[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2022068948A - Base-isolated building provided with failsafe mechanism - Google Patents

Base-isolated building provided with failsafe mechanism Download PDF

Info

Publication number
JP2022068948A
JP2022068948A JP2020177795A JP2020177795A JP2022068948A JP 2022068948 A JP2022068948 A JP 2022068948A JP 2020177795 A JP2020177795 A JP 2020177795A JP 2020177795 A JP2020177795 A JP 2020177795A JP 2022068948 A JP2022068948 A JP 2022068948A
Authority
JP
Japan
Prior art keywords
isolated building
layer
seismic
fail
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020177795A
Other languages
Japanese (ja)
Other versions
JP7510844B2 (en
Inventor
琢志 石田
Takushi Ishida
慎介 稲井
Shinsuke Inai
宏之 小阪
Hiroyuki Kosaka
純也 丸尾
Junya Maruo
和夫 谷地畝
Kazuo Yachise
行孝 太田
Yukitaka Ota
昭彦 豊嶋
Akihiko Toyoshima
将紀 得能
Masaki Tokuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2020177795A priority Critical patent/JP7510844B2/en
Publication of JP2022068948A publication Critical patent/JP2022068948A/en
Application granted granted Critical
Publication of JP7510844B2 publication Critical patent/JP7510844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

To provide a base-isolated building 1 provided with a failsafe mechanism 30 mitigating impact force upon collision of an upper structure 10 to a protection wall 23 without impeding clearance uc between the upper structure 10 and the protection wall 23 for the base-isolated building 1.SOLUTION: The base-isolated building 1 provided with the failsafe mechanism 30 is provided with a base isolation mechanism 22. The base-isolated building 1 is provided with the failsafe mechanism 30 in the upper structure 10 upper than the base isolation mechanism 22. The failsafe mechanism 30 includes a synchronous type mass damper 32 exhibiting a synchronous effect on at least one of secondary or higher unique oscillation modes of the base-isolated building 1.SELECTED DRAWING: Figure 1

Description

特許法第30条第2項適用申請有り 発行者名:「一般社団法人日本建築学会」、刊行物名:「日本建築学会2020年度大会 学術講演梗概集・建築デザイン発表梗概集」、発行日:「令和2年7月20日」Application for application of Article 30, Paragraph 2 of the Patent Law Issuer name: "Architectural Institute of Japan", Publication name: "Architectural Institute of Japan 2020 Annual Conference Academic Lecture Summary / Architectural Design Presentation Summary", Publication date: "July 20, 2nd year of Reiwa"

本発明は、フェールセーフ機構を備える免震建物に関する。 The present invention relates to a seismic isolated building provided with a fail-safe mechanism.

免震建物は、免震機構が設置された例えば基礎を含む下部構造体と、免震機構に支持された上部構造体とを含み、免震機構によって地震等の水平方向の揺れが上部構造体に伝わることを抑制する。 The seismic isolated building includes a substructure including a foundation, for example, in which a seismic isolation mechanism is installed, and an upper structure supported by the seismic isolation mechanism. Suppress the transmission to.

一般に、免震建物は、上部構造体の側面と擁壁との間に上部構造体の水平移動を許容するクリアランスが設けられている。特許文献1では、当該免震建物における想定を超える大きな水平方向の揺れが生じる場合に、上部構造体と擁壁とが衝突する際の衝撃を緩和するゴム製の衝撃吸収部材を擁壁に設けることが提案されている。 In general, seismic isolated buildings are provided with a clearance between the side surface of the superstructure and the retaining wall to allow horizontal movement of the superstructure. In Patent Document 1, a rubber shock absorbing member is provided on the retaining wall to cushion the impact when the superstructure and the retaining wall collide with each other when a large horizontal shaking occurs in the seismic isolated building. Has been proposed.

特開2014-77229号公報Japanese Unexamined Patent Publication No. 2014-77229

しかしながら、特許文献1の発明によれば、ゴム製の衝撃吸収部材を擁壁に設けるため、衝撃吸収部材の厚さの分だけクリアランスが小さくなり、または、衝撃吸収部材の厚さの分だけクリアランスを大きく設定する必要があった。 However, according to the invention of Patent Document 1, since the rubber shock absorbing member is provided on the retaining wall, the clearance is reduced by the thickness of the shock absorbing member, or the clearance is reduced by the thickness of the shock absorbing member. Needed to be set large.

そこで、本発明は、免震建物における上部構造体と擁壁とのクリアランスを阻害することなく、上部構造体が擁壁に衝突した時の衝撃力を緩和するフェールセーフ機構を備える免震建物を提供することを目的とする。 Therefore, the present invention provides a seismic isolated building provided with a fail-safe mechanism that alleviates the impact force when the superstructure collides with the retaining wall without obstructing the clearance between the superstructure and the retaining wall in the seismic isolated building. The purpose is to provide.

本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。 The present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following aspects or application examples.

[1]本発明に係るフェールセーフ機構を備える免震建物の一態様は、
免震機構を備えた免震建物であって、
前記免震建物は、前記免震機構よりも上の上部構造体にフェールセーフ機構を備え、
前記フェールセーフ機構は、前記免震建物の2次以上の固有振動モードの少なくとも1つに対して同調効果を発揮する同調型マスダンパーを含むことを特徴とする。
[1] One aspect of the seismic isolated building provided with the fail-safe mechanism according to the present invention is
It is a seismic isolated building equipped with a seismic isolation mechanism.
The seismic isolated building has a fail-safe mechanism in the upper structure above the seismic isolation mechanism.
The fail-safe mechanism is characterized by including a tuned mass damper that exerts a tuned effect on at least one of the secondary or higher natural vibration modes of the seismic isolated building.

[2]上記フェールセーフ機構を備える免震建物の一態様において、
前記フェールセーフ機構は、前記上部構造体の下半分の下層部に設けられることができる。
[2] In one aspect of a seismic isolated building equipped with the above fail-safe mechanism,
The fail-safe mechanism can be provided in the lower layer of the lower half of the superstructure.

[3]上記フェールセーフ機構を備える免震建物の一態様において、
前記同調型マスダンパーは、当該同調型マスダンパーが設置された層または当該層とは異なる特定層における負担せん断力または層間変位の伝達関数のピーク値が最小となるように最適化されることができる。
[3] In one aspect of a seismic isolated building equipped with the above fail-safe mechanism,
The tuning mass damper may be optimized to minimize the peak value of the transfer function of the load shear force or interlayer displacement in the layer in which the tuning mass damper is installed or in a specific layer different from the layer. can.

本発明に係るフェールセーフ機構を備える免震建物の一態様によれば、上部構造体と擁壁とのクリアランスを阻害することなく、上部構造体が擁壁に衝突した時の衝撃力を緩和する。 According to one aspect of the seismic isolated building provided with the fail-safe mechanism according to the present invention, the impact force when the superstructure collides with the retaining wall is alleviated without obstructing the clearance between the superstructure and the retaining wall. ..

本実施形態に係る免震建物の模式図である。It is a schematic diagram of the seismic isolated building which concerns on this embodiment. 本実施形態に係る免震建物の質点系モデルである。This is a mass point model of a seismic isolated building according to this embodiment. 地震入力時における主架構の負担せん断力の最大値分布と当該フェールセーフ機構がない場合に対する主架構の負担せん断力の最大値に対する応答比である。It is the response ratio to the maximum value distribution of the load shear force of the main frame at the time of earthquake input and the maximum value of the load shear force of the main frame when the fail-safe mechanism is not present. 地震入力波の時刻歴加速度波形である。It is a time history acceleration waveform of the seismic input wave. 免震建物の各層における免震モードと衝突モードの層せん断力とヒルベルト・ファン変換(HHT)分析結果である。It is the layer shear force and Hilbert-Huang conversion (HHT) analysis result of the seismic isolation mode and the collision mode in each layer of the seismic isolation building. 主架構モデルの2次及び3次の複素固有モードの実部を示す図である。It is a figure which shows the real part of the 2nd and 3rd order complex eigenmode of the main frame model. 主架構モデルと同調型マスダンパー付与モデルの1次から6次までの複素固有モードの実部を示す図である。It is a figure which shows the real part of the complex eigenmode from the 1st order to the 6th order of a main frame model and a tuning type mass damper addition model.

以下、本発明の好適な実施形態について、図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. The embodiments described below do not unreasonably limit the content of the present invention described in the claims. Moreover, not all of the configurations described below are essential constituent requirements of the present invention.

本実施形態に係るフェールセーフ機構を備える免震建物の一態様は、免震機構を備えた免震建物であって、前記免震建物は、前記免震機構よりも上の上部構造体にフェールセーフ機構を備え、前記フェールセーフ機構は、前記免震建物の2次以上の固有振動モードの少なくとも1つに対して同調効果を発揮する同調型マスダンパーを含むことを特徴とする。 One aspect of the seismic isolated building provided with the fail-safe mechanism according to the present embodiment is a seismic isolated building provided with a seismic isolation mechanism, and the seismic isolated building fails on an upper structure above the seismic isolation mechanism. The fail-safe mechanism comprises a tuned mass damper that exerts a tune effect on at least one of the secondary or higher intrinsic vibration modes of the seismic isolated building.

1.免震建物の概要
図1を用いて、本発明の一実施形態に係るフェールセーフ機構30を備える免震建物1について説明する。図1は、本実施形態に係る免震建物1の模式図である。
1. 1. Outline of Seismic Isolation Building With reference to FIG. 1, a seismic isolation building 1 provided with a fail-safe mechanism 30 according to an embodiment of the present invention will be described. FIG. 1 is a schematic diagram of a seismic isolated building 1 according to the present embodiment.

図1に示すように、免震建物1は、免震機構22を備える。免震建物1は、上部構造体10と基礎21との水平方向の相対位置が、免震機構22を介して変化可能に構成される。免震建物1は、免震機構22よりも上の上部構造体10にフェールセーフ機構30を備える。 As shown in FIG. 1, the seismic isolation building 1 includes a seismic isolation mechanism 22. The seismic isolated building 1 is configured such that the horizontal relative positions of the superstructure 10 and the foundation 21 can be changed via the seismic isolation mechanism 22. The seismic isolated building 1 is provided with a fail-safe mechanism 30 in the upper structure 10 above the seismic isolated mechanism 22.

上部構造体10は、下端が免震機構22に支持された例えば地上6階建ての鉄骨構造の構造躯体を有する。上部構造体10としては、鉄筋コンクリート構造、鉄骨鉄筋コンクリート構造等であってもよい。上部構造体10は、2階建て以上であることができ、特に高層ビルに適用可能である。上部構造体10の外周面が側面12である。上部構造体10の下半分である3階以下が下層部14である。 The upper structure 10 has, for example, a 6-story steel-framed structural frame whose lower end is supported by the seismic isolation mechanism 22. The superstructure 10 may be a reinforced concrete structure, a steel-framed reinforced concrete structure, or the like. The superstructure 10 can have two or more floors, and is particularly applicable to high-rise buildings. The outer peripheral surface of the superstructure 10 is the side surface 12. The lower half of the upper structure 10 below the third floor is the lower layer 14.

下部構造体20は、例えば、基礎21と、基礎21の上に設置された免震機構22と、上部構造体10の側面12に対して所定のクリアランスuを隔てて形成された擁壁23と、を備える。クリアランスuは、基礎21に対して上部構造体10の水平方向への移動が許容される距離であり、免震建物1において想定される地震に応じて設定される。したがって、免震建物1の想定を超える地震に対してはクリアランスuでは足りずに上部構造体10の側面12が擁壁23に衝突する可能性がある。 The lower structure 20 is, for example, a retaining wall 23 formed with a predetermined clearance uc from the foundation 21, the seismic isolation mechanism 22 installed on the foundation 21, and the side surface 12 of the upper structure 10. And prepare. The clearance uc is a distance that allows the superstructure 10 to move horizontally with respect to the foundation 21, and is set according to an earthquake assumed in the seismic isolated building 1. Therefore, for an earthquake exceeding the assumption of the seismic isolated building 1, the clearance uc may not be sufficient and the side surface 12 of the superstructure 10 may collide with the retaining wall 23.

免震機構22は、上部構造体10を支え、上部構造体10に伝わる地震等の水平方向の揺れを低減させ、かつ、上部構造体10の相対位置の変化を元に戻す力を付与する機構である。免震機構22としては、積層ゴム、弾性すべり支承、転がり支承等の公知のアイソレータを採用することができ、減衰を付与するダンパーをさらに備えてもよい。 The seismic isolation mechanism 22 is a mechanism that supports the superstructure 10, reduces horizontal shaking such as an earthquake transmitted to the superstructure 10, and imparts a force to restore the change in the relative position of the superstructure 10. Is. As the seismic isolation mechanism 22, known isolators such as laminated rubber, elastic sliding bearings, and rolling bearings can be adopted, and a damper for imparting damping may be further provided.

2.フェールセーフ機構
図1~図3を用いて、フェールセーフ機構30について説明する。図2は、本実施形態に係る免震建物1の質点系モデル1aであり、図3は、地震入力時における主架構の負担せん断力の最大値分布と当該フェールセーフ機構がない場合に対する主架構の負担せん断力の最大値に対する応答比である。
2. 2. Fail-safe mechanism The fail-safe mechanism 30 will be described with reference to FIGS. 1 to 3. FIG. 2 is a mass point system model 1a of the seismic isolated building 1 according to the present embodiment, and FIG. 3 shows the maximum value distribution of the load shear force of the main frame at the time of earthquake input and the main frame when the fail-safe mechanism is not provided. It is the response ratio to the maximum value of the burden shear force of.

図1に示すように、フェールセーフ機構30は、上部構造体10に設けられる。フェールセーフ機構30は、上部構造体10の下半分の下層部14に設けることが好ましい。擁壁衝突時の振動は、下層から上層へ伝搬するため、フェールセーフ機構30を下層部14に設けることで衝撃時の応答増大を効果的に抑制できる。本実施形態では、フェールセーフ機構30は、1階と3階との間に架け渡されて設けられるが、これに限らず、一つの階のみ例えば3階にのみ設けてもよい。 As shown in FIG. 1, the fail-safe mechanism 30 is provided in the superstructure 10. The fail-safe mechanism 30 is preferably provided in the lower layer portion 14 of the lower half of the upper structure 10. Since the vibration at the time of the retaining wall collision propagates from the lower layer to the upper layer, the increase in response at the time of impact can be effectively suppressed by providing the fail-safe mechanism 30 in the lower layer portion 14. In the present embodiment, the fail-safe mechanism 30 is provided so as to be bridged between the first floor and the third floor, but the present invention is not limited to this, and the fail-safe mechanism 30 may be provided only on one floor, for example, on the third floor.

図2における質点系モデル1aは、免震建物1を等価せん断型の6質点系モデルとしたものである。免震機構22は、積層ゴムと弾性すべり支承、オイルダンパーで構成し、積層ゴムは弾性のせん断ばね、弾性すべり支承は完全弾塑性型の復元力を持つせん断ばね、オイルダンパーはバイリニア特性を持つMaxwellモデルとして各々モデル化した。上部構造体10はトリリニア型の弾塑性ばねでモデル化し、主架構の構造減衰は基礎固定時の1次固有振動数に対し、初期剛性比例型で例えば2%に設定することができる。免震建物1の側面12と擁壁23の間には、クリアランスucを介して擁壁剛性(擁壁ばねk)及び地盤剛性(地盤ばねk)・減衰(地盤ダッシュポットC)を設定する。フェールセーフ機構30は、破線で囲む領域に設定する。 The mass point system model 1a in FIG. 2 is a seismic isolated building 1 as an equivalent shear type 6 mass point system model. The seismic isolation mechanism 22 is composed of laminated rubber, elastic sliding bearings, and an oil damper. The laminated rubber is an elastic shear spring, the elastic sliding bearing is a shear spring with a fully elasto-plastic restoring force, and the oil damper has bilinear characteristics. Each was modeled as a Maxwell model. The superstructure 10 is modeled by a trilinear type elasto-plastic spring, and the structural damping of the main frame can be set to, for example, 2% in the initial rigidity proportional type with respect to the primary natural frequency at the time of fixing the foundation. Between the side surface 12 of the seismic isolation building 1 and the retaining wall 23, the retaining wall rigidity (retaining wall spring kW), the ground rigidity (ground spring kg), and the damping (ground dashpot C g ) are provided through the clearance uc. Set. The fail-safe mechanism 30 is set in the area surrounded by the broken line.

フェールセーフ機構30は、免震建物1の2次以上の固有振動モードの少なくとも1つに対して同調効果を発揮する同調型マスダンパー32を含む。これは、免震建物1が擁壁23に衝突した場合、建物固有の振動モードとして2次以上の振動成分が卓越するためである。同調型マスダンパー32は、1階と3階とを接続する例えば鉄骨の支持部材33に取り付けられる。同調型マスダンパー32は、上部構造体10に複数個設けてもよい。同調させる2次以上の固有振動モードとしては、下層部14における振幅が大きくなる例えば2次モードまたは3次モードを対象とすることが好ましい。同調型マスダンパー32による同調効果とは、選択したモードにおける上部構造体10の側面12が擁壁23に衝突した際の衝撃によって生じた特定層の層間変位または上部構造体10の主架構の負担せん断力を小さくすることであり、好ましくは最小化することである。同調手順については実施例を用いて後述する。 The fail-safe mechanism 30 includes a tuning mass damper 32 that exerts a tuning effect on at least one of the secondary or higher natural vibration modes of the seismic isolated building 1. This is because when the seismic isolated building 1 collides with the retaining wall 23, the vibration component of the second order or higher is predominant as the vibration mode peculiar to the building. The synchronized mass damper 32 is attached to, for example, a steel frame support member 33 that connects the first floor and the third floor. A plurality of synchronized mass dampers 32 may be provided in the superstructure 10. As the secondary or higher natural vibration mode to be tuned, it is preferable to target, for example, a secondary mode or a tertiary mode in which the amplitude in the lower layer portion 14 is large. The tuning effect of the tuning type mass damper 32 is the interlayer displacement of a specific layer or the burden on the main structure of the superstructure 10 caused by the impact when the side surface 12 of the superstructure 10 collides with the retaining wall 23 in the selected mode. It is to reduce the shear force, preferably to minimize it. The tuning procedure will be described later using examples.

フェールセーフ機構30は、図2にモデル化して示すように、同調型マスダンパー32の質量体(等価質量m)及び同調型マスダンパー32の粘性部材(粘性係数c)と、支持部材33(支持部材剛性k)とで構成することができる。図2では粘性部材をダッシュポットで示すが、粘性部材は粘性(減衰成分)に加えて弾性(ばね成分)を備えてもよい。同調型マスダンパー32としては公知機構、例えば特開2016-173014号公報に開示された制震装置及びその取付構造を採用することができる。 As shown by modeling in FIG. 2, the fail-safe mechanism 30 includes a mass body (equivalent mass m d ) of the tuning type mass damper 32, a viscous member (viscosity coefficient cd ) of the tuning type mass damper 32, and a support member 33. It can be configured with (support member rigidity k b ). Although the viscous member is shown by a dash pot in FIG. 2, the viscous member may have elasticity (spring component) in addition to viscosity (damping component). As the synchronized mass damper 32, a known mechanism, for example, a vibration control device disclosed in Japanese Patent Application Laid-Open No. 2016-173014 and a mounting structure thereof can be adopted.

同調型マスダンパー32は、同調型マスダンパー32が設置された層または当該層とは異なる特定層における負担せん断力または層間変位の伝達関数のピーク値が最小となるように最適化されることができる。特定層は、免震層(基礎21)よりも上の層であればい
ずれの階としてもよいが、衝突時の振動は下から上へ伝播するので同調型マスダンパー32が設置された階の直上層にすることが上の層へ振動を伝播するのを抑制できるため好ましい。本実施形態のように1階から3階に同調型マスダンパー32が架け渡された場合には、特定層は例えば直上層である4階における負担せん断力または層間変位に応じて設定することが好ましい。本実施形態では、負担せん断力を用いた例について説明する。
The tuning mass damper 32 may be optimized to minimize the peak value of the transfer function of the load shear force or interlayer displacement in the layer in which the tuning mass damper 32 is installed or in a specific layer different from the layer. can. The specific layer may be any floor as long as it is above the seismic isolation layer (foundation 21), but since the vibration at the time of collision propagates from the bottom to the top, the floor on which the synchronized mass damper 32 is installed. It is preferable to use a layer directly above because it can suppress the propagation of vibration to the upper layer. When the tuning type mass damper 32 is bridged from the 1st floor to the 3rd floor as in the present embodiment, the specific layer may be set according to, for example, the load shear force or the interlayer displacement in the 4th floor which is the immediately above layer. preferable. In this embodiment, an example using a load shear force will be described.

図3の左側は、地震入力時における主架構の負担せん断力の最大値分布であり、図3の右側は、同左側の結果に基づいて同調型マスダンパー32を設けたダンパー付与モデルの負担せん断力の最大値を、ダンパーを設けない原設計モデルの負担せん断力の最大値で割った応答比である。図3に示すように、フェールセーフ機構30を設けることにより、第4層以上の負担せん断力が削減され、特に上端付近の第6層における負担せん断力が例えば20%も削減される。 The left side of FIG. 3 shows the maximum value distribution of the load shear force of the main frame at the time of earthquake input, and the right side of FIG. 3 shows the load shear of the damper application model provided with the synchronized mass damper 32 based on the result on the left side. It is the response ratio obtained by dividing the maximum value of the force by the maximum value of the load shear force of the original design model without a damper. As shown in FIG. 3, by providing the fail-safe mechanism 30, the load shear force of the fourth layer or higher is reduced, and in particular, the load shear force of the sixth layer near the upper end is reduced by, for example, 20%.

このように、免震建物1によれば、上部構造体10と擁壁23とのクリアランスuを阻害することなく、上部構造体10が擁壁23に衝突した時の衝撃力を緩和することができる。なお、擁壁23にゴム製の衝撃吸収部材が設けられても、衝撃吸収部材の小型化によるクリアランスuの確保が容易となる。 As described above, according to the seismic isolated building 1, the impact force when the superstructure 10 collides with the retaining wall 23 is alleviated without obstructing the clearance uc between the superstructure 10 and the retaining wall 23. Can be done. Even if the retaining wall 23 is provided with a rubber shock absorbing member, it is easy to secure a clearance uc by downsizing the shock absorbing member.

図1~図7を用いて、実施例を用いて同調型マスダンパー32を同調させる手順について具体的に説明する。図4は、地震入力波の時刻歴加速度波形であり、図5は、免震建物1の第2層、第4層、第6層における免震モードと衝突モードの層せん断力(各層の上段の図)とヒルベルト・ファン変換(HHT)分析結果(各層の下段の図)であり、図6は、主架構モデルの2次及び3次の複素固有モードの実部を示す図であり、図7は、主架構モデルと同調型マスダンパー付与モデルの1次から6次までの複素固有モードの実部を示す図である。なお、本実施例は図1及び図2を基にシミュレートしたものであり、その結果が図3となる。また、図5では層せん断力の瞬時振幅値をグラデーションで示し、黒色に近いほど増幅率が大きいことを示す。 The procedure for tuning the tuning type mass damper 32 will be specifically described with reference to FIGS. 1 to 7. FIG. 4 shows the time history acceleration waveform of the seismic input wave, and FIG. 5 shows the layer shear force of the seismic isolation mode and the collision mode in the second, fourth, and sixth layers of the seismic isolated building 1 (upper stage of each layer). Figure) and the Hilbert-Huang transformation (HHT) analysis results (lower figure of each layer), FIG. 6 is a diagram showing the real part of the quadratic and tertiary complex eigenmodes of the main frame model. FIG. 7 is a diagram showing a real part of a complex eigenmode from the first order to the sixth order of the main frame model and the synchronized mass damper addition model. It should be noted that this embodiment is simulated based on FIGS. 1 and 2, and the result is shown in FIG. Further, in FIG. 5, the instantaneous amplitude value of the layer shear force is shown by a gradation, and the closer to black, the larger the amplification factor.

同調手順は、例えば、卓越周波数の確認、同調型マスダンパー32の設置階の決定、最適パラメータの導出、効果の確認を順に行うことで実行できる。 The tuning procedure can be executed, for example, by confirming the dominant frequency, determining the installation floor of the tuning type mass damper 32, deriving the optimum parameters, and confirming the effect.

A.卓越周波数の確認
想定を超える地震により図1の免震建物1の側面12が擁壁23に衝突した場合、衝突時に卓越する周波数を原設計モデルで確認するために、原設計モデルの設定を行い、解析用地震動を設定し、原設計モデルに解析用地震動を適用した際の衝突時の卓越周波数を分析した。
A. Confirmation of predominant frequency When the side surface 12 of the seismic isolated building 1 in FIG. 1 collides with the retaining wall 23 due to an earthquake exceeding the assumption, the original design model is set in order to confirm the predominant frequency at the time of collision with the original design model. , The seismic motion for analysis was set, and the predominant frequency at the time of collision when the seismic motion for analysis was applied to the original design model was analyzed.

図2におけるフェールセーフ機構30を除いた部分が原設計モデルである。原設計モデルは、地上6階建て鉄骨造の基礎免震建物であり、等価せん断型6質点系モデルとした。免震機構22は、例えば、積層ゴムと弾性すべり支承、オイルダンパーで構成される。積層ゴムは弾性のせん断ばね、弾性すべり支承は完全弾塑性型の復元力を持つせん断ばねとして各々モデル化することができる。オイルダンパーはバイリニア特性を持つMaxwellモデルとすることができる。上部構造はトリリニア型の弾塑性ばねでモデル化し、主架構の構造減衰は基礎固定時の1次固有振動数に対し、初期剛性比例型で2%とした。また、免震建物1の側面12と擁壁23のクリアランスuを600mmとして、擁壁剛性(擁壁ばねk)及び地盤剛性(地盤ばねk)・減衰(地盤ダッシュポットC)を擁壁23との間に設定した。 The portion of FIG. 2 excluding the fail-safe mechanism 30 is the original design model. The original design model was a 6-story steel-framed foundation seismic isolated building, and was an equivalent shear type 6-mass point system model. The seismic isolation mechanism 22 is composed of, for example, laminated rubber, elastic sliding bearings, and an oil damper. Laminated rubber can be modeled as an elastic shear spring, and elastic sliding bearings can be modeled as a fully elasto-plastic restoring force. The oil damper can be a Maxwell model with bilinear characteristics. The upper structure was modeled with a trilinear type elasto-plastic spring, and the structural damping of the main frame was set to 2% in the initial rigidity proportional type with respect to the primary natural frequency when the foundation was fixed. In addition, the clearance uc between the side surface 12 of the seismic isolation building 1 and the retaining wall 23 is set to 600 mm, and the retaining wall rigidity (retaining wall spring k w ) , ground rigidity (ground spring k g ), and damping (ground dashpot C g ) are set. It was set between the retaining wall 23 and the retaining wall 23.

免震建物1が擁壁23に衝突すると考えられる地震動としては、主に継続時間の長い海
溝型長大断層による地震と、フリングステップや指向性パルスによる長周期パルス波が考えられる。ここでは、より擁壁23に衝突する可能性が高いと考えられる長周期パルス波を対象として、1999年集集地震の台湾中央気象局TCU068観測記録のEW成分を用いた。擁壁23がない場合の免震機構22の水平方向の最大変位が650mmとなるように入力倍率を調整した。入力波の時刻歴加速度波形を図4に示す。
The seismic motion that the seismic isolated building 1 is considered to collide with the retaining wall 23 is mainly considered to be an earthquake caused by a trench-type long fault having a long duration and a long-period pulse wave caused by a fling step or a directional pulse. Here, the EW component of the Taiwan Central Weather Bureau TCU068 observation record of the 1999 Chi-Chi earthquake was used for long-period pulse waves that are more likely to collide with the retaining wall 23. The input magnification was adjusted so that the maximum horizontal displacement of the seismic isolation mechanism 22 when there was no retaining wall 23 was 650 mm. The time history acceleration waveform of the input wave is shown in FIG.

擁壁衝突時には、非線形挙動が卓越するため、例えば、瞬時周波数特性を抽出することが可能で、非定常性の強い信号分析にも適用可能であるヒルベルト・ファン変換(HHT)(Huang et al. (1998):The Empirical Mode Decomposition Method and the Hilbelt Spectrum for Non-Stationary Time Series Analysis, Proc. T. Soc. London A, Vol.454, pp.903-995.)分析で卓越周波数を確認することができる。 Since the non-linear behavior is predominant at the time of a retaining wall collision, for example, the Hilbert-Huang Transform (HHT) (HHT) (Huang et al.), Which can extract instantaneous frequency characteristics and can be applied to signal analysis with strong unsteadiness. (1998): The Empirical Mode Decomposition Method and the Hilbelt Spectrum for Non-Stationary Time Series Analysis, Proc. T. Soc. London A, Vol.454, pp.903-995.) can.

解析手順としては、まず原設計モデルに対して時刻歴応答解析を行い、各層の層せん断力時刻歴波形を求め、得られた層せん断力時刻歴波形に経験的モード分解法(EMD)を適用して単純な固有振動モード(IMF)に分解する。次に、低周波数側は免震モードが、高周波数側は衝突によって励起されたモードが卓越すると仮定し、分解された各IMFについてHHT分析を行い、主要動部における瞬時周波数振幅最大値に対応する卓越周波数が例えば0.4Hz以下であるIMFの合計を免震モード、それ以上であるIMFの合計を衝突モードとし、双方でHHT分析を行う。 As an analysis procedure, first, a time history response analysis is performed on the original design model, the layer shear force time history waveform of each layer is obtained, and the empirical mode decomposition method (EMD) is applied to the obtained layer shear force time history waveform. Then, it is decomposed into a simple natural vibration mode (IMF). Next, assuming that the seismic isolation mode is predominant on the low frequency side and the mode excited by collision is predominant on the high frequency side, HHT analysis is performed on each decomposed IMF to correspond to the maximum instantaneous frequency amplitude in the main moving parts. For example, the total of IMFs having a predominant frequency of 0.4 Hz or less is set as the seismic isolation mode, and the total of the IMFs having a frequency higher than that is set as the collision mode, and HHT analysis is performed on both sides.

図5に示す通り、衝突(同図における縦線は衝突時刻を示す)の前後で免震モードは性状が大きく変化しないのに対し、衝突モードは衝突直後に衝突階(第2層)において4Hz以上の高周波数帯域が卓越し(黒色が濃くなり)、その後上層に伝播していくにつれて2Hz付近の成分が卓越することが分かった。よって、上部構造体10では衝突直後に卓越周波数が確認でき、この例では2Hz付近の成分が卓越することが確認できる。なお、図示しないが他の地震動でシミュレートしても同様の結果が得られ、剛性及び減衰を低下させても同様の結果が得られた。 As shown in FIG. 5, the seismic isolation mode does not change significantly before and after the collision (the vertical line in the figure indicates the collision time), whereas the collision mode is 4 Hz in the collision floor (second layer) immediately after the collision. It was found that the above high frequency band was dominant (black color became darker), and then the component near 2 Hz was dominant as it propagated to the upper layer. Therefore, in the superstructure 10, the dominant frequency can be confirmed immediately after the collision, and in this example, it can be confirmed that the component near 2 Hz is dominant. Although not shown, similar results were obtained by simulating with other seismic motions, and similar results were obtained by reducing the rigidity and damping.

原設計モデルについて、免震層クリアランス到達変位(600mm)での等価線形化モデルによる複素固有値解析を行い、各モードにおける固有振動数(f(Hz))及び減衰定数(h)を算出すると表1の結果が得られた。 Table 1 shows the calculation of the natural frequency (f (Hz)) and damping constant (h) in each mode by performing complex eigenvalue analysis of the original design model using an equivalent linearization model with the seismic isolation layer clearance ultimate displacement (600 mm). The result of was obtained.

Figure 2022068948000002
Figure 2022068948000002

表1より、HHT分析で求めた約2Hzの卓越成分は、2次(1.26Hz)と3次(2.5Hz)のほぼ中間値であることが確認できる。HHT分析に際して分離した高次モードには複数のモード成分が含まれることから、この2次と3次の中間値が検出されたと考えられる。以上から、衝突によって励起されるのは主にこの2つのモードであると考え、次項以降に示す同調型マスダンパーのパラメータは、この両者の増幅を抑制することを主眼に置いて設定した。 From Table 1, it can be confirmed that the predominant component of about 2 Hz obtained by HHT analysis is approximately an intermediate value between the second order (1.26 Hz) and the third order (2.5 Hz). Since the higher-order modes separated during the HHT analysis contain a plurality of mode components, it is considered that an intermediate value between the second and third orders was detected. From the above, it is considered that these two modes are mainly excited by the collision, and the parameters of the tuned mass damper shown in the following sections are set with the main purpose of suppressing the amplification of both.

B.同調型マスダンパーの設置階の決定
擁壁衝突時には免震機構22の直上階(1階)に入力された衝撃力が上昇波として上層階に伝播していく。従って、上層階の応答増幅の抑制には、同調型マスダンパー32を下層部14に設置し、卓越成分の増幅を遮断することが効果的である。
B. Determining the floor on which the synchronous mass damper is installed When a retaining wall collides, the impact force input to the floor directly above (1st floor) of the seismic isolation mechanism 22 propagates to the upper floors as an ascending wave. Therefore, in order to suppress the response amplification in the upper floors, it is effective to install the tuning type mass damper 32 in the lower layer portion 14 to block the amplification of the dominant component.

図6で制御対象とする2次および3次の複素固有モードの実部に示すように、当該モードにおける下層部14の層間モードは上層部に比べて大きくないことから、より効率的な制御を行うため例えば、1階と3階を層飛ばしでつなぐなど、対象次数のモード振幅差が大きくなるように同調型マスダンパー32を設置することが好ましい。 As shown in the real part of the second-order and third-order complex eigenmodes to be controlled in FIG. 6, the interlayer mode of the lower layer portion 14 in the mode is not larger than that of the upper layer portion, so that more efficient control can be performed. Therefore, it is preferable to install the tuning type mass damper 32 so that the mode amplitude difference of the target order becomes large, for example, connecting the first floor and the third floor by layer skipping.

C.最適パラメータの導出
数値最適化計算により、特定層における主架構の負担せん断力を最小化するダンパーの最適パラメータを導出する方法について説明する。
C. Derivation of optimum parameters A method of deriving the optimum parameters of the damper that minimizes the load shear force of the main frame in a specific layer by numerical optimization calculation will be described.

図2のクリアランスuの左側部分で示した免震層クリアランス到達変位(600mm)での等価線形化モデルに対し、免震層直上階(1階)に水平方向の強制外力Fが作用する計算モデルを考える。層間変位δを変数として、各階の力の釣り合い式を上階から足し合わせていくと、この計算モデルに対する振動方程式は下記式(1)で表される。ここで、M,C,Kは主架構質量、粘性係数、剛性である。 Calculation that the horizontal forced external force F acts on the floor directly above the seismic isolation layer (1st floor) with respect to the equivalent linearization model with the seismic isolation layer clearance reaching displacement (600 mm) shown in the left part of the clearance uc in FIG . Think of a model. When the force balance equations of each floor are added up from the upper floor with the inter-story displacement δ as a variable, the vibration equation for this calculation model is expressed by the following equation (1). Here, M, C, and K are the main frame mass, the viscosity coefficient, and the rigidity.

Figure 2022068948000003
Figure 2022068948000003

同調型マスダンパー32の減衰力(D)は、下記式(2)により示される。 The damping force (D) of the tuned mass damper 32 is represented by the following equation (2).

Figure 2022068948000004
Figure 2022068948000004

上記式(1)より、層間変位δは、伝達関数Gを用いて下記式(3)により求められる。 From the above equation (1), the interlayer displacement δ is obtained by the following equation (3) using the transfer function G.

Figure 2022068948000005
Figure 2022068948000005

これより、j層の主架構の負担せん断力Qの伝達関数Q/Fは下記式(4)により求められる。 From this, the transfer function Q j / F of the load shear force Q j of the main frame of the j layer can be obtained by the following equation (4).

Figure 2022068948000006
Figure 2022068948000006

上記式(4)に対し最適化計算を行い、ダンパー設置層の直上層である第4層(j層)の2次モード以降の伝達関数のピーク値が最小となる支持部材剛性kとダンパーの粘性係数cを求めた。j層は、ダンパー設置層であってもよいが、上述の理由からダンパー設置層以外の特定層であることが好ましく、しかも免震層に近い第4層の伝達関数を最小化することで、それより上層への振動伝播を抑制する狙いとした。最適化計算の解法には、Generalized Reduced Gradient (GRG) algorithm(一般化縮約勾配法)を用い、初期値には定点理論解を与えた。 An optimization calculation is performed for the above equation (4), and the support member rigidity kb and the damper that minimize the peak value of the transfer function after the secondary mode of the fourth layer (j layer), which is the layer directly above the damper installation layer, and the damper . The viscosity coefficient cd of was obtained. The j layer may be a damper installation layer, but for the above reason, it is preferably a specific layer other than the damper installation layer, and by minimizing the transfer function of the fourth layer close to the seismic isolation layer, The aim was to suppress vibration propagation to the upper layers. A Generalized Rediced Gradient (GRG) algorithm (generalized reduction gradient method) was used as the solution of the optimization calculation, and a fixed-point theoretical solution was given as the initial value.

図6の固有モードから、定点理論解は2次モードよりも大きなモード振幅が得られる3次モードを対象として求めた。主架構の3次モードの一般化質量に対する質量比μをパラメータ(μ=0.05~0.11@0.01)として、上述の最適化計算により伝達関数(Q/F)のピーク値を求めた。 From the eigenmode of FIG. 6, the fixed-point theoretical solution was obtained for the tertiary mode in which a mode amplitude larger than that of the secondary mode can be obtained. The peak value of the transfer function ( Q4 / F) by the above optimization calculation with the mass ratio μ to the generalized mass of the tertiary mode of the main frame as a parameter (μ = 0.05 to 0.11 @ 0.01). Asked.

最適化計算により求めたピーク値において、制御対象である2次モードの伝達関数(Q/F)のピーク値はほぼ一定値を示し、質量比μによる性能差は見られなかった。そのため、1次モードのピーク値が極小値を示した質量比μ=0.09を後述の応答解析に用いる最適パラメータに採用した。 In the peak value obtained by the optimization calculation, the peak value of the transfer function ( Q4 / F) in the secondary mode to be controlled showed an almost constant value, and no performance difference due to the mass ratio μ was observed. Therefore, the mass ratio μ = 0.09, in which the peak value of the primary mode showed the minimum value, was adopted as the optimum parameter used for the response analysis described later.

質量比μ=0.09でのダンパーパラメータを用いて、同調型マスダンパー32を付与したモデル(以下、「ダンパー付与モデル」)での複素固有値解析を行った。複素固有モードの実部を図7に示す。 Using the damper parameter with a mass ratio of μ = 0.09, a complex eigenvalue analysis was performed on a model with a tuned mass damper 32 (hereinafter, “damper-added model”). The real part of the complex eigenmode is shown in FIG.

図7に示すように、3次から5次までの複数のモードで主架構(実線)とダンパー(破線)には大きなモード差が生じており、ダンパーが有効に作用するモード形であることが確認できた。また、2次においても主架構とダンパーには多少のモード差が生じており、ダンパーによる抑制効果が期待できる。 As shown in FIG. 7, there is a large mode difference between the main frame (solid line) and the damper (dashed line) in a plurality of modes from the 3rd to the 5th order, and it is a mode type in which the damper works effectively. It could be confirmed. Further, even in the secondary stage, there is a slight mode difference between the main frame and the damper, and the suppression effect by the damper can be expected.

D.効果確認
最適パラメータを用いた応答解析を行い、擁壁衝突時の増幅抑制の効果を検証した。
D. Effect confirmation Response analysis using the optimum parameters was performed to verify the effect of amplification suppression during a retaining wall collision.

図2のダンパー付与モデルにおいて、質量比μ=0.09でのダンパーパラメータは、同調型マスダンパー32の等価質量mが238.7ton、粘性係数cが0.288kNs/mm、支持部材剛性kが169.9kN/mmとして擁壁衝突時の応答解析を行った。その結果が図3である。なお、同調型マスダンパー32のモデル化に当たり、本
検討の目的である高次モードに対する制御効果を明快にするため、粘性係数cは線形のダッシュポットとし、軸力制限機構は考慮していない。
In the damper application model of FIG. 2, the damper parameters at a mass ratio μ = 0.09 are that the equivalent mass md of the tuned mass damper 32 is 238.7 ton, the viscosity coefficient cd is 0.288 kNs / mm, and the rigidity of the supporting member. Response analysis was performed when the retaining wall collided with k b set to 169.9 kN / mm. The result is shown in FIG. In modeling the tuning mass damper 32, the viscosity coefficient cd is a linear dashpot and the axial force limiting mechanism is not considered in order to clarify the control effect for the higher-order mode, which is the purpose of this study. ..

図3に示すように、ダンパーのパラメータを導出する際に最適化を行った第4層以上の層で原設計モデルよりも応答低減できており、狙った効果を確認することができた。最上層での低減効果が最も高く、約20%の低減率であった。 As shown in FIG. 3, the response was reduced compared to the original design model in the fourth and higher layers optimized when deriving the damper parameters, and the targeted effect could be confirmed. The reduction effect in the uppermost layer was the highest, and the reduction rate was about 20%.

本発明は、上述した実施形態に限定されるものではなく、さらに種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法、及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。 The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the present invention includes substantially the same configurations as those described in the embodiments (eg, configurations with the same function, method, and result, or configurations with the same purpose and effect). The present invention also includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. Further, the present invention includes a configuration having the same action and effect as the configuration described in the embodiment or a configuration capable of achieving the same object. Further, the present invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

1…免震建物、1a…質点系モデル、10…上部構造体、12…側面、14…下層部、20…下部構造体、21…基礎、22…免震機構、23…擁壁、30…フェールセーフ機構、32…同調型マスダンパー、33…支持部材、c…粘性係数、m…等価質量、k…支持部材剛性、k…地盤ばね、k…擁壁ばね、C…地盤ダッシュポット、u…クリアランス 1 ... Seismic isolation building, 1a ... Seismic isolation model, 10 ... Upper structure, 12 ... Side, 14 ... Lower layer, 20 ... Lower structure, 21 ... Foundation, 22 ... Seismic isolation mechanism, 23 ... Retaining wall, 30 ... Fail-safe mechanism, 32 ... Synchronized mass damper, 33 ... Support member, cd ... Viscosity coefficient, md ... Equivalent mass, kb ... Support member rigidity, kg ... Ground spring, kW ... Retaining wall spring, C g … Ground dashpot, uc … clearance

Claims (3)

免震機構を備えた免震建物であって、
前記免震建物は、前記免震機構よりも上の上部構造体にフェールセーフ機構を備え、
前記フェールセーフ機構は、前記免震建物の2次以上の固有振動モードの少なくとも1つに対して同調効果を発揮する同調型マスダンパーを含むことを特徴とする、フェールセーフ機構を備える免震建物。
It is a seismic isolated building equipped with a seismic isolation mechanism.
The seismic isolated building has a fail-safe mechanism in the upper structure above the seismic isolation mechanism.
The fail-safe mechanism includes a tuned mass damper that exerts a tuning effect on at least one of the secondary or higher natural vibration modes of the seismic isolated building. ..
請求項1において、
前記フェールセーフ機構は、前記上部構造体の下半分の下層部に設けられることを特徴とする、フェールセーフ機構を備える免震建物。
In claim 1,
The fail-safe mechanism is a seismic isolated building provided with a fail-safe mechanism, which is provided in the lower layer of the lower half of the superstructure.
請求項1または請求項2において、
前記同調型マスダンパーは、当該同調型マスダンパーが設置された層または該層とは異なる特定層における負担せん断力または層間変位の伝達関数のピーク値が最小となるように最適化されることを特徴とする、フェールセーフ機構を備える免震建物。
In claim 1 or 2,
The tuning mass damper is optimized so that the peak value of the transfer function of the load shear force or the interlayer displacement in the layer in which the tuning mass damper is installed or a specific layer different from the layer is minimized. A seismic isolated building with a fail-safe mechanism.
JP2020177795A 2020-10-23 2020-10-23 Seismic isolation building with fail-safe mechanism Active JP7510844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020177795A JP7510844B2 (en) 2020-10-23 2020-10-23 Seismic isolation building with fail-safe mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020177795A JP7510844B2 (en) 2020-10-23 2020-10-23 Seismic isolation building with fail-safe mechanism

Publications (2)

Publication Number Publication Date
JP2022068948A true JP2022068948A (en) 2022-05-11
JP7510844B2 JP7510844B2 (en) 2024-07-04

Family

ID=81521801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020177795A Active JP7510844B2 (en) 2020-10-23 2020-10-23 Seismic isolation building with fail-safe mechanism

Country Status (1)

Country Link
JP (1) JP7510844B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495013B2 (en) 2009-09-03 2014-05-21 清水建設株式会社 Vibration control mechanism
JP5574336B2 (en) 2009-12-10 2014-08-20 清水建設株式会社 TMD mechanism
JP7025988B2 (en) 2018-05-10 2022-02-25 戸田建設株式会社 Building damping system and building

Also Published As

Publication number Publication date
JP7510844B2 (en) 2024-07-04

Similar Documents

Publication Publication Date Title
Xiang et al. Seismic vibration control of building structures with multiple tuned mass damper floors integrated
Tigli Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads
Shen et al. Parameters optimization for a novel dynamic vibration absorber
Villaverde et al. Damped resonant appendages to increase inherent damping in buildings
Krenk et al. Tuned mass absorber on a flexible structure
Fiala et al. Numerical modelling of ground-borne noise and vibration in buildings due to surface rail traffic
Occhiuzzi Additional viscous dampers for civil structures: Analysis of design methods based on effective evaluation of modal damping ratios
Sadek et al. Linear procedures for structures with velocity-dependent dampers
JP3162421B2 (en) Damping structure
Liu et al. Performance of a passive rate‐independent damping device in a seismically isolated multistory building
Brandão et al. Optimum design of single and multiple tuned mass dampers for vibration control in buildings under seismic excitation
Zhang et al. Closed-form optimization of tuned mass-damper-inerter (TMDI) in flexible structures
Li et al. Optimal design of nontraditional tuned mass damper for base-isolated building
JP2022068948A (en) Base-isolated building provided with failsafe mechanism
Shmerling et al. Seismic retrofit of frame structures using passive systems based on optimal control
Morales Inerter-added transmissibility to control base displacement in isolated structures
WO2018193564A1 (en) Dynamic response analysis method for nonlinear multiple degree of freedom system
Xiaoming Optimization of the stochastic response of a bridge isolation system with hysteretic dampers
JP2010242449A (en) Seismic response control repair structure and seismic response control repair method for existing building
JP7374694B2 (en) Design method for seismically isolated buildings
KR102353874B1 (en) Motor control panel having seismic isolation device for protecting electrical equipment from earthquake
Adam et al. Response of nonstructural components in ductile load-bearing structures subjected to ordinary ground motions
JP7097204B2 (en) Vibration control system
KR102353879B1 (en) Distribution board having seismic isolation device for protecting electrical equipment from earthquake
JP2010242381A (en) Vibration control structure of building and building equipped therewith

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20201110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240624

R150 Certificate of patent or registration of utility model

Ref document number: 7510844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150