JP2021519663A - 内視鏡画像の処理方法、システム、コンピュータデバイス及びコンピュータプログラム - Google Patents
内視鏡画像の処理方法、システム、コンピュータデバイス及びコンピュータプログラム Download PDFInfo
- Publication number
- JP2021519663A JP2021519663A JP2020560333A JP2020560333A JP2021519663A JP 2021519663 A JP2021519663 A JP 2021519663A JP 2020560333 A JP2020560333 A JP 2020560333A JP 2020560333 A JP2020560333 A JP 2020560333A JP 2021519663 A JP2021519663 A JP 2021519663A
- Authority
- JP
- Japan
- Prior art keywords
- endoscopic image
- training
- image
- layer
- endoscopic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00043—Operational features of endoscopes provided with output arrangements
- A61B1/00045—Display arrangement
- A61B1/0005—Display arrangement combining images e.g. side-by-side, superimposed or tiled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00004—Operational features of endoscopes characterised by electronic signal processing
- A61B1/00009—Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
- A61B1/000094—Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00004—Operational features of endoscopes characterised by electronic signal processing
- A61B1/00009—Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
- A61B1/000096—Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope using artificial intelligence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10068—Endoscopic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Theoretical Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- Endoscopes (AREA)
Abstract
Description
本発明は、内視鏡画像の処理方法を提供し、この方法は、
検査対象ユーザーの現在の内視鏡画像を取得するステップと、
ディープ畳み込みネットワークを使用して、トレーニングパラメータに基づいて前記現在の内視鏡画像を予測するステップであって、前記トレーニングパラメータが少なくとも1つの第1の内視鏡画像、及び、前記少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像によって決定され、前記少なくとも1つの第1の内視鏡画像が人体部位に対応するステップと、
前記現在の内視鏡画像に対応する器官カテゴリーを決定するステップと、を含む。
前記人体検知デバイスは、人体部位を検知し、検知した少なくとも1つの第1の内視鏡画像を前記内視鏡画像処理装置に送信するために用いられ、
前記内視鏡画像処理装置は、前記人体検知デバイスから前記少なくとも1つの第1の内視鏡画像を取得し、内視鏡画像を予測するためのディープ畳み込みネットワークを確立し、前記少なくとも1つの第1の内視鏡画像、及び前記少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像に基づき、前記ディープ畳み込みネットワークのトレーニングパラメータを決定し、検査対象ユーザーの現在の内視鏡画像を取得し、前記ディープ畳み込みネットワークを使用して前記トレーニングパラメータに基づいて前記現在の内視鏡画像を予測し、前記現在の内視鏡画像に対応する器官カテゴリーを決定するために用いられる。
検査対象ユーザーの現在の内視鏡画像を取得するステップと、
ディープ畳み込みネットワークを使用して、トレーニングパラメータに基づいて前記現在の内視鏡画像を予測するステップであって、前記トレーニングパラメータが少なくとも1つの第1の内視鏡画像、及び、前記少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像によって決定され、前記少なくとも1つの第1の内視鏡画像が人体部位に対応するステップと、
前記現在の内視鏡画像に対応する器官カテゴリーを決定するステップと、を含む。
検査対象ユーザーの現在の内視鏡画像を取得するステップと、
ディープ畳み込みネットワークを使用して、トレーニングパラメータに基づいて前記現在の内視鏡画像を予測するステップであって、前記トレーニングパラメータが少なくとも1つの第1の内視鏡画像、及び、前記少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像によって決定され、前記少なくとも1つの第1の内視鏡画像が人体部位に対応するステップと、
前記現在の内視鏡画像に対応する器官カテゴリーを決定するステップと、を含む。
つまり、前記少なくとも1つの第1の内視鏡画像は人体部位に対応する。
つまり、上記のトレーニングパラメータは少なくとも1つの第1の内視鏡画像、及び、少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像によって決定される。
zj=H j([z0,z1,・・・,zj-1]) (1)
ただし、[z0,z1,・・・,zj-1]は、番号が0からj-1である接続サブレイヤーから出力された特徴をカスケードすることを示す。H jは、ブロック正規化(Batch Normalization、BN、バッチ正規化とも呼ばれる)、ReLU励起及び3×3畳み込みなどの動作であってもよい。当該密集接続レイヤーに入力されるチャネルの数がk0であると、j番目のレイヤーのチャネルの数はk0+(j―1)×kであり、ただし、kは成長率であり、接続サブレイヤーの数が増えると、チャネルの数がkとともに線形に増加する。
1)研究者が医療画像を深く理解する必要なく、特徴抽出プロセスをディープ畳み込みネットワークのモデルによって完全に自主的に学習できるようにし、医師の専門レベルへの依存を減らし、予測プロセス全体がよりインテリジェントになる。
2)トレーニングプロセスで使用されるラベル付きデータの数を減らし、トレーニングの収束速度を改善し、画像分類を高速化し、処理装置のリソース使用率を向上させる。
3)反復されたトレーニングパラメータはより正確になり、ひいては当該トレーニングパラメータによってリアルタイムで予測した分類結果がより正確になり、次の疾患診断に、クリーンで利用可能なデータを提供する。
4)このようなディープ畳み込みネットワークによって、色やテクスチャなどの低レベルの画像特徴だけでなく、粘膜が滑らかかどうか、しわがたくさんあるかどうかなどのより抽象的な語義特徴も抽出でき、強いロバスト性を持ち、異なる病院で異なる医師により撮影された、同一部位に対する異なる角度及び撮影手段などによって引き起こされる干渉に適応できる。
5)正確な分類結果が得られたら、異なる器官での疾患診断に対して、利用可能な統合モジュールを提供でき、例えば、食道器官の場合、分類された後に食道カテゴリーに属する全ての内視鏡画像を食道がんのスクリーニングと診断に使用し、胃器官の場合、分類された後に胃カテゴリーに属する全ての内視鏡画像を胃炎や胃がんなどの疾患のスクリーニングに使用する。
また、ディープ畳み込みネットワークを確立する場合、少なくとも1つの密集接続レイヤーを追加することによって、ネットワークにおけるすべてのレイヤー間の情報フローを最大化し、トレーニングプロセスにおける勾配散逸の問題をある程度軽減でき、そして、大量の特徴が再利用されるため、少量の畳み込みカーネルを使用して大量の特徴を生成でき、最終的なモデルのサイズも比較的小さくなり、パラメータの数が削減される。
1) 処理レイヤーと出力レイヤーにおける各サブレイヤーの重みを含むディープ畳み込みネットワークのトレーニングパラメータwを初期化する。例えば、ランダムな初期化方式を採用して、トレーニングパラメータの初期値をランダム値[0.3,0.1, 0.4,0.2,0.3・・・]として決定する。
2)第1の内視鏡画像に対応する中心特徴を初期化し、例えば、各カテゴリーのラベル画像の平均値を中心特徴の初期値とする。
第1の内視鏡画像に対応する中心特徴を
内視鏡が含まれる検知デバイスを介して、人体部位に対する第1の内視鏡画像を取得し、検査対象ユーザーの現在の内視鏡画像を取得する取得モジュール810と、
内視鏡画像を予測するためのディープ畳み込みネットワークを確立し、取得モジュール810によって取得された第1の内視鏡画像、及び、第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像に基づき、ディープ畳み込みネットワークのトレーニングパラメータを決定する確立モジュール820と、
確立モジュール820によって確立されたディープ畳み込みネットワークを使用して、トレーニングパラメータに基づいて現在の内視鏡画像を予測し、現在の内視鏡画像に対応する器官カテゴリーを決定する予測モジュール830と、を含む。
人体部位の構造及び予め設定された診断ターゲットに基づき、少なくとも1つの候補器官カテゴリーを決定し、各候補器官カテゴリーに対応するラベル画像を取得する決定モジュール840と、
第1の内視鏡画像及び少なくとも1つの第2の内視鏡画像を入力サンプルとし、決定モジュール840によって決定された各ラベル画像を理想的な出力サンプルとして、トレーニングパラメータを得る確立モジュール820をさらに含む。
ディープ畳み込みネットワークをトレーニングするための損失関数を予め構築する構築モジュール850と、
ディープ畳み込みネットワークをトレーニングする場合、処理レイヤーが第1の内視鏡画像を処理することによって得られた処理済み特徴を取得することと、処理済み特徴と各第2の内視鏡画像の特徴に基づき、今回の反復における損失関数の値を算出することと、損失関数の値に基づきトレーニングプロセスが終了したかどうかを決定し、トレーニングプロセスが終了したと決定した場合、トレーニングパラメータを取得することとを反復して実行する確立モジュール820と、をさらに含む。
取得モジュール921は、プロセッサー910によって実行される場合、内視鏡が含まれる検知デバイスを介して、人体部位に対する第1の内視鏡画像を取得し、検査対象ユーザーの現在の内視鏡画像を取得するためのものであってもよい。
確立モジュール922は、プロセッサー910によって実行される場合、内視鏡画像を予測するためのディープ畳み込みネットワークを確立し、取得モジュール921によって取得された第1の内視鏡画像、及び第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像に基づき、ディープ畳み込みネットワークのトレーニングパラメータを決定するためのものであってもよい。
予測モジュール923は、プロセッサー910によって実行される場合、確立モジュール922によって確立されるディープ畳み込みネットワークを使用してトレーニングパラメータに基づいて現在の内視鏡画像を予測し、現在の内視鏡画像に対応する器官カテゴリーを決定するためのものであってもよい。
確立モジュール922は、プロセッサー910によって実行される場合、第1の内視鏡画像及び少なくとも1つの第2の内視鏡画像を入力サンプルとし、決定モジュール924によって決定された各ラベル画像を理想的な出力サンプルとして、トレーニングパラメータを得るためのものであってもよい。
確立モジュール922は、プロセッサー910によって実行される場合、ディープ畳み込みネットワークをトレーニングする場合、処理レイヤーが第1の内視鏡画像を処理することによって得られた処理済み特徴を取得することと、処理済み特徴と各第2の内視鏡画像の特徴に基づき、今回の反復における損失関数の値を算出することと、損失関数の値に基づきトレーニングプロセスが終了したかどうかを決定し、トレーニングプロセスが終了したと決定した場合、トレーニングパラメータを取得することと、を反復して実行するためのものであってもよい。
当該人体検知デバイスは、人体部位を検知し、検知した少なくとも1つの第1の内視鏡画像を当該内視鏡画像処理装置に送信するために用いられ、
当該内視鏡画像処理装置は、当該人体検知デバイスから当該少なくとも1つの第1の内視鏡画像を取得し、内視鏡画像を予測するためのディープ畳み込みネットワークを確立し、当該少なくとも1つの第1の内視鏡画像及び当該少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像に基づき、当該ディープ畳み込みネットワークのトレーニングパラメータを決定し、検査対象ユーザーの現在の内視鏡画像を取得し、当該ディープ畳み込みネットワークを使用して当該トレーニングパラメータに基づいて当該現在の内視鏡画像を予測し、当該現在の内視鏡画像に対応する器官カテゴリーを決定するために用いられる。
検査対象ユーザーの現在の内視鏡画像を取得するステップと、
ディープ畳み込みネットワークを使用して、トレーニングパラメータに基づいて当該現在の内視鏡画像を予測するステップであって、当該トレーニングパラメータが少なくとも1つの第1の内視鏡画像及び当該少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像によって決定され、当該少なくとも1つの第1の内視鏡画像が人体部位に対応するステップと、
当該現在の内視鏡画像に対応する器官カテゴリーを決定するステップと、を実行する。
人体部位に対する少なくとも1つの第1の内視鏡画像を取得するステップと、
内視鏡画像を予測するためのディープ畳み込みネットワークを確立し、当該少なくとも1つの第1の内視鏡画像及び当該少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像に基づき、当該ディープ畳み込みネットワークのトレーニングパラメータを決定するステップと、を実行する。
人体部位の構造及び予め設定された診断ターゲットに基づき、少なくとも1つの候補器官カテゴリーを決定するステップと、
各候補器官カテゴリーに対応するラベル画像を取得するステップと、
当該少なくとも1つの第1の内視鏡画像と当該少なくとも1つ第2の内視鏡画像を入力サンプルとし、各ラベル画像をターゲット出力サンプルとしてトレーニングして、当該トレーニングパラメータを得るテップと、を実行する。
当該少なくとも1つのプロセッサーは、
当該処理レイヤーに少なくとも1つの密集接続レイヤーを追加するステップであって、当該密集接続レイヤーに複数の接続サブレイヤーが含まれるステップと、
前記接続サブレイヤーのそれぞれについて、当該接続サブレイヤーの前にある他の接続サブレイヤーから出力された特徴を当該接続サブレイヤーの入力とするステップと、を実行する。
2つの隣接する密集接続レイヤーの間に遷移レイヤーを追加し、予め設定された予測精度に基づき、当該遷移レイヤーの特徴圧縮率を設置するステップを実行する。
当該ディープ畳み込みネットワークをトレーニングするための損失関数を予め構築するステップと、
当該ディープ畳み込みネットワークをトレーニングする場合、
当該処理レイヤーが当該少なくとも1つの第1の内視鏡画像を処理することによって得られた少なくとも1つの処理済み特徴を取得することと、
当該少なくとも1つの処理済み特徴及び当該少なくとも1つの第2の内視鏡画像の特徴に基づき、今回の反復における当該損失関数の値を算出することと、
当該損失関数の値に基づきトレーニングプロセスが終了したかどうかを決定し、トレーニングプロセスが終了したと決定した場合、当該トレーニングパラメータを得ることと、を反復して実行するステップと、を実行する。
当該少なくとも1つの第1の内視鏡画像が属する器官カテゴリーの中心特徴を初期化するステップと、
各処理済み特徴と各第2の内視鏡画像の特徴との間の複数の第1の距離をそれぞれ算出するステップと、
各第1の内視鏡画像の特徴と各第1の内視鏡画像に対応する中心特徴との間の複数の第2の距離を算出するステップと、
当該複数の第1の距離と当該複数の第2の距離に基づき、当該損失関数の値を算出するステップと、を実行する。
検査対象ユーザーの現在の内視鏡画像を取得するステップと、
ディープ畳み込みネットワークを使用して、トレーニングパラメータに基づいて当該現在の内視鏡画像を予測するステップであって、当該トレーニングパラメータが少なくとも1つの第1の内視鏡画像及び当該少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像によって決定され、当該少なくとも1つの第1の内視鏡画像が人体部位に対応するステップと、
当該現在の内視鏡画像に対応する器官カテゴリーを決定するステップと、を実現する。
人体部位に対する少なくとも1つの第1の内視鏡画像を取得するステップと、
内視鏡画像を予測するためのディープ畳み込みネットワークを確立し、当該少なくとも1つの第1の内視鏡画像、及び当該少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像に基づき、当該ディープ畳み込みネットワークのトレーニングパラメータを決定するステップと、を実行する。
人体部位の構造及び予め設定された診断ターゲットに基づき、少なくとも1つの候補器官カテゴリーを決定するステップと、
各候補器官カテゴリーに対応するラベル画像を取得するステップと、
当該少なくとも1つの第1の内視鏡画像と当該少なくとも1つ第2の内視鏡画像を入力サンプルとし、各ラベル画像をターゲット出力サンプルとしてトレーニングして、当該トレーニングパラメータを得るステップと、を実行する。
当該処理レイヤーに、少なくとも1つの密集接続レイヤーを追加するステップであって、当該密集接続レイヤーに複数の接続サブレイヤーが含まれるステップと、
前記接続サブレイヤーのそれぞれについて、当該接続サブレイヤーの前にある他の接続サブレイヤーから出力された特徴を当該接続サブレイヤーの入力とするステップと、を実行する。
2つの隣接する密集接続レイヤーの間に遷移レイヤーを追加し、予め設定された予測精度に基づき当該遷移レイヤーの特徴圧縮率を設置するステップを実行する。
当該ディープ畳み込みネットワークをトレーニングするための損失関数を予め構築するステップと、
当該ディープ畳み込みネットワークをトレーニングする場合、
当該処理レイヤーが当該少なくとも1つの第1の内視鏡画像を処理することによって得られた少なくとも1つの処理済み特徴を取得することと、
当該少なくとも1つの処理済み特徴及び当該少なくとも1つの第2の内視鏡画像の特徴に基づき、今回の反復における当該損失関数の値を算出することと、
当該損失関数の値に基づきトレーニングプロセスが終了したかどうかを決定し、トレーニングプロセスが終了したと決定した場合、当該トレーニングパラメータを得ることと、を反復して実行するステップと、を実行する。
当該少なくとも1つの第1の内視鏡画像が属する器官カテゴリーの中心特徴を初期化するステップと、
各処理済み特徴と各第2の内視鏡画像の特徴との間の複数の第1の距離をそれぞれ算出するステップと、
各第1の内視鏡画像の特徴と各第1の内視鏡画像に対応する中心特徴との間の複数の第2の距離を算出するステップと、
当該複数の第1の距離と当該複数の第2の距離に基づき、当該損失関数の値を算出するステップと、を実行する。
101 検査対象ユーザー
102 人体検知デバイス
103 内視鏡画像処理装置
104 医師
301 入力レイヤー
302 処理レイヤー
303 分類レイヤー
312 処理レイヤー
313 出力層
400 処理レイヤー
401 畳み込みレイヤー
402 密集接続レイヤー
403 遷移レイヤー
404 プーリングレイヤー
800 装置
810 取得モジュール
820 確立モジュール
830 予測モジュール
840 決定モジュール
850 構築モジュール
900 装置
910 プロセッサー
920 メモリ
921 取得モジュール
922 確立モジュール
923 予測モジュール
924 決定モジュール
925 構築モジュール
930 ポート
940 バス
1021 内視鏡
1031 リアルタイム予測サブ装置
1032 オフライントレーニングサブ装置
1033 内視鏡画像データベース
3012 第2の内視鏡画像
3013 第2の内視鏡画像
3021 畳み込みレイヤー
3022 プーリングレイヤー
3031 完全接続レイヤー
3032 softmax層
3121 密集接続レイヤー
4021 密集接続レイヤー
4022 密集接続レイヤー
Claims (20)
- 内視鏡画像の処理方法であって、
検査対象ユーザーの現在の内視鏡画像を取得するステップと、
ディープ畳み込みネットワークを使用して、トレーニングパラメータに基づいて前記現在の内視鏡画像を予測するステップであって、前記トレーニングパラメータが少なくとも1つの第1の内視鏡画像、及び、前記少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像によって決定され、前記少なくとも1つの第1の内視鏡画像が人体部位に対応するステップと、
前記現在の内視鏡画像に対応する器官カテゴリーを決定するステップと、
を含むことを特徴とする方法。 - ディープ畳み込みネットワークを使用して、トレーニングパラメータに基づいて前記現在の内視鏡画像を予測する前に、
人体部位の少なくとも1つの第1の内視鏡画像を取得するステップと、
内視鏡画像を予測するためのディープ畳み込みネットワークを確立し、前記少なくとも1つの第1の内視鏡画像、及び、前記少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像に基づき、前記ディープ畳み込みネットワークのトレーニングパラメータを決定するステップと、
をさらに含むことを特徴とする請求項1に記載の方法。 - 前記人体部位の構造及び予め設定された診断ターゲットに基づき、少なくとも1つの候補器官カテゴリーを決定するステップと、
各候補器官カテゴリーに対応するラベル画像を取得するステップと、
をさらに含み、
前記少なくとも1つの第1の内視鏡画像、及び、前記少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像に基づき、前記ディープ畳み込みネットワークのトレーニングパラメータを決定する前記ステップは、
前記少なくとも1つの第1の内視鏡画像及び前記少なくとも1つの第2の内視鏡画像を入力サンプルとし、各ラベル画像をターゲット出力サンプルとしてトレーニングして、前記トレーニングパラメータを得るステップ、を含むことを特徴とする請求項2に記載の方法。 - 前記ディープ畳み込みネットワークは、入力レイヤー、処理レイヤー、及び分類レイヤーを含み、
内視鏡画像を予測するためのディープ畳み込みネットワークを確立する前記ステップは、
前記処理レイヤーに少なくとも1つの密集接続レイヤーを追加するステップであって、前記密集接続レイヤーが複数の接続サブレイヤーを含むステップと、
前記接続サブレイヤーのそれぞれについて、当該接続サブレイヤーの前にある他の接続サブレイヤーから出力された特徴を当該接続サブレイヤーの入力とするステップと、
を含むことを特徴とする請求項2に記載の方法。 - 前記処理レイヤーに少なくとも1つの密集接続レイヤーを追加する前記ステップは、
2つの隣接する密集接続レイヤーの間に遷移レイヤーを追加し、予め設定された予測精度に基づき、当該遷移レイヤーの特徴圧縮率を設置するステップ、を含むことを特徴とする請求項4に記載の方法。 - 前記ディープ畳み込みネットワークは、入力レイヤー、処理レイヤー、及び分類レイヤーを含み、
前記方法は、
前記ディープ畳み込みネットワークをトレーニングするための損失関数を予め構築するステップをさらに含み、
前記少なくとも1つの第1の内視鏡画像、及び、前記少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像に基づき、前記ディープ畳み込みネットワークのトレーニングパラメータを決定する前記ステップは、
前記ディープ畳み込みネットワークをトレーニングする場合、
前記処理レイヤーが前記少なくとも1つの第1の内視鏡画像を処理することによって得られた少なくとも1つの処理済み特徴を取得するステップと、
前記少なくとも1つの処理済み特徴及び前記少なくとも1つの第2の内視鏡画像の特徴に基づき、今回の反復における前記損失関数の値を算出するステップと、
前記損失関数の値に基づき、トレーニングプロセスが終了したかどうかを決定し、トレーニングプロセスが終了したと決定した場合、前記トレーニングパラメータを取得するステップと、
を反復して実行することを特徴とする請求項2に記載の方法。 - 前記ディープ畳み込みネットワークをトレーニングする場合、前記方法は、
前記少なくとも1つの第1の内視鏡画像が属する器官カテゴリーの中心特徴を初期化するステップ、をさらに含み、
前記少なくとも1つの処理済み特徴及び前記少なくとも1つの第2の内視鏡画像の特徴に基づき、今回の反復における前記損失関数の値を算出する前記ステップは、
各処理済み特徴と各第2の内視鏡画像の特徴との間の複数の第1の距離をそれぞれ算出するステップと、
各第1の内視鏡画像の特徴と各第1の内視鏡画像に対応する中心特徴との間の複数の第2の距離を算出するステップと、
前記複数の第1の距離と前記複数の第2の距離に基づき、前記損失関数の値を算出するステップと、
を含むことを特徴とする請求項6に記載の方法。 - 前記少なくとも1つの第1の内視鏡画像に対して実行される変換は、クリッピング、回転、輝度ジッター、カラージッター、又はコントラストジッターのうちの少なくとも1つを含むことを特徴とする請求項1に記載の方法。
- 内視鏡画像処理システムであって、
人体検知デバイスと、内視鏡画像処理装置とを含み、
前記人体検知デバイスは、人体部位を検知し、検知した少なくとも1つの第1の内視鏡画像を前記内視鏡画像処理装置に送信するために用いられ、
前記内視鏡画像処理装置は、前記人体検知デバイスから前記少なくとも1つの第1の内視鏡画像を取得し、内視鏡画像を予測するためのディープ畳み込みネットワークを確立し、前記少なくとも1つの第1の内視鏡画像及び前記少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像に基づき、前記ディープ畳み込みネットワークのトレーニングパラメータを決定し、検査対象ユーザーの現在の内視鏡画像を取得し、前記ディープ畳み込みネットワークを使用し前記トレーニングパラメータに基づいて前記現在の内視鏡画像を予測し、前記現在の内視鏡画像に対応する器官カテゴリーを決定するために用いられる、ことを特徴とするシステム。 - 前記内視鏡画像処理装置はさらに、
前記人体部位の構造及び予め設定された診断ターゲットに基づき、少なくとも1つの候補器官カテゴリーを決定し、各候補器官カテゴリーに対応するラベル画像を取得し、前記少なくとも1つの第1の内視鏡画像及び前記少なくとも1つの第2の内視鏡画像を入力サンプルとし、各前記ラベル画像をターゲット出力サンプルとしてトレーニングして、前記トレーニングパラメータを得るために用いられることを特徴とする請求項9に記載のシステム。 - 前記ディープ畳み込みネットワークは、入力レイヤー、処理レイヤー、及び分類レイヤーを含み、
前記内視鏡画像処理装置は、さらに、
前記ディープ畳み込みネットワークをトレーニングするための損失関数を予め構築し、
前記ディープ畳み込みネットワークをトレーニングする場合、
前記処理レイヤーが前記少なくとも1つの第1の内視鏡画像を処理することによって得られた少なくとも1つの処理済み特徴を取得するステップと、
前記少なくとも1つの処理済み特徴及び前記少なくとも1つの第2の内視鏡画像の特徴に基づき、今回の反復における前記損失関数の値を算出するステップと、
前記損失関数の値に基づき、トレーニングプロセスが終了したかどうかを決定し、トレーニングプロセスが終了したと決定した場合、前記トレーニングパラメータを取得するステップと、を反復して実行する、ために用いられることを特徴とする請求項9に記載のシステム。 - 前記ディープ畳み込みネットワークをトレーニングする場合、前記内視鏡画像処理装置は、さらに、
前記少なくとも1つの第1の内視鏡画像が属する器官カテゴリーの中心特徴を初期化し、
各処理済み特徴と各第2の内視鏡画像の特徴との間の複数の第1の距離をそれぞれ算出し、
各第1の内視鏡画像の特徴と各第1の内視鏡画像に対応する中心特徴との間の複数の第2の距離を算出し、
前記複数の第1の距離と前記複数の第2の距離に基づき、前記損失関数の値を算出する、ために用いられることを特徴とする請求項11に記載のシステム。 - コンピュータデバイスであって、
少なくとも1つのメモリ及び少なくとも1つのプロセッサーを含み、前記少なくとも1つのメモリに少なくとも1つのプログラムコードが記憶されており、前記少なくとも1つのプログラムコードは、前記少なくとも1つのプロセッサーによってロードされて実行されることで、
検査対象ユーザーの現在の内視鏡画像を取得するステップと、
ディープ畳み込みネットワークを使用して、トレーニングパラメータに基づいて前記現在の内視鏡画像を予測するステップであって、前記トレーニングパラメータが少なくとも1つの第1の内視鏡画像、及び、前記少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像によって決定され、前記少なくとも1つの第1の内視鏡画像が人体部位に対応するステップと、
前記現在の内視鏡画像に対応する臓器カテゴリーを決定するステップと、を実行することを特徴とするコンピュータデバイス。 - 前記少なくとも1つのプロセッサーは、
人体部位に対する少なくとも1つの第1の内視鏡画像を取得するステップと、
内視鏡画像を予測するためのディープ畳み込みネットワークを確立し、前記少なくとも1つの第1の内視鏡画像、及び、前記少なくとも1つの第1の内視鏡画像を変換した少なくとも1つの第2の内視鏡画像に基づき、前記ディープ畳み込みネットワークのトレーニングパラメータを決定するステップと、を実行することを特徴とする請求項13に記載のコンピュータデバイス。 - 前記少なくとも1つのプロセッサーは、
前記人体部位の構造及び予め設定された診断ターゲットに基づき、少なくとも1つの候補臓器カテゴリーを決定するステップと、
各候補臓器カテゴリーに対応するラベル画像を取得するステップと、
前記少なくとも1つの第1の内視鏡画像及び前記少なくとも1つの第2の内視鏡画像を入力サンプルとし、各ラベル画像をターゲット出力サンプルとしてトレーニングして、前記トレーニングパラメータを得るステップと、を実行することを特徴とする請求項14に記載のコンピュータデバイス。 - 前記ディープ畳み込みネットワークは、入力レイヤー、処理レイヤー、及び分類レイヤーを含み、
前記少なくとも1つのプロセッサーは、
前記処理レイヤーに少なくとも1つの密集接続レイヤーを追加するステップであって、前記密集接続レイヤーが複数の接続サブレイヤーを含むステップと、
前記接続サブレイヤーのそれぞれについて、当該接続サブレイヤーの前にある他の接続サブレイヤーから出力された特徴を当該接続サブレイヤーの入力とするステップと、実行することを特徴とする請求項14に記載のコンピュータデバイス。 - 前記少なくとも1つのプロセッサーは、
2つの隣接する密集接続レイヤーの間に遷移レイヤーを追加し、予め設定された予測精度に基づき、当該遷移レイヤーの特徴圧縮率を設置するステップを実行する、ことを特徴とする請求項16に記載のコンピュータデバイス。 - 前記ディープ畳み込みネットワークは、入力レイヤー、処理レイヤー、及び分類レイヤーを含み、
前記少なくとも1つのプロセッサーは、
前記ディープ畳み込みネットワークをトレーニングするための損失関数を予め構築するステップを実行し、
前記ディープ畳み込みネットワークをトレーニングする場合、
前記処理レイヤーが前記少なくとも1つの第1の内視鏡画像を処理することによって得られた少なくとも1つの処理済み特徴を取得するステップと、
前記少なくとも1つの処理済み特徴及び前記少なくとも1つの第2の内視鏡画像の特徴に基づき、現在の反復における前記損失関数の値を算出するステップと、
前記損失関数の値に基づき、トレーニングプロセスが終了したかどうかを決定し、トレーニングプロセスが終了したと決定した場合、前記トレーニングパラメータを取得するステップと、を反復して実行する、ことを特徴とする請求項14に記載のコンピュータデバイス。 - 前記ディープ畳み込みネットワークをトレーニングする場合、前記少なくとも1つのプロセッサーは、
前記少なくとも1つの第1の内視鏡画像が属する臓器カテゴリーの中心特徴を初期化するステップと、
各処理済み特徴と各第2の内視鏡画像の特徴との間の複数の第1の距離をそれぞれ算出するステップと、
各第1の内視鏡画像の特徴と各第1の内視鏡画像に対応する中心特徴との間の複数の第2の距離を算出するステップと、
前記複数の第1の距離と前記複数の第2の距離に基づき、前記損失関数の値を算出するステップと、
を実行することを特徴とする請求項18に記載のコンピュータデバイス。 - 前記少なくとも1つの第1の内視鏡画像に対して実行される変換は、クリッピング、回転、輝度ジッター、カラージッター、又はコントラストジッターのうちの少なくとも1つを含むことを特徴とする請求項13に記載のコンピュータデバイス。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811276885.2 | 2018-10-30 | ||
CN201811276885.2A CN109523522B (zh) | 2018-10-30 | 2018-10-30 | 内窥镜图像的处理方法、装置、系统及存储介质 |
PCT/CN2019/112202 WO2020088288A1 (zh) | 2018-10-30 | 2019-10-21 | 内窥镜图像的处理方法、系统及计算机设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021519663A true JP2021519663A (ja) | 2021-08-12 |
JP7214291B2 JP7214291B2 (ja) | 2023-01-30 |
Family
ID=65774370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020560333A Active JP7214291B2 (ja) | 2018-10-30 | 2019-10-21 | コンピュータデバイスの作動方法、コンピュータデバイス、およびコンピュータプログラム、ならびに、内視鏡画像処理システム |
Country Status (5)
Country | Link |
---|---|
US (2) | US11849914B2 (ja) |
EP (1) | EP3876190B1 (ja) |
JP (1) | JP7214291B2 (ja) |
CN (1) | CN109523522B (ja) |
WO (1) | WO2020088288A1 (ja) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109523522B (zh) * | 2018-10-30 | 2023-05-09 | 腾讯医疗健康(深圳)有限公司 | 内窥镜图像的处理方法、装置、系统及存储介质 |
CN110084279A (zh) * | 2019-03-29 | 2019-08-02 | 广州思德医疗科技有限公司 | 一种确定分类标签的方法及装置 |
CN110084280B (zh) * | 2019-03-29 | 2021-08-31 | 广州思德医疗科技有限公司 | 一种确定分类标签的方法及装置 |
CN110097083A (zh) * | 2019-03-29 | 2019-08-06 | 广州思德医疗科技有限公司 | 一种确定分类标签的方法及装置 |
CN110136106B (zh) * | 2019-05-06 | 2022-12-27 | 腾讯医疗健康(深圳)有限公司 | 医疗内窥镜图像的识别方法、系统、设备和内窥镜影像系统 |
CN110495847B (zh) * | 2019-08-23 | 2021-10-08 | 重庆天如生物科技有限公司 | 基于深度学习的消化道早癌辅助诊断系统和检查装置 |
EP3786765A1 (en) * | 2019-08-29 | 2021-03-03 | Leica Instruments (Singapore) Pte. Ltd. | Microscope, control circuit, method and computer program for generating information on at least one inspected region of an image |
CN111012285B (zh) * | 2019-12-06 | 2021-06-08 | 腾讯科技(深圳)有限公司 | 内窥镜移动时间确定方法、装置和计算机设备 |
CN110859624A (zh) * | 2019-12-11 | 2020-03-06 | 北京航空航天大学 | 一种基于结构磁共振影像的大脑年龄深度学习预测系统 |
CN110974142B (zh) * | 2019-12-20 | 2020-08-18 | 山东大学齐鲁医院 | 共聚焦激光显微内镜实时同步内镜病变定位系统 |
CN113143168A (zh) * | 2020-01-07 | 2021-07-23 | 日本电气株式会社 | 医疗辅助操作方法、装置、设备和计算机存储介质 |
CN111814655B (zh) * | 2020-07-03 | 2023-09-01 | 浙江大华技术股份有限公司 | 目标重识别方法及其网络训练方法、相关装置 |
CN111860542B (zh) * | 2020-07-22 | 2024-06-28 | 海尔优家智能科技(北京)有限公司 | 用于识别物品类别的方法及装置、电子设备 |
CN112907726B (zh) * | 2021-01-25 | 2022-09-20 | 重庆金山医疗技术研究院有限公司 | 一种图像处理方法、装置、设备及计算机可读存储介质 |
CN112906682A (zh) * | 2021-02-07 | 2021-06-04 | 杭州海康慧影科技有限公司 | 控制光源亮度的方法、装置及计算机存储介质 |
CN113469959B (zh) * | 2021-06-16 | 2024-07-23 | 北京理工大学 | 基于质量缺陷成像模型的对抗训练优化方法及装置 |
CN113486990B (zh) * | 2021-09-06 | 2021-12-21 | 北京字节跳动网络技术有限公司 | 内窥镜图像分类模型的训练方法、图像分类方法和装置 |
CN113706526B (zh) * | 2021-10-26 | 2022-02-08 | 北京字节跳动网络技术有限公司 | 内窥镜图像特征学习模型、分类模型的训练方法和装置 |
CN113822894B (zh) * | 2021-11-25 | 2022-02-08 | 武汉大学 | 十二指肠胰头图像识别方法和十二指肠胰头图像识别装置 |
CN114464316B (zh) * | 2022-04-11 | 2022-07-19 | 武汉大学 | 胃部异常风险等级预测方法、装置、终端及可读存储介质 |
CN114511749B (zh) * | 2022-04-19 | 2022-06-28 | 武汉大学 | 图像处理方法、装置、计算机设备及存储介质 |
CN117974668B (zh) * | 2024-04-02 | 2024-08-13 | 青岛美迪康数字工程有限公司 | 基于ai的新型胃黏膜可视度评分量化方法、装置和设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017045341A (ja) * | 2015-08-28 | 2017-03-02 | カシオ計算機株式会社 | 診断装置、及び診断装置における学習処理方法、並びにプログラム |
WO2017175282A1 (ja) * | 2016-04-04 | 2017-10-12 | オリンパス株式会社 | 学習方法、画像認識装置およびプログラム |
WO2018008593A1 (ja) * | 2016-07-04 | 2018-01-11 | 日本電気株式会社 | 画像診断学習装置、画像診断装置、方法およびプログラムを格納する記憶媒体 |
US20180225820A1 (en) * | 2015-08-07 | 2018-08-09 | Arizona Board Of Regents On Behalf Of Arizona State University | Methods, systems, and media for simultaneously monitoring colonoscopic video quality and detecting polyps in colonoscopy |
WO2018225448A1 (ja) * | 2017-06-09 | 2018-12-13 | 智裕 多田 | 消化器官の内視鏡画像による疾患の診断支援方法、診断支援システム、診断支援プログラム及びこの診断支援プログラムを記憶したコンピュータ読み取り可能な記録媒体 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6292791B1 (en) * | 1998-02-27 | 2001-09-18 | Industrial Technology Research Institute | Method and apparatus of synthesizing plucked string instruments using recurrent neural networks |
US10482313B2 (en) * | 2015-09-30 | 2019-11-19 | Siemens Healthcare Gmbh | Method and system for classification of endoscopic images using deep decision networks |
US10007866B2 (en) * | 2016-04-28 | 2018-06-26 | Microsoft Technology Licensing, Llc | Neural network image classifier |
CN106022221B (zh) | 2016-05-09 | 2021-11-30 | 腾讯科技(深圳)有限公司 | 一种图像处理方法及处理系统 |
CN106097340A (zh) * | 2016-06-12 | 2016-11-09 | 山东大学 | 一种基于卷积分类器的自动检测并勾画肺结节所在位置的方法 |
CN106920227B (zh) * | 2016-12-27 | 2019-06-07 | 北京工业大学 | 基于深度学习与传统方法相结合的视网膜血管分割方法 |
US20190005377A1 (en) * | 2017-06-30 | 2019-01-03 | Advanced Micro Devices, Inc. | Artificial neural network reduction to reduce inference computation time |
CN108304936B (zh) * | 2017-07-12 | 2021-11-16 | 腾讯科技(深圳)有限公司 | 机器学习模型训练方法和装置、表情图像分类方法和装置 |
CN107730489A (zh) * | 2017-10-09 | 2018-02-23 | 杭州电子科技大学 | 无线胶囊内窥镜小肠病变计算机辅助检测系统及检测方法 |
CN107977969B (zh) * | 2017-12-11 | 2020-07-21 | 北京数字精准医疗科技有限公司 | 一种内窥镜荧光图像的分割方法、装置及存储介质 |
CN108108807B (zh) * | 2017-12-29 | 2020-06-02 | 北京达佳互联信息技术有限公司 | 学习型图像处理方法、系统及服务器 |
CN108256450A (zh) * | 2018-01-04 | 2018-07-06 | 天津大学 | 一种基于深度学习的人脸识别和人脸验证的监督学习方法 |
CN108596090B (zh) * | 2018-04-24 | 2019-08-27 | 北京达佳互联信息技术有限公司 | 人脸图像关键点检测方法、装置、计算机设备及存储介质 |
CN108615037A (zh) * | 2018-05-31 | 2018-10-02 | 武汉大学人民医院(湖北省人民医院) | 基于深度学习的可控胶囊内镜操作实时辅助系统及操作方法 |
CN118609067A (zh) * | 2018-09-20 | 2024-09-06 | 辉达公司 | 训练神经网络以用于车辆重新识别 |
CN109523522B (zh) * | 2018-10-30 | 2023-05-09 | 腾讯医疗健康(深圳)有限公司 | 内窥镜图像的处理方法、装置、系统及存储介质 |
-
2018
- 2018-10-30 CN CN201811276885.2A patent/CN109523522B/zh active Active
-
2019
- 2019-10-21 JP JP2020560333A patent/JP7214291B2/ja active Active
- 2019-10-21 WO PCT/CN2019/112202 patent/WO2020088288A1/zh unknown
- 2019-10-21 EP EP19879131.1A patent/EP3876190B1/en active Active
-
2020
- 2020-10-23 US US17/078,826 patent/US11849914B2/en active Active
-
2023
- 2023-11-10 US US18/506,545 patent/US20240081618A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180225820A1 (en) * | 2015-08-07 | 2018-08-09 | Arizona Board Of Regents On Behalf Of Arizona State University | Methods, systems, and media for simultaneously monitoring colonoscopic video quality and detecting polyps in colonoscopy |
JP2017045341A (ja) * | 2015-08-28 | 2017-03-02 | カシオ計算機株式会社 | 診断装置、及び診断装置における学習処理方法、並びにプログラム |
WO2017175282A1 (ja) * | 2016-04-04 | 2017-10-12 | オリンパス株式会社 | 学習方法、画像認識装置およびプログラム |
WO2018008593A1 (ja) * | 2016-07-04 | 2018-01-11 | 日本電気株式会社 | 画像診断学習装置、画像診断装置、方法およびプログラムを格納する記憶媒体 |
WO2018225448A1 (ja) * | 2017-06-09 | 2018-12-13 | 智裕 多田 | 消化器官の内視鏡画像による疾患の診断支援方法、診断支援システム、診断支援プログラム及びこの診断支援プログラムを記憶したコンピュータ読み取り可能な記録媒体 |
Also Published As
Publication number | Publication date |
---|---|
US20240081618A1 (en) | 2024-03-14 |
WO2020088288A1 (zh) | 2020-05-07 |
JP7214291B2 (ja) | 2023-01-30 |
EP3876190A4 (en) | 2021-12-29 |
EP3876190B1 (en) | 2024-05-01 |
US20210052135A1 (en) | 2021-02-25 |
EP3876190A1 (en) | 2021-09-08 |
CN109523522B (zh) | 2023-05-09 |
CN109523522A (zh) | 2019-03-26 |
US11849914B2 (en) | 2023-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7214291B2 (ja) | コンピュータデバイスの作動方法、コンピュータデバイス、およびコンピュータプログラム、ならびに、内視鏡画像処理システム | |
CN113496489B (zh) | 内窥镜图像分类模型的训练方法、图像分类方法和装置 | |
Younas et al. | A deep ensemble learning method for colorectal polyp classification with optimized network parameters | |
JP7152513B2 (ja) | 画像認識方法、装置、端末機器及び医療システム、並びにそのコンピュータプログラム | |
CN110517256B (zh) | 一种基于人工智能的早期癌辅助诊断系统 | |
CN111489324B (zh) | 一种融合多模态先验病理深度特征的宫颈图像分类方法 | |
CN112088394A (zh) | 生物组织的计算机分类 | |
CN109948671B (zh) | 图像分类方法、装置、存储介质以及内窥镜成像设备 | |
CN117274270A (zh) | 基于人工智能的消化内镜实时辅助系统及方法 | |
CN117689949A (zh) | 一种基于少样本学习的消化道内镜图像分类算法 | |
CN109460717A (zh) | 消化道共聚焦激光显微内镜病变图像识别方法及装置 | |
Xing et al. | A saliency-aware hybrid dense network for bleeding detection in wireless capsule endoscopy images | |
JP6707131B2 (ja) | 画像処理装置、学習装置、画像処理方法、識別基準の作成方法、学習方法およびプログラム | |
CN113222957A (zh) | 一种基于胶囊镜图像的多类别病灶高速检测方法及系统 | |
CN111816308B (zh) | 一种通过面部图片分析预测冠心病发病风险的系统 | |
CN116830148A (zh) | 胶囊式内窥镜检查中小肠病变的自动检测和区分 | |
CN117058467B (zh) | 一种胃肠道病变类型识别方法及系统 | |
US20240020829A1 (en) | Automatic detection of erosions and ulcers in crohn's capsule endoscopy | |
US20240135540A1 (en) | Automatic detection and differentiation of biliary lesions in cholangioscopy images | |
Mishra et al. | Assessing robustness of deep learning methods in dermatological workflow | |
CN115690518A (zh) | 一种肠化生严重程度分类系统 | |
JP2024509105A (ja) | Turpの病理画像から前立腺癌を検出するための人工ニューラルネットワークを学習する方法、及びこれを行うコンピューティングシステム | |
CN114155234A (zh) | 病灶肺段位置的识别方法、装置、存储介质及电子设备 | |
Malviya et al. | Deep Learning Based Gastro Intestinal Disease Analysis Using Wireless Capsule Endoscopy Images | |
Batra et al. | A brief overview on deep learning methods for lung cancer detection using medical imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201027 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220613 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7214291 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |