JP2021518033A - Solid electrolyte material - Google Patents
Solid electrolyte material Download PDFInfo
- Publication number
- JP2021518033A JP2021518033A JP2020539277A JP2020539277A JP2021518033A JP 2021518033 A JP2021518033 A JP 2021518033A JP 2020539277 A JP2020539277 A JP 2020539277A JP 2020539277 A JP2020539277 A JP 2020539277A JP 2021518033 A JP2021518033 A JP 2021518033A
- Authority
- JP
- Japan
- Prior art keywords
- pores
- solid electrolyte
- electrolyte material
- electrically non
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 105
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 92
- 239000011148 porous material Substances 0.000 claims abstract description 109
- 239000002245 particle Substances 0.000 claims description 50
- 239000011149 active material Substances 0.000 claims description 45
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 37
- 239000013543 active substance Substances 0.000 claims description 23
- 239000002243 precursor Substances 0.000 claims description 20
- 239000004020 conductor Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000007773 negative electrode material Substances 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 5
- 239000011888 foil Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000007774 positive electrode material Substances 0.000 claims description 4
- 239000011262 electrochemically active material Substances 0.000 claims 2
- 238000000151 deposition Methods 0.000 claims 1
- 229910001416 lithium ion Inorganic materials 0.000 description 14
- 239000002131 composite material Substances 0.000 description 10
- 229910052744 lithium Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000002001 electrolyte material Substances 0.000 description 4
- 239000002223 garnet Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000002227 LISICON Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010416 ion conductor Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0407—Methods of deposition of the material by coating on an electrolyte layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0094—Composites in the form of layered products, e.g. coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Conductive Materials (AREA)
- Primary Cells (AREA)
Abstract
本発明は、固体電解質材料が細孔(2)を有することを特徴とする、電気化学二次電池用の電気的非伝導性固体電解質材料(F1)に関する。The present invention relates to an electrically non-conductive solid electrolyte material (F1) for an electrochemical secondary battery, wherein the solid electrolyte material has pores (2).
Description
本発明は、電気化学的二次電池用の電気的非伝導性固体電解質材料、電気化学的二次電池および電気化学的二次電池用の電極を製造する方法に関する。 The present invention relates to an electrically non-conductive solid electrolyte material for an electrochemical secondary battery, a method for producing an electrode for an electrochemical secondary battery and an electrochemical secondary battery.
ガス拡散電極用の固体セパレータは、先行技術から公知であり、固体セパレータ材料は連続チャネルを有する(文献EP1345280A1参照)。また、セパレータとしても使用できるリチウム(Li)イオン伝導性固体電解質が知られている。W.Weppner in Secondary Batteries−Lithium Rechargeable System、2009、Elsevierによる文書「All−Solid State Battery」では、リチウムイオン伝導性固体電解質材料をセパレータとしたLiイオン電池の層構造が示されており、これはスパッタリング法や蒸着法を用いて作成されるものとなる。 Solid separators for gas diffusion electrodes are known from the prior art, and solid separator materials have continuous channels (see EP1345280A1). Further, a lithium (Li) ion conductive solid electrolyte that can be used as a separator is known. W. The document "All-Solid State Battery" by Weppner in Secondary Batteries-Lithium Rechargeable System, 2009, Elsevier shows the layer structure of a Li-ion battery using a lithium-ion conductive solid electrolyte material as a separator. And will be created using the vapor deposition method.
本発明の目的は、電気化学的二次電池のための改良された電気的非伝導性固体電解質材料、改良された電気化学的二次電池および電気化学的二次電池のための電極を製造するための改良された方法を開示することである。 An object of the present invention is to manufacture an improved electrically non-conductive solid electrolyte material for an electrochemical secondary battery, an improved electrochemical secondary battery and an electrode for an electrochemical secondary battery. Is to disclose an improved method for.
この目的は、請求項1に記載の電気的非伝導性固体電解質材料、請求項9に記載の電気化学的二次電池および請求項10に記載の電気化学的二次電池用電極の製造方法によって達成される。本発明の有利な実施形態および、さらなる開発は、従属請求項に起因する。
An object of the present invention is the method for producing an electrically non-conductive solid electrolyte material according to claim 1, an electrochemical secondary battery according to claim 9, and an electrode for an electrochemical secondary battery according to
本発明によれば、電気化学的二次電池用の電気的に非伝導性の固体電解質材料(電気的非伝導性固体電解質材料)は細孔(孔)を有する。 According to the present invention, the electrically non-conductive solid electrolyte material (electrically non-conductive solid electrolyte material) for an electrochemical secondary battery has pores (pores).
細孔は互いに接続することができるが、固体電解質材料を通る細孔によって形成される連続したチャネルは任意である。細孔の好ましい直径は10nm〜50μmであり、800nm〜30μmの範囲は、Liイオン電池のような電気化学的二次電池での使用に特に有利である。 The pores can be connected to each other, but the continuous channels formed by the pores through the solid electrolyte material are optional. The preferred diameter of the pores is 10 nm to 50 μm, and the range of 800 nm to 30 μm is particularly advantageous for use in electrochemical secondary batteries such as Li-ion batteries.
本発明の1つの実施形態によれば、電気化学二次電池用電極は、このような電気的に非伝導性の固体電解質材料と活性材料を含み、ここで、活性材料の粒子は、電気的に非伝導性の固体電解質材料の第1の部分に位置する細孔の第1のサブセットの細孔を少なくとも部分的に充填し、および電気的に非伝導性の固体電解質材料の第2の部分に位置する細孔は充填されない。 According to one embodiment of the invention, the electrode for an electrochemical secondary battery comprises such an electrically non-conductive solid electrolyte material and an active material, wherein the particles of the active material are electrically. The pores of the first subset of pores located in the first portion of the non-conductive solid electrolyte material are at least partially filled, and the second portion of the electrically non-conductive solid electrolyte material. The pores located in are not filled.
つまり、すべての細孔が活性物質の粒子で充填されているわけではなく、固体電解質物質の特定の部分−第1の部分−にある特定の部分の細孔だけが充填されていることを意味している。固体電解質材料のもう一方の部分−第2の部分−の細孔は充填されていない(未充填)。これに関連して、未充填とは、これらの孔に、例えば、希ガスのアルゴンのような気体媒体が装填されることを意味する。したがって、第2の部分では、充填されていない細孔が位置しており、イオン伝導性および電気的に非伝導性を有している。用語「イオン伝導性」および用語「電気的非伝導性」は、電気化学的エネルギー貯蔵技術の分野で当業者に周知のこれらの用語の分類に関連する。電解質は典型的には(Li)イオン伝導性を有し、セパレータは電気的非伝導性を有する。 This means that not all pores are filled with particles of the active substance, but only the pores of a particular part of the solid electrolyte material-the first part. is doing. The pores of the other portion of the solid electrolyte material-the second portion-are unfilled (unfilled). In this regard, unfilled means that these pores are loaded with a gaseous medium, such as the noble gas argon. Therefore, in the second part, unfilled pores are located, which are ionic and electrically non-conductive. The terms "ionic conductivity" and "electrically non-conductive" relate to the classification of these terms well known to those of skill in the art in the field of electrochemical energy storage technology. The electrolyte typically has (Li) ionic conductivity and the separator has electrical non-conductivity.
活性物質の粒子で充填された部分量の細孔を有する固体電解質材料の第一の部分は、電気的に伝導性を有する。なぜなら、この領域において、電気的に伝導性である活性物質の粒子は、電気的に伝導性で互いに接続されるからである。活性物質の電気伝導特性を任意に補強するために、活性物質に伝導性カーボンブラックおよび/または伝導性グラファイトを添加することができる。 The first portion of the solid electrolyte material with a partial amount of pores filled with particles of the active substance is electrically conductive. This is because, in this region, the particles of the electrically conductive active substance are electrically conductively connected to each other. Conductive carbon black and / or conductive graphite can be added to the active material to optionally reinforce the electrical conductivity of the active material.
また、電極が、伝導性カーボンブラック(および/または伝導性グラファイト)を含み、伝導性カーボンブラックの粒子を、電気的に非伝導性の固体電解質材料の第1の部分に位置する細孔の第2のサブセットの細孔を少なくとも部分的に充填し、活性物質および伝導性カーボンブラックの粒子を、電気的に非伝導性の固体電解質材料の第1の部分に位置する細孔の第3のサブセットの細孔を少なくとも部分的に充填する場合にも有利である。 Also, the electrodes contain conductive carbon black (and / or conductive graphite), and the particles of conductive carbon black are placed in the pores located in the first portion of the electrically non-conductive solid electrolyte material. A third subset of pores located at least partially filled in the pores of the two subsets and the active material and conductive carbon black particles located in the first portion of the electrically non-conductive solid electrolyte material. It is also advantageous when the pores of the above are at least partially filled.
このようにして、固体電解質材料の第1部分における電気伝導特性がさらに改善されることが達成される。なぜなら、第1部分における細孔は、活性材料の粒子、伝導性カーボンブラックの粒子、または両方のタイプの粒子で充填されることができるからである。これは、第1部分にも細孔のサブセットが存在する可能性があることを除外するものではない。細孔のサブセットは、活性物質の粒子でも、伝導性カーボンブラックの粒子でも満たされていない。 In this way, it is achieved that the electrical conduction properties in the first part of the solid electrolyte material are further improved. This is because the pores in the first portion can be filled with particles of active material, particles of conductive carbon black, or both types of particles. This does not exclude the possibility that a subset of pores may also be present in the first portion. The subset of pores is neither filled with particles of active material nor particles of conductive carbon black.
本発明の有利な実施形態によれば、電気化学二次電池用の電気的に非伝導性の固体電解質材料は、部分にのみに細孔を有し、すなわち、少なくとも1つの部分に細孔がない。固体電解質材料は、非多孔質部分におけるその結晶密度を有する。言い換えれば、非多孔性部分中の物質はコンパクトである。 According to an advantageous embodiment of the present invention, the electrically non-conductive solid electrolyte material for an electrochemical secondary battery has pores only in portions, i.e., pores in at least one portion. do not have. The solid electrolyte material has its crystal density in the non-porous portion. In other words, the material in the non-porous part is compact.
したがって、固体電解質材料は、それが多孔質である部分と、それが非多孔質である少なくとも1つの部分、すなわちコンパクトである部分を有する。隔離された細孔、すなわち、例えば、材料を一貫してコンパクトに生産することができない場合に残る、解離した細孔もまた、本開示の範囲内のコンパクトな材料に該当する。 Therefore, the solid electrolyte material has a portion in which it is porous and at least one portion in which it is non-porous, i.e. a compact portion. Isolated pores, that is, dissociated pores that remain, for example, when the material cannot be produced consistently and compactly, also fall under the scope of the present disclosure.
本発明の特に好適な実施形態によれば、電気化学二次電池用電極は、このような部分的に非多孔性の固体電解質材料および活性材料を含み、ここで、活性材料の粒子は、電気的に非伝導性の固体電解質材料の多孔質部分に位置する細孔の第一のサブセットの細孔を少なくとも部分的に充填する。 According to a particularly preferred embodiment of the present invention, the electrodes for an electrochemical secondary battery include such a partially non-porous solid electrolyte material and an active material, wherein the particles of the active material are electric. The pores of the first subset of pores located in the porous portion of the non-conductive solid electrolyte material are at least partially filled.
したがって、固体電解質材料の多孔質部分中の一部の細孔は、活性材料の粒子で少なくとも部分的に充填され、すなわち、単一の充填された細孔は、活性材料で部分的にのみ充填され得る。細孔のサブセットも残りうるが、それらは活性物質で満たされていない。固体電解質材料の無孔部は、Liイオン導体の機能とセパレータの機能の両方を果たす。 Therefore, some pores in the porous portion of the solid electrolyte material are at least partially filled with particles of the active material, i.e., a single filled pore is only partially filled with the active material. Can be done. Subsets of pores may remain, but they are not filled with the active substance. The non-porous portion of the solid electrolyte material serves both as a Li ion conductor and as a separator.
好ましいさらなる開発によれば、電気化学二次電池用電極はまた、カーボンブラックを含み、活性物質の粒子は、電気的に非伝導性の固体電解質材料の多孔質部分に位置する細孔の第1のサブセットの細孔を少なくとも部分的に充填し、カーボンブラックの粒子は、少なくとも部分的には、電気的に非伝導性固体電解質材料の多孔質部分に位置する細孔の第2のサブセットを充填し、活性物質およびカーボンブラックの粒子は、電気的に非伝導性の固体電解質材料の多孔質部分に位置する細孔の第3のサブセットの細孔を少なくとも部分的に充填する。 According to a preferred further development, the electrodes for the electrochemical secondary battery also contain carbon black, and the particles of the active substance are the first of the pores located in the porous portion of the electrically non-conductive solid electrolyte material. The pores of a subset of are at least partially filled, and the carbon black particles, at least partially, fill a second subset of pores located in the porous portion of the electrically non-conductive solid electrolyte material. However, the active material and carbon black particles at least partially fill the pores of a third subset of pores located in the porous portion of the electrically non-conductive solid electrolyte material.
本開示の文脈において、伝導性カーボンブラックの代替は、また、伝導性グラファイト、カーボンナノチューブ、または他の金属添加剤、例えば、ナノワイヤである。 In the context of the present disclosure, alternatives to conductive carbon black are also conductive graphite, carbon nanotubes, or other metal additives such as nanowires.
したがって、固体電解質材料の多孔質部分では、細孔は4つのサブセットに分けることができる。細孔のサブセットは活性物質の粒子を拾い上げ、別のサブセットは伝導性カーボンブラックの粒子を拾い上げ、さらに別のサブセットは活性物質と伝導性カーボンブラックの粒子を拾い上げ、細孔の第4のサブセットは未充填のままである。理想的には、粒子および伝導性カーボンブラックを有する細孔のサブセットは、細孔の90%を超える(>90%の)主要なサブセットである。 Therefore, in the porous portion of the solid electrolyte material, the pores can be divided into four subsets. A subset of pores picks up particles of active material, another subset picks up particles of conductive carbon black, yet another subset picks up particles of active material and conductive carbon black, and a fourth subset of pores picks up particles. It remains unfilled. Ideally, the subset of pores with particles and conductive carbon black is the major subset (> 90%) of the pores.
本発明によれば、さらに、正の導体(例、アルミニウム箔)、正の活性物質および伝導性カーボンブラックを有する正の電極、伝導性カーボンブラックおよび負の活性物質を有する負の導体(例、銅箔)、ならびにセパレータとして、第1および第3の部分に細孔を有し、第1および第2の部分に隣接する第2の部分において非多孔性である電気的に非伝導性の固体電解質材料を含む電気化学二次電池が記載される。負の活性物質の粒子は、電気的に非伝導性の固体電解質材料の第1の部分に位置する、細孔の第1のサブセットの細孔を少なくとも部分的に充填する。伝導性カーボンブラックの粒子は、電気的に非伝導性の固体電解質材料の第1の部分に位置する細孔の第2のサブセットの細孔を少なくとも部分的に充填し、負の活性物質および伝導性カーボンブラックの粒子は、電気的に非伝導性の固体電解質材料の第1の部分に位置する細孔の第3のサブセットの細孔を少なくとも部分的に充填する。正の活性物質の粒子は、電気的に非伝導性の固体電解質材料の第3の部分に位置する、細孔の第1のサブセットの孔を少なくとも部分的に充填する。伝導性カーボンブラックの粒子は、電気的に非伝導性の固体電解質材料の第3の部分に位置する細孔の第2のサブセットの細孔を少なくとも部分的に充填し、正の活性物質および伝導性カーボンブラックの粒子は、電気的に非伝導性の固体電解質材料の第3の部分に位置する細孔の第3のサブセットの細孔を少なくとも部分的に充填する。固体電解質材料の非多孔性の第2の部分は、固体電解質材料の第1部分と第3部分の間にある。 According to the present invention, further, positive conductors (eg, aluminum foil), positive electrodes with positive active material and conductive carbon black, negative conductors with conductive carbon black and negative active material (eg, negative active material). Copper foil), and as a separator, an electrically non-conductive solid that has pores in the first and third portions and is non-porous in the second portion adjacent to the first and second portions. Electrochemical secondary batteries containing electrolyte materials are described. The particles of the negative active substance at least partially fill the pores of the first subset of pores located in the first portion of the electrically non-conductive solid electrolyte material. The conductive carbon black particles at least partially fill the pores of the second subset of pores located in the first portion of the electrically non-conductive solid electrolyte material, negatively active material and conductive. The carbon black particles at least partially fill the pores of a third subset of pores located in the first portion of the electrically non-conductive solid electrolyte material. The particles of the positive active substance at least partially fill the pores of the first subset of pores located in the third portion of the electrically non-conductive solid electrolyte material. The conductive carbon black particles at least partially fill the pores of the second subset of pores located in the third portion of the electrically non-conductive solid electrolyte material, positively active material and conductive. The particles of carbon black fill at least partially the pores of a third subset of the pores located in the third portion of the electrically non-conductive solid electrolyte material. The non-porous second portion of the solid electrolyte material lies between the first and third portions of the solid electrolyte material.
このようにして、両電極間のセパレータとして電気的に非伝導性の固体電解質材料を有する電気化学二次電池が形成される。この物質はLiイオン導体として働き、それぞれの場合には電極に近い細孔をもち、そこにそれぞれの活性物質と伝導性カーボンブラックの粒子が取り込まれる。このような二次電池は、活性材料と電解質との間、および、肉眼的には、複合電極とセパレータとの間のイオン接触抵抗が最小限となる。なぜなら、活性材料と固体電解質との間の有効界面は、活性材料と電解質材料の層状または別々の配置と比較して、極端に拡大されているからである。 In this way, an electrochemical secondary battery having an electrically non-conductive solid electrolyte material as a separator between the two electrodes is formed. This substance acts as a Li-ion conductor, and in each case has pores close to the electrodes, in which the respective active substances and conductive carbon black particles are incorporated. In such a secondary battery, the ion contact resistance between the active material and the electrolyte and, macroscopically, between the composite electrode and the separator is minimized. This is because the effective interface between the active material and the solid electrolyte is extremely widened compared to the layered or separate arrangement of the active material and the electrolyte material.
本発明はさらに、電気化学的二次電池用の電極の製造に関する。以下のステップを有する手順を提案する:
非導電性固体電解質材料の前駆体材料を提供するステップ
前駆体材料を電気的活性材料および任意に導電性カーボンブラックなどの導電性材料と混合するステップ
前駆体材料と電気的活性材料との混合物を均質化するステップ、
前駆体材料と電気的活性材料との混合物を圧縮するステップ、
圧縮された混合物を板状構造の焼結された複合体に焼結するか、または圧縮された混合物を板状構造の圧延された複合体に圧延するステップ、
前駆体材料を焼結または圧延された複合体の板状構造の第1の面に適用し、焼結または圧延された複合体の板状構造上の前駆体材料を圧縮し、焼結または圧延された複合体の板状構造上に前駆体材料の層を形成するステップ
前駆体材料を適用された焼結または圧延された複合体を焼結するステップ
前駆体材料を適用して焼結または圧延された複合体を焼結または圧延された複合体の板状構造の第2の面に金属箔を蒸着させるか(真空蒸着)、または焼結または圧延された複合体を導体として金属箔上にプレスする工程。
The present invention further relates to the manufacture of electrodes for electrochemical secondary batteries. We propose a procedure with the following steps:
Mixtures of step precursor materials and electrically active materials that provide precursor materials for non-conductive solid electrolyte materials with electrically active materials and optionally conductive materials such as conductive carbon black. Steps to homogenize,
Steps to compress a mixture of precursor material and electrically active material,
The step of sintering the compressed mixture into a sintered composite with a plate structure or rolling the compressed mixture into a rolled composite with a plate structure.
The precursor material is applied to the first surface of the plate structure of the sintered or rolled composite, and the precursor material on the plate structure of the sintered or rolled composite is compressed and sintered or rolled. Sintered or rolled composite with step precursor material applied to form a layer of precursor material on the plate-like structure of the composite step Sintered or rolled with step precursor material applied A metal foil is vapor-deposited on the second surface of the plate-like structure of the sintered or rolled composite (vacuum vapor deposition), or the sintered or rolled composite is used as a conductor on the metal foil. The process of pressing.
方法の結果、固体電解質材料に強固に付着した活性材料を導体上に適用(塗布)した電極が得られ、固体電解質材料が活性材料の支持マトリックスを形成する。活性物質は固体電解質材料の細孔に取り込まれる。孔径は10nm〜50μmである。導体から離れた面では、電極はさらに固体電解質材料で覆われ、これは第2の焼結工程によって支持マトリックスを形成する固体電解質材料に強固に結合しているが、孔は有していない。電解質材料の当該部分または一部は、電気化学的二次電池に使用される場合、電極のためのセパレータとしての役割を果たすことができる。 As a result of the method, an electrode is obtained in which the active material firmly adhered to the solid electrolyte material is applied (coated) on the conductor, and the solid electrolyte material forms a support matrix of the active material. The active substance is incorporated into the pores of the solid electrolyte material. The pore diameter is 10 nm to 50 μm. On the surface away from the conductor, the electrode is further covered with a solid electrolyte material, which is tightly bound to the solid electrolyte material forming the support matrix by the second sintering step, but has no pores. The portion or portion of the electrolyte material can serve as a separator for the electrodes when used in an electrochemical secondary battery.
本発明は、以下に示す考察に基づいている:
全ての固体リチウムまたはリチウムイオン電池(ASS−LZ)は、自動車環境での利用に利点がある。ASS−LZが破壊された場合(例えば、機械的、熱的または電気的ストレスによる対応して重篤な事故が発生した場合)、毒性または可燃性の可能性のある種が発生したり放出されたりすることはないため、これらは極めて安全であると考えられる。
The present invention is based on the following considerations:
All solid-state lithium or lithium-ion batteries (ASS-LZ) have advantages for use in the automotive environment. When the ASS-LZ is destroyed (eg, in the event of a corresponding serious accident due to mechanical, thermal or electrical stress), potentially toxic or flammable species are generated or released. These are considered to be extremely safe, as they do not.
従来技術によると、従来のASS−LZは、正極の活性材料と、負極の活性材料とセパレータとの間のセパレータとの界面を有する。典型的には、活性材料およびセパレータ材料は、対応する界面を有する平面平行層を形成し、その各界面は、基本的には平面によって形成される。このような固有界面には、電池内のリチウム(Li)イオン伝導度に関して接触抵抗を形成するという欠点がある。Liイオンは界面を速やかに移動できなければならない。そうでなければ、遷移電位または過電圧が生じる。電極とセパレータの間の遷移電位は、電池の反応性を阻害するため望ましくない。その結果、これは、例えば、チャージ時のパフォーマンスの低下、およびASS−LZの一般的な高電流挙動につながる。しかし、自動車用途におけるASS−LZの鍵となる特性は、高い充電容量と放電容量である。 According to the prior art, the conventional ASS-LZ has an interface between the active material of the positive electrode and the separator between the active material of the negative electrode and the separator. Typically, the active material and the separator material form a planar parallel layer with corresponding interfaces, each of which is essentially formed by a planar surface. Such an intrinsic interface has the drawback of forming a contact resistance with respect to the lithium (Li) ion conductivity in the battery. Li ions must be able to move rapidly across the interface. Otherwise, a transition potential or overvoltage will occur. The transition potential between the electrode and the separator is not desirable as it impedes the reactivity of the battery. As a result, this leads to, for example, poor performance on charge and the general high current behavior of the ASS-LZ. However, the key characteristics of ASS-LZ in automotive applications are high charge capacity and discharge capacity.
したがって、本発明によれば、セパレータおよび電解質として働くことができる無機のLiイオン伝導性固体材料を、活性材料、特にカソード(陽性)活性材料との固体化合物中において、使用することが提案される。セパレータは、電極の活性物質の領域に多孔性であり、セパレータの細孔は電解質としても機能し、活性物質の粒子で充填され、場合によっては伝導性カーボンブラックでも充填される。2つの電極の間には、細孔がないか、または、活性物質および伝導性カーボンブラックで充填されていない細孔があるセパレータの部分が存在する。 Therefore, according to the present invention, it is proposed to use an inorganic Li ion conductive solid material that can act as a separator and an electrolyte in a solid compound with an active material, particularly a cathode (positive) active material. .. The separator is porous in the area of the active substance of the electrode, and the pores of the separator also function as an electrolyte and are filled with particles of the active substance and, in some cases, conductive carbon black. Between the two electrodes there is a portion of the separator that has no pores or has pores that are not filled with the active substance and conductive carbon black.
言い換えれば、活性材料は固体電解質材料中に埋め込まれるか、または代替アプローチに従い、活性材料中の空間が固体電解質材料とともに散在する。このような構造の利点は、活性材料とセパレータの層構造とは対照的に、活性材料と固体電解質との相互作用界面が増加し、その結果、イオン伝導に対する総抵抗が最小になることである。Liイオンはまた、活性材料層の「内部」において固体電解質と相互作用することができ、従って、活性材料から固体電解質材料へと移動することができる。固体電解質材料内で、Liイオンは、固体電解質材料の固体構造領域を離れることなく、反対の極性活性材料に伝導される。 In other words, the active material is embedded in the solid electrolyte material, or according to an alternative approach, the spaces in the active material are interspersed with the solid electrolyte material. The advantage of such a structure is that, in contrast to the layered structure of the active material and the separator, the interaction interface between the active material and the solid electrolyte is increased, resulting in a minimum total resistance to ionic conduction. .. Li ions can also interact with the solid electrolyte "inside" the active material layer and thus move from the active material to the solid electrolyte material. Within the solid electrolyte material, Li ions are conducted to the opposite polar active material without leaving the solid structural region of the solid electrolyte material.
このような構造は、機能化セラミックまたはハイブリッドセラミックとも呼ぶことができる。機能化は、細孔に導入された活性物質により示される。このような活性物質と固体電解質の複合構造を製造するためには、活性物質および/または伝導性カーボンブラックを収容するのに適した電解質材料中に多孔質構造を作製する必要がある。このような固体電解質の材料として、無機、セラミックベースのセパレータが考慮されている。この目的のために、固体電解質材料の前駆体を活性物質粒子と混合し、焼結する。例えば、層状遷移金属酸化物、オリビンまたはスピネル(カソード)、および、グラファイト、シリコン、金属リチウム、チタン酸リチウム(Li4Ti5O12)または炭素材料(アノード)のような、全ての一般的なタイプの活性物質との組み合わせが考えられる。 Such a structure can also be referred to as a functionalized ceramic or a hybrid ceramic. Functionalization is indicated by the active substance introduced into the pores. In order to produce such a composite structure of an active substance and a solid electrolyte, it is necessary to prepare a porous structure in an electrolyte material suitable for accommodating the active substance and / or conductive carbon black. Inorganic and ceramic-based separators have been considered as materials for such solid electrolytes. For this purpose, the precursor of the solid electrolyte material is mixed with the active material particles and sintered. All common, such as layered transition metal oxides, olivine or spinel (cathodes), and graphite, silicon, metallic lithium, lithium titanate (Li 4 Ti 5 O 12 ) or carbon materials (anodes). Combination with a type of active substance is conceivable.
このようにして製造された構造は、ASS−LZを作動させる際のイオン接触抵抗が低く、したがって、ASS−LZの高い電気出力と長い耐用年数を確保する。これは、先行技術による層構造を有する電池と比較して、重量論的および容積論的パワー密度を増加させる。 The structure thus manufactured has low ion contact resistance when operating the ASS-LZ, thus ensuring a high electrical output and a long service life of the ASS-LZ. This increases the weight and volumetric power densities compared to batteries with a prior art layered structure.
本発明の好適な実施形態を、添付の図を参照して以下に記載する。これにより、本発明のさらなる詳細、好ましい実施形態および開発がもたらされる。詳細を模式的示す。
図1は、充填された細孔領域と充填されていない細孔領域を有する電気的に非伝導性の固体電解質を示す。
図2は、充填された細孔領域と細孔のない領域を有する電気的に非伝導性の固体電解質を示す。
図3は、正の活性物質で充填された細孔領域、負の活性物質で満たされた細孔領域および中間の細孔のない領域を有する電気化学的二次電池。
Suitable embodiments of the present invention are described below with reference to the accompanying figures. This provides further details, preferred embodiments and developments of the present invention. Details are schematically shown.
FIG. 1 shows an electrically non-conductive solid electrolyte having a filled pore region and an unfilled pore region.
FIG. 2 shows an electrically non-conductive solid electrolyte having a filled pore region and a non-pore region.
FIG. 3 is an electrochemical secondary battery having a pore region filled with a positive active substance, a pore region filled with a negative active substance, and a region without intermediate pores.
図1は、直径800nm〜30μmの細孔(2)を有する、ガーネット構造(F1)のセラミック固体電解質材料を示す。第1の領域(A)の細孔は、正の活性物質NMC(3)と伝導性カーボンブラック(4)で充填されており、すべての細孔が完全に充填されているわけでなく、または全く充填されていないわけではない。しかし、この部分の細孔の約95%は少なくとも部分的に充填されている。第1の領域(A)に隣接する第2の領域(B1)では、細孔は活性物質粒子でも、伝導性カーボンブラックでも満たされていない。 FIG. 1 shows a ceramic solid electrolyte material having a garnet structure (F1) having pores (2) having a diameter of 800 nm to 30 μm. The pores of the first region (A) are filled with the positive active substance NMC (3) and conductive carbon black (4), and not all pores are completely filled, or It's not completely unfilled. However, about 95% of the pores in this portion are at least partially filled. In the second region (B1) adjacent to the first region (A), the pores are not filled with either active material particles or conductive carbon black.
図2は、第1の領域(A)に隣接する固体電解質材料(F2)の第2の領域(B2)が無孔である点で、図1と例示的な実施形態とは異なる例示的な実施形態を示す。 FIG. 2 is an exemplary embodiment different from FIG. 1 in that the second region (B2) of the solid electrolyte material (F2) adjacent to the first region (A) is non-porous. An embodiment is shown.
図3は、銅導体(7)とアルミニウム導体(6)を有するリチウムイオン電池(10)を示す。セラミック固体電解質材料(F3)は、負の活性材料(5)と正の活性材料(3)との間のセパレータ(B2’)として働く。正の活性材料は、アルミニウム導体に近い領域(A’)の固体電解質材料中の細孔(2)を、伝導性カーボンブラック(4)で充填し、それによって正の電極が形成される。負の活性物質グラファイトと伝導性カーボンブラックは、領域(C’)の銅導体付近に位置する細孔を満たし、それによって負の電極を形成する。この領域(B2’)は細孔がなく、領域(A’)と領域(C’)の間に位置し、電池内のセパレータの機能を引き継いでいる。 FIG. 3 shows a lithium ion battery (10) having a copper conductor (7) and an aluminum conductor (6). The ceramic solid electrolyte material (F3) acts as a separator (B2') between the negative active material (5) and the positive active material (3). The positive active material fills the pores (2) in the solid electrolyte material in the region (A') close to the aluminum conductor with conductive carbon black (4), thereby forming a positive electrode. The negative active material graphite and conductive carbon black fill the pores located near the copper conductor in the region (C'), thereby forming a negative electrode. This region (B2') has no pores, is located between the region (A') and the region (C'), and inherits the function of the separator in the battery.
別の実施形態は、リチウムイオン電池の電極を製造する方法に関する。材料Li7La3Zr2O12が、ガーネット構造における固体電解質材料として選択される。Li7La3Zr2O12の前駆物質として、ランタンと酸化ジルコニウムの混合物が使用される。電極の製造を、例えばLiイオン電池においてアノード(陰極)として使用する場合には、合成グラファイトを考慮することができる。電極の製造を、例えばLiイオン電池においてカソード(正極)として使用する場合は、NMC111を考慮することができる。そのために、平均粒径0.1μmの前駆物質約34gと平均粒径9μmの約98gのNMC111を混合し、約3gの伝導性カーボンブラックと共に圧縮する。窒素大気下での焼結工程については、等圧下で約24時間かけて約400〜1200℃の温度に達する。これらの条件下では、ガーネット構造を有するセラミック固体電解質材料は安定した状態を維持する。以下では、焼結構造の片面に、Li7La3Zr2O12前駆体材料50gを適用(塗布)し、上記パラメータで圧縮し、焼結した。図2に示すような電極構造が得られる。この例のようにカソードを製造する場合、アルミニウムは次に膜の形で導体材料として蒸着される。蒸着には、アルミニウムの融点の領域に融解槽温度を有し、10−3mbar〜1mbarの真空の真空蒸発器を用いることが望ましい。 Another embodiment relates to a method of manufacturing electrodes for a lithium ion battery. The material Li 7 La 3 Zr 2 O 12 is selected as the solid electrolyte material in the garnet structure. A mixture of lanthanum and zirconium oxide is used as a precursor for Li 7 La 3 Zr 2 O 12. Synthetic graphite can be considered when the electrode production is used, for example, as an anode in a Li-ion battery. NMC111 can be considered when manufacturing the electrodes, for example, as a cathode (cathode) in a Li-ion battery. For that purpose, about 34 g of a precursor having an average particle size of 0.1 μm and about 98 g of NMC 111 having an average particle size of 9 μm are mixed and compressed together with about 3 g of conductive carbon black. For the sintering process in the nitrogen atmosphere, the temperature reaches about 400 to 1200 ° C. over about 24 hours under isobaric pressure. Under these conditions, the ceramic solid electrolyte material having a garnet structure maintains a stable state. In the following, 50 g of Li 7 La 3 Zr 2 O 12 precursor material was applied (coated) to one side of the sintered structure, compressed with the above parameters, and sintered. An electrode structure as shown in FIG. 2 can be obtained. When manufacturing a cathode as in this example, aluminum is then deposited as a conductor material in the form of a film. For vaporization, it is desirable to use a vacuum evaporator having a melting tank temperature in the region of the melting point of aluminum and a vacuum of 10-3 mbar to 1 mbar.
他の実施形態のための他の固体電解質材料は、ガーネットに加えてペロブスカイト、スルフィドおよび酸化物である。特に、LISICON(リチウム(Li)スーパー(S)イオン(I)伝導体(CON))に由来する構造、例えば、チオ−LISICON Li4−xM1−yM’yS4であり、ここで、M=Si、Ge、Pであり、M’=P、Al、Zn、Ga、Sbであり、または、一般式AMM’P3O12のNASISCON(ナトリウム(Na)スーパー(S)イオン(I)伝導体(CON))であり、ここで、A=Li+、Na+、K+、Rb+、Cs+、Mg2+、Ca2+、Sr2+、Ba2+、H+、H3O+、NH4+、Cu+、Ag+、Pb2+、Cd2+、Mn2+、Co2+、Mn2+、Co2+、Ni2+、Zn2+、Al3+、Ln3+、Ge4+、Zr4+、Hf4+であるか、または空であり、MおよびM’=二価、三価、四価、五価の遷移金属イオンであり、Zn2+、Cd2+、Ni2+、Mn2+、Co2+、Fe3+、Sc3+、Ti3+、V3+、Al3+、In3+、Ga3+、Y3+、Lu3+、Ti4+、Zr4+、Hf4+、Sn4+、Si4+、Ge4+、V5+、Nb5+、Ta5+、Sb5+、As5+から成る群から選択され、リンはSiまたはAsによって部分的に置換され得る。
Other solid electrolyte materials for other embodiments are perovskite, sulfides and oxides in addition to garnet. In particular, structures derived from LISICON (lithium (Li) Super (S) ions (I) conductor (CON)), for example, thio -LISICON Li 4-x M 1- y M 'y S 4, wherein , M = Si, Ge, P, M'= P, Al, Zn, Ga, Sb, or NASISCON (sodium (Na) super (S) ion (I) of the general formula AMM'P 3 O 12 ) Conductor (CON)), where A = Li + , Na + , K + , Rb + , Cs + , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , H + , H 3 O + , NH 4+ , Cu + , Ag + , Pb 2+ , Cd 2+ , Mn 2+ , Co 2+ , Mn 2+ , Co 2+ , Ni 2+ , Zn 2+ , Al 3+ , Ln 3+ , Ge 4+ , Zr 4+ , Hf 4+ , Or empty, M and M'= divalent, trivalent, tetravalent, pentavalent transition metal ions, Zn 2+ , Cd 2+ , Ni 2+ , Mn 2+ , Co 2+ , Fe 3+ , Sc 3+ , Ti 3+, V 3+, Al 3+ , In 3+,
Claims (10)
電気化学二次電池用の電気的非伝導性固体電解質材料(F1)。 -The solid electrolyte material has pores (2).
An electrically non-conductive solid electrolyte material (F1) for an electrochemical secondary battery.
−固体電解質材料が部分(B2、B2’)において細孔を有さないことを特徴とする、
電気化学二次電池用の電気的非伝導性固体電解質材料(F2、F3)。 -The solid electrolyte material has pores in the parts (A, A', C') and
-The solid electrolyte material is characterized by having no pores in the portions (B2, B2').
An electrically non-conductive solid electrolyte material (F2, F3) for an electrochemical secondary battery.
−当該電極が、請求項3または1に記載の電気的非伝導性固体電解質材料を含み、
−当該活性材料の粒子が、電気的非伝導性固体電解質材料の第1の部分(A)に位置する細孔の第1のサブセットの細孔を少なくとも部分的に充填し、
−電気的非伝導性固体電解質材料の第2の部分(B1)に位置する細孔は充填されていない、
ことを特徴とする、電気化学的二次電池用の電極。 The electrode contains the active material (3) and contains
-The electrode comprises the electrically non-conductive solid electrolyte material according to claim 3 or 1.
-Particles of the active material fill at least partially the pores of the first subset of pores located in the first portion (A) of the electrically non-conductive solid electrolyte material.
-The pores located in the second part (B1) of the electrically non-conductive solid electrolyte material are unfilled,
An electrode for an electrochemical secondary battery, which is characterized in that.
−当該伝導性カーボンブラックの粒子が、電気的非伝導性固体電解質材料の第1の部分(A)に位置する細孔の第2のサブセットの細孔を少なくとも部分的に充填し、
−前記活性材料の粒子および前記伝導性カーボンブラックの粒子が、電気的非伝導性固体電解質材料の第1の部分(A)に位置する細孔の第3のサブセットの細孔を少なくとも部分的に充填する、
ことを特徴とする、請求項5に記載の電気化学二次電池用の電極。 Electrodes contain conductive carbon black (4)
-The conductive carbon black particles at least partially fill the pores of the second subset of pores located in the first portion (A) of the electrically non-conductive solid electrolyte material.
-The particles of the active material and the particles of the conductive carbon black at least partially occlude the pores of a third subset of the pores located in the first portion (A) of the electrically non-conductive solid electrolyte material. Fill,
The electrode for an electrochemical secondary battery according to claim 5, wherein the electrode is characterized by this.
−当該電極が、請求項4または2に記載の電気的非伝導性固体電解質材料を含み、
−当該活性材料の粒子が、電気的非伝導性固体電解質材料の第1の部分(A)に位置する細孔の第1のサブセットの細孔を少なくとも部分的に充填する
ことを特徴とする、電気化学的二次電池用の電極。 The electrode contains the active material (3) and contains
-The electrode comprises the electrically non-conductive solid electrolyte material according to claim 4 or 2.
-The particles of the active material are characterized by at least partially filling the pores of a first subset of pores located in the first portion (A) of the electrically non-conductive solid electrolyte material. Electrodes for electrochemical secondary batteries.
−当該伝導性カーボンブラックの粒子が、電気的非伝導性固体電解質材料の第1の部分(A)に位置する細孔の第2のサブセットの細孔を少なくとも部分的に充填し、
−前記活性材料の粒子および前記伝導性カーボンブラックの粒子が、電気的非伝導性固体電解質材料の第1の部分(A)に位置する細孔の第3のサブセットの細孔を少なくとも部分的に充填する、
ことを特徴とする、請求項7に記載の電気化学二次電池用の電極。 Electrodes contain conductive carbon black (4)
-The conductive carbon black particles at least partially fill the pores of the second subset of pores located in the first portion (A) of the electrically non-conductive solid electrolyte material.
-The particles of the active material and the particles of the conductive carbon black at least partially occlude the pores of a third subset of the pores located in the first portion (A) of the electrically non-conductive solid electrolyte material. Fill,
7. The electrode for an electrochemical secondary battery according to claim 7.
−電気化学的二次電池は、電気的非伝導性固体電解質材料(F3)をセパレーターとして含み、
−当該電気的非伝導性固体電解質材料は部分(A’、C’)において細孔を有し、
−当該電気的非伝導性固体電解質材料は、少なくとも1つの部分において無孔(B2’)であり、
−当該正の活性物質の粒子が、電気的非伝導性固体電解質材料の第1の部分(A’)に位置する細孔の第1のサブセットの細孔を少なくとも部分的に充填し、
−当該伝導性カーボンブラックの粒子は、電気的非伝導性固体電解質材料の第1の部分(A’)に位置する細孔の第2のサブセットの細孔を少なくとも部分的に充填し、
−当該正の活性物質の粒子および伝導性カーボンブラックの粒子は、電気的非伝導性固体電解質材料の第1の部分(A’)に位置する細孔の第3のサブセットの細孔を少なくとも部分的に充填し、
−負の活性物質の粒子は、電気的非伝導性固体電解質材料の第1の部分(C’)に位置する細孔の第1のサブセットの細孔を少なくとも部分的に満たし、
−前記伝導性カーボンブラックの粒子は、電気的非伝導性固体電解質材料の第1の部分(C’)に位置する細孔の第2のサブセットの細孔を少なくとも部分的に充填し、
−負の活性物質の粒子および伝導性カーボンブラックの粒子は、電気的非伝導性の固体電解質材料の第1の部分(C’)に位置する細孔の第3のサブセットの細孔を少なくとも部分的に充填することを特徴とする前記電気化学的二次電池。 An electrochemical rechargeable battery containing a positive electrode having a conductor (6) and a positive active material (3), a negative electrode having a conductor (7) and a negative active material (5), and a conductive carbon black (4). Next battery (10)
-Electrochemical secondary batteries contain an electrically non-conductive solid electrolyte material (F3) as a separator.
-The electrically non-conductive solid electrolyte material has pores in the parts (A', C') and has pores.
-The electrically non-conductive solid electrolyte material is non-porous (B2') in at least one portion and
-Particles of the positive active substance fill at least partially the pores of the first subset of pores located in the first portion (A') of the electrically non-conductive solid electrolyte material.
-The conductive carbon black particles at least partially fill the pores of the second subset of pores located in the first portion (A') of the electrically non-conductive solid electrolyte material.
-The positive active substance particles and the conductive carbon black particles at least partially cover the pores of a third subset of the pores located in the first portion (A') of the electrically non-conductive solid electrolyte material. Filled with
-Negative active substance particles at least partially fill the pores of the first subset of pores located in the first portion (C') of the electrically non-conductive solid electrolyte material.
-The conductive carbon black particles at least partially fill the pores of a second subset of pores located in the first portion (C') of the electrically non-conductive solid electrolyte material.
-Negative active substance particles and conductive carbon black particles are at least a portion of the pores of a third subset of pores located in the first portion (C') of the electrically non-conductive solid electrolyte material. The electrochemical secondary battery, which is characterized in that it is filled with particles.
−前駆体材料を電気的活性材料と混合するステップ、
−前駆体材料と電気化学的活性材料の混合物を圧縮するステップ、
−前駆体材料と電気化学的活性材料の圧縮された混合物を板状構造の焼結複合体に焼結するステップ、
−板状構造の第1の面に前駆体材料を適用し、板状構造上の前駆体材料を圧縮し、前記板状構造上に前駆体材料の層を形成するステップ
−板状構造と前駆体材料の層を焼結するステップ
−板状構造の第二の面に金属ホイルを蒸着するステップ
を含む、電気化学二次電池用電極を製造するための方法。 -Steps to provide precursor material for non-conductive solid electrolyte materials,
-The step of mixing the precursor material with the electrically active material,
-Steps to compress a mixture of precursor material and electrochemically active material,
-Steps of sintering a compressed mixture of precursor material and electrochemically active material into a plate-like sintered complex,
-A step of applying a precursor material to the first surface of a plate-like structure, compressing the precursor material on the plate-like structure, and forming a layer of the precursor material on the plate-like structure-the plate-like structure and the precursor Steps of Sintering Layers of Body Material-A method for making electrodes for electrochemical secondary batteries, comprising the step of depositing metal foil on the second surface of a plate-like structure.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018205483.5 | 2018-04-11 | ||
DE102018205483.5A DE102018205483A1 (en) | 2018-04-11 | 2018-04-11 | Solid electrolyte material |
PCT/EP2019/056908 WO2019197121A1 (en) | 2018-04-11 | 2019-03-20 | Solid electrolyte material for an electrochemical secondary cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021518033A true JP2021518033A (en) | 2021-07-29 |
JP7280882B2 JP7280882B2 (en) | 2023-05-24 |
Family
ID=65955189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020539277A Active JP7280882B2 (en) | 2018-04-11 | 2019-03-20 | solid electrolyte material |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210050621A1 (en) |
EP (2) | EP3893309B1 (en) |
JP (1) | JP7280882B2 (en) |
KR (1) | KR102443311B1 (en) |
CN (1) | CN111615771A (en) |
DE (1) | DE102018205483A1 (en) |
WO (1) | WO2019197121A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024135616A1 (en) * | 2022-12-21 | 2024-06-27 | 日本電気硝子株式会社 | Solid electrolyte sheet and all-solid-state secondary battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114556615A (en) * | 2019-10-23 | 2022-05-27 | Tdk株式会社 | All-solid-state battery |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006260887A (en) * | 2005-03-16 | 2006-09-28 | Japan Science & Technology Agency | Porous solid electrode and full solid lithium secondary battery using the same |
WO2008059987A1 (en) * | 2006-11-14 | 2008-05-22 | Ngk Insulators, Ltd. | Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods |
JP2009140910A (en) * | 2007-11-12 | 2009-06-25 | Kyushu Univ | All-solid battery |
JP2013232284A (en) * | 2012-04-27 | 2013-11-14 | Toyota Industries Corp | Solid electrolyte and secondary battery |
US20150295274A1 (en) * | 2014-04-09 | 2015-10-15 | Robert Bosch Gmbh | Galvanic element |
JP2016517146A (en) * | 2013-03-21 | 2016-06-09 | ユニバーシティー オブ メリーランド、カレッジ パーク | Ion conductive battery containing solid electrolyte material |
JP2019139933A (en) * | 2018-02-08 | 2019-08-22 | 日本ファインセラミックス株式会社 | Solid electrolyte body and all-solid battery, and production methods thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA958252B (en) * | 1994-10-13 | 1996-04-15 | Programme 3 Patent Holdings | Electrochemical cell |
JP3894002B2 (en) | 2002-03-07 | 2007-03-14 | 株式会社豊田中央研究所 | Membrane electrode assembly and fuel cell and electrolysis cell provided with the same |
US7947405B2 (en) * | 2004-09-29 | 2011-05-24 | Giner Electrochemical Systems, Llc | Solid polymer electrolyte composite membrane comprising porous ceramic support |
JP4927609B2 (en) * | 2007-03-13 | 2012-05-09 | 日本碍子株式会社 | Method for producing solid electrolyte structure for all solid state battery and method for producing all solid state battery |
IN2012DN02063A (en) * | 2009-08-28 | 2015-08-21 | Sion Power Corp | |
WO2017116599A2 (en) * | 2015-11-30 | 2017-07-06 | University Of Maryland, College Park | Solid-state li-s batteries and methods of making same |
DE102013212307A1 (en) * | 2013-06-26 | 2013-09-19 | Robert Bosch Gmbh | Manufacture of sensor element for e.g. measuring temperature of measurement gas in measuring chamber, involves forming solid electrolyte comprising solid electrolyte layers having different content of solid, and functional element(s) |
KR102563670B1 (en) * | 2014-09-09 | 2023-08-03 | 시온 파워 코퍼레이션 | Protective layers in lithium-ion electrochemical cells and associated electrodes and methods |
DE102016216555A1 (en) * | 2016-09-01 | 2018-03-01 | Bayerische Motoren Werke Aktiengesellschaft | Shaped electrochemical cell |
DE102016216549A1 (en) * | 2016-09-01 | 2018-03-01 | Bayerische Motoren Werke Aktiengesellschaft | Solid-state cell with adhesion-promoting layer |
-
2018
- 2018-04-11 DE DE102018205483.5A patent/DE102018205483A1/en active Pending
-
2019
- 2019-03-20 EP EP21175302.5A patent/EP3893309B1/en active Active
- 2019-03-20 US US16/964,415 patent/US20210050621A1/en active Pending
- 2019-03-20 JP JP2020539277A patent/JP7280882B2/en active Active
- 2019-03-20 WO PCT/EP2019/056908 patent/WO2019197121A1/en unknown
- 2019-03-20 EP EP19714138.5A patent/EP3776710A1/en active Pending
- 2019-03-20 KR KR1020207021611A patent/KR102443311B1/en active IP Right Grant
- 2019-03-20 CN CN201980009168.XA patent/CN111615771A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006260887A (en) * | 2005-03-16 | 2006-09-28 | Japan Science & Technology Agency | Porous solid electrode and full solid lithium secondary battery using the same |
WO2008059987A1 (en) * | 2006-11-14 | 2008-05-22 | Ngk Insulators, Ltd. | Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods |
JP2009140910A (en) * | 2007-11-12 | 2009-06-25 | Kyushu Univ | All-solid battery |
JP2013232284A (en) * | 2012-04-27 | 2013-11-14 | Toyota Industries Corp | Solid electrolyte and secondary battery |
CN104272518A (en) * | 2012-04-27 | 2015-01-07 | 株式会社丰田自动织机 | Solid electrolyte and secondary battery |
JP2016517146A (en) * | 2013-03-21 | 2016-06-09 | ユニバーシティー オブ メリーランド、カレッジ パーク | Ion conductive battery containing solid electrolyte material |
US20150295274A1 (en) * | 2014-04-09 | 2015-10-15 | Robert Bosch Gmbh | Galvanic element |
JP2019139933A (en) * | 2018-02-08 | 2019-08-22 | 日本ファインセラミックス株式会社 | Solid electrolyte body and all-solid battery, and production methods thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024135616A1 (en) * | 2022-12-21 | 2024-06-27 | 日本電気硝子株式会社 | Solid electrolyte sheet and all-solid-state secondary battery |
Also Published As
Publication number | Publication date |
---|---|
DE102018205483A1 (en) | 2019-10-17 |
KR102443311B1 (en) | 2022-09-14 |
EP3893309A3 (en) | 2021-11-10 |
KR20200102480A (en) | 2020-08-31 |
EP3893309B1 (en) | 2023-05-03 |
EP3776710A1 (en) | 2021-02-17 |
US20210050621A1 (en) | 2021-02-18 |
CN111615771A (en) | 2020-09-01 |
WO2019197121A1 (en) | 2019-10-17 |
JP7280882B2 (en) | 2023-05-24 |
EP3893309A2 (en) | 2021-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102165543B1 (en) | Ion-conducting batteries with solid state electrolyte materials | |
JP2020522854A (en) | Method for suppressing the propagation of metals in solid electrolytes | |
KR20160002988A (en) | Electrochemical cell with solid and liquid electrolytes | |
US11063302B2 (en) | Hybrid solid-state cell with a sealed anode structure | |
US20210359338A1 (en) | Solid state battery, ceramic electrolyte structure and methods of making | |
JP2020514948A (en) | ALL-SOLID LITHIUM-ION BATTERY AND MANUFACTURING METHOD THEREOF | |
WO2019009072A1 (en) | Negative electrode for all-solid-state batteries and all-solid-state battery provided with same | |
US20210036310A1 (en) | Micro-sized secondary particles with enhanced ionic conductivity for solid-state electrode | |
JP6037472B2 (en) | Lithium storage battery | |
US11699814B2 (en) | Hybrid solid-state cell with a sealed anode structure | |
US20200106135A1 (en) | Hybrid solid-state cell with a sealed anode structure | |
JP7280882B2 (en) | solid electrolyte material | |
JP2015502626A5 (en) | ||
US20210202936A1 (en) | Anode material - method of production and solid-state battery made therewith | |
EP3923392A1 (en) | Hybrid solid-state cell with a sealed anode structure | |
US20230352741A1 (en) | Hybrid solid-state cell with a 3d porous cathode structure | |
EP4329008A1 (en) | All-solid-state electrochemical element and sulfur-carbon complex | |
US20240356037A1 (en) | Anode Material for an All Solid State Battery, and All Solid State Battery | |
JP2024541972A (en) | Hybrid solid-state cells with three-dimensional porous cathode and/or anode structures | |
JP2024084965A (en) | All-solid battery | |
JP2024541971A (en) | Hybrid solid-state cells with three-dimensional porous cathode and/or anode structures | |
JP2022035803A (en) | Oxide solid bipolar battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211015 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230512 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7280882 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |