調整弁の一例の要部を示す部分断面図。A partial cross-sectional view showing a main part of an example of a flow control valve in which equal percent characteristics are obtained. イコールパーセント特性に近似した特性が得られるようにされた流量調整弁の一例の要部を示す、(A)閉弁時の部分断面図、(B)開弁時の部分断面図。(A) A partial cross-sectional view when the valve is closed and (B) a partial cross-sectional view when the valve is opened, showing a main part of an example of a flow rate control valve in which characteristics close to the equal percent characteristic can be obtained.

以下、本発明の実施形態を図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る流量調整弁の一実施形態における主要部を示す要部断面図である。なお、図1においては、前述した図6に示される従来の流量調整弁1’’の各部に対応する部分には共通の符号が付されている。 FIG. 1 is a cross-sectional view of a main part showing a main part in one embodiment of the flow control valve according to the present invention. In addition, in FIG. 1, a common reference numeral is attached to a portion corresponding to each portion of the conventional flow rate adjusting valve 1 ″ shown in FIG. 6 described above.

図示実施形態の流量調整弁1は、前述した図6に示される従来の流量調整弁1’’と同様に、イコールパーセント特性に近似した特性が得られるようにされたもので、弁室形成部材6Aが固着されるとともに、本発明の特徴部分である弁口10(詳細は後述)が設けられた弁本体5と、弁座8からのリフト量に応じて弁口10を流れる流体の流量を変化させる弁体30とを備える。弁体30は、図6に示される従来の流量調整弁1’’と同一構成で、弁座8に着座する着座面部32と、該着座面部32の下側に連なる、流量特性としてイコールパーセント特性に近似した特性を得るための曲面部33とを有する。曲面部33は、楕球面を疑似するように先端に近づくに従って制御角(弁体30の中心軸線Oと平行な線との交差角)が段階的に大きくされた複数段(ここでは5段)の円錐テーパ面部33A~33Eを有しており、最上段の円錐テーパ面部33Aの第1制御角θ1は、3°<θ1<15°(ここでは5°)に設定され、最下段の円錐テーパ面部33Eは先の尖った円錐面となっている。 The flow rate adjusting valve 1 of the illustrated embodiment is the same as the conventional flow rate adjusting valve 1'' shown in FIG. 6 described above, so that characteristics close to the equal percent characteristics can be obtained, and the valve chamber forming member. 6A is fixed, and the flow rate of the fluid flowing through the valve port 10 according to the lift amount from the valve seat 8 and the valve body 5 provided with the valve port 10 (details will be described later), which is a feature of the present invention, is measured. It is provided with a valve body 30 to be changed. The valve body 30 has the same configuration as the conventional flow rate adjusting valve 1'' shown in FIG. 6, and has a seating surface portion 32 seated on the valve seat 8 and an equal percent characteristic as a flow rate characteristic connected to the lower side of the seating surface portion 32. It has a curved surface portion 33 for obtaining a characteristic similar to that of. The curved surface portion 33 has a plurality of stages (here, 5 stages) in which the control angle (intersection angle between the central axis O of the valve body 30 and the line parallel to the line) is gradually increased as it approaches the tip so as to imitate an elliptical spherical surface. The first control angle θ1 of the uppermost conical tapered surface portion 33A is set to 3 ° <θ1 <15 ° (here, 5 °), and the lowermost conical tapered surface portion 33A to 33E is provided. The surface portion 33E is a conical surface with a sharp point.

そして、弁室6に開口する前記弁口10は、弁室6側から順次、口径がD1の円筒状の第1弁口部11、口径がD2の円筒状の第2弁口部12、及び口径がD3の円筒状の第3弁口部13を有し、第3弁口部13の下部外周には、導管が接続される、内径がD4の管継手14が連結されている。ここでは、D1<D2<D3<D4とされ、弁口10は、その口径が弁室6から離れるに従って3段階に順次大きくされている。 The valve opening 10 that opens into the valve chamber 6 has a cylindrical first valve opening portion 11 having a diameter of D1 and a cylindrical second valve opening portion 12 having a diameter of D2, in order from the valve chamber 6 side. A cylindrical third valve port portion 13 having a diameter of D3 is provided, and a pipe joint 14 having an inner diameter of D4 to which a conduit is connected is connected to the lower outer periphery of the third valve port portion 13. Here, D1 <D2 <D3 <D4, and the valve port 10 is gradually increased in three stages as the diameter thereof moves away from the valve chamber 6.

ここで、本実施形態では、(口径比:D2/D1)<(口径比:D3/D2)<(口径比:D4/D3)とされるとともに、(D2/D1)と(D3/D2)とは、それぞれ試作実験等に基づいて、特定範囲内、すなわち、1.08<(D2/D1)<1.37、かつ、1.05<(D3/D2)<1.43に設定されている。 Here, in the present embodiment, (diameter ratio: D2 / D1) <(diameter ratio: D3 / D2) <(diameter ratio: D4 / D3) is set, and (D2 / D1) and (D3 / D2). Is set within a specific range, that is, 1.08 <(D2 / D1) <1.37 and 1.05 <(D3 / D2) <1.43, respectively, based on prototype experiments and the like. There is.

また、第1弁口部11と第2弁口部12との間(の段差部分)にテーパ角がθuの円錐台状テーパ面部16が形成されるとともに、第2弁口部12と第3弁口部13との間(の段差部分)にテーパ角がθvの円錐台状テーパ面部18が形成されている。 Further, a truncated cone-shaped tapered surface portion 16 having a taper angle of θu is formed between the first valve port portion 11 and the second valve port portion 12 (step portion), and the second valve port portion 12 and the third valve port portion 12 and the third. A truncated cone-shaped tapered surface portion 18 having a taper angle of θv is formed between the valve port portion 13 and the step portion.

さらに、第1弁口部11の弁口長(中心軸線O方向の長さ)をL1、第2弁口部12の弁口長をL2、第3弁口部13の弁口長をL3、第2弁口部12の上端から第3弁口部13の下端までの長さをL4として、(弁口長比:L2/D1)と(弁口長比:L4/D1)とは、それぞれ試作実験等に基づいて、特定範囲内、すなわち、1.0<(L2/D1)<2.0、かつ、2.3<(L4/D1)<4.0に設定されている。 Further, the valve port length of the first valve port portion 11 (the length in the central axis O direction) is L1, the valve port length of the second valve port portion 12 is L2, and the valve port length of the third valve port portion 13 is L3. The length from the upper end of the second valve opening portion 12 to the lower end of the third valve opening portion 13 is L4, and (valve opening length ratio: L2 / D1) and (valve opening length ratio: L4 / D1) are respectively. Based on a prototype experiment or the like, it is set within a specific range, that is, 1.0 <(L2 / D1) <2.0 and 2.3 <(L4 / D1) <4.0.

このような構成とされた本発明に係る流量調整弁では、弁口10の口径が弁室6から離れるに従って3段階で順次大きくされているので、弁口通過時において冷媒圧力が徐々に回復し、圧力変動が抑えられるとともに整流化が図られる。また、(D2/D1)、(D3/D2)が特定の範囲内に設定されることにより、圧力変動や冷媒剥離現象に伴う渦やキャビテーションの発生・成長が確実に抑えられる。さらに、(D2/D1)<(D3/D2)<(D4/D3)とされることにより、流れが一層円滑となるので、イコールパーセント特性及びそれに近似した特性を持つ流量調整弁において、騒音レベルを相当低くすることができる。 In the flow rate adjusting valve according to the present invention having such a configuration, the diameter of the valve port 10 is gradually increased in three stages as the distance from the valve chamber 6 increases, so that the refrigerant pressure gradually recovers when passing through the valve port. , Pressure fluctuation is suppressed and rectification is achieved. Further, by setting (D2 / D1) and (D3 / D2) within a specific range, the generation / growth of vortices and cavitation due to pressure fluctuation and refrigerant separation phenomenon can be surely suppressed. Furthermore, by setting (D2 / D1) <(D3 / D2) <(D4 / D3), the flow becomes smoother. Can be made considerably lower.

さらに、(L2/D1)、(L4/D1)が特定の範囲に設定されることにより、L2(又はL1)が特許文献2に所載のものや図5に示されるイコールパーセント特性を持つ流量調整弁1’より短くなるので、圧力損失が小さくなり、適正な冷媒流量を得ることができる。 Further, by setting (L2 / D1) and (L4 / D1) in a specific range, the flow rate at which L2 (or L1) is described in Patent Document 2 or has the equal percent characteristic shown in FIG. Since it is shorter than the regulating valve 1', the pressure loss is small and an appropriate refrigerant flow rate can be obtained.

[口径比及び弁口長比の適正範囲を検証するための検証試験とその結果]
上記のような作用効果を確認・立証すべく、本発明者等は、図2(A)及び図4(A)の一覧表に示される如くに、仕様・諸元の一部を変えた、口径比《(D2/D1)、(D3/D2)》検証用弁No.1~4、及び、弁口長比《(L4/D1)》検証用弁No.5~8を用意し、図2(B)に示される条件A~G及び図4(B)に示される条件H、Iのもとで、検証試験を行った。口径比《(D2/D1)、(D3/D2)》検証用弁No.1~4の試験結果を図3(A)、(B)に、また、弁口長比《(L4/D1)》検証用弁No.5~8の試験結果を図4(C)に示す。
[Verification test and results to verify the appropriate range of diameter ratio and valve opening length ratio]
In order to confirm and prove the above-mentioned effects, the present inventors have changed some of the specifications and specifications as shown in the lists of FIGS. 2 (A) and 4 (A). Caliber ratio << (D2 / D1), (D3 / D2) >> verification valves Nos. 1 to 4, and valve opening length ratio << (L4 / D1) >> verification valves Nos. 5 to 8 are prepared. A verification test was conducted under the conditions A to G shown in 2 (B) and the conditions H and I shown in FIG. 4 (B). Diameter ratio << (D2 / D1), (D3 / D2) >> The test results of the verification valves Nos. 1 to 4 are shown in FIGS. 3A and 3B, and the valve opening length ratio << (L4 / D1). >> The test results of the verification valves Nos. 5 to 8 are shown in FIG. 4 (C).

なお、図3(A)は、横軸に口径比:D2/D1をとり、縦軸に騒音レベル[dB]をとって、検証用弁No.1~4の実測値を検証条件A~G毎に示したグラフ、図3(B)は、横軸に口径比:D3/D2をとり、縦軸に騒音レベル[dB]をとって、検証用弁No.1~4の実測値を検証条件A~G毎に示したグラフ、図4(C)は、横軸に弁口長比:L4/D1をとり、縦軸に音圧レベル[dB]をとって、検証用弁No.5~8の実測値を検証条件H、I毎に示したグラフである。 In FIG. 3A, the horizontal axis is the diameter ratio: D2 / D1, the vertical axis is the noise level [dB], and the measured values of the verification valves Nos. 1 to 4 are the verification conditions A to G. In the graphs shown for each, FIG. 3B, the horizontal axis is the diameter ratio: D3 / D2, and the vertical axis is the noise level [dB], and the measured values of the verification valves Nos. 1 to 4 are verified. In the graphs shown for each of the conditions A to G, FIG. 4 (C) shows the valve port length ratio: L4 / D1 on the horizontal axis and the sound pressure level [dB] on the vertical axis, and the verification valve No. 5 It is a graph which showed the measured value of 8 to 8 for each verification condition H, I.

また、図3(A)、(B)及び図4(C)のグラフにおいて、レベル0(基準)は、前述した図6に示される従来のイコールパーセント特性に近似した特性を持つ流量調整弁1’’(以下、従来品と称す)の騒音レベル及び音圧レベルを示している。 Further, in the graphs of FIGS. 3 (A), 3 (B) and 4 (C), the level 0 (reference) is a flow rate regulating valve 1 having a characteristic similar to the conventional equal percent characteristic shown in FIG. 6 described above. '' (Hereinafter referred to as a conventional product) noise level and sound pressure level are shown.

図3(A)のグラフから、口径比:(D2/D1)が1.05~1.45(図示されている略全範囲)において騒音レベルが従来品より低くなっており、特に、弁No.3と弁No.2あたりの騒音低減効果が大きいが、(D2/D1)が1.08(弁No.4の口径比)~1.37(≒(1.31+1.42)/2、弁No.2と弁No.1の略中間の口径比)の範囲内にあれば、従来品より相当騒音を低減できることが確認された。 From the graph of FIG. 3A, the noise level is lower than that of the conventional product when the diameter ratio: (D2 / D1) is 1.05 to 1.45 (nearly the entire range shown in the figure), and in particular, the valve No. Although the noise reduction effect per .3 and valve No. 2 is large, (D2 / D1) is 1.08 (caliber ratio of valve No. 4) to 1.37 (≈ (1.31 + 1.42) / 2, It was confirmed that the noise can be significantly reduced as compared with the conventional product if it is within the range (diameter ratio between valve No. 2 and valve No. 1).

図3(B)のグラフから、口径比:(D3/D2)が1.00~1.50(図示されている略全範囲)において騒音レベルが従来品より低くなっており、特に、弁No.3と弁No.2あたりの騒音低減効果が大きいが、(D3/D2)が1.08~1.43(≒(1.35+1.50)/2、弁No.3と弁No.4の略中間の口径比)の範囲内にあれば、従来品より相当騒音を低減できることが確認された。 From the graph of FIG. 3B, the noise level is lower than that of the conventional product in the diameter ratio: (D3 / D2) of 1.00 to 1.50 (almost the entire range shown in the figure), and in particular, the valve No. The noise reduction effect per .3 and valve No. 2 is large, but (D3 / D2) is 1.08 to 1.43 (≈ (1.35 + 1.50) / 2, valve No. 3 and valve No. 4). It was confirmed that noise can be significantly reduced compared to the conventional product if it is within the range of the diameter ratio in the middle of the above.

図4(C)のグラフから、弁口長比:(L4/D1)が2.00~4.00(図示されている略全範囲)において音圧レベルが従来品と同等かそれより低くなっており、特に、弁No.6あたりの騒音低減効果が大きいが、(L4/D1)が2.30(弁No.5の弁口長比より大)~4.00(弁No.8の弁口長比)の範囲内にあれば、従来品より騒音低減効果が得られる(例えば、条件Iにおいて音圧レベルが基準より2dB以上低い)ことが確認された。 From the graph of FIG. 4 (C), the sound pressure level is equal to or lower than that of the conventional product when the valve opening length ratio: (L4 / D1) is 2.00 to 4.00 (almost the entire range shown in the figure). In particular, the noise reduction effect per valve No. 6 is large, but (L4 / D1) is 2.30 (larger than the valve opening length ratio of valve No. 5) to 4.00 (valve No. 8). It was confirmed that the noise reduction effect can be obtained as compared with the conventional product (for example, the sound pressure level is 2 dB or more lower than the standard under the condition I) if it is within the range of the valve opening length ratio).

なお、図示等は省略するが、弁口長比:(L2/D1)が1.0~2.0の範囲内であれば、音圧レベルが従来品と同等かそれより低くなり、従来品より騒音低減効果が得られることも確認されている。 Although not shown, if the valve opening length ratio: (L2 / D1) is in the range of 1.0 to 2.0, the sound pressure level is equal to or lower than that of the conventional product, and the conventional product. It has also been confirmed that a more noise reduction effect can be obtained.

なお、上記した実施形態では、イコールパーセント特性に近似した特性を持つ流量調整弁1に本発明を適用した場合について説明したが、これに限られる訳ではなく、本発明は、図5に示される如くのイコールパーセント特性を持つ流量調整弁1’は勿論のこと、特許文献1、2等に所載のリニア特性を持つ流量調整弁にも適用できる。 In the above embodiment, the case where the present invention is applied to the flow rate control valve 1 having a characteristic similar to the equal percent characteristic has been described, but the present invention is not limited to this, and the present invention is shown in FIG. It can be applied not only to the flow rate adjusting valve 1'having the equal percent characteristic as described above, but also to the flow rate adjusting valve having the linear characteristic described in Patent Documents 1, 2 and the like.

また、弁体における曲面部は、上記実施形態では、先端側ほど制御角が段階的に大きくされた複数段の円錐テーパ面部で構成されているが、これに限られる訳ではなく、図5に示される如くの楕球面部、あるいは、該楕球面部の下端部(楕球冠部分)を切除した構成でもよいし、さらに、楕球面部と一つもしくは複数の円錐テーパ面部との組み合わせ等により構成してもよい。 Further, in the above embodiment, the curved surface portion of the valve body is composed of a plurality of conical tapered surface portions in which the control angle is gradually increased toward the tip side, but the present invention is not limited to this, and FIG. The elliptical spherical surface portion as shown, or the lower end portion (elliptical spherical crown portion) of the elliptical spherical surface portion may be cut off, or further, the elliptical spherical surface portion may be combined with one or more conical tapered surface portions. It may be configured.

また、上記した実施形態では、第3弁口部13に、内径がD4の管継手14を連結した構成としているが、第3弁口部13の反弁室側に口径がD4の第4弁口部を形成したものでも、上記と同様の作用効果が得られることは言うまでも無い。 Further, in the above-described embodiment, the pipe joint 14 having an inner diameter of D4 is connected to the third valve opening portion 13, but the fourth valve having a diameter of D4 is connected to the valve chamber side of the third valve opening portion 13. Needless to say, even if the mouth is formed, the same action and effect as described above can be obtained.

1 流量調整弁
5 弁本体
6 弁室
10 弁口
11 第1弁口部
12 第2弁口部
13 第3弁口部
14 管継手
30 弁体
33 曲面部
D1 第1弁口部の口径
D2 第2弁口部の口径
D3 第3弁口部の口径
D4 管継手の内径
L1 第1弁口部の弁口長
L2 第2弁口部の弁口長
L3 第3弁口部の弁口長
L4 第2~第3弁口長
1 Flow control valve 5 Valve body 6 Valve chamber 10 Valve port 11 1st valve port 12 2nd valve port 13 3rd valve port 14 Pipe joint 30 Valve body 33 Curved surface D1 1st valve port diameter D2 No. 2 Diameter of valve port D3 Diameter of third valve port D4 Inner diameter of pipe joint L1 Valve port length of first valve port L2 Valve port length of second valve port L3 Valve port length of third valve port L4 2nd to 3rd valve opening length

Claims (3)

弁室を形成する弁室形成部材および前記弁室形成部材に固着されるとともに弁座が設けられた弁口を有する弁本体と、
前記弁座からのリフト量に応じて前記弁口を流れる流体の流量を変化させる弁体と、
前記弁本体に連結された管継手と、を備え、
前記弁口は、前記弁室側から順次、口径がD1の円筒の第1弁口部、口径がD2の円筒の第2弁口部を有し、D1<D2であり、
前記弁室形成部材は、前記弁本体の軸線に直交する底面部を有し、
前記弁本体は、前記底面部に差し込まれるように固着されており、
前記軸線に直交する方向からみたとき、前記底面部の弁室側の面は、前記弁座の弁室側の面よりも弁室側に位置していることを特徴とする流量調整弁。
A valve body having a valve chamber forming member forming a valve chamber, a valve opening fixed to the valve chamber forming member and provided with a valve seat, and a valve body.
A valve body that changes the flow rate of the fluid flowing through the valve opening according to the amount of lift from the valve seat, and
With a pipe fitting connected to the valve body,
The valve port has a first valve port portion of a cylinder having a diameter of D1 and a second valve port portion of a cylinder having a diameter of D2, sequentially from the valve chamber side, and D1 <D2.
The valve chamber forming member has a bottom surface portion orthogonal to the axis of the valve body, and has a bottom surface portion.
The valve body is fixed so as to be inserted into the bottom surface portion.
A flow rate adjusting valve characterized in that the surface of the bottom surface portion on the valve chamber side is located closer to the valve chamber side than the surface of the valve seat on the valve chamber side when viewed from a direction orthogonal to the axis line.
前記軸線に直交する方向からみたとき、前記底面部と前記弁口の前記第1弁口部とが重なることを特徴とする請求項1に記載の流量調整弁。 The flow rate adjusting valve according to claim 1, wherein the bottom surface portion and the first valve port portion of the valve port overlap each other when viewed from a direction orthogonal to the axis line. 前記弁口は、前記弁室側から順次、口径がD1の円筒の第1弁口部、口径がD2の円筒の第2弁口部、および口径がD3の円筒の第3弁口部を有し、D1<D2<D3であり、
前記管継手は、少なくとも前記第3弁口部が当該管継手の内側に配置されるように前記弁本体に連結されていることを特徴とする請求項1又は2に記載の流量調整弁。
The valve port has a first valve port portion of a cylinder having a diameter of D1, a second valve port portion of a cylinder having a diameter of D2, and a third valve port portion of a cylinder having a diameter of D3, in order from the valve chamber side. Then, D1 <D2 <D3,
The flow rate adjusting valve according to claim 1 or 2, wherein the pipe joint is connected to the valve body so that at least the third valve port portion is arranged inside the pipe joint.
JP2022044843A 2020-07-02 2022-03-22 flow control valve Active JP7264548B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022044843A JP7264548B2 (en) 2020-07-02 2022-03-22 flow control valve
JP2023062158A JP2023080169A (en) 2022-03-22 2023-04-06 Flow rate adjustment valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020114575A JP7050347B2 (en) 2020-07-02 2020-07-02 Flow control valve
JP2022044843A JP7264548B2 (en) 2020-07-02 2022-03-22 flow control valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020114575A Division JP7050347B2 (en) 2020-07-02 2020-07-02 Flow control valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023062158A Division JP2023080169A (en) 2022-03-22 2023-04-06 Flow rate adjustment valve

Publications (2)

Publication Number Publication Date
JP2022075849A true JP2022075849A (en) 2022-05-18
JP7264548B2 JP7264548B2 (en) 2023-04-25

Family

ID=87852629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022044843A Active JP7264548B2 (en) 2020-07-02 2022-03-22 flow control valve

Country Status (1)

Country Link
JP (1) JP7264548B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340260A (en) * 2003-05-15 2004-12-02 Saginomiya Seisakusho Inc Flow control valve
JP2005221095A (en) * 2004-02-03 2005-08-18 Mitsubishi Electric Corp Electronic expansion valve and air conditioner
JP2012047213A (en) * 2010-08-25 2012-03-08 Saginomiya Seisakusho Inc Motor-operated valve
JP2014084918A (en) * 2012-10-22 2014-05-12 Sr Engineering Co Ltd Fluid pressure nozzle valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340260A (en) * 2003-05-15 2004-12-02 Saginomiya Seisakusho Inc Flow control valve
JP2005221095A (en) * 2004-02-03 2005-08-18 Mitsubishi Electric Corp Electronic expansion valve and air conditioner
JP2012047213A (en) * 2010-08-25 2012-03-08 Saginomiya Seisakusho Inc Motor-operated valve
JP2014084918A (en) * 2012-10-22 2014-05-12 Sr Engineering Co Ltd Fluid pressure nozzle valve

Also Published As

Publication number Publication date
JP7264548B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
JP6639876B2 (en) Flow control valve
JP6692213B2 (en) Flow control valve
EP2226536A1 (en) A control ball valve
US3703273A (en) Low loss innervalve assembly
CN105889596B (en) flow regulating valve
NO335341B1 (en) valve connector
JP6522023B2 (en) Motorized valve
JP7374522B2 (en) electric valve
JP7023540B2 (en) Flow control valve
JP7050346B2 (en) Flow control valve
JP7050347B2 (en) Flow control valve
JP2022075849A (en) Flow rate adjustment valve
JP6901161B2 (en) Flow control valve
JP2021143764A (en) Flow rate adjusting valve
JP6757996B2 (en) Solenoid valve
JP2023080169A (en) Flow rate adjustment valve
JP2020143768A (en) Flow rate regulating valve
US20200386321A1 (en) Globe valve for controlling a process fluid flow
JP6681486B2 (en) Flow control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230406

R150 Certificate of patent or registration of utility model

Ref document number: 7264548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150