JP2021134242A - Method and apparatus for refining mineral oil - Google Patents
Method and apparatus for refining mineral oil Download PDFInfo
- Publication number
- JP2021134242A JP2021134242A JP2020029359A JP2020029359A JP2021134242A JP 2021134242 A JP2021134242 A JP 2021134242A JP 2020029359 A JP2020029359 A JP 2020029359A JP 2020029359 A JP2020029359 A JP 2020029359A JP 2021134242 A JP2021134242 A JP 2021134242A
- Authority
- JP
- Japan
- Prior art keywords
- mineral oil
- water
- active oxygen
- refining
- impurities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
本発明は重油等、鉱物油の精製に関するものである。 The present invention relates to the refining of mineral oils such as heavy oils.
次の特許文献には、超臨界水を用いて石油から金属不純物等を除去する技術が開示されている。 The following patent documents disclose a technique for removing metal impurities and the like from petroleum using supercritical water.
鉱物油、特に重油は硫黄や灰分不純物の含有量が多く、近年では環境負荷への対応からそのような不純物を効果的かつ低コストで除去することが望まれている。前記特許文献に記載の技術は超臨界水を用いるため、大がかりな設備が必要であり相当なコストがかかると考えられる。これに対して本発明は、鉱物油の不純物を効果的かつ低コストで除去できる方法及び装置を提供することを目的としている。 Mineral oils, especially heavy oils, have a high content of sulfur and ash impurities, and in recent years, it has been desired to remove such impurities effectively and at low cost in order to cope with the environmental load. Since the technique described in the patent document uses supercritical water, large-scale equipment is required and it is considered that a considerable cost is required. On the other hand, it is an object of the present invention to provide a method and an apparatus capable of removing impurities of mineral oil effectively and at low cost.
本発明は、水に活性酸素を生じさせ、その活性酸素が生じた水に鉱物油を混合し、その混合液を水と不純物と鉱物油とに分離させ、その分離されたあとの鉱物油を回収する鉱物油精製方法である。 In the present invention, active oxygen is generated in water, mineral oil is mixed with the water in which the active oxygen is generated, the mixed solution is separated into water, impurities and mineral oil, and the separated mineral oil is used. This is a method for refining mineral oil to be recovered.
また本発明は、水に活性酸素を生じさせる水活性化装置と、その活性酸素が生じた水に鉱物油を混合する鉱物油混合装置と、その混合液を保って水と不純物と鉱物油とに分離させる鉱物油分離装置とを備える鉱物油精製装置である。 Further, the present invention comprises a water activating device that generates active oxygen in water, a mineral oil mixing device that mixes mineral oil in the water in which the active oxygen is generated, and water, impurities, and mineral oil while maintaining the mixed solution. It is a mineral oil refining device provided with a mineral oil separating device for separating the oil.
本発明によれば、水に活性酸素を生じさせて鉱物油を精製するので、鉱物油の不純物を効果的かつ低コストで除去できる。 According to the present invention, since active oxygen is generated in water to purify mineral oil, impurities of mineral oil can be effectively and inexpensively removed.
図1は、本発明による鉱物油精製装置の一例の基本構成図である。
鉱物油精製装置1は、水に活性酸素を生じさせる水活性化装置10と、その活性酸素が生じた水に鉱物油を混合する鉱物油混合装置11と、その混合液を静止状態に保って水と不純物と鉱物油とに自然分離させる鉱物油分離装置12とを備えている。
FIG. 1 is a basic configuration diagram of an example of a mineral oil refining apparatus according to the present invention.
The mineral
鉱物油混合装置11に供給される鉱物油は特に制限されず、重油、軽油、灯油等が可能である。特に重油は硫黄や灰分不純物の含有量が多いのであるが、本発明は、そのような不純物の除去に特段の効果を有する。
The mineral oil supplied to the mineral
鉱物油について簡単に説明すると、重油はA、B、Cの区分があり、A重油(1号)は炭化水素分子の平均炭素数が約16.3(標準偏差3.8)、硫黄分質量が0.5%以下、灰分質量が0.05%以下である。B重油は炭化水素分子の平均炭素数が約17.1(標準偏差3.0)、硫黄分質量が3%以下、灰分質量が0.05%以下である。C重油(1号)は炭化水素分子の平均炭素数が約20.2(標準偏差4.9)、硫黄分質量が3.5%以下、灰分質量が0.1%以下である。
本発明によれば、例えば前記A重油の硫黄分重量を0.1%以下まで除去することが可能であり、特に有効である。
なお鉱物油精製装置で不純物を除去したあとの重油を、更に適切なフィルターでろ過することにより、微小な凝固物を除去することも可能である。このようなフィルター処理によって、より高品位な鉱物油が得られる。
また軽油は炭化水素分子の平均炭素数が約17.0(標準偏差2.7)、硫黄分質量が10ppm以下である。灯油は炭化水分子の平均炭素数が約12.9(標準偏差1.6)、硫黄分質量が8ppm以下である。本発明は、このような軽油、灯油に対しても硫黄、灰分不純物を除去することが可能である。
To briefly explain mineral oil, heavy oil is classified into A, B, and C. Heavy oil A (No. 1) has an average carbon number of hydrocarbon molecules of about 16.3 (standard deviation 3.8) and sulfur content. Is 0.5% or less, and the ash content mass is 0.05% or less. Heavy oil B has an average carbon number of hydrocarbon molecules of about 17.1 (standard deviation 3.0), a sulfur content of 3% or less, and an ash content of 0.05% or less. Heavy oil C (No. 1) has an average carbon number of about 20.2 (standard deviation 4.9), a sulfur content of 3.5% or less, and an ash content of 0.1% or less.
According to the present invention, for example, it is possible to remove the sulfur content weight of the heavy fuel oil A to 0.1% or less, which is particularly effective.
It is also possible to remove fine coagulated substances by further filtering the heavy oil after removing impurities with a mineral oil refiner with an appropriate filter. By such filtering, higher quality mineral oil can be obtained.
Further, light oil has an average carbon number of hydrocarbon molecules of about 17.0 (standard deviation 2.7) and a sulfur content mass of 10 ppm or less. Kerosene has an average carbon number of carbonized water molecules of about 12.9 (standard deviation 1.6) and a sulfur content mass of 8 ppm or less. The present invention can remove sulfur and ash impurities from such light oil and kerosene.
水活性化装置10は、例えば光触媒の作用によって水に活性酸素を生じさせる光触媒装置として構成してもよい。光触媒装置は、酸化チタンや酸化タングステン等の光触媒活性物質の微粒子を多孔質セラミックやゼオライト等の担体に固定した光触媒を、透明なパイプ中に封じ、この光触媒に対してUVランプ等から紫外線を照射するようにして構成できる。この場合、パイプに水を通じさせれば、光触媒の作用によって水に活性酸素が生じる。
The
光触媒装置に供給される水は、例えばRO膜で処理された純水(超純水)であるが、光触媒装置に供給される前に、二酸化炭素及び酸素が溶解されている。この二酸化炭素、酸素は空気中から自然溶解したものでもよい。あるいは他の方法で高濃度に溶解、あるいは気泡として含有させたものでもよい。 The water supplied to the photocatalyst device is, for example, pure water (ultrapure water) treated with an RO membrane, but carbon dioxide and oxygen are dissolved before being supplied to the photocatalyst device. The carbon dioxide and oxygen may be naturally dissolved in the air. Alternatively, it may be dissolved in a high concentration by another method or contained as bubbles.
鉱物油混合装置11は、例えば1:1の所定比率で水に鉱物油を混合する装置である。鉱物油混合装置11は、水タンクから導いた管路、鉱物油タンクから導いた管路のそれぞれに計量ポンプ等を設けて、その下流側でこれらの管路を合流させるような構成としてもよい。また鉱物油混合装置11は、水と鉱物油との混合液を貯めるタンクを更に設けて、そこで混合液を一定時間撹拌してもよい。
The mineral
鉱物油分離装置12は、水と鉱物油との混合液を貯めるタンクであって、混合液が時間経過によって、水と不純物と鉱物油とに自然分離したあと、その鉱物油の部分を回収することが可能なように構成されている。あるいは遠心分離によって鉱物油と水とを分離してもよい。分離したあとの鉱物油の取出し方に特に制限はないが、タンクの底から比重の重い水と不純物とを排水して鉱物油を残してもよい。なお水と鉱物油は比重が異なるので、水、不純物、鉱物油を遠心分離させることも可能である。
The mineral
次いで鉱物油精製装置1の基本動作を説明する。
光触媒装置に供給される水には二酸化炭素及び酸素が含まれているのであるが、この水の一部は、光触媒の作用によって分解されて、いわゆる活性酸素が生じる。活性酸素は例えばOHラジカル等であって非常に強い酸化作用を呈する。不純物は硫黄、炭素、ミネラルを含む不特定な化合物である。そしてそのような不純物は、活性酸素が存在する環境では何らかの化学反応を起こし鉱物油又は水から凝集、分離する。このときの化学反応を特定することは難しいのであるが、現象としては鉱物油分離装置12のタンクにおいて鉱物油と水とが自然分離し、更に不純物の一部は鉱物油と水との境界に浮遊し、また他不純物の一部は底部に沈殿した状態になることが確認されている。なお鉱物油と水との境界に浮遊する不純物は有機不純物(すす等)であり、底部に沈殿する不純物は無機不純物である。
図2は、鉱物油分離装置において混合液が鉱物油、水、不純物に自然分離した状態を示す模式図である。このように鉱物油、水、不純物は層状に自然分離するのである。
Next, the basic operation of the mineral
The water supplied to the photocatalyst device contains carbon dioxide and oxygen, and a part of this water is decomposed by the action of the photocatalyst to generate so-called active oxygen. Active oxygen is, for example, OH radical and exhibits a very strong oxidizing action. The impurities are unspecified compounds containing sulfur, carbon and minerals. Then, such impurities cause some chemical reaction in the environment where active oxygen is present, and aggregate and separate from mineral oil or water. It is difficult to specify the chemical reaction at this time, but as a phenomenon, the mineral oil and water are naturally separated in the tank of the mineral
FIG. 2 is a schematic view showing a state in which the mixed liquid is naturally separated into mineral oil, water, and impurities in the mineral oil separation device. In this way, mineral oil, water, and impurities are naturally separated into layers.
このように本発明によれば、水に活性酸素を生じさせて鉱物油を精製するのであるが、水に活性酸素をさせる手段として光触媒、あるいは後述のようにキャビテーションを用いれば活性酸素が非常に低コストで連続生成でき、その結果、鉱物油の不純物の除去も効果的かつ低コストに行えることになる。 As described above, according to the present invention, active oxygen is generated in water to purify mineral oil, but if a photocatalyst or cavitation as described later is used as a means for producing active oxygen in water, the active oxygen is very high. It can be continuously produced at low cost, and as a result, impurities in mineral oil can be removed effectively and at low cost.
また鉱物油精製装置1には、活性酸素の作用によって水に含まれていた二酸化炭素が還元されて一酸化炭素が生じ、その一酸化炭素と鉱物油の分子とが反応することによって新たな鉱物油が生じる、すなわち鉱物油が増量する作用もある。
鉱物油混合装置11では、前記反応が生じつつある水と鉱物油とが混合されるのであるが、ここで合成された鉱物油は、更に水素及び一酸化炭素との反応によって鎖状構造を伸ばしていく。このとき周囲には多数の雛形鉱物油が存在している。そのため、鉱物油の鎖状構造の伸びは雛形鉱物油と同じ長さとなった段階で実質的に停止するように見える。これは雛形鉱物油が非常に多数であるため、その内の極一部の鎖錠構造が伸びたとしても、それが観察し難くなるためと考えられる。このような反応によって雛形鉱物油と略同一組成の鉱物油が合成されるのである。またこのとき混合液における鉱物油は自然増量し、水は自然減少する。この鉱物油の増量は理想的な条件では約10%に達することが実験によって確認されている。
Further, in the mineral
In the mineral
鉱物油分離装置12では、鉱物油と水との混合液をタンクに貯めて静止状態に保持する。すると時間経過によって混合液が鉱物油と水とに自然分離する。こうして自然分離したあとの鉱物油を回収すれば、不純物の少ない高品位な鉱物油が得られる。
In the mineral
更に前記反応における水、鉱物油の容積変化を、模式図を使って説明する。
図3(a)、(b)、(c)はそれぞれ、混合前の水、鉱物油の容積、水と鉱物油との混合液の容積、混合液が鉱物油と水とに分離したあとの水、鉱物油の容積を示す模式図である。
図3(a)に示すように同容積の水と鉱物油(鉱物油:水=10:10)とを混合すると、図3(b)に示すようにそれらの容積を合わせただけの混合液(容積20)になる。鉱物油が合成されたあとの混合液は図3(c)に示すように時間経過によって鉱物油と水とに二層分離する。このとき鉱物油は自然増量しており、水は自然減量している(例えば鉱物油:水=11:9)。
Further, the volume change of water and mineral oil in the reaction will be described with reference to a schematic diagram.
3 (a), (b), and (c) show the volume of water before mixing, the volume of mineral oil, the volume of the mixed solution of water and mineral oil, and the volume of the mixed solution after the mixed solution is separated into mineral oil and water, respectively. It is a schematic diagram which shows the volume of water and mineral oil.
When water of the same volume and mineral oil (mineral oil: water = 10:10) are mixed as shown in FIG. 3 (a), a mixed solution in which the volumes are simply combined as shown in FIG. 3 (b). (Volume 20). After the mineral oil is synthesized, the mixed solution is separated into two layers of mineral oil and water with the passage of time as shown in FIG. 3 (c). At this time, the amount of mineral oil is naturally increasing and the amount of water is naturally decreasing (for example, mineral oil: water = 11: 9).
図4は、本発明による鉱物油精製装置の他例の基本構成図である。
この鉱物油精製装置1は、水活性化装置10の構成が前記の例とは異なっている。すなわちこの例の水活性化装置10は、光触媒装置とキャビテーション装置とを直列接続した構成になっている。
キャビテーション装置は、水にキャビテーションを生じさせて活性化させる装置である。例えばキャビテーション発生装置は、水を加圧して流通させる管路の中間部内側に複数の突起を設ける、あるいはオリフィスを設けることで構成できる。そのような管路に水を圧送付すると、複数の突起あるいはオリフィスを設けた部分でその水が加速されて減圧沸騰し、蒸気バブルが生じる。このバブルが加圧によって消滅するときに局所的に高温高圧場が形成され、そこで水が熱分解されて活性酸素が生じる。
この例では、光触媒装置とキャビテーション発生装置とを組み合わせることで水活性化装置10を構成している。しかし水活性化装置10はキャビテーション装置のみで構成することも可能である。
FIG. 4 is a basic configuration diagram of another example of the mineral oil refining apparatus according to the present invention.
In this mineral
A cavitation device is a device that causes and activates cavitation in water. For example, the cavitation generator can be configured by providing a plurality of protrusions or orifices inside the middle portion of the conduit for pressurizing and circulating water. When water is pressure-fed into such a conduit, the water is accelerated and boiled under reduced pressure at a portion provided with a plurality of protrusions or orifices, and a steam bubble is generated. When this bubble disappears by pressurization, a high-temperature and high-pressure field is locally formed, where water is thermally decomposed to generate active oxygen.
In this example, the
図5は、本発明による鉱物油精製装置の更なる他例の基本構成図である。
この鉱物油精製装置1は、水活性化装置10、鉱物油混合装置11、鉱物油分離装置12を適温に保つための温度管理設備13を備えている点が特徴である。すなわち温度管理設備13は、水及び、水と鉱物油との混合液の温度を所定の温度範囲に管理する。
温度管理設備13は、水活性化装置10、鉱物油混合装置11、鉱物油分離装置12を囲う恒温槽として構成してもよい。あるいは水活性化装置10、鉱物油混合装置11、鉱物油分離装置12が設置された部屋空間のための空調設備であってもよい。
このような温度管理設備13によって、水活性化装置10、鉱物油混合装置11、鉱物油分離装置12の温度を、摂氏20〜45度、望ましくは30〜40度、更に望ましくは37〜38度に保つとよい。一般に温度が上がれば光触媒の活性は上昇するが、二酸化炭素や酸素などの溶解度が低下する。また温度が15℃以下になると水のクラスターが大きくなるため、RO膜(逆浸透膜)の性能が低下する。よって、摂氏20〜45度でも反応は起こるものの、摂氏37〜38度が最適である。
温度による鉱物油の収量の変化について次のような実験結果が得られている。
温度が摂氏20度のときの鉱物油の収量(自然増量分)は4%、摂氏25度のときの鉱物油の収量は6%、摂氏30度のときの鉱物油の収量は8%、摂氏37〜38度のときの鉱物油の収量は10%、摂氏40度のときの鉱物油の収量は6%であった。
FIG. 5 is a basic configuration diagram of another example of the mineral oil refining apparatus according to the present invention.
The mineral
The
With such a
The following experimental results have been obtained regarding changes in the yield of mineral oil with temperature.
When the temperature is 20 degrees Celsius, the yield of mineral oil (natural increase) is 4%, when the temperature is 25 degrees Celsius, the yield of mineral oil is 6%, when the temperature is 30 degrees Celsius, the yield of mineral oil is 8%, and the yield is 8%. The yield of mineral oil at 37-38 degrees was 10%, and the yield of mineral oil at 40 degrees Celsius was 6%.
またこの例の鉱物油精製装置1は、水に酸素ガスを供給する酸素供給装置14を更に備えている。酸素供給装置14は、水活性化装置10に供給される前の水に、酸素ガスを溶解させる。すなわちこの例では、二酸化炭素を含んだ水に酸素を更に含ませてから活性酸素を生じさせるようにしている。このようにすると活性酸素が効率的に生成されるので、結果として鉱物油の収量が増すという効果が得られる。
Further, the mineral
1 鉱物油精製装置
10 水活性化装置
11 鉱物油混合装置
12 鉱物油分離装置
1 Mineral
Claims (9)
その活性酸素が生じた水に鉱物油を混合し、
その混合液を水と不純物と鉱物油とに分離させ、
その自然分離されたあとの鉱物油を回収する鉱物油精製方法。 Generates active oxygen in water,
Mineral oil is mixed with the water in which the active oxygen is generated,
The mixture is separated into water, impurities and mineral oil.
A mineral oil refining method for recovering mineral oil after its natural separation.
光触媒によって前記活性酸素を生じさせることを特徴とする鉱物油精製方法。 In claim 1,
A method for refining mineral oil, which comprises generating the active oxygen with a photocatalyst.
キャビテーションによって前記活性酸素を生じさせることを特徴とする鉱物油精製方法。 In claim 1,
A method for refining mineral oil, which comprises generating the active oxygen by cavitation.
前記鉱物油は、重油であることを特徴とする鉱物油精製方法。 In any one of claims 1 to 3,
The mineral oil refining method, wherein the mineral oil is heavy oil.
前記鉱物油は、軽油であることを特徴とする鉱物油精製方法。 In any one of claims 1 to 3,
The mineral oil refining method, wherein the mineral oil is light oil.
その活性酸素が生じた水に鉱物油を混合する鉱物油混合装置と、
その混合液を水と不純物と鉱物油とに分離させる鉱物油分離装置とを備える鉱物油精製装置。 A water activator that produces active oxygen in water,
A mineral oil mixing device that mixes mineral oil with the water in which the active oxygen is generated,
A mineral oil refining device including a mineral oil separating device that separates the mixed liquid into water, impurities, and mineral oil.
前記水活性化装置は、光触媒によって活性酸素を生じさせることを特徴とする鉱物油精製装置。 In claim 6,
The water activation device is a mineral oil refining device characterized in that active oxygen is generated by a photocatalyst.
前記水活性化装置は、キャビテーションによって活性酸素を生じさせることを特徴とする鉱物油精製装置。 In claim 6,
The water activating device is a mineral oil refining device characterized in that active oxygen is generated by cavitation.
前記鉱物油は、重油であることを特徴とする鉱物油精製装置。
In any one of claims 6 to 8,
A mineral oil refining apparatus characterized in that the mineral oil is heavy oil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020029359A JP2021134242A (en) | 2020-02-25 | 2020-02-25 | Method and apparatus for refining mineral oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020029359A JP2021134242A (en) | 2020-02-25 | 2020-02-25 | Method and apparatus for refining mineral oil |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021134242A true JP2021134242A (en) | 2021-09-13 |
Family
ID=77660335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020029359A Pending JP2021134242A (en) | 2020-02-25 | 2020-02-25 | Method and apparatus for refining mineral oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021134242A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016144958A1 (en) | 2015-03-08 | 2016-09-15 | Case Western Reserve University | Inhibitors of short-chain dehydrogenase activity for treating fibrosis |
WO2020106998A1 (en) | 2018-11-21 | 2020-05-28 | Case Western Reserve University | Compositions and methods of modulating short-chain dehydrogenase activity |
-
2020
- 2020-02-25 JP JP2020029359A patent/JP2021134242A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016144958A1 (en) | 2015-03-08 | 2016-09-15 | Case Western Reserve University | Inhibitors of short-chain dehydrogenase activity for treating fibrosis |
WO2020106998A1 (en) | 2018-11-21 | 2020-05-28 | Case Western Reserve University | Compositions and methods of modulating short-chain dehydrogenase activity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9630867B2 (en) | Treatment of spent caustic waste | |
JP5033829B2 (en) | Digestion gas deoxygenation method and apparatus | |
Shen et al. | Microbubble and nanobubble-based gas flotation for oily wastewater treatment: a review | |
EP2697170A2 (en) | Method of recovering oil or gas and treating the resulting produced water | |
JP2021134242A (en) | Method and apparatus for refining mineral oil | |
WO2013112654A1 (en) | Integrated precipatative-super critical technology for cost-effective treatment of flowback and produced water from unconventional gas resources | |
Romanova et al. | Application of ultrasonic treatment for demulsification of stable water-in-oil emulsions | |
JP2020029483A (en) | Producing method and apparatus for liquid hydrocarbon | |
Al-Maamari et al. | Polymer-flood produced-water-treatment trials | |
WO2016048400A1 (en) | Gas scrubber system and method | |
JP4959742B2 (en) | Digestion gas deoxygenation method and apparatus | |
CA2869302C (en) | System and method for treating water | |
JPH04507262A (en) | Method for processing emulsified petroleum waste | |
CA2706978C (en) | Method for treatment of water comprising non-polar compounds | |
RU2505344C1 (en) | Method of cleaning gases from hydrogen sulphide | |
JPWO2020157914A1 (en) | Sewage treatment equipment and sewage treatment method | |
KR101815107B1 (en) | Pollution reduction equipment for FPSO | |
RU2387695C1 (en) | Oil refining unit (versions) | |
RU160447U1 (en) | UNDERGROUND WATER CLEANING DEVICE | |
CN103159340A (en) | Inferior heavy oil sewage purification and biochemical degradation coupling device | |
NO20101059A1 (en) | Method and apparatus for low energy purification of water | |
Liang et al. | Oil-water separation process based on microbubble air flotation membrane device and scale-up research | |
EA011223B1 (en) | Process for purification of liquid hydrocarbons and a plant therefor | |
RU164318U1 (en) | SHIPPING OIL-WATER WATER TREATMENT OZONE | |
Schmeisera et al. | Utilizing Propane Hydrates as a Novel Method for Purification of Brewery Wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20200303 |