[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021135702A - ROAD SURFACE μ ESTIMATING DEVICE - Google Patents

ROAD SURFACE μ ESTIMATING DEVICE Download PDF

Info

Publication number
JP2021135702A
JP2021135702A JP2020030871A JP2020030871A JP2021135702A JP 2021135702 A JP2021135702 A JP 2021135702A JP 2020030871 A JP2020030871 A JP 2020030871A JP 2020030871 A JP2020030871 A JP 2020030871A JP 2021135702 A JP2021135702 A JP 2021135702A
Authority
JP
Japan
Prior art keywords
vehicle
point
road surface
estimation
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020030871A
Other languages
Japanese (ja)
Other versions
JP7446674B2 (en
Inventor
繁之 宮内
Shigeyuki Miyauchi
繁之 宮内
健司 飯原
Kenji Iihara
健司 飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2020030871A priority Critical patent/JP7446674B2/en
Publication of JP2021135702A publication Critical patent/JP2021135702A/en
Application granted granted Critical
Publication of JP7446674B2 publication Critical patent/JP7446674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

To provide a road surface μ estimating device capable of estimating a road surface μ at each point on a course of a vehicle before arrival.SOLUTION: In a vehicle 2, while an other vehicle estimation point closest to a vehicle 2 in a traveling direction is set as a first other vehicle estimation point P1, when a center of the first other vehicle estimation point P1 falls within a predetermined range in the traveling direction from the vehicle 2, that is, within a range of a distance B, a road surface μ from a traveling point P of the vehicle 2 to the first other vehicle estimation point P1 is estimated based on a road surface μ of the traveling point P of the vehicle and a road surface μ of the first other vehicle estimation point P1. At this time, it is estimated that the road surface μ between the points P-P1 linearly changes from a road surface μ=μ0 at the traveling point P to a road surface μ=μ1 at the first other vehicle estimation point P1; and as this road surface is closer to the first other vehicle estimation point P1, this road surface becomes a value close to the road surface μ=μ1 at the first other vehicle estimation point P1.SELECTED DRAWING: Figure 3

Description

本発明は、路面μ(路面摩擦係数)を推定する装置に関する。 The present invention relates to an apparatus for estimating a road surface μ (road surface friction coefficient).

従来、四輪自動車などの車両の4WD(four-wheel-drive:四輪駆動)システムとして、アクティブトルクスプリット4WDシステムが広く知られている。アクティブトルクスプリット4WDシステムの一例では、通常時は、車両の走行のためのトルクが主駆動輪(たとえば、左右の前輪)に伝達される。車両の走行中にタイヤスリップが生じると、走行中の路面のμ(摩擦係数)が推定されて、その推定された路面μなどからタイヤスリップが解消されるように、電子制御カップリングによりトルクが主駆動輪と副駆動輪とに能動的に配分される。 Conventionally, an active torque split 4WD system is widely known as a 4WD (four-wheel-drive) system for a vehicle such as a four-wheel vehicle. In an example of the active torque split 4WD system, torque for traveling the vehicle is normally transmitted to the main drive wheels (for example, the left and right front wheels). When tire slip occurs while the vehicle is running, the μ (coefficient of friction) of the road surface during running is estimated, and the torque is generated by the electronically controlled coupling so that the tire slip is eliminated from the estimated road surface μ and the like. It is actively distributed to the main drive wheels and the sub drive wheels.

路面μは、各車輪の車輪速(回転速度)を検出する車輪速センサの検出値などから推定される。そのため、車両では、未到着の地点の路面μを推定することはできず、進路上の地点に到着する前に、主駆動輪および副駆動輪へのトルクの配分をその到着前の地点の路面μに応じた配分に変更しておくことはできない。 The road surface μ is estimated from the detection value of the wheel speed sensor that detects the wheel speed (rotational speed) of each wheel. Therefore, in the vehicle, it is not possible to estimate the road surface μ at the point where it has not arrived, and before arriving at the point on the course, the torque is distributed to the main drive wheels and the auxiliary drive wheels on the road surface at the point before arrival. It cannot be changed to the allocation according to μ.

タイヤスリップの発生の回避を図るための技術として、たとえば、プローブセンタが道路上を走行する各車両(プローブカー)からスリップ履歴をプローブ情報として取得し、タイヤスリップするおそれのあるスリップ地点に関する情報をプローブセンタから各車両に配信するシステムが提案されている(たとえば、特許文献1参照)。 As a technique for avoiding the occurrence of tire slip, for example, the probe center acquires slip history as probe information from each vehicle (probe car) traveling on the road, and obtains information on slip points where tire slip may occur. A system for delivering to each vehicle from the probe center has been proposed (see, for example, Patent Document 1).

特開2014−10461号公報Japanese Unexamined Patent Publication No. 2014-10461

しかし、スリップ地点に関する情報を受信した車両では、そのスリップ地点の路面μを推定できたとしても、車両の進路上のスリップ地点以外の地点の路面μを到着前に推定することはできない。 However, in a vehicle that has received information about a slip point, even if the road surface μ at the slip point can be estimated, the road surface μ at a point other than the slip point on the vehicle's path cannot be estimated before arrival.

本発明の目的は、車両の進路上の各地点の路面μを到着前に推定できる、路面μ推定装置を提供することである。 An object of the present invention is to provide a road surface μ estimation device capable of estimating the road surface μ at each point on the course of a vehicle before arrival.

前記の目的を達成するため、本発明に係る路面μ推定装置は、車両に搭載される路面μ推定装置であって、他車で推定された路面μに係る他車推定μ情報およびその路面μが推定された地点に係る他車推定地点情報を受信する情報受信手段と、情報受信手段が受信した他車推定地点情報から特定される他車推定地点の路面μを、情報受信手段が受信した他車推定μ情報を基に推定する第1推定手段と、車両の走行により車両から進行方向の所定範囲内に1の他車推定地点である第1他車推定地点が入ったことに応じて、車両の走行地点と当該第1他車推定地点との間の路面μを、走行地点の路面μから第1推定手段により推定される第1他車推定地点の路面μまで変化し、かつ、第1他車推定地点に近い位置ほど第1他車推定地点の路面μに近い値となるように推定する第2推定手段と、を含む。 In order to achieve the above object, the road surface μ estimation device according to the present invention is a road surface μ estimation device mounted on a vehicle, and other vehicle estimation μ information relating to the road surface μ estimated by another vehicle and the road surface μ thereof. The information receiving means receives the information receiving means for receiving the other vehicle estimated point information related to the estimated point and the road surface μ of the other vehicle estimated point specified from the other vehicle estimated point information received by the information receiving means. According to the first estimation means for estimating based on the other vehicle estimation μ information and the first other vehicle estimation point, which is one other vehicle estimation point, within a predetermined range in the traveling direction from the vehicle due to the traveling of the vehicle. , The road surface μ between the vehicle's traveling point and the first other vehicle estimation point is changed from the road surface μ of the traveling point to the road surface μ of the first other vehicle estimation point estimated by the first estimation means, and It includes a second estimation means that estimates that the position closer to the first other vehicle estimation point has a value closer to the road surface μ of the first other vehicle estimation point.

この構成によれば、他車で推定された路面μおよびその路面μが推定された地点を基に、車両の進路上の各地点の路面μを車両がその地点に到着する前に推定することができる。 According to this configuration, based on the road surface μ estimated by another vehicle and the point where the road surface μ is estimated, the road surface μ at each point on the vehicle's course is estimated before the vehicle arrives at that point. Can be done.

すなわち、他車では、走行中に路面μが推定される。車両に搭載される路面μ推定装置では、他車で推定された路面μに係る他車推定μ情報およびその路面μが推定された地点に係る他車推定地点情報を受信可能であり、他車推定μ情報および他車推定地点情報を受信すると、他車推定地点情報から特定される他車推定地点の路面μが他車推定μ情報を基に推定される。車両からその進行方向に最も近い他車推定地点を第1他車推定地点として、第1他車推定地点が車両から進行方向の所定範囲内に入ると、車両の走行地点の路面μと第1他車推定地点の路面μとに基づいて、車両の走行地点から第1他車推定地点までの路面μが推定される。このとき、それらの地点間の路面μは、走行地点の路面μから第1他車推定地点の路面μまで変化し、かつ、第1他車推定地点に近い位置ほど第1他車推定地点の路面μに近い値となるように推定される。 That is, in other vehicles, the road surface μ is estimated while traveling. The road surface μ estimation device mounted on the vehicle can receive the other vehicle estimation μ information related to the road surface μ estimated by the other vehicle and the other vehicle estimation point information related to the point where the road surface μ is estimated. When the estimated μ information and the other vehicle estimated point information are received, the road surface μ of the other vehicle estimated point specified from the other vehicle estimated point information is estimated based on the other vehicle estimated μ information. When the estimated point of the other vehicle closest to the vehicle in the direction of travel is set as the first estimated point of the other vehicle and the estimated point of the first other vehicle enters the predetermined range in the direction of travel from the vehicle, the road surface μ of the vehicle's traveling point and the first Based on the road surface μ of the other vehicle estimation point, the road surface μ from the vehicle traveling point to the first other vehicle estimation point is estimated. At this time, the road surface μ between these points changes from the road surface μ of the traveling point to the road surface μ of the first other vehicle estimation point, and the closer to the first other vehicle estimation point, the more the first other vehicle estimation point. It is estimated that the value is close to the road surface μ.

よって、車両の進路上の各地点の路面μをその地点への到着前に推定することができる。 Therefore, the road surface μ at each point on the course of the vehicle can be estimated before arriving at that point.

路面μ推定装置は、車両から進行方向の所定範囲内に第1他車推定地点とは別の他車推定地点である第2他車推定地点が入ったことに応じて、第1他車推定地点と第2他車推定地点との間の路面μを、第1他車推定地点の路面μから第1推定手段により推定される第2他車推定地点の路面μまで変化し、かつ、第2他車推定地点に近い位置ほど第2他車推定地点の路面μに近い値となるように推定する第3推定手段をさらに含む構成であってもよい。 The road surface μ estimation device estimates the first other vehicle according to the fact that the second other vehicle estimation point, which is another vehicle estimation point different from the first other vehicle estimation point, is within a predetermined range in the traveling direction from the vehicle. The road surface μ between the point and the second other vehicle estimation point is changed from the road surface μ of the first other vehicle estimation point to the road surface μ of the second other vehicle estimation point estimated by the first estimation means, and the first (2) The configuration may further include a third estimation means that estimates the position closer to the other vehicle estimation point so that the value is closer to the road surface μ of the second other vehicle estimation point.

この構成によって、第1他車推定地位点から第2他車推定地点までの路面μをさらに推定することができる。 With this configuration, the road surface μ from the first estimated position point of the other vehicle to the second estimated point of the other vehicle can be further estimated.

第1推定手段は、所定範囲よりも小さい小範囲内に複数の他車推定地点が含まれる場合、その複数の他車推定地点のうち、路面μが最も低い他車推定地点を第1対象地点とし、他車で路面μが最も新しく推定された他車推定地点を第2対象地点として、小範囲内に含まれる複数の他車推定地点を第1対象地点と第2対象地点との間に中心が配置される1点の他車推定地点としてみなし、第1対象地点および第2対象地点の各路面μを基に、当該他車推定地点の路面μを推定してもよい。 When a plurality of other vehicle estimation points are included in a small range smaller than a predetermined range, the first estimation means selects the other vehicle estimation point having the lowest road surface μ among the plurality of other vehicle estimation points as the first target point. The second target point is the other vehicle estimation point where the road surface μ is most recently estimated by the other vehicle, and a plurality of other vehicle estimation points included in the small range are between the first target point and the second target point. It may be regarded as one other vehicle estimation point where the center is arranged, and the road surface μ of the other vehicle estimation point may be estimated based on each road surface μ of the first target point and the second target point.

これにより、複数の他車推定地点が互いに近い位置に存在する場合、車両の進路上の各地点の路面μの推定の際には、その複数の他車推定地点を1点の他車推定地点として取り扱うことができる。そして、当該1点の他車推定地点の路面μは、その他車推定地点に集約したとみなされる複数の他車推定地点の路面μのうち、最も低い路面μを優先的に考慮して推定される。そのため、車両の進路上の各地点の路面μを車両のタイヤスリップの発生に対して安全に推定することができる。 As a result, when a plurality of other vehicle estimation points exist close to each other, when estimating the road surface μ at each point on the vehicle's course, the plurality of other vehicle estimation points are used as one other vehicle estimation point. Can be treated as. Then, the road surface μ at the other vehicle estimation point at the one point is estimated by preferentially considering the lowest road surface μ among the road surface μ at the plurality of other vehicle estimation points considered to be aggregated at the other vehicle estimation points. NS. Therefore, the road surface μ at each point on the course of the vehicle can be safely estimated with respect to the occurrence of tire slip of the vehicle.

本発明によれば、車両の進路上の各地点の路面μをその地点への到着前に推定することができる。 According to the present invention, the road surface μ at each point on the course of the vehicle can be estimated before arriving at that point.

本発明の一実施形態に係る路面μ推定装置が搭載された車両を含む路面μ推定システムの構成を示す図である。It is a figure which shows the structure of the road surface μ estimation system including the vehicle which mounted the road surface μ estimation device which concerns on one Embodiment of this invention. 車両の構成を示す図である。It is a figure which shows the structure of a vehicle. 車両における路面μの推定の手法について説明するための図である。It is a figure for demonstrating the method of estimating the road surface μ in a vehicle. 小領域内に複数の他車推定地点が含まれる場合の処理について説明するための図である。It is a figure for demonstrating the processing when a plurality of other vehicle estimation points are included in a small area.

以下では、本発明の実施の形態について、添付図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

<路面μ推定システム>
図1は、本発明の一実施形態に係る路面μ推定装置が搭載された車両2を含む路面μ推定システム1の構成を示す図である。
<Road surface μ estimation system>
FIG. 1 is a diagram showing a configuration of a road surface μ estimation system 1 including a vehicle 2 equipped with a road surface μ estimation device according to an embodiment of the present invention.

路面μ推定システム1は、路面μ推定装置が搭載された車両2の進路上の各地点の路面μをその地点に車両2が到着する前に、路面μ推定装置により推定可能とするシステムである。 The road surface μ estimation system 1 is a system that enables the road surface μ at each point on the course of the vehicle 2 equipped with the road surface μ estimation device to be estimated by the road surface μ estimation device before the vehicle 2 arrives at that point. ..

路面μ推定システム1には、路面μ推定装置が搭載された車両2以外に、少なくとも1台の車両3が含まれる。車両3は、プローブ情報を送信するプローブカーである。プローブ情報は、車両3の走行地点(位置)および車速などの情報である。車両3は、走行している路面の路面μを推定する機能を有している。路面μは、公知の手法により、車両3の各車輪の車輪速(回転速度)などから推定される。車両3から送信されるプローブ情報には、車両3で推定された路面μの情報およびその路面μが推定された地点の情報が含まれる。 The road surface μ estimation system 1 includes at least one vehicle 3 in addition to the vehicle 2 equipped with the road surface μ estimation device. The vehicle 3 is a probe car that transmits probe information. The probe information is information such as a traveling point (position) and a vehicle speed of the vehicle 3. The vehicle 3 has a function of estimating the road surface μ of the traveling road surface. The road surface μ is estimated from the wheel speed (rotational speed) of each wheel of the vehicle 3 by a known method. The probe information transmitted from the vehicle 3 includes information on the road surface μ estimated by the vehicle 3 and information on the point where the road surface μ is estimated.

なお、車両2もプローブカーであってもよいし、車両3に路面μ推定装置が搭載されていてもよい。 The vehicle 2 may also be a probe car, or the vehicle 3 may be equipped with a road surface μ estimation device.

また、路面μ推定システム1には、路面μ情報提供サーバ4が含まれる。路面μ情報提供サーバ4は、車両2,3との通信機能を有しており、各車両3から送信されるプローブ情報を収集して蓄積する。そして、路面μ情報提供サーバ4は、蓄積したプローブ情報から、車両3で推定された路面μに係る他車推定μ情報およびその路面μが推定された地点に係る他車推定地点情報を生成し、その生成した他車推定μ情報および他車推定地点情報を車両2に向けて配信する。 Further, the road surface μ estimation system 1 includes a road surface μ information providing server 4. The road surface μ information providing server 4 has a communication function with the vehicles 2 and 3, and collects and stores probe information transmitted from each vehicle 3. Then, the road surface μ information providing server 4 generates other vehicle estimation μ information related to the road surface μ estimated by the vehicle 3 and other vehicle estimation point information related to the point where the road surface μ is estimated from the accumulated probe information. , The generated other vehicle estimation μ information and the other vehicle estimation point information are distributed to the vehicle 2.

<車両の構成>
図2は、車両2の構成を示す図である。
<Vehicle configuration>
FIG. 2 is a diagram showing the configuration of the vehicle 2.

車両2は、アクティブトルクスプリット4WDシステムを採用している。車両2には、エンジン11、変速機12、フロントデファレンシャルギヤ13、トランスファ14およびリヤデファレンシャルギヤ15が含まれる。 Vehicle 2 employs an active torque split 4WD system. The vehicle 2 includes an engine 11, a transmission 12, a front differential gear 13, a transfer 14, and a rear differential gear 15.

エンジン11は、車両2の前後方向に対してクランクシャフトが横向きになるように、つまりクランクシャフトが車幅方向に延びるように、車両2の前部に横置きで搭載(マウント)されている。 The engine 11 is mounted (mounted) horizontally on the front portion of the vehicle 2 so that the crankshaft is laterally oriented with respect to the front-rear direction of the vehicle 2, that is, the crankshaft extends in the vehicle width direction.

変速機12は、たとえば、ラビニヨ型の遊星歯車機構を備える有段式の自動変速機(AT:Automatic Transmission)であってもよいし、ベルト式の無段変速機(CVT:Continuously Variable Transmission)であってもよい。また、これらの自動変速機に限らず、変速機12は、手動変速機(MT:Manual Transmission)であってもよい。 The transmission 12 may be, for example, a stepped automatic transmission (AT: Automatic Transmission) provided with a labigno type planetary gear mechanism, or a belt type continuously variable transmission (CVT). There may be. Further, the transmission 12 is not limited to these automatic transmissions, and may be a manual transmission (MT).

フロントデファレンシャルギヤ13のデフケース16には、リングギヤ17が固定されている。リングギヤ17には、エンジン11の回転が変速機12で変速されて入力される。リングギヤ17に入力される回転により、デフケース16がリングギヤ17と一体に回転する。そして、デフケース16の回転がピニオンギヤ18を介して各サイドギヤ19の回転に変換されて、各サイドギヤと一体に左右のフロントドライブシャフト21L,21Rが回転し、フロントドライブシャフト21L,21Rの回転がそれぞれ主駆動輪である前輪22L,22Rに伝達される。 A ring gear 17 is fixed to the differential case 16 of the front differential gear 13. The rotation of the engine 11 is changed and input to the ring gear 17 by the transmission 12. Due to the rotation input to the ring gear 17, the differential case 16 rotates integrally with the ring gear 17. Then, the rotation of the differential case 16 is converted into the rotation of each side gear 19 via the pinion gear 18, the left and right front drive shafts 21L and 21R rotate integrally with each side gear, and the rotation of the front drive shafts 21L and 21R is the main. It is transmitted to the front wheels 22L and 22R, which are the drive wheels.

トランスファ14は、たとえば、フロントデファレンシャルギヤ13のデフケース16と一体に回転する第1伝達ギヤ23と、第1伝達ギヤ23と噛合する第2伝達ギヤ24と、第2伝達ギヤ24と一体に回転する第1かさ歯車25と、この第1かさ歯車25と噛合する第2かさ歯車26とを含む。第2かさ歯車26の中心には、車両2の前後方向に延びるプロペラシャフト27の前端が接続されている。 For example, the transfer 14 rotates integrally with the first transmission gear 23 that rotates integrally with the differential case 16 of the front differential gear 13, the second transmission gear 24 that meshes with the first transmission gear 23, and the second transmission gear 24. A first bevel gear 25 and a second bevel gear 26 that meshes with the first bevel gear 25 are included. The front end of the propeller shaft 27 extending in the front-rear direction of the vehicle 2 is connected to the center of the second bevel gear 26.

リヤデファレンシャルギヤ15のデフケース31には、リングギヤ32が固定されている。リングギヤ32には、かさ歯車33が噛合している。かさ歯車33には、プロペラシャフト27の動力がリヤデファレンシャルギヤ15に内蔵された電子制御カップリング34を介して伝達される。電子制御カップリング34には、トルク伝達を行う多板摩擦クラッチからなるメインクラッチと、メインクラッチのトルク容量を制御する電磁石とを備え、電磁石に供給される励磁電流値(以下、「カップリング電流値」という。)に比例してメインクラッチのトルク容量が増大する構成のものが採用されている。 A ring gear 32 is fixed to the differential case 31 of the rear differential gear 15. A bevel gear 33 meshes with the ring gear 32. The power of the propeller shaft 27 is transmitted to the bevel gear 33 via the electronically controlled coupling 34 built in the rear differential gear 15. The electronically controlled coupling 34 includes a main clutch composed of a multi-plate friction clutch that transmits torque and an electromagnet that controls the torque capacity of the main clutch, and an exciting current value supplied to the electromagnet (hereinafter, "coupling current"). A configuration in which the torque capacity of the main clutch increases in proportion to the value) is adopted.

プロペラシャフト27の動力が電子制御カップリング34を介してかさ歯車33に伝達されると、その動力がかさ歯車33からリングギヤ32に伝達されて、デフケース31がリングギヤ32と一体に回転する。そして、デフケース31の回転がピニオンギヤ35を介して各サイドギヤ36の回転に変換されて、各サイドギヤと一体に左右のリヤドライブシャフト37L,37Rが回転し、リヤドライブシャフト37L,37Rの回転がそれぞれ副駆動輪である後輪38L,38Rに伝達される。 When the power of the propeller shaft 27 is transmitted to the bevel gear 33 via the electronically controlled coupling 34, the power is transmitted from the bevel gear 33 to the ring gear 32, and the differential case 31 rotates integrally with the ring gear 32. Then, the rotation of the differential case 31 is converted into the rotation of each side gear 36 via the pinion gear 35, the left and right rear drive shafts 37L and 37R rotate integrally with each side gear, and the rotations of the rear drive shafts 37L and 37R are secondary respectively. It is transmitted to the rear wheels 38L and 38R, which are the drive wheels.

車両2には、マイコン(マイクロコントローラユニット)を含む構成のECU(Electronic Control Unit:電子制御ユニット)が備えられている。マイコンには、たとえば、CPU、フラッシュメモリなどの不揮発性メモリおよびDRAM(Dynamic Random Access Memory)などの揮発性メモリが内蔵されている。車両2には、各部を制御するため、複数のECUが搭載されている。その複数のECUは、CAN(Controller Area Network)通信プロトコルによる双方向通信が可能に接続されている。 The vehicle 2 is provided with an ECU (Electronic Control Unit) having a configuration including a microcomputer (microcontroller unit). The microcomputer contains, for example, a non-volatile memory such as a CPU and a flash memory, and a volatile memory such as a DRAM (Dynamic Random Access Memory). The vehicle 2 is equipped with a plurality of ECUs in order to control each part. The plurality of ECUs are connected so as to enable bidirectional communication by a CAN (Controller Area Network) communication protocol.

複数のECUには、路面μ推定装置として機能する4WDECU41が含まれる。その他、複数のECUには、たとえば、エンジン/TMECU42、ABSECU43、EPSECU44、メータECU45、ボデーECU46およびDCUECU47が含まれる。 The plurality of ECUs include a 4WD ECU 41 that functions as a road surface μ estimation device. In addition, the plurality of ECUs include, for example, an engine / TMECU 42, an ABS ECU 43, an EPS ECU 44, a meter ECU 45, a body ECU 46, and a DCU ECU 47.

4WDECU41は、他のECUから入力される種々の情報や指令などに基づいて、車両2の進路上の各地点の路面μを推定し、その推定した路面μなどに基づいて、前輪22L,22Rおよび後輪38L,38Rのタイヤスリップが発生しないように、駆動トルクの前輪22L,22Rおよび後輪38L,38Rへの配分を決定する。そして、4WDECU41は、その決定した配分の駆動トルクが前輪22L,22Rおよび後輪38L,38Rに伝達されるように、電子制御カップリング34の係合状態を制御する。 The 4WD ECU 41 estimates the road surface μ at each point on the course of the vehicle 2 based on various information and commands input from other ECUs, and based on the estimated road surface μ and the like, the front wheels 22L, 22R and The distribution of the drive torque to the front wheels 22L, 22R and the rear wheels 38L, 38R is determined so that the tire slip of the rear wheels 38L, 38R does not occur. Then, the 4WD ECU 41 controls the engaged state of the electronically controlled coupling 34 so that the drive torque of the determined distribution is transmitted to the front wheels 22L, 22R and the rear wheels 38L, 38R.

エンジン/TMECU42は、他のECUから入力される種々の情報や指令などに基づいて、エンジン11の始動、停止および出力調整の制御、ならびに変速機12の変速比の制御を実行する。 The engine / TMECU 42 executes control of starting, stopping and output adjustment of the engine 11 and control of the gear ratio of the transmission 12 based on various information and commands input from other ECUs.

ABSECU43は、他のECUから入力される種々の情報や指令などに基づいて、車両2の制動時や旋回時に、車両2の姿勢が安定に保たれるように、前輪22L,22Rおよび後輪38L,38Rの各車輪に付与される制動力を制御する。 The ABS ECU 43 has front wheels 22L, 22R and rear wheels 38L so that the posture of the vehicle 2 is kept stable when the vehicle 2 is braking or turning based on various information and commands input from other ECUs. , 38R Controls the braking force applied to each wheel.

車両2には、電動モータの動力によりステアリング機構の操舵をアシストする電動パワーステアリング装置(EPS:Electric Power Steering)が搭載されている。EPSECU44は、他のECUから入力される種々の情報や指令などに基づいて、電動パワーステアリング装置の電動モータの駆動を制御する。 The vehicle 2 is equipped with an electric power steering device (EPS: Electric Power Steering) that assists the steering of the steering mechanism by the power of the electric motor. The EPS ECU 44 controls the drive of the electric motor of the electric power steering device based on various information and commands input from other ECUs.

また、車両2のインストルメントパネルには、コンビネーションメータが配設されている。コンビネーションメータには、速度計などの計器類のほか、マルチインフォメーションディスプレイなどが組み込まれている。メータECU45は、他のECUから入力される種々の情報や指令などに基づいて、コンビネーションメータの各部の動作(表示)を制御する。 Further, a combination meter is arranged on the instrument panel of the vehicle 2. In addition to instruments such as a speedometer, the combination meter incorporates a multi-information display and the like. The meter ECU 45 controls the operation (display) of each part of the combination meter based on various information and commands input from other ECUs.

ボデーECU46は、他のECUから入力される種々の情報や指令などに基づいて、車両2の左右の各ウィンカの作動/非作動などを制御する。 The body ECU 46 controls the operation / non-operation of the left and right winkers of the vehicle 2 based on various information and commands input from other ECUs.

DCUECU47には、DCU(Data Communication Unit)48が接続されている。DCU48は、移動体無線データ通信およびインターネットなどを利用して、路面μ情報提供サーバ4とデータ通信を行う装置である。DCUECU47は、他のECUから入力される種々の情報や指令などに基づいて、DCU48によるデータ通信を制御する。 A DCU (Data Communication Unit) 48 is connected to the DCU ECU 47. The DCU 48 is a device that performs data communication with the road surface μ information providing server 4 by using mobile wireless data communication, the Internet, or the like. The DCU ECU 47 controls data communication by the DCU 48 based on various information and commands input from other ECUs.

<路面μの推定>
図3は、車両2における路面μの推定の手法について説明するための図である。
<Estimation of road surface μ>
FIG. 3 is a diagram for explaining a method of estimating the road surface μ in the vehicle 2.

車両2では、その走行中、4WDECU41により、車両2の進路上の各地点の路面μが推定される。路面μの推定のため、4WDECU41からDCUECU47に入力される指令に従って、DCUECU47がDCU48を制御することにより、DCU48が路面μ情報提供サーバ4から配信される他車推定μ情報および他車推定地点情報を受信する。前述したように、他車推定μ情報は、車両3で推定された路面μに係る情報であり、他車推定地点情報は、その路面μが推定された地点に係る情報である。DCU48が他車推定μ情報および他車推定地点情報を受信すると、4WDECU41により、他車推定地点情報から他車推定地点が半径Aの円領域として特定される。そして、他車推定μ情報を基に、他車推定地点の路面μが推定される。たとえば、車両3で推定された路面μ(他車推定μ)の値がそのまま他車推定地点の路面μの値として推定され、その推定値には、車両3で路面μが推定された時点からの経過時間に応じた信頼度が設定される。信頼度は、車両3で路面μが推定された時点からの経過時間が長いほど低い値に設定される。 In the vehicle 2, the road surface μ at each point on the course of the vehicle 2 is estimated by the 4WD ECU 41 during the traveling. In order to estimate the road surface μ, the DCU ECU 47 controls the DCU 48 according to a command input from the 4WD ECU 41 to the DCU ECU 47, so that the DCU 48 obtains other vehicle estimation μ information and other vehicle estimation point information distributed from the road surface μ information providing server 4. Receive. As described above, the other vehicle estimated μ information is the information related to the road surface μ estimated by the vehicle 3, and the other vehicle estimated point information is the information related to the point where the road surface μ is estimated. When the DCU 48 receives the other vehicle estimation μ information and the other vehicle estimation point information, the 4WD ECU 41 identifies the other vehicle estimation point as a circular region having a radius A from the other vehicle estimation point information. Then, the road surface μ at the other vehicle estimation point is estimated based on the other vehicle estimation μ information. For example, the value of the road surface μ estimated by the vehicle 3 (other vehicle estimation μ) is estimated as it is as the value of the road surface μ at the other vehicle estimation point, and the estimated value is from the time when the road surface μ is estimated by the vehicle 3. The reliability is set according to the elapsed time of. The reliability is set to a lower value as the elapsed time from the time when the road surface μ is estimated by the vehicle 3 is longer.

車両2からその進行方向に最も近い他車推定地点を第1他車推定地点P1として、第1他車推定地点P1の中心が車両2から進行方向の所定範囲内、つまり距離Bの範囲内に入ると、車両の走行地点Pの路面μと第1他車推定地点P1の路面μとに基づいて、車両2の走行地点Pから第1他車推定地点P1までの路面μ(自車推定μ)が推定される。このとき、それらの地点P−P1間の路面μは、走行地点Pの路面μ=μ0から第1他車推定地点P1の路面μ=μ1まで直線的に変化(一定の変化率で変化)し、かつ、第1他車推定地点P1に近い位置ほど第1他車推定地点P1の路面μ=μ1に近い値となるように推定される。 The other vehicle estimation point closest to the vehicle 2 in the traveling direction is set as the first other vehicle estimation point P1, and the center of the first other vehicle estimation point P1 is within a predetermined range in the traveling direction from the vehicle 2, that is, within a distance B. Upon entering, the road surface μ from the traveling point P of the vehicle 2 to the estimated first other vehicle P1 (own vehicle estimation μ) is based on the road surface μ of the vehicle's traveling point P and the road surface μ of the first other vehicle estimated point P1. ) Is estimated. At this time, the road surface μ between those points P and P1 linearly changes (changes at a constant rate of change) from the road surface μ = μ0 at the traveling point P to the road surface μ = μ1 at the first other vehicle estimation point P1. Moreover, it is estimated that the closer the position is to the first estimated point P1 of the other vehicle, the closer the road surface μ = μ1 of the first estimated point P1 to the other vehicle.

車両2が第1他車推定地点P1を抜けた後は、車両2から距離Bの範囲内に新たな他車推定地点が入るか、または、車両2の前輪22L,22Rおよび後輪38L,38Rのいずれかの車輪のタイヤスリップが発生するまで、第1他車推定地点P1の路面μが進路上の各地点の路面μとして推定される。 After the vehicle 2 passes through the first estimated other vehicle P1, a new estimated other vehicle enters within a distance B from the vehicle 2, or the front wheels 22L, 22R and the rear wheels 38L, 38R of the vehicle 2 Until tire slip occurs on any of the wheels, the road surface μ at the first other vehicle estimation point P1 is estimated as the road surface μ at each point on the course.

たとえば、車両2の前輪22L,22Rおよび後輪38L,38Rのいずれかの車輪のタイヤスリップが発生した場合、4WDECU41により、前輪22L,22Rおよび後輪38L,38Rの各車輪速が取得されて、各車輪速などから、車両2の走行地点Pの路面μが推定される。前輪22L,22Rおよび後輪38L,38Rの各車輪ごとに、車輪の回転速度に応じた検出信号(車輪の回転に同期したパルス信号)を出力する車輪速センサが設けられており、各車輪速は、その車輪速センサの検出信号から求められる。各車輪速から走行地点Pの路面μ=μ2が推定されると、車両2から距離Bの範囲内に新たな他車推定地点が入るか、または、車両2の前輪22L,22Rおよび後輪38L,38Rのいずれかの車輪のタイヤスリップが再び発生するまで、その走行地点Pの路面μ=μ2が進路上の各地点の路面μとして推定される。 For example, when tire slip occurs on any of the front wheels 22L, 22R and the rear wheels 38L, 38R of the vehicle 2, the 4WD ECU 41 acquires the wheel speeds of the front wheels 22L, 22R and the rear wheels 38L, 38R. The road surface μ of the traveling point P of the vehicle 2 is estimated from each wheel speed and the like. Each wheel of the front wheels 22L, 22R and the rear wheels 38L, 38R is provided with a wheel speed sensor that outputs a detection signal (pulse signal synchronized with the rotation of the wheels) according to the rotation speed of the wheels, and each wheel speed. Is obtained from the detection signal of the wheel speed sensor. When the road surface μ = μ2 of the traveling point P is estimated from each wheel speed, a new estimated point of another vehicle enters within the range of the distance B from the vehicle 2, or the front wheels 22L, 22R and the rear wheels 38L of the vehicle 2 are entered. Until the tire slip of any of the wheels of, 38R occurs again, the road surface μ = μ2 of the traveling point P is estimated as the road surface μ of each point on the course.

その後、車両2から距離Bの範囲内に新たな第2他車推定地点P2が入った場合、車両の走行地点Pの路面μ=μ2と第2他車推定地点P2の路面μ=μ3とに基づいて、車両2の走行地点Pから第2他車推定地点P2までの路面μが推定される。このとき、それらの地点P−P2間の路面μは、走行地点の路面μ=μ2から第2他車推定地点P2の路面μ=μ3まで直線的に変化(一定の変化率で変化)し、かつ、第2他車推定地点P2に近い位置ほど第2他車推定地点P2の路面μ=μ3に近い値となるように推定される。 After that, when a new second other vehicle estimation point P2 enters within the range of the distance B from the vehicle 2, the road surface μ = μ2 at the vehicle running point P and the road surface μ = μ3 at the second other vehicle estimation point P2. Based on this, the road surface μ from the traveling point P of the vehicle 2 to the second other vehicle estimation point P2 is estimated. At this time, the road surface μ between those points P and P2 linearly changes (changes at a constant rate of change) from the road surface μ = μ2 at the traveling point to the road surface μ = μ3 at the second vehicle estimation point P2. Moreover, it is estimated that the closer to the second other vehicle estimation point P2, the closer the road surface μ = μ3 of the second other vehicle estimation point P2.

また、車両3で第2他車推定地点P2の路面μ=μ3が推定された時点からの経過時間が長いため、たとえば、第2他車推定地点P2の路面μ=μ3の信頼度が0.5に設定されている場合、第2他車推定地点P2の路面μ=μ3は、第2他車推定地点P2の路面μ=μ3と走行地点Pの路面μ=μ2との偏差に信頼度の0.5を乗じた値(μ3−μ2)×0.5を走行地点Pの路面μ=μ2に加えた値に補正される。そして、地点P−P2間の路面μは、走行地点の路面μ=μ2から補正後の第2他車推定地点P2の路面μ=μ2+(μ3−μ2)*0.5まで直線的に変化し、かつ、第2他車推定地点P2に近い位置ほど第2他車推定地点P2の路面μ=μ2+(μ3−μ2)×0.5に近い値となるように推定される。 Further, since the elapsed time from the time when the road surface μ = μ3 of the second other vehicle estimation point P2 is estimated by the vehicle 3 is long, for example, the reliability of the road surface μ = μ3 of the second other vehicle estimation point P2 is 0. When set to 5, the road surface μ = μ3 of the second vehicle estimation point P2 has a reliability of the deviation between the road surface μ = μ3 of the second vehicle estimation point P2 and the road surface μ = μ2 of the traveling point P. It is corrected to the value obtained by multiplying the value by 0.5 (μ3-μ2) × 0.5 by adding the road surface μ = μ2 at the traveling point P. Then, the road surface μ between the points P and P2 changes linearly from the road surface μ = μ2 at the traveling point to the road surface μ = μ2 + (μ3-μ2) * 0.5 at the corrected second vehicle estimation point P2. Moreover, it is estimated that the closer to the second other vehicle estimation point P2, the closer the road surface μ = μ2 + (μ3-μ2) × 0.5 of the second other vehicle estimation point P2.

車両2が第2他車推定地点P2に到達する前に、車両2から距離Bの範囲内に新たな第3他車推定地点P3が入った場合、第2他車推定地点P2の路面μ=μ3と第3他車推定地点P3の路面μ=μ4とに基づいて、第2他車推定地点P2から第3他車推定地点P3までの路面μが推定される。このとき、それらの地点P2−P3間の路面μは、第2他車推定地点P2の路面μ=μ3から第3他車推定地点P3の路面μ=μ4まで直線的に変化し、かつ、第3他車推定地点P3に近い位置ほど第3他車推定地点P3の路面μ=μ4に近い値となるように推定される。 If a new third other vehicle estimation point P3 enters within a distance B from the vehicle 2 before the vehicle 2 reaches the second other vehicle estimation point P2, the road surface μ of the second other vehicle estimation point P2 = Based on μ3 and the road surface μ = μ4 of the third other vehicle estimation point P3, the road surface μ from the second other vehicle estimation point P2 to the third other vehicle estimation point P3 is estimated. At this time, the road surface μ between those points P2-P3 linearly changes from the road surface μ = μ3 at the second vehicle estimation point P2 to the road surface μ = μ4 at the third vehicle estimation point P3, and is the first. 3 It is estimated that the position closer to the other vehicle estimation point P3 is closer to the road surface μ = μ4 of the third other vehicle estimation point P3.

また、車両2から距離Bの範囲内に新たな第4他車推定地点P4が入り、車両2が少し走行した後、第4他車推定地点P4の半径Aの円領域内に中心を有する第5他車推定地点P5が車両2から距離Bの範囲内に入った場合、車両2の走行地点Pから第4他車推定地点P4までの路面μは、走行地点の路面μ=μ4から第4他車推定地点P4の路面μ=μ5まで直線的に変化し、かつ、第4他車推定地点P4に近い位置ほど第4他車推定地点P4の路面μ=μ5に近い値となるように推定される。さらに、第4他車推定地点P4を抜けてから第5他車推定地点P5の円領域を抜けるまでの路面μは、その範囲内で路面μが走行地点の路面μ=μ4から第4他車推定地点P4の路面μ=μ5まで一定の変化率以下で直線的に変化するように推定される。 Further, a new fourth other vehicle estimation point P4 enters within the range of the distance B from the vehicle 2, and after the vehicle 2 travels for a while, the fourth other vehicle estimation point P4 has a center in the circular region of the radius A of the fourth other vehicle estimation point P4. 5 When the other vehicle estimated point P5 is within the range of the distance B from the vehicle 2, the road surface μ from the traveling point P of the vehicle 2 to the fourth estimated other vehicle P4 is the road surface μ = μ4 to the fourth of the traveling points. It is estimated that the road surface μ = μ5 of the other vehicle estimation point P4 changes linearly, and the position closer to the fourth other vehicle estimation point P4 is closer to the road surface μ = μ5 of the fourth other vehicle estimation point P4. Will be done. Further, the road surface μ from passing through the 4th other vehicle estimation point P4 to passing through the circular region of the 5th other vehicle estimation point P5 is such that the road surface μ is from the road surface μ = μ4 at the traveling point to the 4th other vehicle. It is estimated that the road surface μ = μ5 at the estimation point P4 changes linearly at a constant rate of change or less.

なお、車両2のイグニッションスイッチがオフにされると、その時点での車両2の走行地点Pの路面μが4WDECU41の不揮発性メモリに記憶される。そして、次にイグニッションスイッチがオンにされて、車両2が発進されたときには、その不揮発性メモリに記憶されている路面μが車両2の進路上の各地点の路面μの推定に用いられる。 When the ignition switch of the vehicle 2 is turned off, the road surface μ of the traveling point P of the vehicle 2 at that time is stored in the non-volatile memory of the 4WD ECU 41. Then, when the ignition switch is turned on and the vehicle 2 is started, the road surface μ stored in the non-volatile memory is used to estimate the road surface μ at each point on the course of the vehicle 2.

<作用効果>
以上のように、他の車両3で推定された路面μおよびその路面μが推定された地点を基に、車両2の進路上の各地点の路面μを車両2がその地点に到着する前に推定することができる。
<Effect>
As described above, based on the road surface μ estimated by the other vehicle 3 and the point where the road surface μ is estimated, the road surface μ at each point on the course of the vehicle 2 is before the vehicle 2 arrives at that point. Can be estimated.

よって、4WDECU41は、車両2の進路上の各地点における駆動トルクの前輪22L,22Rおよび後輪38L,38Rへの駆動トルクの配分をその地点の路面μに応じた配分に決定して、車両2が進路上の各地点に到達する直前に、その到達する地点の路面μに応じた配分で駆動トルクが前輪22L,22Rおよび後輪38L,38Rに伝達されるように、電子制御カップリング34の係合状態を制御することができる。その結果、路面μが低い地点では、副駆動輪である後輪38L,38Rへの駆動トルクの配分を大きくして、前輪22L,22Rおよび後輪38L,38Rのタイヤスリップの発生を抑制できる。一方、路面μが高い地点では、主駆動輪である前輪22L,22Rのみに駆動トルクが伝達される2輪駆動状態として、車両2の走行燃費の向上を図ることができる。 Therefore, the 4WD ECU 41 determines the distribution of the drive torque to the front wheels 22L, 22R and the rear wheels 38L, 38R at each point on the course of the vehicle 2 according to the road surface μ at that point, and determines the distribution of the drive torque to the vehicle 2 Immediately before reaching each point on the course, the electronically controlled coupling 34 so that the drive torque is transmitted to the front wheels 22L, 22R and the rear wheels 38L, 38R in a distribution according to the road surface μ of the reaching point. The engagement state can be controlled. As a result, at a point where the road surface μ is low, the distribution of the drive torque to the rear wheels 38L and 38R, which are the auxiliary drive wheels, can be increased to suppress the occurrence of tire slip on the front wheels 22L and 22R and the rear wheels 38L and 38R. On the other hand, at a point where the road surface μ is high, the running fuel efficiency of the vehicle 2 can be improved by setting the two-wheel drive state in which the drive torque is transmitted only to the front wheels 22L and 22R, which are the main drive wheels.

図4は、半径Cの円領域内に複数の他車推定地点が含まれる場合の処理について説明するための図である。 FIG. 4 is a diagram for explaining processing when a plurality of other vehicle estimation points are included in a circular region having a radius C.

他車推定地点は、半径Aの円領域として特定される。そのため、その半径Aの円領域よりも小さい円領域内に複数の他車推定地点が含まれる場合、車両2が進行方向手前側の他車推定地点を抜けてから次の他車推定地点を抜けるまでの路面μを、手前の他車推定地点の路面μから次の他車推定地点の路面μまで一定の変化率以下で変化させることができない場合が生じ得る。 The estimated point of another vehicle is specified as a circular region having a radius A. Therefore, when a plurality of other vehicle estimation points are included in a circle area smaller than the circle area of the radius A, the vehicle 2 passes through the other vehicle estimation point on the front side in the traveling direction and then passes through the next other vehicle estimation point. It may not be possible to change the road surface μ up to from the road surface μ at the other vehicle estimation point in front to the road surface μ at the next other vehicle estimation point at a constant rate of change or less.

そこで、図4に示されるように、半径Aよりも小さい半径Cの円領域内に複数の他車推定地点A11,A12,A13,A14が含まれる場合、それらの他車推定地点A11,A12,A13,A14は、1点の他車推定地点(以下、この点を「集約点」という。)として取り扱われてもよい。 Therefore, as shown in FIG. 4, when a plurality of other vehicle estimation points A11, A12, A13, and A14 are included in a circular region having a radius C smaller than the radius A, those other vehicle estimation points A11, A12, A13 and A14 may be treated as one point estimated by another vehicle (hereinafter, this point is referred to as an "aggregation point").

この場合、それらの他車推定地点A11,A12,A13,A14のうち、路面μが最も低い他車推定地点が第1対象地点とされ、車両3で路面μが最も新しく推定された他車推定地点が第2対象地点とされる。そして、車両2の進路上の各地点における路面μの推定では、半径Cの円領域内に含まれる他車推定地点A11,A12,A13,A14が第1対象地点と第2対象地点との間に中心が配置される集約点として取り扱われる。 In this case, among those other vehicle estimation points A11, A12, A13, and A14, the other vehicle estimation point having the lowest road surface μ is set as the first target point, and the other vehicle estimation with the road surface μ most recently estimated by the vehicle 3 The point is the second target point. Then, in the estimation of the road surface μ at each point on the course of the vehicle 2, the other vehicle estimation points A11, A12, A13, and A14 included in the circular region of the radius C are between the first target point and the second target point. It is treated as an aggregation point where the center is placed in.

たとえば、図4に示される例では、路面μが最も低い他車推定地点が他車推定地点A13,P14であるから、そのうち、路面μの信頼度が高い他車推定地点A13が第1対象地点とされる。また、車両3で路面μが最も新しく推定されることにより路面μの信頼度が最も高い他車推定地点A12が第2対象地点とされる。他車推定地点A11,A12,A13,A14は、第1対象地点A13と第2対象地点A12との間に中心が配置される1点の集約点として取り扱われる。 For example, in the example shown in FIG. 4, since the other vehicle estimation points with the lowest road surface μ are the other vehicle estimation points A13 and P14, the other vehicle estimation point A13 with high reliability of the road surface μ is the first target point. It is said that. Further, since the road surface μ is estimated most recently in the vehicle 3, the other vehicle estimation point A12 having the highest reliability of the road surface μ is set as the second target point. The other vehicle estimation points A11, A12, A13, and A14 are treated as one aggregation point whose center is arranged between the first target point A13 and the second target point A12.

そして、半径Cの中心から他車推定地点A12までの距離D1と他車推定地点A12の路面μの信頼度とが乗算され、半径Cの中心から他車推定地点A13までの距離D2と他車推定地点A13の路面μの信頼度とが乗算され、それらの乗算値の加算値が他車推定地点A12の路面μの信頼度と他車推定地点A13の路面μの信頼度との和で除算される。この演算により得られる値は、半径Cの円領域の中心から集約点の中心までの距離とされる。 Then, the distance D1 from the center of the radius C to the estimated point A12 of the other vehicle is multiplied by the reliability of the road surface μ of the estimated point A12 of the other vehicle, and the distance D2 from the center of the radius C to the estimated point A13 of the other vehicle and the other vehicle The reliability of the road surface μ of the estimated point A13 is multiplied, and the added value of these multiplication values is divided by the sum of the reliability of the road surface μ of the other vehicle estimated point A12 and the reliability of the road surface μ of the other vehicle estimated point A13. Will be done. The value obtained by this calculation is the distance from the center of the circular region having the radius C to the center of the aggregation point.

たとえば、半径Cの中心から他車推定地点A12までの距離D1が1mであり、半径Cの中心から他車推定地点A13までの距離D2が10mである場合、距離D1=1と他車推定地点A12の路面μの信頼度「1.0」とが乗算され、距離D2=10と他車推定地点A13の路面μの信頼度「0.5」とが乗算され、それらの乗算値の加算値が他車推定地点A12の路面μの信頼度「1.0」と他車推定地点A13の路面μの信頼度「0.5」との和で除算される。この演算により得られる値(1*1.0+10*0.5)/(1.0+0.5)=4(m)は、半径Cの円領域の中心から集約点の中心までの距離とされる。 For example, if the distance D1 from the center of the radius C to the estimated point A12 of the other vehicle is 1 m, and the distance D2 from the center of the radius C to the estimated point A13 of the other vehicle is 10 m, the distance D1 = 1 and the estimated point of the other vehicle The reliability "1.0" of the road surface μ of A12 is multiplied, the distance D2 = 10 is multiplied by the reliability "0.5" of the road surface μ of the other vehicle estimation point A13, and the added value of those multiplication values is multiplied. Is divided by the sum of the reliability "1.0" of the road surface μ at the other vehicle estimation point A12 and the reliability "0.5" of the road surface μ at the other vehicle estimation point A13. The value (1 * 1.0 + 10 * 0.5) / (1.0 + 0.5) = 4 (m) obtained by this calculation is the distance from the center of the circular region of radius C to the center of the aggregation point. ..

また、他車推定地点A12の路面μとその路面μの信頼度とが乗算され、他車推定地点A13の路面μとその信頼度とが乗算され、それらの乗算値の加算値が他車推定地点A12の路面μの信頼度と他車推定地点A13の路面μの信頼度との和で除算される。この演算により得られる値は、集約点の路面μとされる。 Further, the road surface μ of the other vehicle estimation point A12 and the reliability of the road surface μ are multiplied, the road surface μ of the other vehicle estimation point A13 and its reliability are multiplied, and the added value of the multiplication values is estimated by another vehicle. It is divided by the sum of the reliability of the road surface μ at the point A12 and the reliability of the road surface μ at the estimated point A13 of another vehicle. The value obtained by this calculation is the road surface μ of the aggregation point.

たとえば、他車推定地点A12の路面μ=0.3とその路面μの信頼度「1.0」とが乗算され、他車推定地点A13の路面μ=0.2とその信頼度「0.5」とが乗算され、それらの乗算値の加算値が他車推定地点A12の路面μの信頼度「1.0」と他車推定地点A13の路面μの信頼度「0.5」との和で除算される。この演算により得られる値(0.3*1.0+0.2*0.5)/(1.0+0.5)=0.267は、集約点の路面μとされる。 For example, the road surface μ = 0.3 at the other vehicle estimation point A12 and the reliability “1.0” of the road surface μ are multiplied, and the road surface μ = 0.2 at the other vehicle estimation point A13 and its reliability “0. 5 ”is multiplied, and the added value of those multiplication values is the reliability of the road surface μ of the other vehicle estimation point A12 “1.0” and the reliability of the road surface μ of the other vehicle estimation point A13 “0.5”. Divide by the sum. The value (0.3 * 1.0 + 0.2 * 0.5) / (1.0 + 0.5) = 0.267 obtained by this calculation is taken as the road surface μ of the aggregation point.

集約点の路面μは、その集約点に集約したとみなされる複数の他車推定地点A11,A12,A13,A14の路面μのうち、最も低い路面μを優先的に考慮して推定される。そのため、車両2の進路上の各地点の路面μを車両のタイヤスリップの発生に対して安全に推定することができる。 The road surface μ at the aggregation point is estimated by preferentially considering the lowest road surface μ among the road surfaces μ of the plurality of other vehicle estimation points A11, A12, A13, and A14 considered to be aggregated at the aggregation point. Therefore, the road surface μ at each point on the course of the vehicle 2 can be safely estimated with respect to the occurrence of tire slip of the vehicle.

<変形例>
以上、本発明の実施の形態について説明したが、本発明は、他の形態で実施することもできる。
<Modification example>
Although the embodiments of the present invention have been described above, the present invention can also be implemented in other embodiments.

たとえば、車両2は、アクティブトルクスプリット4WDシステムを採用し、リヤデファレンシャルギヤ15には、電子制御カップリング34が内蔵されているとした。しかしながら、本発明は、主駆動輪と副駆動輪とに駆動トルクを配分可能な構成であれば、電子制御カップリング34を採用していない構成を搭載した車両に適用することもできる。 For example, the vehicle 2 employs an active torque split 4WD system, and the rear differential gear 15 has an electronically controlled coupling 34 built-in. However, the present invention can also be applied to a vehicle equipped with a configuration that does not employ the electronically controlled coupling 34, as long as the drive torque can be distributed to the main drive wheels and the sub drive wheels.

また、前述の実施形態では、動力の非分配時に動力が伝達される主駆動輪が前輪22L,22Rである構成を取り上げたが、本発明は、動力の非分配時に動力が伝達される主駆動輪が後輪38L,38Rである構成の車両に用いることもできる。 Further, in the above-described embodiment, the configuration in which the main drive wheels to which the power is transmitted when the power is not distributed is the front wheels 22L and 22R has been taken up, but the present invention has taken up the configuration in which the power is transmitted when the power is not distributed. It can also be used for vehicles having a configuration in which the wheels are the rear wheels 38L and 38R.

その他、前述の構成には、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。 In addition, various design changes can be made to the above-mentioned configuration within the scope of the matters described in the claims.

2:車両
3:車両(他車)
41:4WDECU(路面μ推定装置、情報受信手段、第1推定手段、第2推定手段、第3推定手段)
2: Vehicle 3: Vehicle (other vehicle)
41: 4WD ECU (road surface μ estimation device, information receiving means, first estimation means, second estimation means, third estimation means)

Claims (3)

車両に搭載される路面μ推定装置であって、
他車で推定された路面μに係る他車推定μ情報およびその路面μが推定された地点に係る他車推定地点情報を受信する情報受信手段と、
前記情報受信手段が受信した前記他車推定地点情報から特定される他車推定地点の路面μを、前記情報受信手段が受信した前記他車推定μ情報を基に推定する第1推定手段と、
前記車両の走行により前記車両から進行方向の所定範囲内に1の前記他車推定地点である第1他車推定地点が入ったことに応じて、前記車両の走行地点と当該第1他車推定地点との間の路面μを、前記走行地点の路面μから前記第1推定手段により推定される前記第1他車推定地点の路面μまで変化し、かつ、前記第1他車推定地点に近い位置ほど前記第1他車推定地点の路面μに近い値となるように推定する第2推定手段と、を含む、路面μ推定装置。
It is a road surface μ estimation device mounted on a vehicle.
An information receiving means for receiving other vehicle estimation μ information related to the road surface μ estimated by another vehicle and other vehicle estimation point information related to the point where the road surface μ is estimated, and
A first estimation means that estimates the road surface μ of the other vehicle estimation point specified from the other vehicle estimation point information received by the information receiving means based on the other vehicle estimation μ information received by the information receiving means.
The traveling point of the vehicle and the estimation of the first other vehicle are made according to the fact that the first estimated point of the other vehicle, which is the estimated point of the other vehicle, is within a predetermined range in the traveling direction from the vehicle. The road surface μ between the point and the traveling point changes from the road surface μ of the traveling point to the road surface μ of the first other vehicle estimation point estimated by the first estimation means, and is close to the first other vehicle estimation point. A road surface μ estimation device including a second estimation means that estimates the position so that the value becomes closer to the road surface μ at the first other vehicle estimation point.
前記車両から前記進行方向の前記所定範囲内に前記第1他車推定地点とは別の前記他車推定地点である第2他車推定地点が入ったことに応じて、前記第1他車推定地点と前記第2他車推定地点との間の路面μを、前記第1他車推定地点の路面μから前記第1推定手段により推定される前記第2他車推定地点の路面μまで変化し、かつ、前記第2他車推定地点に近い位置ほど前記第2他車推定地点の路面μに近い値となるように推定する第3推定手段、をさらに含む、請求項1に記載の路面μ推定装置。 The first other vehicle estimation is performed according to the fact that the second other vehicle estimation point, which is the other vehicle estimation point different from the first other vehicle estimation point, is within the predetermined range in the traveling direction from the vehicle. The road surface μ between the point and the second other vehicle estimation point is changed from the road surface μ of the first other vehicle estimation point to the road surface μ of the second other vehicle estimation point estimated by the first estimation means. The road surface μ according to claim 1, further comprising a third estimation means that estimates that the position closer to the second other vehicle estimation point has a value closer to the road surface μ of the second other vehicle estimation point. Estimator. 前記第1推定手段は、前記所定範囲よりも小さい小範囲内に複数の前記他車推定地点が含まれる場合、その複数の前記他車推定地点のうち、路面μが最も低い前記他車推定地点を第1対象地点とし、前記他車で路面μが最も新しく推定された前記他車推定地点を第2対象地点として、前記小範囲内に含まれる複数の前記他車推定地点を前記第1対象地点と前記第2対象地点との間に中心が配置される1点の他車推定地点としてみなし、前記第1対象地点および前記第2対象地点の各路面μを基に、当該他車推定地点の路面μを推定する、請求項1または2に記載の路面μ推定装置。 When a plurality of other vehicle estimation points are included in a small range smaller than the predetermined range, the first estimation means has the lowest road surface μ among the plurality of other vehicle estimation points. Is the first target point, the other vehicle estimation point where the road surface μ is most recently estimated by the other vehicle is the second target point, and a plurality of the other vehicle estimation points included in the small range are the first target points. It is regarded as one other vehicle estimation point whose center is located between the point and the second target point, and the other vehicle estimation point is based on each road surface μ of the first target point and the second target point. The road surface μ estimation device according to claim 1 or 2, wherein the road surface μ is estimated.
JP2020030871A 2020-02-26 2020-02-26 Road surface μ estimation device Active JP7446674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020030871A JP7446674B2 (en) 2020-02-26 2020-02-26 Road surface μ estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020030871A JP7446674B2 (en) 2020-02-26 2020-02-26 Road surface μ estimation device

Publications (2)

Publication Number Publication Date
JP2021135702A true JP2021135702A (en) 2021-09-13
JP7446674B2 JP7446674B2 (en) 2024-03-11

Family

ID=77661265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020030871A Active JP7446674B2 (en) 2020-02-26 2020-02-26 Road surface μ estimation device

Country Status (1)

Country Link
JP (1) JP7446674B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044443A (en) * 2007-08-08 2009-02-26 Sanyo Electric Co Ltd Receiver and receiving method
JP2011063107A (en) * 2009-09-16 2011-03-31 Toyota Motor Corp Vehicle controller
JP2011230543A (en) * 2010-04-23 2011-11-17 Honda Motor Co Ltd Vehicle
JP2013214299A (en) * 2012-03-07 2013-10-17 Shimizu Corp Physical quantity simulation method, and physical quantity simulation system using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044443A (en) * 2007-08-08 2009-02-26 Sanyo Electric Co Ltd Receiver and receiving method
JP2011063107A (en) * 2009-09-16 2011-03-31 Toyota Motor Corp Vehicle controller
JP2011230543A (en) * 2010-04-23 2011-11-17 Honda Motor Co Ltd Vehicle
JP2013214299A (en) * 2012-03-07 2013-10-17 Shimizu Corp Physical quantity simulation method, and physical quantity simulation system using the same

Also Published As

Publication number Publication date
JP7446674B2 (en) 2024-03-11

Similar Documents

Publication Publication Date Title
JP4386171B2 (en) Power transmission device for four-wheel drive vehicles
US8700280B2 (en) Road surface frictional coefficient estimation device, driving force distribution control device and four-wheel-drive vehicle
JP4294286B2 (en) Vehicle differential limiting control device
JP4082549B2 (en) Driving force control device for four-wheel drive vehicle
JP4263448B2 (en) Vehicle differential limiting control device
US9558317B2 (en) System and method for limiting the engine torque of a four-wheel-drive vehicle
WO2017033637A1 (en) Control device for electric vehicle
US9896105B2 (en) Systems and methods for controlling a vehicle&#39;s deceleration level by controlling the alternator output
US7395142B2 (en) Counter steer detecting method
US9561720B2 (en) Driving force distribution control apparatus
US20050029035A1 (en) Power distribution control apparatus of four-wheel drive vehicle
JP5684314B2 (en) Travel control device for four-wheel drive vehicle
JP7446674B2 (en) Road surface μ estimation device
US20030154013A1 (en) Traction distribution control system for four-wheel drive vehicle
JP2021037798A (en) Distribution display device
JP2009528953A (en) Pre-loaded additional torque control for the second axle to optimize traction
JP3686626B2 (en) Control device for electric motor for vehicle
JP7171144B2 (en) vehicle controller
JP3915871B2 (en) Counter steer determination device
JPH1029557A (en) Vehicular yaw-moment controller
JP2004359213A (en) Driving force control device of four-wheel drive vehicle
CN111959268A (en) Control device for driving force transmission device
JP7210106B2 (en) vehicle controller
JP4915083B2 (en) Vehicle driving force distribution control device
JP2006341826A (en) Forward and backward driving force distribution control device of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240227

R150 Certificate of patent or registration of utility model

Ref document number: 7446674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150