[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2022055700A - Manufacturing method of fluid dynamic pressure bearing device - Google Patents

Manufacturing method of fluid dynamic pressure bearing device Download PDF

Info

Publication number
JP2022055700A
JP2022055700A JP2020163269A JP2020163269A JP2022055700A JP 2022055700 A JP2022055700 A JP 2022055700A JP 2020163269 A JP2020163269 A JP 2020163269A JP 2020163269 A JP2020163269 A JP 2020163269A JP 2022055700 A JP2022055700 A JP 2022055700A
Authority
JP
Japan
Prior art keywords
bearing member
housing
mold
peripheral surface
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020163269A
Other languages
Japanese (ja)
Inventor
稔明 丹羽
Toshiaki Niwa
大智 加藤
Daichi Katou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2020163269A priority Critical patent/JP2022055700A/en
Publication of JP2022055700A publication Critical patent/JP2022055700A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

To stably secure a desired fixing force between a bottomed cylindrical housing and a bearing member which adhere to each other with a clearance.SOLUTION: When fixing a bearing member 8 which forms a radial bearing clearance along an internal peripheral face 8a to an internal periphery of a bottomed cylindrical housing 7 by clearance-adhesion, a plurality of points which are separated in a peripheral direction of the internal peripheral face 8a of the bearing member 8 are contact-supported by a support pin 24 arranged at a first metal mold 21 out of first and second metal molds 21, 22 which relatively approximate each other and separably move, an external peripheral face 7c of the housing 7 is constricted by the second metal mold 22, and after that, a bottom-side space 10 which is formed between a lower end face 8b of the bearing member 8 and an inner bottom face 7b of the housing 7 accompanied by the relative approach/movement of both the metal molds 21, 22, and an opening-side space which is formed of an upper end face 8c of the bearing member 8 are maintained in a communicative state via ventilation paths 30 which are formed of a region (connection face 24b) except for support parts 24b of the bearing member 8 out of an external peripheral face of the support pin 24 up until the relative approach/movement of both the metal molds 21, 22 is completed.SELECTED DRAWING: Figure 6

Description

本発明は、流体動圧軸受装置の製造方法に関する。 The present invention relates to a method for manufacturing a fluid dynamic bearing device.

周知のように、流体動圧軸受装置は、高速回転、高回転精度および低騒音等の特長を有する。このため、流体動圧軸受装置は、例えば、HDD等のディスク駆動装置に組み込まれるスピンドルモータ用、PC等に組み込まれるファンモータ用、あるいはレーザビームプリンタに組み込まれるポリゴンスキャナモータ用の軸受装置などとして使用されている。 As is well known, the fluid dynamic bearing device has features such as high speed rotation, high rotation accuracy and low noise. Therefore, the fluid dynamic bearing device is, for example, a bearing device for a spindle motor incorporated in a disk drive device such as an HDD, a fan motor incorporated in a PC or the like, or a polygon scanner motor incorporated in a laser beam printer. It is used.

例えば下記の特許文献1の図8には、有底筒状のハウジングと、内周面でラジアル軸受部のラジアル軸受隙間を形成する円筒状の軸受部材とを備え、軸受部材がハウジングの内周に隙間接着によって固定された流体動圧軸受装置が開示されている。この種の流体動圧軸受装置においては、軸受部材の内周面とハウジングの外周面との間の同軸度が軸受性能(特にラジアル軸受部の軸受性能)を大きく左右する。そのため、特許文献1では、軸受部材をハウジングの内周に隙間接着する(ハウジングの内周に軸受部材が隙間接着されたアセンブリを作製する)に際し、互いに対向する軸受部材の外周面とハウジングの内周面との間の接着隙間に接着剤を満たした状態で、組立装置に設けられた2つの拘束面(軸受部材の円筒状内周面を拘束するための円筒状外周面、およびハウジングのテーパ状外周面を拘束するためのテーパ状内周面)の間の同軸度を管理するようにしている。 For example, FIG. 8 of Patent Document 1 below includes a bottomed tubular housing and a cylindrical bearing member forming a radial bearing gap of the radial bearing portion on the inner peripheral surface, and the bearing member is the inner circumference of the housing. Disclosed is a fluid dynamic bearing device fixed by gap adhesion. In this type of hydrodynamic bearing device, the coaxiality between the inner peripheral surface of the bearing member and the outer peripheral surface of the housing greatly affects the bearing performance (particularly the bearing performance of the radial bearing portion). Therefore, in Patent Document 1, when the bearing member is gap-bonded to the inner circumference of the housing (to produce an assembly in which the bearing member is gap-bonded to the inner circumference of the housing), the outer peripheral surfaces of the bearing members facing each other and the inside of the housing are manufactured. With the adhesive gap between the peripheral surface and the peripheral surface filled with adhesive, the two restraint surfaces provided in the assembly device (the cylindrical outer peripheral surface for restraining the cylindrical inner peripheral surface of the bearing member, and the taper of the housing). The degree of coaxiality between the outer peripheral surface (tapered inner peripheral surface for restraining the outer peripheral surface) is controlled.

特開2008-25739号公報Japanese Unexamined Patent Publication No. 2008-25739

特許文献1のように、ハウジングの内周に軸受部材を隙間接着するに際し、軸受部材の内周面を組立装置に設けた支持ピンの円筒状外周面で全周に亘って拘束した場合、ハウジングと軸受部材との間に所望の固定力(接着強度)を安定的に確保するのが難しくなることが判明した。このような不都合が生じる主な理由は、接着隙間の隙間幅が最大でも数十μm程度の微小幅に設定されるのが通例である関係上、
(1)ハウジングの内周に軸受部材を挿入(すきまばめ:JIS B 0401-1を参照)してから接着隙間に接着剤を充填する、
という手順を踏んだ場合には接着隙間に所定量の接着剤を充填することが難しいため、
(2)接着隙間を形成する対向二面の少なくとも一方に接着剤を塗布し、その後、内周面が支持ピンの円筒状外周面で拘束された軸受部材をハウジングの内周に挿入する、
という手順を踏む場合が多いことによる。
As in Patent Document 1, when the bearing member is gap-bonded to the inner circumference of the housing, the inner peripheral surface of the bearing member is restrained over the entire circumference by the cylindrical outer peripheral surface of the support pin provided in the assembly device. It has been found that it is difficult to stably secure a desired fixing force (adhesive strength) between the bearing member and the bearing member. The main reason for such inconvenience is that the gap width of the bonding gap is usually set to a minute width of about several tens of μm at the maximum.
(1) After inserting the bearing member into the inner circumference of the housing (clearance fit: refer to JIS B 0401-1), fill the adhesive gap with the adhesive.
If you follow the procedure, it is difficult to fill the adhesive gap with a predetermined amount of adhesive, so
(2) An adhesive is applied to at least one of the two facing surfaces forming the adhesive gap, and then a bearing member whose inner peripheral surface is constrained by the cylindrical outer peripheral surface of the support pin is inserted into the inner circumference of the housing.
This is because there are many cases where the procedure is taken.

すなわち、上記(2)の手順を踏む場合には、ハウジングの内周に軸受部材が挿入されるのに伴って、ハウジングの内部空間に介在する空気が軸受部材および支持ピンで圧縮され、ハウジングの内圧が上昇する。このとき、特許文献1に記載のように、軸受部材の内周面が支持ピンの円筒状外周面によって全周に亘って拘束されていると、接着隙間を形成する対向二面の少なくとも一方に予め塗布した接着剤がハウジングの内圧上昇に伴ってハウジングの開口側に押し出される。その結果、接着隙間に介在させるべき接着剤量が不足(接着隙間のうち接着剤が適切に介在する領域が減少)し、ハウジングと軸受部材との間に所望の固定力を確保できなくなる。 That is, when the above procedure (2) is followed, as the bearing member is inserted into the inner circumference of the housing, the air intervening in the internal space of the housing is compressed by the bearing member and the support pin, and the housing Internal pressure rises. At this time, as described in Patent Document 1, when the inner peripheral surface of the bearing member is restrained over the entire circumference by the cylindrical outer peripheral surface of the support pin, it is applied to at least one of the two facing surfaces forming the adhesive gap. The pre-applied adhesive is extruded to the opening side of the housing as the internal pressure of the housing increases. As a result, the amount of the adhesive to be interposed in the adhesive gap is insufficient (the region where the adhesive is appropriately interposed in the adhesive gap is reduced), and the desired fixing force cannot be secured between the housing and the bearing member.

上記の問題点に鑑み、本発明の主な目的は、隙間接着で固定される有底筒状のハウジングと軸受部材との間に所望の固定力が確保されたアセンブリを安定的に量産可能とすることにある。 In view of the above problems, the main object of the present invention is to enable stable mass production of an assembly in which a desired fixing force is secured between a bottomed cylindrical housing fixed by gap adhesion and a bearing member. To do.

上記の目的を達成するために創案された本発明は、軸方向の一端が開口すると共に軸方向の他端が閉塞された有底筒状のハウジングの内周に、内周面でラジアル軸受隙間を形成する軸受部材を隙間接着で固定するに際し、相対的に接近および離反移動可能に同軸配置された第1および第2金型のうち、第1金型に設けた支持ピンで軸受部材の内周面の周方向に離間した複数箇所を接触支持すると共に、第2金型でハウジングの外周面を拘束し、その後、第1金型と第2金型の相対的な接近移動が完了するまでの間、第1金型と第2金型の相対的な接近移動に伴って軸受部材の他端面とハウジングの内底面との間に形成される底側空間と、軸受部材の一端面が面する開口側空間とを、支持ピンの外周面のうち軸受部材の支持部を除く領域で形成される通気路を介して連通可能な状態に維持することを特徴とする。 The present invention, which was devised to achieve the above object, has a radial bearing gap on the inner peripheral surface of a bottomed tubular housing in which one end in the axial direction is open and the other end in the axial direction is closed. Of the first and second dies that are coaxially arranged so that they can move relatively close to each other and alienate from each other when fixing the bearing member forming the While contacting and supporting multiple points separated in the circumferential direction of the peripheral surface, the outer peripheral surface of the housing is restrained by the second mold, and then until the relative close movement of the first mold and the second mold is completed. The bottom space formed between the other end surface of the bearing member and the inner bottom surface of the housing due to the relative close movement of the first mold and the second mold, and one end surface of the bearing member are surfaces. It is characterized in that the space on the opening side is maintained in a state in which communication is possible through a ventilation path formed in a region of the outer peripheral surface of the support pin excluding the support portion of the bearing member.

上記の方法によれば、軸受部材の内周面を支持した支持ピンを有する第1金型とハウジングの外周面を拘束した第2金型とが芯出しされた状態で両金型が相対的に接近移動する(型締め動作が行われる)ので、ハウジングおよび/または軸受部材の寸法精度にばらつきがあった場合でも、軸受部材の内周面とハウジングの外周面との間に所望の同軸度が確保された組み付け品(アセンブリ)を安定的に得ることができる。 According to the above method, both molds are relative to each other in a state where the first mold having a support pin supporting the inner peripheral surface of the bearing member and the second mold restraining the outer peripheral surface of the housing are centered. Since it moves closer to (the mold clamping operation is performed), the desired coaxiality between the inner peripheral surface of the bearing member and the outer peripheral surface of the housing even if the dimensional accuracy of the housing and / or the bearing member varies. It is possible to stably obtain an assembled product (assembly) in which the bearing is secured.

また、上記の方法によれば、両金型の相対的な接近移動に伴ってハウジングの内周に軸受部材が挿入される間、軸受部材の他端面とハウジングの内底面との間に形成される底側空間と、軸受部材の一端面が面する開口側空間とが上記通気路を介して常時連通した状態となるので、ハウジング内周への軸受部材の挿入に伴うハウジングの内圧上昇が可及的に防止される。そのため、接着隙間を形成するハウジングの内周面および軸受部材の外周面の少なくとも一方に接着剤を塗布した状態でハウジング内周に軸受部材が挿入された場合でも、ハウジングの内圧上昇に伴う接着剤の外部漏洩を回避することができる。これにより、ハウジングの内周面と軸受部材の外周面との間に所定量の接着剤を適切に介在させることが可能となるので、ハウジングと軸受部材との間に所望の固定力が確保されたアセンブリを安定的に得ることができる。 Further, according to the above method, the bearing member is formed between the other end surface of the bearing member and the inner bottom surface of the housing while the bearing member is inserted into the inner circumference of the housing due to the relative close movement of both molds. Since the space on the bottom side and the space on the opening side facing one end surface of the bearing member are always in communication with each other through the ventilation path, the internal pressure of the housing can be increased by inserting the bearing member into the inner circumference of the housing. It is prevented. Therefore, even when the bearing member is inserted into the inner circumference of the housing with the adhesive applied to at least one of the inner peripheral surface of the housing and the outer peripheral surface of the bearing member forming the adhesive gap, the adhesive accompanies the increase in the internal pressure of the housing. It is possible to avoid the external leakage of the. This makes it possible to appropriately interpose a predetermined amount of adhesive between the inner peripheral surface of the housing and the outer peripheral surface of the bearing member, so that a desired fixing force is secured between the housing and the bearing member. The assembly can be obtained stably.

軸受部材は、その内周面の周方向に離間した三箇所以上を支持ピンで接触支持(線接触支持)するのが好ましい。これにより、支持ピンによる軸受部材の支持精度を高めることができるので、高精度のアセンブリを作製する上で有利となる。 It is preferable that the bearing member is contact-supported (line contact-supported) with support pins at three or more locations separated in the circumferential direction of the inner peripheral surface thereof. As a result, the support accuracy of the bearing member by the support pin can be improved, which is advantageous in manufacturing a high-precision assembly.

第1金型と第2金型の相対的な接近移動の完了時(両金型の型締め完了時)、両金型でハウジングを軸方向に挟持するようにすれば、ハウジングの端面(例えば内底面)と軸受部材の内周面との間の直角度が高精度に管理されたアセンブリを得る上で有利となる。 When the relative close movement of the first mold and the second mold is completed (when the molds of both molds are completed), if the housing is held in the axial direction by both molds, the end face of the housing (for example, It is advantageous to obtain an assembly in which the squareness between the inner bottom surface) and the inner peripheral surface of the bearing member is controlled with high precision.

以上より、本発明によれば、ハウジングと軸受部材との間に所望の固定力(接着強度)および同軸度が確保されたアセンブリを安定的に量産することが可能となる。 From the above, according to the present invention, it is possible to stably mass-produce an assembly in which a desired fixing force (adhesive strength) and coaxiality are secured between a housing and a bearing member.

流体動圧軸受装置を備えたファンモータを概念的に示す図である。It is a figure which conceptually shows a fan motor provided with a fluid dynamic pressure bearing device. 図1に示す流体動圧軸受装置の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of the hydrodynamic bearing device shown in FIG. 1. 軸受部材の縦断面図である。It is a vertical sectional view of a bearing member. 図3に示す軸受部材を上側から見たときの平面図である。FIG. 3 is a plan view of the bearing member shown in FIG. 3 when viewed from above. 組立装置の型締め前の状態における部分縦断面図である。It is a partial vertical sectional view in the state before mold clamping of an assembly apparatus. 図5中のX-X線矢視断面図である。FIG. 5 is a cross-sectional view taken along the line XX in FIG. 組立装置の型締め状態における部分縦断面図である。It is a partial vertical sectional view in a molded state of an assembly apparatus. (a)図および(b)図は、何れも、他の実施形態に係る組立装置の部分横断面図である。Both the figure (a) and the figure (b) are partial cross-sectional views of the assembly apparatus according to another embodiment. 他の実施形態に係る組立装置の部分横断面図である。It is a partial cross-sectional view of the assembly apparatus which concerns on other embodiment.

以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、流体動圧軸受装置1を備えたモータ(ファンモータ)の一構成例を概念的に示す。同図に示すファンモータは、流体動圧軸受装置1と、モータの静止側を構成するモータベース6と、モータベース6に取り付けられたステータコイル5と、羽根を有する回転部材としてのロータ3と、ロータ3に取り付けられ、ステータコイル5と径方向隙間を介して対向するロータマグネット4とを備える。流体動圧軸受装置1のハウジング7は、モータベース6の内周に固定され、ロータ3は、流体動圧軸受装置1の軸部材2の一端に固定されている。このように構成されたファンモータにおいて、ステータコイル5に通電すると、ステータコイル5とロータマグネット4との間の電磁力でロータマグネット4が回転し、これに伴って軸部材2、および軸部材2に固定されたロータ3が一体に回転する。 FIG. 1 conceptually shows a configuration example of a motor (fan motor) provided with a fluid dynamic bearing device 1. The fan motor shown in the figure includes a fluid dynamic bearing device 1, a motor base 6 constituting the stationary side of the motor, a stator coil 5 attached to the motor base 6, and a rotor 3 as a rotating member having blades. , A rotor magnet 4 attached to the rotor 3 and facing the stator coil 5 via a radial gap. The housing 7 of the fluid dynamic bearing device 1 is fixed to the inner circumference of the motor base 6, and the rotor 3 is fixed to one end of the shaft member 2 of the fluid dynamic bearing device 1. In the fan motor configured in this way, when the stator coil 5 is energized, the rotor magnet 4 is rotated by the electromagnetic force between the stator coil 5 and the rotor magnet 4, and the shaft member 2 and the shaft member 2 are accompanied by this rotation. The rotor 3 fixed to the rotor 3 rotates integrally.

ロータ3が回転すると、ロータ3に設けられた羽根の形態に応じて図中上向き又は下向きに風が送られる。このため、ロータ3の回転中にはこの送風作用の反力として、流体動圧軸受装置1の軸部材2に図中下向き又は上向きの推力が作用する。ステータコイル5とロータマグネット4との間には、この推力を打ち消す方向の磁力(斥力)を作用させており、上記推力と磁力の大きさの差により生じたスラスト荷重が流体動圧軸受装置1のスラスト軸受部Tで支持される。また、ロータ3の回転時には、流体動圧軸受装置1の軸部材2にラジアル荷重が作用する。このラジアル荷重は、流体動圧軸受装置1のラジアル軸受部R1,R2で支持される。 When the rotor 3 rotates, wind is sent upward or downward in the figure depending on the form of the blades provided on the rotor 3. Therefore, during the rotation of the rotor 3, a downward or upward thrust in the figure acts on the shaft member 2 of the fluid dynamic pressure bearing device 1 as a reaction force of this blowing action. A magnetic force (repulsive force) in a direction that cancels this thrust is applied between the stator coil 5 and the rotor magnet 4, and the thrust load generated by the difference between the thrust and the magnitude of the magnetic force is the fluid dynamic bearing device 1. It is supported by the thrust bearing portion T of. Further, when the rotor 3 is rotated, a radial load acts on the shaft member 2 of the fluid dynamic bearing device 1. This radial load is supported by the radial bearing portions R1 and R2 of the fluid dynamic bearing device 1.

図2に、図1に示す流体動圧軸受装置1の拡大断面図を示す。この流体動圧軸受装置1は、軸方向の一端が開口すると共に軸方向の他端が閉塞された有底筒状のハウジング7と、ハウジング7の内周に固定された軸受部材8と、軸受部材8の内周に挿入された軸部材2と、ハウジング7の一端開口部をシールするシール部材9とを備え、ハウジング7の内部空間は、潤滑流体としての潤滑油(図中、密な散点ハッチングで示す)で満たされている。以下、説明の便宜上、シール部材9が配置された側を上側と言い、その軸方向反対側を下側と言うが、流体動圧軸受装置1の使用姿勢を限定する趣旨ではない。 FIG. 2 shows an enlarged cross-sectional view of the fluid dynamic bearing device 1 shown in FIG. The hydrodynamic bearing device 1 includes a bottomed tubular housing 7 in which one end in the axial direction is opened and the other end in the axial direction is closed, a bearing member 8 fixed to the inner circumference of the housing 7, and a bearing. A shaft member 2 inserted into the inner circumference of the member 8 and a sealing member 9 for sealing one end opening of the housing 7 are provided, and the internal space of the housing 7 is a lubricating oil as a lubricating fluid (dense dispersion in the figure). It is filled with (indicated by dot hatching). Hereinafter, for convenience of explanation, the side on which the seal member 9 is arranged is referred to as the upper side, and the side opposite to the axial direction thereof is referred to as the lower side, but it is not intended to limit the usage posture of the fluid dynamic bearing device 1.

ハウジング7は、例えば黄銅等の金属材料により、円筒状の筒部71およびその下端開口部を閉塞する円盤状の底部72を一体に有する有底筒状に形成されている。本実施形態のハウジング7は、筒部71と底部72の境界部内周に配置された段部73を一体に有する。また、本実施形態では、底部72の上端面に、摺動性に富む樹脂材料で円盤状に形成したスラストプレート74を載置し、スラストプレート74の上端面でハウジング7の内底面7bを構成している。ハウジング7としては、樹脂材料で有底筒状に形成されたものを使用しても良く、この場合には、スラストプレート74は基本的に省略される。 The housing 7 is made of a metal material such as brass to form a bottomed cylinder having a cylindrical cylinder 71 and a disk-shaped bottom 72 integrally closing the lower end opening thereof. The housing 7 of the present embodiment integrally has a step portion 73 arranged on the inner circumference of the boundary portion between the tubular portion 71 and the bottom portion 72. Further, in the present embodiment, a thrust plate 74 formed in a disk shape made of a highly slidable resin material is placed on the upper end surface of the bottom portion 72, and the inner bottom surface 7b of the housing 7 is formed on the upper end surface of the thrust plate 74. are doing. As the housing 7, a resin material formed in a bottomed tubular shape may be used, and in this case, the thrust plate 74 is basically omitted.

軸部材2は、ステンレス鋼等の金属材料で形成され、その下端面2bは凸球面に形成されている。軸部材2の上端には、羽根を有するロータ3(図1参照)が固定される。 The shaft member 2 is made of a metal material such as stainless steel, and its lower end surface 2b is formed on a convex spherical surface. A rotor 3 having blades (see FIG. 1) is fixed to the upper end of the shaft member 2.

軸受部材8は、多孔質体、ここでは銅および鉄を主成分とする焼結金属の多孔質体で円筒状に形成され、その内部気孔にはハウジング7の内部空間に充填された潤滑油と同種の潤滑油が含浸している。軸受部材8としては、多孔質樹脂等、焼結金属以外の多孔質体で形成されたものを使用しても良いし、非多孔質の金属材料や樹脂材料で形成されたものを使用しても良い。 The bearing member 8 is formed in a cylindrical shape with a porous body, here, a porous body of a sintered metal containing copper and iron as main components, and its internal pores are filled with lubricating oil filled in the internal space of the housing 7. It is impregnated with the same type of lubricating oil. As the bearing member 8, a material formed of a porous body other than a sintered metal such as a porous resin may be used, or a material formed of a non-porous metal material or a resin material may be used. Is also good.

軸受部材8の内周面8aには、対向する軸部材2の外周面2aとの間にラジアル軸受部R1,R2のラジアル軸受隙間を形成する円筒状のラジアル軸受面が上下二箇所に離間して設けられる。図3に示すように、各ラジアル軸受面には、ラジアル軸受隙間内の潤滑油に動圧作用を発生させるための動圧発生部(ラジアル動圧発生部)A1,A2がそれぞれ形成される。図示例のラジアル動圧発生部A1,A2は、それぞれ、互いに反対方向に傾斜した複数の上側動圧溝Aa1および下側動圧溝Aa2と、両動圧溝Aa1,Aa2を区画する凸状の丘部とを有し、丘部は全体としてヘリングボーン形状を呈する。すなわち、丘部は、周方向で隣り合う動圧溝間に設けられた傾斜丘部Abと、上下の動圧溝Aa1,Aa2間に設けられ、傾斜丘部Abと略同径の環状丘部Acとからなる。 On the inner peripheral surface 8a of the bearing member 8, a cylindrical radial bearing surface that forms a radial bearing gap between the radial bearing portions R1 and R2 is separated from the outer peripheral surface 2a of the opposing shaft member 2 at two upper and lower positions. Is provided. As shown in FIG. 3, dynamic pressure generating portions (radial dynamic pressure generating portions) A1 and A2 for generating a dynamic pressure action on the lubricating oil in the radial bearing gap are formed on each radial bearing surface, respectively. The radial dynamic pressure generating portions A1 and A2 in the illustrated example have a convex shape that separates a plurality of upper dynamic pressure grooves Aa1 and lower dynamic pressure grooves Aa2 and both dynamic pressure grooves Aa1 and Aa2, respectively, which are inclined in opposite directions. It has a hill and the hill has a herringbone shape as a whole. That is, the hill portion is provided between the inclined hill portion Ab provided between the adjacent dynamic pressure grooves in the circumferential direction and the upper and lower dynamic pressure grooves Aa1 and Aa2, and the annular hill portion having substantially the same diameter as the inclined hill portion Ab. It consists of Ac.

上側のラジアル動圧発生部A1においては、上側動圧溝Aa1の軸方向寸法X1が下側動圧溝Aa2の軸方向寸法X2よりも大きく設定され(X1>X2)、下側のラジアル動圧発生部A2においては、上側動圧溝Aa1および下側動圧溝Aa2の軸方向寸法が、上側のラジアル動圧発生部A1を構成する下側動圧溝Aa2の軸方向寸法X2と同一に設定されている。そのため、軸部材2と軸受部材8の相対回転時、軸部材2の外周面2aと軸受部材8の内周面8aの間の径方向隙間(ラジアル軸受隙間)に介在する潤滑油は下側に押し込まれる。 In the upper dynamic pressure generating portion A1, the axial dimension X 1 of the upper dynamic pressure groove Aa1 is set to be larger than the axial dimension X 2 of the lower dynamic pressure groove Aa2 (X 1 > X 2 ), and the lower side. In the radial dynamic pressure generating portion A2 of the above, the axial dimension of the upper dynamic pressure groove Aa1 and the lower dynamic pressure groove Aa2 is the axial dimension X of the lower dynamic pressure groove Aa2 constituting the upper radial dynamic pressure generating portion A1. It is set to be the same as 2 . Therefore, when the shaft member 2 and the bearing member 8 rotate relative to each other, the lubricating oil interposed in the radial gap (radial bearing gap) between the outer peripheral surface 2a of the shaft member 2 and the inner peripheral surface 8a of the bearing member 8 is on the lower side. Be pushed in.

図2~図4に示すように、軸受部材8の上端面8cには、外径端部が軸受部材8の上端外周チャンファに開口すると共に内径端部が軸受部材8の上端内周チャンファに開口した径方向溝8c1が形成されている。本実施形態では、周方向に離間した三箇所に径方向溝8c1が等配されている。また、軸受部材8の下端面8bには、その径方向略中央部に配置された環状溝8b1と、内径端部が環状溝8b1に開口すると共に外径端部が軸受部材8の下端外周チャンファに開口した径方向溝8b2とが形成されている。詳細な図示は省略しているが、本実施形態では、径方向溝8c1と同様に、周方向に離間した三箇所に径方向溝8b2を等配している。 As shown in FIGS. 2 to 4, in the upper end surface 8c of the bearing member 8, the outer diameter end portion opens to the upper end outer peripheral chamfer of the bearing member 8 and the inner diameter end portion opens to the upper end inner peripheral chamfer of the bearing member 8. The radial groove 8c1 is formed. In this embodiment, radial grooves 8c1 are evenly arranged at three locations separated in the circumferential direction. Further, on the lower end surface 8b of the bearing member 8, an annular groove 8b1 arranged at a substantially central portion in the radial direction thereof, an inner diameter end portion opens into the annular groove 8b1, and an outer diameter end portion is a lower end outer peripheral chamfer of the bearing member 8. A radial groove 8b2 opened in the above is formed. Although detailed illustration is omitted, in the present embodiment, the radial grooves 8b2 are equally arranged at three locations separated in the circumferential direction, similarly to the radial groove 8c1.

軸受部材8の外周面8dには、上端部が軸受部材8の上端外周チャンファに開口すると共に、下端部が軸受部材8の下端外周チャンファに開口した軸方向溝8d1が周方向に離間した複数箇所(図示例では三箇所)に形成されている。なお、軸方向溝8d1は、上記の径方向溝8b2(8c1)とは周方向で異なる位置に配置されており、本実施形態では、隣り合う2つの径方向溝8b2(8c1)の中間位置に軸方向溝8d1を配置している。 On the outer peripheral surface 8d of the bearing member 8, a plurality of axial grooves 8d1 having an upper end portion opened in the upper end outer peripheral chamfer of the bearing member 8 and an lower end portion opened in the lower end outer peripheral chamfer of the bearing member 8 are separated in the circumferential direction. It is formed in (three places in the illustrated example). The axial groove 8d1 is arranged at a position different from that of the radial groove 8b2 (8c1) in the circumferential direction, and in the present embodiment, the axial groove 8d1 is located at an intermediate position between two adjacent radial grooves 8b2 (8c1). Axial groove 8d1 is arranged.

以上の構成を有する軸受部材8は、その下端面8bをハウジング7の段部73の上端面に当接させた状態でハウジング7の内周に隙間接着によって固定されている。そのため、軸受部材8の外径寸法(外周面8dの直径寸法)は、ハウジング7の内径寸法(内周面7aの直径寸法)よりも小さく設定されている。係る態様でハウジング7の内周に軸受部材8が固定されていることにより、軸受部材8の下端面8bは、底側空間10を介してハウジング7の内底面7bと対向する。軸受部材8の下端面8bに形成された環状溝8b1は、その内径側の一部領域が底側空間10に開口している。 The bearing member 8 having the above configuration is fixed to the inner circumference of the housing 7 by gap adhesion in a state where the lower end surface 8b is in contact with the upper end surface of the step portion 73 of the housing 7. Therefore, the outer diameter dimension of the bearing member 8 (diameter dimension of the outer peripheral surface 8d) is set smaller than the inner diameter dimension of the housing 7 (diameter dimension of the inner peripheral surface 7a). Since the bearing member 8 is fixed to the inner circumference of the housing 7 in this embodiment, the lower end surface 8b of the bearing member 8 faces the inner bottom surface 7b of the housing 7 via the bottom space 10. The annular groove 8b1 formed on the lower end surface 8b of the bearing member 8 has a partial region on the inner diameter side open to the bottom space 10.

ハウジング7と軸受部材8の固定手順については後段で詳述するが、簡単に説明すると、軸受部材8は、筒部71の内周にすきまばめ(JIS B 0401-1参照)された後、互いに対向する軸受部材8の外周面8dとハウジング7の内周面7aとの間に形成される径方向隙間(接着隙間)11に介在する接着剤13(図5参照)を固化させることにより、ハウジング7の筒部71内周に固定される。従って、軸受部材8は、上記接着剤13が固化してなる接着剤層12を介して筒部71の内周に固定されている(以上、図2中の拡大図を参照)。なお、接着剤13としては、例えば、熱硬化型接着剤や嫌気性接着剤を使用することができる。 The procedure for fixing the housing 7 and the bearing member 8 will be described in detail later, but briefly, the bearing member 8 is fitted with a clearance fit on the inner circumference of the tubular portion 71 (see JIS B 0401-1). By solidifying the adhesive 13 (see FIG. 5) interposed in the radial gap (adhesive gap) 11 formed between the outer peripheral surface 8d of the bearing member 8 facing each other and the inner peripheral surface 7a of the housing 7. It is fixed to the inner circumference of the cylinder portion 71 of the housing 7. Therefore, the bearing member 8 is fixed to the inner circumference of the tubular portion 71 via the adhesive layer 12 formed by solidifying the adhesive 13 (see the enlarged view in FIG. 2 above). As the adhesive 13, for example, a thermosetting adhesive or an anaerobic adhesive can be used.

シール部材9は、金属材料又は樹脂材料で円環状に形成され、その下端面9bを軸受部材8の上端面8cに当接させた状態でハウジング7の内周面7aに適宜の手段で固定されている。シール部材9の内周面9aは、下方に向けて漸次縮径したテーパ面状に形成されており、対向する軸部材2の外周面2aとの間に、下方に向けて隙間幅が漸次縮小したくさび状のシール隙間Sを形成する。シール隙間Sは、ハウジング7の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内で潤滑油の油面を常にシール隙間Sの軸方向範囲内に保持する。 The seal member 9 is formed in an annular shape from a metal material or a resin material, and is fixed to the inner peripheral surface 7a of the housing 7 by an appropriate means in a state where the lower end surface 9b thereof is in contact with the upper end surface 8c of the bearing member 8. ing. The inner peripheral surface 9a of the seal member 9 is formed in a tapered surface shape whose diameter is gradually reduced downward, and the gap width is gradually reduced downward between the inner peripheral surface 9a and the outer peripheral surface 2a of the opposing shaft member 2. A wedge-shaped seal gap S is formed. The seal gap S has a buffer function of absorbing the amount of volume change due to the temperature change of the lubricating oil filled in the internal space of the housing 7, and always seals the oil level of the lubricating oil within the range of the assumed temperature change. It is held within the axial range of the gap S.

以上の構成を有する流体動圧軸受装置1において、軸部材2と軸受部材8が相対回転する(本実施形態では軸部材2が回転する)と、軸受部材8の内周面8aの上下2箇所に離間して設けられたラジアル軸受面と、これに対向する軸部材2の外周面2aとの間にラジアル軸受隙間が形成される。そして、軸部材2の回転に伴い、両ラジアル軸受隙間に形成される油膜の圧力がラジアル動圧発生部A1,A2の動圧作用によって高められる。これにより、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が上下に離間した二箇所に形成される。また、これと同時に、ハウジング7の内底面7bで軸部材2をスラスト方向に接触支持するスラスト軸受部Tが形成される。 In the hydrodynamic bearing device 1 having the above configuration, when the shaft member 2 and the bearing member 8 rotate relative to each other (in the present embodiment, the shaft member 2 rotates), the inner peripheral surface 8a of the bearing member 8 is rotated at two locations above and below. A radial bearing gap is formed between the radial bearing surface provided apart from the bearing surface and the outer peripheral surface 2a of the shaft member 2 facing the radial bearing surface. Then, as the shaft member 2 rotates, the pressure of the oil film formed in the gap between both radial bearings is increased by the dynamic pressure action of the radial dynamic pressure generating portions A1 and A2. As a result, the radial bearing portions R1 and R2 that non-contactly support the shaft member 2 in the radial direction are formed at two positions separated from each other in the vertical direction. At the same time, a thrust bearing portion T that contacts and supports the shaft member 2 in the thrust direction is formed on the inner bottom surface 7b of the housing 7.

軸部材2の回転時には、上側のラジアル動圧発生部A1を構成する上側動圧溝Aa1と下側動圧溝Aa2との軸方向寸法差により、軸部材2の外周面2aと軸受部材8の内周面8aとの間の径方向隙間(特にラジアル軸受部R1のラジアル軸受隙間)に介在する潤滑油は下方に押し込まれ、底側空間10→軸受部材8の下端面8bに設けた環状溝8b1および径方向溝8b2で形成される流体通路→軸受部材8の下端外周チャンファ(およびハウジング7の段部73の外径端に設けた環状溝)で形成される環状空間→軸受部材8の外周面8dに設けた軸方向溝8d1で形成される流体通路→軸受部材8の上端外周チャンファで形成される環状空間→軸受部材8の上端面8cに設けた径方向溝8c1で形成される流体通路という一連の循環経路を循環して、ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。これにより、ハウジング7の内部空間を満たす潤滑油の圧力バランスが保たれるため、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の外部漏洩や振動の発生等の問題発生を回避することができる。 When the shaft member 2 is rotated, the outer peripheral surface 2a of the shaft member 2 and the bearing member 8 are affected by the axial dimensional difference between the upper dynamic pressure groove Aa1 and the lower dynamic pressure groove Aa2 constituting the upper radial dynamic pressure generating portion A1. Lubricating oil intervening in the radial gap (particularly the radial bearing gap of the radial bearing portion R1) between the inner peripheral surface 8a is pushed downward, and the bottom space 10 → the annular groove provided in the lower end surface 8b of the bearing member 8. Fluid passage formed by 8b1 and radial groove 8b2 → Circular space formed by the lower end outer peripheral chamfer of the bearing member 8 (and the annular groove provided at the outer diameter end of the step portion 73 of the housing 7) → Outer circumference of the bearing member 8. Fluid passage formed by the axial groove 8d1 provided on the surface 8d → An annular space formed by the upper end outer peripheral chamfer of the bearing member 8 → Fluid passage formed by the radial groove 8c1 provided on the upper end surface 8c of the bearing member 8. It circulates through a series of circulation paths, and is drawn into the radial bearing gap of the radial bearing portion R1 again. As a result, the pressure balance of the lubricating oil that fills the internal space of the housing 7 is maintained, so that bubbles are generated due to the generation of local negative pressure, and the lubricating oil is leaked to the outside or vibration is generated due to the generation of bubbles. It is possible to avoid the occurrence of the problem.

以上で説明した流体動圧軸受装置1は、例えば、ハウジング7に軸受部材8およびシール部材9を組み付けてから軸受部材8の内周に軸部材2を挿入し、その後、ハウジング7の内部空間に軸受部材8の内部気孔も含めて潤滑油を充填する、といった手順を踏むことで完成する。本発明は、ハウジング7と軸受部材8の組み付け方法(ハウジング7と軸受部材8を組み付けてなるアセンブリの作製方法)に主たる特長があることから、以下、図5~図9を参照しながら、上記アセンブリの作製工程について詳細に説明する。 In the hydrodynamic bearing device 1 described above, for example, the bearing member 8 and the seal member 9 are assembled to the housing 7, the shaft member 2 is inserted into the inner circumference of the bearing member 8, and then the shaft member 2 is inserted into the internal space of the housing 7. It is completed by taking steps such as filling the bearing member 8 with lubricating oil including the internal pores. Since the present invention has a main feature in the method of assembling the housing 7 and the bearing member 8 (the method of manufacturing the assembly formed by assembling the housing 7 and the bearing member 8), the above is described below with reference to FIGS. 5 to 9. The assembly manufacturing process will be described in detail.

図5~図7に、アセンブリの作製工程で使用される組立装置20の一例を示す。なお、図5は、同組立装置20の型締め前の状態における部分縦断面図、図6は、図5のX-X線矢視断面図、図7は、組立装置20の型締め状態における部分縦断面図である。図5~図7に示す組立装置20は、軸受部材8の内周面8aを支持する支持ピン24を有する第1金型21と、第1金型21の下方に配置され、ハウジング7を保持する第2金型22と、第1金型21の外径側に配置された第3金型23とを備える。本実施形態では、第2金型22および第3金型23が図示外の定盤に固定されて静止側を構成し、第1金型21が図示外のプレス装置の昇降部材に装着されて可動側を構成する。 5 to 7 show an example of the assembly device 20 used in the assembly manufacturing process. 5 is a partial vertical cross-sectional view of the assembly device 20 in a state before molding, FIG. 6 is a cross-sectional view taken along the line XX of FIG. 5, and FIG. 7 is a state in which the assembly device 20 is molded. It is a partial vertical sectional view. The assembly device 20 shown in FIGS. 5 to 7 is arranged below the first mold 21 having a support pin 24 for supporting the inner peripheral surface 8a of the bearing member 8 and holding the housing 7. The second mold 22 and the third mold 23 arranged on the outer diameter side of the first mold 21 are provided. In the present embodiment, the second die 22 and the third die 23 are fixed to a surface plate (not shown) to form a stationary side, and the first die 21 is attached to an elevating member of a press device (not shown). It constitutes the movable side.

第1金型21は、外径寸法が相対的に小さい小径部25と、外径寸法が相対的に大きい大径部26とを有し、支持ピン24は、小径部25の下方側に突設されるようにして小径部25と一体的に設けられている。第1金型21は、その中心軸に沿って上下方向に延びた孔部27を有し、孔部27の下端は支持ピン24の下端面に開口している。図示は省略しているが、孔部27の上端部には、吸気装置から延びた吸気管が接続される。 The first mold 21 has a small diameter portion 25 having a relatively small outer diameter dimension and a large diameter portion 26 having a relatively large outer diameter dimension, and the support pin 24 protrudes to the lower side of the small diameter portion 25. It is provided integrally with the small diameter portion 25 so as to be provided. The first mold 21 has a hole portion 27 extending in the vertical direction along the central axis thereof, and the lower end of the hole portion 27 is open to the lower end surface of the support pin 24. Although not shown, an intake pipe extending from the intake device is connected to the upper end of the hole 27.

支持ピン24は、断面非真円形状に形成されており、本実施形態では、図6に示すように断面三角形状(正三角形状)に形成されている。そのため、支持ピン24の外周に軸受部材8を嵌合すると、軸受部材8の内周面8aの周方向に離間した三箇所が接触(線接触)支持される。すなわち、支持ピン24は、外周面の周方向に離間した三箇所に軸受部材8の内周面8aを接触(線接触)支持するための支持部24aを有し、各支持部24aを結んで形成される円軌道の直径寸法は、軸受部材8の内周面8aの直径寸法よりも僅かに(例えば、5μm未満)大径に形成されている。なお、支持ピン24の外周に軸受部材8を嵌合するのに伴って、軸受部材8の内周面8aにキズ等の欠陥が生じるのを可及的に防止するため、各支持部24a(軸受部材8の内周面8aとの接触部)は、0.1mm程度のアール形状に形成されている(図6中の拡大図参照)。 The support pin 24 is formed in a non-circular cross section, and in the present embodiment, the support pin 24 is formed in a triangular cross section (regular triangular shape) as shown in FIG. Therefore, when the bearing member 8 is fitted to the outer periphery of the support pin 24, three points separated in the circumferential direction of the inner peripheral surface 8a of the bearing member 8 are contacted (line contacted) and supported. That is, the support pin 24 has support portions 24a for contacting (line contacting) the inner peripheral surface 8a of the bearing member 8 at three locations separated in the circumferential direction of the outer peripheral surface, and connecting the support portions 24a. The diameter of the circular orbit formed is slightly larger (for example, less than 5 μm) than the diameter of the inner peripheral surface 8a of the bearing member 8. In addition, in order to prevent defects such as scratches from occurring on the inner peripheral surface 8a of the bearing member 8 as a result of fitting the bearing member 8 to the outer periphery of the support pin 24, each support portion 24a ( The contact portion of the bearing member 8 with the inner peripheral surface 8a) is formed in a rounded shape of about 0.1 mm (see an enlarged view in FIG. 6).

第2金型22は、ハウジング7の円筒状の外周面7cを拘束(軽圧入)可能な円筒状の内周面22aと、ハウジング7の外底面7dを下方側から接触支持可能な内底面22bとを有し、その上端面22cを第3金型23の小径筒部23aの下端面に当接させた状態で第1金型21および第3金型23と同軸に配置されている。第2金型22の内底面22bと上端面22cとの間の離間距離は、第2金型22で保持されるハウジング7の軸方向寸法よりも小さく設定されている。そのため、図5に示すように、第2金型22でハウジング7を保持したとき、ハウジング7の筒部71の上端面7eは、第2金型22の上端面22cよりも上方に位置する。以上の構成を有する第2金型22のうち、ハウジング7の外周面7cを拘束する拘束面となる内周面22aの寸法精度は、ハウジング7に対する軸受部材8の組み付け精度(ハウジング7の外周面7cと軸受部材8の内周面8aとの間の同軸度)を大きく左右する。そのため、内周面22aの寸法精度は、ハウジング7の外周面7cと軸受部材8の内周面8aとの間に求められる同軸度(例えば、3μm以下)を満足できるように、高精度に仕上げられている。 The second mold 22 has a cylindrical inner peripheral surface 22a capable of restraining (lightly press-fitting) the cylindrical outer peripheral surface 7c of the housing 7, and an inner bottom surface 22b capable of contacting and supporting the outer bottom surface 7d of the housing 7 from below. The upper end surface 22c is arranged coaxially with the first mold 21 and the third mold 23 in a state where the upper end surface 22c is in contact with the lower end surface of the small diameter cylinder portion 23a of the third mold 23. The separation distance between the inner bottom surface 22b of the second mold 22 and the upper end surface 22c is set to be smaller than the axial dimension of the housing 7 held by the second mold 22. Therefore, as shown in FIG. 5, when the housing 7 is held by the second mold 22, the upper end surface 7e of the tubular portion 71 of the housing 7 is located above the upper end surface 22c of the second mold 22. Of the second mold 22 having the above configuration, the dimensional accuracy of the inner peripheral surface 22a which is the restraining surface for restraining the outer peripheral surface 7c of the housing 7 is the accuracy of assembling the bearing member 8 to the housing 7 (the outer peripheral surface of the housing 7). The coaxiality between 7c and the inner peripheral surface 8a of the bearing member 8) is greatly affected. Therefore, the dimensional accuracy of the inner peripheral surface 22a is finished with high accuracy so as to satisfy the coaxiality (for example, 3 μm or less) required between the outer peripheral surface 7c of the housing 7 and the inner peripheral surface 8a of the bearing member 8. Has been done.

第3金型23は、内径寸法が相対的に小さい小径筒部23aと、内径寸法が相対的に大きく、内周に第2金型22が嵌合された大径筒部23bとを一体に有する。小径筒部23aの内周面23a1は、第1金型21が昇降移動する際に、第1金型21の大径部26の外周面26aを案内する案内面として機能するため、その寸法精度が第1金型21の動作精度、ひいてはハウジング7に対する軸受部材8の組み付け精度を左右する。このため、小径筒部23aの内周面23a1の寸法精度は、ハウジング7の外周面7cと軸受部材8の内周面8aとの間に求められる同軸度を満足できるように、高精度に仕上げられている。 The third mold 23 integrally includes a small diameter cylinder portion 23a having a relatively small inner diameter dimension and a large diameter cylinder portion 23b having a relatively large inner diameter dimension and the second mold 22 fitted to the inner circumference. Have. The inner peripheral surface 23a1 of the small-diameter cylinder portion 23a functions as a guide surface for guiding the outer peripheral surface 26a of the large-diameter portion 26 of the first mold 21 when the first mold 21 moves up and down, so that the dimensional accuracy thereof is correct. This affects the operating accuracy of the first mold 21 and, by extension, the assembly accuracy of the bearing member 8 with respect to the housing 7. Therefore, the dimensional accuracy of the inner peripheral surface 23a1 of the small-diameter tubular portion 23a is finished with high accuracy so as to satisfy the coaxiality required between the outer peripheral surface 7c of the housing 7 and the inner peripheral surface 8a of the bearing member 8. Has been done.

以上の構成を有する組立装置20において、図5に示すように、第1金型21の支持ピン24の外周に軸受部材8を嵌合して軸受部材8を支持すると共に、第2金型22の内周にハウジング7を嵌合して第2金型22の内周面22aでハウジング7の外周面7cを拘束する。金型21,22への嵌合前、あるいは金型21,22への嵌合後、接着隙間11(図1参照)を形成するハウジング7の内周面7aおよび軸受部材8の外周面8dの少なくとも一方に、ハウジング7と軸受部材8を接着固定するための接着剤13を塗布する。本実施形態では、ハウジング7の内周面7aの軸方向所定箇所に、接着剤13を全周に亘って塗布している。 In the assembly device 20 having the above configuration, as shown in FIG. 5, the bearing member 8 is fitted to the outer periphery of the support pin 24 of the first mold 21 to support the bearing member 8 and the second mold 22. The housing 7 is fitted to the inner circumference of the housing 7 and the outer peripheral surface 7c of the housing 7 is restrained by the inner peripheral surface 22a of the second mold 22. The inner peripheral surface 7a of the housing 7 and the outer peripheral surface 8d of the bearing member 8 forming the bonding gap 11 (see FIG. 1) before fitting to the molds 21 and 22 or after fitting to the molds 21 and 22. An adhesive 13 for adhesively fixing the housing 7 and the bearing member 8 is applied to at least one of them. In the present embodiment, the adhesive 13 is applied to a predetermined position in the axial direction of the inner peripheral surface 7a of the housing 7 over the entire circumference.

軸受部材8は、第1金型21の下降移動に伴う両金型21,22の型締めが完了するまで、その上端面8cとこれに対向する第1金型21の小径部25の下端面25aとの非接触状態が維持されるようにして、支持ピン24の外周に嵌合される。ここでは、軸受部材8の下端面8bと小径部25の下端面25aとの離間距離が、ハウジング7の筒部71の上端面7eと段部73の上端面との離間距離に等しくなるようにして、支持ピン24の外周に軸受部材8が嵌合される。 The bearing member 8 has an upper end surface 8c and a lower end surface of the small diameter portion 25 of the first mold 21 facing the upper end surface 8c until the mold tightening of both molds 21 and 22 accompanying the downward movement of the first mold 21 is completed. It is fitted to the outer periphery of the support pin 24 so that the non-contact state with the 25a is maintained. Here, the separation distance between the lower end surface 8b of the bearing member 8 and the lower end surface 25a of the small diameter portion 25 is set to be equal to the separation distance between the upper end surface 7e of the tubular portion 71 of the housing 7 and the upper end surface of the step portion 73. The bearing member 8 is fitted to the outer periphery of the support pin 24.

図6を参照して説明したように、本実施形態の支持ピン24は断面正三角形状に形成されていることから、支持ピン24の外周に嵌合された軸受部材8は、内周面8aの周方向に離間した三箇所が線接触支持される。係る態様で軸受部材8が支持されている関係上、支持ピン24の外周面のうち、軸受部材8を線接触支持した支持部24aを除く領域(支持部24a同士を接続する接続面24b)と軸受部材8の内周面8aとの間には、図6に示すように、軸受部材8の下端面8bで形成される空間(底側空間10:図2参照)と軸受部材8の上端面8cで形成される空間(開口側空間)との間で空気を行き来可能とする通気路30が形成される。 As described with reference to FIG. 6, since the support pin 24 of the present embodiment is formed in a regular triangular cross section, the bearing member 8 fitted to the outer periphery of the support pin 24 has an inner peripheral surface 8a. Three points separated in the circumferential direction are supported by line contact. Since the bearing member 8 is supported in this embodiment, the area of the outer peripheral surface of the support pin 24 excluding the support portion 24a that supports the bearing member 8 in line contact (the connection surface 24b that connects the support portions 24a). As shown in FIG. 6, between the inner peripheral surface 8a of the bearing member 8 and the space formed by the lower end surface 8b of the bearing member 8 (bottom side space 10: see FIG. 2) and the upper end surface of the bearing member 8. A ventilation path 30 that allows air to flow in and out of the space (opening side space) formed by 8c is formed.

以上のようにして、軸受部材8およびハウジング7を組立装置20にセットした後、両金型21,22を相対的に接近移動させ(第1金型21を下降移動させ)、型締めを行う。詳細な図示は省略しているが、第1金型21がある程度下降移動すると、軸受部材8の外周面8dがハウジング7の内周面7aに塗布された接着剤13に接触し、以後、第1金型21が下降移動するのに伴って、ハウジング7の内周面7aと軸受部材8の外周面8dとの間の接着隙間11(図1参照)に接着剤13が充填されていく。そして、図7に示すように、軸受部材8の下端面8bがハウジング7の段部73上端面に当接した時点で第1金型21の下降移動を停止させる。上述したように、軸受部材8は、その下端面8bと第1金型21の小径部25の下端面25aとの離間距離が、ハウジング7の筒部71の上端面7eと段部73の上端面との離間距離に等しくなるように支持ピン24の外周に軸受部材8が嵌合されている。そのため、軸受部材8の下端面8bがハウジング7の段部73上端面に当接すると、ハウジング7の筒部71の上端面7eは、第1金型21の小径部25の下端面25aに当接する。これにより、ハウジング7は、第1金型21と第2金型22とで軸方向に挟持された状態となる。 After setting the bearing member 8 and the housing 7 in the assembling device 20 as described above, the molds 21 and 22 are relatively close to each other (the first mold 21 is moved downward), and the molds are fastened. .. Although detailed illustration is omitted, when the first mold 21 moves downward to some extent, the outer peripheral surface 8d of the bearing member 8 comes into contact with the adhesive 13 applied to the inner peripheral surface 7a of the housing 7, and thereafter, the second die. As the mold 21 moves downward, the adhesive 13 is filled in the adhesive gap 11 (see FIG. 1) between the inner peripheral surface 7a of the housing 7 and the outer peripheral surface 8d of the bearing member 8. Then, as shown in FIG. 7, when the lower end surface 8b of the bearing member 8 comes into contact with the upper end surface of the step portion 73 of the housing 7, the downward movement of the first mold 21 is stopped. As described above, the bearing member 8 has a distance between the lower end surface 8b and the lower end surface 25a of the small diameter portion 25 of the first mold 21 above the upper end surface 7e and the step portion 73 of the tubular portion 71 of the housing 7. The bearing member 8 is fitted on the outer periphery of the support pin 24 so as to be equal to the distance from the end face. Therefore, when the lower end surface 8b of the bearing member 8 comes into contact with the upper end surface of the step portion 73 of the housing 7, the upper end surface 7e of the tubular portion 71 of the housing 7 hits the lower end surface 25a of the small diameter portion 25 of the first mold 21. Contact. As a result, the housing 7 is in a state of being sandwiched between the first mold 21 and the second mold 22 in the axial direction.

第1金型21の下降移動が停止した後、接着隙間11に充填された接着剤13を固化させて接着剤層12(図2参照)を形成する。これにより、ハウジング7に対する軸受部材8の軸方向の位置決めが適切になされた状態で、ハウジング7の内周に軸受部材8が隙間接着で固定されたアセンブリが得られる。このアセンブリは、組立装置20から取り出された後、後工程(例えば、シール部材9の組み付け工程)に移送される。 After the downward movement of the first mold 21 is stopped, the adhesive 13 filled in the adhesive gap 11 is solidified to form the adhesive layer 12 (see FIG. 2). As a result, an assembly in which the bearing member 8 is fixed to the inner circumference of the housing 7 by gap adhesion can be obtained in a state where the bearing member 8 is properly positioned in the axial direction with respect to the housing 7. After being taken out from the assembly device 20, this assembly is transferred to a subsequent process (for example, an assembly process of the sealing member 9).

以上で説明したように、本実施形態では、相対的に接近および離反移動可能に同軸配置された第1金型21および第2金型22のうち、第1金型21に設けた支持ピン24で軸受部材8の内周面8aが接触支持されると共に、第2金型22でハウジング7の外周面7cが拘束された状態でハウジング7の内周に軸受部材8が隙間接着される。このようにすれば、ハウジング7の内周面7aおよび/または軸受部材8の外周面8dの寸法精度にばらつきがあった場合でも、軸受部材8の内周面8aとハウジング7の外周面7cとの間に所望の同軸度(例えば、3μm程度)が確保されたアセンブリを安定的に得ることができる。 As described above, in the present embodiment, of the first mold 21 and the second mold 22 coaxially arranged so as to be relatively close to each other and detachable from each other, the support pin 24 provided in the first mold 21 is provided. The inner peripheral surface 8a of the bearing member 8 is contact-supported, and the bearing member 8 is gap-bonded to the inner peripheral surface of the housing 7 in a state where the outer peripheral surface 7c of the housing 7 is restrained by the second mold 22. By doing so, even if the dimensional accuracy of the inner peripheral surface 7a of the housing 7 and / or the outer peripheral surface 8d of the bearing member 8 varies, the inner peripheral surface 8a of the bearing member 8 and the outer peripheral surface 7c of the housing 7 It is possible to stably obtain an assembly in which a desired coaxiality (for example, about 3 μm) is secured between the two.

また、図6を参照して説明したように、第1金型21の支持ピン24で軸受部材8の内周面8aを接触支持したときには、支持ピン24の外周面のうち、軸受部材8を線接触支持した支持部24aを除く領域(支持部24a同士を接続する接続面24b)と軸受部材8の内周面8aとの間に、軸受部材8の下端面8bで形成される空間と、軸受部材8の上端面8cで形成される空間との間で空気を行き来可能とする通気路30が形成され、この通気路30は、第1金型21の下降移動(両金型21,22の型締め)が完了するまでの間、すなわち、ハウジング7内周への軸受部材8の挿入が完了するまでの間、継続して存在する。このようにすれば、第1金型21の下降移動に伴って軸受部材8の下端面8b(および支持ピン24の下端面)とハウジング7の内底面7bとの間に形成される底側空間10と、軸受部材8の上端面8cで形成される開口側空間とが、上記通気路30を介して連通可能な状態に維持されるので、ハウジング7内周への軸受部材8の挿入に伴うハウジング7の内部圧力上昇が可及的に防止される。 Further, as described with reference to FIG. 6, when the inner peripheral surface 8a of the bearing member 8 is contact-supported by the support pin 24 of the first mold 21, the bearing member 8 is used among the outer peripheral surfaces of the support pin 24. A space formed by the lower end surface 8b of the bearing member 8 between the region excluding the support portion 24a supported by line contact (the connection surface 24b connecting the support portions 24a) and the inner peripheral surface 8a of the bearing member 8. An air passage 30 that allows air to flow in and out of the space formed by the upper end surface 8c of the bearing member 8 is formed, and the air passage 30 moves downward of the first mold 21 (both molds 21 and 22). The bearing member 8 continues to exist until the mold clamping is completed, that is, until the insertion of the bearing member 8 into the inner circumference of the housing 7 is completed. By doing so, the bottom side space formed between the lower end surface 8b of the bearing member 8 (and the lower end surface of the support pin 24) and the inner bottom surface 7b of the housing 7 as the first mold 21 moves downward. Since the space 10 and the opening side space formed by the upper end surface 8c of the bearing member 8 are maintained in a state in which they can communicate with each other through the ventilation passage 30, the bearing member 8 is inserted into the inner circumference of the housing 7. The increase in internal pressure of the housing 7 is prevented as much as possible.

そのため、接着隙間11を形成するハウジング7の内周面7aおよび軸受部材8の外周面8dの少なくとも一方(本実施形態ではハウジング7の内周面7a)に接着剤13を塗布した状態でハウジング7の内周に軸受部材8を挿入した場合でも、ハウジング7の内圧上昇に伴って接着剤13がハウジング7の開口側に押し出され、その結果、接着隙間11に介在させるべき接着剤13の量が不足するといった問題発生を回避することができる。これにより、ハウジング7の内周面7aと軸受部材8の外周面8dとの間に形成される接着隙間11に所定量の接着剤13を適切に介在させることが可能となるので、ハウジング7と軸受部材8との間に所望の固定力が確保されたアセンブリを安定的に得ることができる。 Therefore, the housing 7 is coated with the adhesive 13 on at least one of the inner peripheral surface 7a of the housing 7 forming the bonding gap 11 and the outer peripheral surface 8d of the bearing member 8 (in the present embodiment, the inner peripheral surface 7a of the housing 7). Even when the bearing member 8 is inserted into the inner circumference of the housing 7, the adhesive 13 is pushed out to the opening side of the housing 7 as the internal pressure of the housing 7 rises, and as a result, the amount of the adhesive 13 to be interposed in the bonding gap 11 is increased. It is possible to avoid the occurrence of problems such as shortage. As a result, a predetermined amount of the adhesive 13 can be appropriately interposed in the adhesive gap 11 formed between the inner peripheral surface 7a of the housing 7 and the outer peripheral surface 8d of the bearing member 8, so that the housing 7 and the housing 7 can be appropriately interposed. It is possible to stably obtain an assembly in which a desired fixing force is secured between the bearing member 8 and the bearing member 8.

また、本実施形態では、第1金型21と第2金型22の型締め完了時、両金型21,22でハウジング7が軸方向に挟持され、その状態で接着隙間11に充填された接着剤13が固化される。この場合、ハウジング7の筒部71の上端面7eを拘束する拘束面となる第1金型21の小径筒部25の下端面25aと、ハウジング7の外底面7dを拘束する拘束面となる第2金型22の内底面22bとの間の平行度や、第1金型21に対する第2金型22の内底面22bの直角度を所定値に管理しておけば、ハウジング7の内底面7bと軸受部材8の内周面8aとの間の直角度が高精度に管理されたアセンブリを得ることができる。 Further, in the present embodiment, when the molds of the first mold 21 and the second mold 22 are completed, the housing 7 is sandwiched in the axial direction by both molds 21 and 22, and the bonding gap 11 is filled in that state. The adhesive 13 is solidified. In this case, the lower end surface 25a of the small diameter tubular portion 25 of the first mold 21 which is the restraining surface for restraining the upper end surface 7e of the tubular portion 71 of the housing 7, and the constraining surface which is the restraining surface for restraining the outer bottom surface 7d of the housing 7. If the parallelism between the inner bottom surface 22b of the 2 mold 22 and the squareness of the inner bottom surface 22b of the second mold 22 with respect to the first mold 21 are controlled to predetermined values, the inner bottom surface 7b of the housing 7 can be controlled. It is possible to obtain an assembly in which the squareness between the bearing member 8 and the inner peripheral surface 8a of the bearing member 8 is controlled with high accuracy.

なお、本実施形態では、ハウジング7の内周面7aの全周に亘って接着剤13を塗布したことから、何らの対策も講じなければ、接着剤13は、接着隙間11のうち、軸受部材8の外周面8dに設けられた軸方向溝8d1の形成領域にも充填される。この状態のまま接着剤13を固化させると、軸部材2の回転中にハウジング7内部で潤滑油を流動循環させることが難しくなる。そのため、本実施形態では、第1金型21の下降移動中、あるいは第1金型21の下降移動完了後、第1金型21の孔部27に接続された吸気装置を駆動し、接着隙間11のうち軸方向溝8d1の形成領域に充填された接着剤13を孔部27を介して吸引してから、接着剤13を固化させる。これにより、上記の問題発生が可及的に防止される。 In this embodiment, since the adhesive 13 is applied over the entire circumference of the inner peripheral surface 7a of the housing 7, the adhesive 13 is a bearing member in the adhesive gap 11 unless any measures are taken. The forming region of the axial groove 8d1 provided on the outer peripheral surface 8d of 8 is also filled. If the adhesive 13 is solidified in this state, it becomes difficult to flow and circulate the lubricating oil inside the housing 7 while the shaft member 2 is rotating. Therefore, in the present embodiment, the intake device connected to the hole 27 of the first mold 21 is driven during the downward movement of the first mold 21 or after the downward movement of the first mold 21 is completed, and the bonding gap is formed. The adhesive 13 filled in the forming region of the axial groove 8d1 of 11 is sucked through the hole 27, and then the adhesive 13 is solidified. As a result, the above-mentioned problem is prevented from occurring as much as possible.

以上のことから、本発明によれば、ハウジング7と軸受部材8の間に所望の固定力(接着強度)や固定精度が確保されたアセンブリを安定的に量産することができる。従って、このアセンブリを構成部品とする上記の流体動圧軸受装置1は、所望の軸受性能を長期間に亘って安定的に発揮し得る信頼性に富むものとなる。 From the above, according to the present invention, it is possible to stably mass-produce an assembly in which a desired fixing force (adhesive strength) and fixing accuracy are ensured between the housing 7 and the bearing member 8. Therefore, the above-mentioned fluid dynamic bearing device 1 having this assembly as a component is highly reliable so that the desired bearing performance can be stably exhibited for a long period of time.

以上、本発明の一実施形態に係る流体動圧軸受装置1の製造方法(ハウジング7の内周に軸受部材8を隙間接着してなるアセンブリの作製方法)について説明したが、アセンブリの作製方法には、本発明の要旨を逸脱しない範囲で種々の変更を施すことができる。 The method for manufacturing the fluid dynamic bearing device 1 according to the embodiment of the present invention (method for manufacturing an assembly in which the bearing member 8 is gap-bonded to the inner circumference of the housing 7) has been described above. Can make various changes without departing from the gist of the present invention.

例えば、以上で説明した実施形態では、軸受部材8の内周面8aを支持するための支持ピン24として、内周面8aの周方向に離間した3箇所を線接触支持可能なものを使用したが、支持ピン24としては、図8(a)に示すように、内周面8aの周方向に離間した4箇所を線接触支持可能なものや、図8(b)に示すように、内周面8aの周方向に離間した5箇所を線接触支持可能なものを使用することもできる。本発明による作用効果は、軸受部材8の内周面8aの周方向に離間した2箇所を線接触支持可能な支持ピン24を使用した場合でも同様に享受できるが、軸受部材8の支持精度が、内周面8aの3箇所以上を線接触支持可能な支持ピン24を用いる場合に比べて不利となる。そのため、軸受部材8の内周面8aは、周方向に離間した三箇所以上を接触支持するのが好ましい。 For example, in the embodiment described above, as the support pins 24 for supporting the inner peripheral surface 8a of the bearing member 8, those capable of line-contact support at three locations separated in the circumferential direction of the inner peripheral surface 8a are used. However, as the support pin 24, as shown in FIG. 8 (a), four points separated in the circumferential direction of the inner peripheral surface 8a can be line-contacted and supported, or as shown in FIG. 8 (b), the inner It is also possible to use a peripheral surface 8a capable of supporting line contact at five locations separated in the circumferential direction. The effects of the present invention can be similarly enjoyed even when a support pin 24 capable of linearly contacting and supporting two points separated in the circumferential direction of the inner peripheral surface 8a of the bearing member 8 is used, but the support accuracy of the bearing member 8 is improved. This is disadvantageous as compared with the case of using a support pin 24 capable of linearly contacting and supporting three or more points on the inner peripheral surface 8a. Therefore, it is preferable that the inner peripheral surface 8a of the bearing member 8 is contact-supported at three or more locations separated in the circumferential direction.

また、以上で説明した実施形態では、軸受部材8の内周面8aの周方向に離間した複数箇所を線接触支持可能な支持ピン24を使用するようにしたが、支持ピン24としては、軸受部材8の内周面8aの周方向に離間した複数箇所を面接触支持可能なものを使用しても良い。図9はその一例であり、外周面の周方向に離間した三箇所に、軸受部材8の内周面8aを面接触支持可能な支持部(支持面)24aが設けられた支持ピン24で軸受部材8を支持した場合の横断面図である。 Further, in the embodiment described above, the support pins 24 capable of line-contact support at a plurality of locations separated in the circumferential direction of the inner peripheral surface 8a of the bearing member 8 are used, but the support pins 24 are bearings. A member that can support surface contact at a plurality of locations separated in the circumferential direction of the inner peripheral surface 8a of the member 8 may be used. FIG. 9 shows an example thereof, in which a bearing is provided with a support pin 24 provided with a support portion (support surface) 24a capable of surface contact supporting the inner peripheral surface 8a of the bearing member 8 at three locations separated in the circumferential direction of the outer peripheral surface. It is a cross-sectional view when the member 8 is supported.

また、以上で説明した実施形態では、第1金型21が相対的に上側に配置されると共に第2金型22が相対的に下側に配置され、第1金型21が可動側を構成する組立装置20を使用したが、これとは逆に、第1金型21が相対的に下側に配置されると共に第2金型22が相対的に上側に配置され、第2金型21が可動側を構成する組立装置20を用いる場合や、第1金型21および第2金型22の双方が昇降移動する組立装置20を用いる場合にも本発明は同様に適用し得る。 Further, in the embodiment described above, the first mold 21 is arranged relatively on the upper side, the second mold 22 is arranged on the relatively lower side, and the first mold 21 constitutes the movable side. However, on the contrary, the first mold 21 is arranged relatively on the lower side and the second mold 22 is arranged on the relatively upper side, and the second mold 21 is arranged. The present invention can be similarly applied to the case where the assembling device 20 constituting the movable side is used, or when the assembling device 20 in which both the first mold 21 and the second mold 22 move up and down is used.

また、以上で説明した実施形態では、接着隙間11を形成するハウジング7の内周面7aおよび軸受部材8の外周面8dの少なくとも一方に予め接着剤13を塗布してから、第1金型21と第2金型22とを相対的に接近移動(第1金型21を下降移動)させることによって接着隙間11に接着剤13を充填するようにしたが、接着剤13は、ハウジング7の内周に軸受部材8をすきまばめした後、両者間に形成された接着隙間11のハウジング7開口側の端部に供給するようにしても良い。このような手順を踏む場合には、ハウジング7の内周に軸受部材8が挿入されるのに伴って、ハウジング7の内周面7aおよび軸受部材8の外周面8dの少なくとも一方に予め塗布した接着剤13がハウジング7の開口側に押し出される、といった上記の問題は生じないが、軸受部材8の挿入に伴うハウジング7の内圧上昇が可及的に防止されるので、接着隙間11を介して軸受外部に排出される圧縮空気による接着剤13の供給不良を可及的に防止することができる、という利点がある。 Further, in the embodiment described above, the adhesive 13 is previously applied to at least one of the inner peripheral surface 7a of the housing 7 forming the bonding gap 11 and the outer peripheral surface 8d of the bearing member 8, and then the first mold 21 is used. And the second mold 22 are moved relatively close to each other (the first mold 21 is moved downward) to fill the adhesive gap 11 with the adhesive 13, but the adhesive 13 is inside the housing 7. After the bearing member 8 is squeezed around the circumference, it may be supplied to the end of the bonding gap 11 formed between the two on the opening side of the housing 7. When such a procedure is performed, as the bearing member 8 is inserted into the inner circumference of the housing 7, it is applied in advance to at least one of the inner peripheral surface 7a of the housing 7 and the outer peripheral surface 8d of the bearing member 8. The above-mentioned problem that the adhesive 13 is pushed out to the opening side of the housing 7 does not occur, but the increase in the internal pressure of the housing 7 due to the insertion of the bearing member 8 is prevented as much as possible, so that the adhesive gap 11 is used to prevent the adhesive 13 from increasing. There is an advantage that the supply failure of the adhesive 13 due to the compressed air discharged to the outside of the bearing can be prevented as much as possible.

上記の手順を踏んだ場合、接着隙間11のうち、所望の周方向領域(例えば、軸受スリーブ8の外周面8dに設けた軸方向溝8d1の形成領域を避けた周方向領域)に接着剤13を精度良く充填することができる、という利点がある。但し、この場合には、接着剤13を上記態様で供給した後、第1金型21の孔部27に接続された吸気装置を駆動し、接着隙間11のハウジング7開口側の端部に供給された接着剤13をハウジング7の底部側に引き込むようにするのが好ましい。これにより、所定の軸方向寸法を有する接着剤層12(図2参照)を形成することが、ひいては、ハウジング7と軸受部材8との間に所望の固定力が確保されたアセンブリを得ることができる。 When the above procedure is performed, the adhesive 13 is formed in a desired circumferential region (for example, a circumferential region avoiding the formation region of the axial groove 8d1 provided on the outer peripheral surface 8d of the bearing sleeve 8) in the adhesive gap 11. There is an advantage that it can be filled with high accuracy. However, in this case, after the adhesive 13 is supplied in the above embodiment, the intake device connected to the hole 27 of the first mold 21 is driven and supplied to the end of the bonding gap 11 on the opening side of the housing 7. It is preferable to pull the adhesive 13 to the bottom side of the housing 7. Thereby, the adhesive layer 12 (see FIG. 2) having a predetermined axial dimension can be formed, and thus an assembly in which the desired fixing force is secured between the housing 7 and the bearing member 8 can be obtained. can.

要するに、本発明を採用すれば、ハウジング7の内周に軸受部材8をすきまばめする前に接着隙間11を形成する対向二面7a,8dの少なくとも一方に接着剤13を塗布する場合、あるいは、ハウジング7の内周に軸受部材8をすきまばめした後、接着隙間11に接着剤13を供給する場合の何れであっても、接着隙間11に所定量の接着剤13を介在させることが容易となる。 In short, if the present invention is adopted, the adhesive 13 is applied to at least one of the two facing surfaces 7a and 8d forming the adhesive gap 11 before the bearing member 8 is squeezed on the inner circumference of the housing 7. In any case where the bearing member 8 is squeezed into the inner circumference of the housing 7 and then the adhesive 13 is supplied to the adhesive gap 11, a predetermined amount of the adhesive 13 may be interposed in the adhesive gap 11. It will be easy.

また、図1~図4を参照して説明した流体動圧軸受装置1は、本発明に係る製造方法を適用して製造される流体動圧軸受装置の一例に過ぎず、有底筒状のハウジング7の内周に軸受部材8が隙間接着で固定されたアセンブリを備える流体動圧軸受装置であれば、その製造工程で本発明を好ましく適用することができる。 Further, the fluid dynamic pressure bearing device 1 described with reference to FIGS. 1 to 4 is merely an example of a fluid dynamic pressure bearing device manufactured by applying the manufacturing method according to the present invention, and has a bottomed tubular shape. The present invention can be preferably applied in the manufacturing process of a fluid dynamic bearing device provided with an assembly in which the bearing member 8 is fixed to the inner circumference of the housing 7 by gap adhesion.

1 流体動圧軸受装置
2 軸部材
3 下端面
7 ハウジング
7a 内周面
8 軸受部材
8d 外周面
10 底側空間
11 接着隙間
12 接着剤層
13 接着剤
20 組立装置
21 第1金型
22 第2金型
24 支持ピン
24a 支持部
24b 接続面
30 通気路
71 筒部
72 底部
1 Fluid dynamic bearing device 2 Shaft member 3 Lower end surface 7 Housing 7a Inner peripheral surface 8 Bearing member 8d Outer peripheral surface 10 Bottom side space 11 Adhesive gap 12 Adhesive layer 13 Adhesive 20 Assembly device 21 1st mold 22 2nd metal Mold 24 Support pin 24a Support part 24b Connection surface 30 Ventilation path 71 Cylinder part 72 Bottom part

Claims (3)

軸方向の一端が開口すると共に軸方向の他端が閉塞された有底筒状のハウジングの内周に、内周面でラジアル軸受隙間を形成する軸受部材を隙間接着で固定するに際し、
相対的に接近および離反移動可能に同軸配置された第1および第2金型のうち、第1金型に設けた支持ピンで軸受部材の内周面に周方向に離間した複数箇所を接触支持すると共に、第2金型でハウジングの外周面を拘束し、
その後、第1金型と第2金型の相対的な接近移動が完了するまでの間、第1金型と第2金型の相対的な接近移動に伴って軸受部材の他端面とハウジングの内底面との間に形成される底側空間と、軸受部材の一端面が面する開口側空間とを、支持ピンの外周面のうち軸受部材の支持部を除く領域で形成される通気路を介して連通可能な状態に維持することを特徴とする流体動圧軸受装置の製造方法。
When fixing a bearing member that forms a radial bearing gap on the inner peripheral surface to the inner circumference of a bottomed tubular housing with one end in the axial direction open and the other end in the axial direction closed by gap adhesion.
Of the first and second dies coaxially arranged so that they can move relatively close to each other and detached from each other, a support pin provided on the first die contacts and supports a plurality of locations separated from each other on the inner peripheral surface of the bearing member in the circumferential direction. At the same time, restrain the outer peripheral surface of the housing with the second mold,
After that, until the relative close movement of the first mold and the second mold is completed, the other end surface of the bearing member and the housing are subjected to the relative close movement of the first mold and the second mold. A ventilation path formed by forming a bottom space formed between the inner bottom surface and an opening side space facing one end surface of the bearing member in a region of the outer peripheral surface of the support pin excluding the support portion of the bearing member. A method for manufacturing a hydrodynamic bearing device, which comprises maintaining a state in which communication is possible through the bearing.
軸受部材の内周面の周方向に離間した三箇所以上を支持ピンで接触支持する請求項1に記載の流体動圧軸受装置の製造方法。 The method for manufacturing a fluid dynamic bearing device according to claim 1, wherein three or more locations separated in the circumferential direction of the inner peripheral surface of the bearing member are contact-supported by support pins. 第1金型と第2金型の相対的な接近移動の完了時、第1金型と第2金型とでハウジングを軸方向に挟持する請求項1又は2に記載の流体動圧軸受装置の製造方法。 The fluid dynamic bearing device according to claim 1 or 2, wherein the housing is axially sandwiched between the first mold and the second mold when the relative close movement between the first mold and the second mold is completed. Manufacturing method.
JP2020163269A 2020-09-29 2020-09-29 Manufacturing method of fluid dynamic pressure bearing device Pending JP2022055700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020163269A JP2022055700A (en) 2020-09-29 2020-09-29 Manufacturing method of fluid dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020163269A JP2022055700A (en) 2020-09-29 2020-09-29 Manufacturing method of fluid dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2022055700A true JP2022055700A (en) 2022-04-08

Family

ID=80998624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020163269A Pending JP2022055700A (en) 2020-09-29 2020-09-29 Manufacturing method of fluid dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2022055700A (en)

Similar Documents

Publication Publication Date Title
KR101439924B1 (en) Fluid dynamic bearing device and its assembling method
KR102020251B1 (en) Fluid dynamic bearing device and motor with same
JP6189589B2 (en) Fluid dynamic bearing device and motor including the same
US8578610B2 (en) Method for manufacturing fluid dynamic bearing device
JP2022055700A (en) Manufacturing method of fluid dynamic pressure bearing device
JP6297309B2 (en) Fluid dynamic bearing device and manufacturing method thereof
CN107620768B (en) Fluid dynamic bearing device and motor having the same
JP2009228873A (en) Fluid bearing device
JP3686665B2 (en) Hydrodynamic bearing unit and method for manufacturing the same
JP4579218B2 (en) Manufacturing method of hydrodynamic bearing unit
WO2019139007A1 (en) Fluid dynamic bearing device and motor equipped with same
WO2019159787A1 (en) Fluid dynamic pressure bearing device and motor provided with same
JP5231095B2 (en) Hydrodynamic bearing device
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
JP5122205B2 (en) Method for assembling hydrodynamic bearing device
WO2018012186A1 (en) Fluid dynamic bearing device and motor with same
JP5284172B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2009156452A (en) Fluid bearing device
JP4675880B2 (en) Method for manufacturing fluid dynamic bearing device
JP2012047302A (en) Bearing member and its manufacturing method
JP2011247281A (en) Bearing member and fluid dynamic bearing device using the same
WO2019065719A1 (en) Fluid dynamic pressure bearing device and motor having same
JP2007278325A (en) Fluid bearing device
JP2007113778A (en) Fluid bearing device and motor equipped with the same
JP2018031475A (en) Fluid dynamic pressure bearing device and motor having the same