[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021127002A - 車両制御装置、車両制御方法、およびプログラム - Google Patents

車両制御装置、車両制御方法、およびプログラム Download PDF

Info

Publication number
JP2021127002A
JP2021127002A JP2020022750A JP2020022750A JP2021127002A JP 2021127002 A JP2021127002 A JP 2021127002A JP 2020022750 A JP2020022750 A JP 2020022750A JP 2020022750 A JP2020022750 A JP 2020022750A JP 2021127002 A JP2021127002 A JP 2021127002A
Authority
JP
Japan
Prior art keywords
vehicle
probability
behavior
road
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020022750A
Other languages
English (en)
Other versions
JP7313298B2 (ja
Inventor
光一 吉原
Koichi Yoshihara
光一 吉原
崇志 峰
Takashi Mine
崇志 峰
祐紀 喜住
Yuki Kizumi
祐紀 喜住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020022750A priority Critical patent/JP7313298B2/ja
Priority to US17/170,929 priority patent/US11685406B2/en
Priority to CN202110181486.3A priority patent/CN113320541B/zh
Publication of JP2021127002A publication Critical patent/JP2021127002A/ja
Application granted granted Critical
Publication of JP7313298B2 publication Critical patent/JP7313298B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18154Approaching an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • B60W60/00274Planning or execution of driving tasks using trajectory prediction for other traffic participants considering possible movement changes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0022Gains, weighting coefficients or weighting functions
    • B60W2050/0025Transfer function weighting factor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/10Number of lanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4043Lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4045Intention, e.g. lane change or imminent movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4046Behavior, e.g. aggressive or erratic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Navigation (AREA)

Abstract

【課題】より精度よく他車両が走行する経路を予測することができる車両制御装置、車両制御方法、およびプログラムを提供すること。【解決手段】車両制御装置は、車両の周辺の道路構造および他車両を含む周辺環境を認識する認識部と、前記認識部により認識された前記他車両が走行する道路に、前記他車両が進行可能な複数の経路が想定される場合、前記想定される経路のそれぞれに対して、前記他車両が将来走行する予測確率を導出する導出部と、前記導出部により導出された前記予測確率に基づいて、前記車両の挙動を制御する走行制御部とを備える車両制御装置である。【選択図】図1

Description

本発明は、車両制御装置、車両制御方法、およびプログラムに関する。
従来、他車両の周囲における、少なくとも車線を含む道路構造における交通規則を取得し、交通規則に基づいて他車両が走行する経路を予測する車両挙動予測方法が開示されている(特許文献1参照)。
国際公開第2018/134973号 特開2017−45130号公報
しかしながら、上記の車両挙動予測方法では、精度よく他車両が走行する経路を予測することができない場合があった。
本発明は、このような事情を考慮してなされたものであり、より精度よく他車両が走行する経路を予測することができる車両制御装置、車両制御方法、およびプログラムを提供することを目的の一つとする。
この発明に係る車両制御装置、車両制御方法、およびプログラムは、以下の構成を採用した。
(1):この発明の一態様に係る車両制御装置は、車両の周辺の道路構造および他車両を含む周辺環境を認識する認識部と、前記認識部により認識された前記他車両が走行する道路に、前記他車両が進行可能な複数の経路が想定される場合、前記想定される経路のそれぞれに対して、前記他車両が将来走行する予測確率を導出する導出部と、前記導出部により導出された前記予測確率に基づいて、前記車両の挙動を制御する走行制御部とを備える車両制御装置である。
(2):上記(1)の態様において、前記導出部は、前記認識部により認識された周辺環境から得られた、前記他車両が存在する道路構造と、前記他車両が明示的に示す明示的行動と、前記他車両が暗黙的に示す暗黙的行動とに基づいて、前記予測確率を導出する。
(3):上記(2)の態様において、前記導出部は、前記道路構造、前記明示的行動、および前記暗黙的行動に関連付けられた優劣を加味して前記予測確率を導出する。
(4):上記(2)または(3)の態様において、前記導出部は、前記他車両が走行する道路の特性に基づいて、前記道路構造、前記明示的行動、および前記暗黙的行動に関連付けられた優劣を設定し、設定した優劣を加味して前記予測確率を導出する。
(5):上記(2)から(4)のいずれかの態様において、前記導出部は、前記暗黙的行動よりも前記明示的行動を優先して前記予測確率を導出する。
(6):上記(2)から(5)いずれかの態様において、前記導出部は、前記明示的行動よりも前記道路構造を優先して前記予測確率を導出する。
(7):上記(2)から(6)のいずれかの態様において、前記導出部は、前記他車両が車線変更した後に前記明示的行動を行った場合、前記他車両が車線変更せずに前記明示的行動を行った場合よりも、前記明示的行動が前記予測確率に与える影響度を大きくする。
(8):上記(2)から(7)のいずれかの態様において、前記道路構造は、前記車両が存在する道路の周辺の交差点の有無、前記道路の車線の種別、または前記道路に設けられた標識の種別のうち少なくとも一つを含み、前記明示的行動は、前記他車両に設けられた方向指示器の制御状態、或いは前記方向指示器の制御と前記他車両が行った車線変更の有無との組み合わせを含み、前記暗黙的行動は、前記他車両の位置、速度、または加速度のうち少なくとも一つを含む。
(9):上記(2)から(8)のいずれかの態様において、前記複数の経路は、前記他車両が直進する第1経路と、前記他車両が左折または右折する第2経路とを含み、前記導出部は、前記第1経路に対する第1予測確率と、前記第2経路に対する第2予測確率とを導出し、前記走行制御部は、前記導出部により導出された前記第1予測確率と前記第2予測確率とに基づいて、前記車両の挙動を制御する。
(10):上記(2)から(9)のいずれかの態様において、前記複数の経路は、前記他車両が直進する第1経路と、前記他車両が車線変更する第3経路とを含み、前記導出部は、前記第1経路に対する第1予測確率と、前記第3経路に対する第3予測確率とを導出し、前記走行制御部は、前記導出部により導出された前記第1予測確率と前記第3予測確率とに基づいて、前記車両の挙動を制御する。
(11):上記(1)から(10)のいずれかの態様において、前記走行制御部は、想定される前記他車両の挙動に応じた前記車両の挙動を、前記導出部により導出された前記予測確率に基づいて統合し、統合後の前記車両の挙動に基づいて、前記車両の挙動を制御する。
(12):この発明の一態様に係る車両制御方法は、コンピュータが、車両の周辺の道路構造および他車両を含む周辺環境を認識し、前記認識された前記他車両が走行する道路に、前記他車両が進行可能な複数の経路が想定される場合、前記想定される経路のそれぞれに対して、前記他車両が将来走行する予測確率を導出し、前記導出された前記予測確率に基づいて、前記車両の挙動を制御する車両制御方法である。
(13):この発明の一態様に係るプログラムは、コンピュータに、車両の周辺の道路構造および他車両を含む周辺環境を認識させ、前記認識された前記他車両が走行する道路に、前記他車両が進行可能な複数の経路が想定される場合、前記想定される経路のそれぞれに対して、前記他車両が将来走行する予測確率を導出させ、前記導出された前記予測確率に基づいて、前記車両の挙動を制御させるプログラムである。
(1)〜(13)によれば、車両制御装置が、他車両が進行可能な複数の経路のそれぞれに対して、他車両が将来走行する予測確率を導出することにより、より精度よく他車両が走行する経路を予測することができる。更に、車両制御装置は、上記の予測した経路に基づいて、車両の挙動を制御することにより、より車両を滑らかに走行させることができる。
(3)または(4)によれば、導出部は、道路構造、明示的行動、および暗黙的行動に関連付けられた優劣を加味して予測確率を導出することにより、より精度よく予測確率を導出することができる。
(5)、(6)によれば、導出部が、道路構造、明示的行動、暗黙的行動の順で、予測確率に反映される度合を高くすることにより、より精度よく予測確率を導出することができる。
(11)によれば、走行制御部は、想定される他車両の挙動に応じた車両の挙動を、予測確率に基づいて統合し、統合後の前記車両の挙動に基づいて、車両の挙動を制御することにより、他車両の挙動によって所定度合以上の車両の挙動の変化が発生することを抑制させることができる。
実施形態に係る車両制御装置を利用した車両システム1の構成図である。 第1制御部120および第2制御部160の機能構成図である。 行動計画生成部126の機能構成の一例を示す図である。 構造情報172の内容の一例を示す図である。 道路構造の特定について説明するための図である。 道路構造および道路構造の詳細について説明するための図(その1)である。 道路構造および道路構造の詳細について説明するための図(その2)である。 状態情報174の内容の一例を示す図である。 状態情報174Aの内容の一例を示す図である。 他車両が右方向指示器のランプを点滅させているときに左レーンチェンジを行った場面の一例を示す図である。 状態モデル176の処理の概念図である。 統合指標が導出される処理について説明するため図である。 重み情報178の内容の一例を示す図である。 他車両の進行方向を推定する処理について説明するための図である。 車両Mの挙動の一例を示す図である。 車両Mの挙動の他の一例を示す図である。 比較例の車両の加減速度の度合と、実施形態の車両Mの加減速度の度合とを比較するための図である。 自動運転制御装置100により実行される処理の流れの一例を示すフローチャートである。 実施形態の自動運転制御装置100のハードウェア構成の一例を示す図である。
以下、図面を参照し、本発明の車両制御装置、車両制御方法、およびプログラムの実施形態について説明する。
[全体構成]
図1は、実施形態に係る車両制御装置を利用した車両システム1の構成図である。車両システム1が搭載される車両は、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせである。電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。
車両システム1は、例えば、カメラ10と、レーダ装置12と、LIDAR(Light Detection and Ranging)14と、物体認識装置16と、通信装置20と、HMI(Human Machine Interface)30と、車両センサ40と、ナビゲーション装置50と、MPU(Map Positioning Unit)60と、運転操作子80と、自動運転制御装置100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とを備える。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。
カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ10は、車両システム1が搭載される車両(以下、車両M)の任意の箇所に取り付けられる。前方を撮像する場合、カメラ10は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ10は、例えば、周期的に繰り返し車両Mの周辺を撮像する。カメラ10は、ステレオカメラであってもよい。
レーダ装置12は、車両Mの周辺にミリ波などの電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置12は、車両Mの任意の箇所に取り付けられる。レーダ装置12は、FM−CW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。
LIDAR14は、車両Mの周辺に光(或いは光に近い波長の電磁波)を照射し、散乱光を測定する。LIDAR14は、発光から受光までの時間に基づいて、対象までの距離を検出する。照射される光は、例えば、パルス状のレーザー光である。LIDAR14は、車両Mの任意の箇所に取り付けられる。
物体認識装置16は、カメラ10、レーダ装置12、およびLIDAR14のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度などを認識する。物体認識装置16は、認識結果を自動運転制御装置100に出力する。物体認識装置16は、カメラ10、レーダ装置12、およびLIDAR14の検出結果をそのまま自動運転制御装置100に出力してよい。車両システム1から物体認識装置16が省略されてもよい。
通信装置20は、例えば、セルラー網やWi−Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用して、車両Mの周辺に存在する他車両と通信し、或いは無線基地局を介して各種サーバ装置と通信する。
HMI30は、車両Mの乗員に対して各種情報を提示すると共に、乗員による入力操作を受け付ける。HMI30は、各種表示装置、スピーカ、ブザー、タッチパネル、スイッチ、キーなどを含む。
車両センサ40は、車両Mの速度を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、車両Mの向きを検出する方位センサ等を含む。
ナビゲーション装置50は、例えば、GNSS(Global Navigation Satellite System)受信機51と、ナビHMI52と、経路決定部53とを備える。ナビゲーション装置50は、HDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置に第1地図情報54を保持している。GNSS受信機51は、GNSS衛星から受信した信号に基づいて、車両Mの位置を特定する。車両Mの位置は、車両センサ40の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。ナビHMI52は、表示装置、スピーカ、タッチパネル、キーなどを含む。ナビHMI52は、前述したHMI30と一部または全部が共通化されてもよい。経路決定部53は、例えば、GNSS受信機51により特定された車両Mの位置(或いは入力された任意の位置)から、ナビHMI52を用いて乗員により入力された目的地までの経路(以下、地図上経路)を、第1地図情報54を参照して決定する。第1地図情報54は、例えば、道路を示すリンクと、リンクによって接続されたノードとによって道路形状が表現された情報である。第1地図情報54は、道路の曲率やPOI(Point Of Interest)情報などを含んでもよい。地図上経路は、MPU60に出力される。ナビゲーション装置50は、地図上経路に基づいて、ナビHMI52を用いた経路案内を行ってもよい。ナビゲーション装置50は、例えば、乗員の保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。ナビゲーション装置50は、通信装置20を介してナビゲーションサーバに現在位置と目的地を送信し、ナビゲーションサーバから地図上経路と同等の経路を取得してもよい。
MPU60は、例えば、推奨車線決定部61を含み、HDDやフラッシュメモリなどの記憶装置に第2地図情報62を保持している。推奨車線決定部61は、ナビゲーション装置50から提供された地図上経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、第2地図情報62を参照してブロックごとに推奨車線を決定する。推奨車線決定部61は、左から何番目の車線を走行するといった決定を行う。推奨車線決定部61は、地図上経路に分岐箇所が存在する場合、車両Mが、分岐先に進行するための合理的な経路を走行できるように、推奨車線を決定する。
第2地図情報62は、第1地図情報54よりも高精度な地図情報である。第2地図情報62は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。また、第2地図情報62には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報などが含まれてよい。第2地図情報62は、通信装置20が他装置と通信することにより、随時、アップデートされてよい。道路情報は、道路構造に関する情報(例えば、車線の種類や、車線の数、車線の種別、路面標示、信号機、標識、道路規則に関する情報)を含む。車線の種別とは、左折専用レーンや、複数の車線のうち車両がどの車線を走行しているかなどの情報である。
運転操作子80は、例えば、アクセルペダル、ブレーキペダル、シフトレバー、ステアリングホイール、異形ステア、ジョイスティックその他の操作子を含む。運転操作子80には、操作量あるいは操作の有無を検出するセンサが取り付けられており、その検出結果は、自動運転制御装置100、もしくは、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220のうち一部または全部に出力される。
自動運転制御装置100は、例えば、第1制御部120と、第2制御部160と、記憶部170とを備える。第1制御部120と第2制御部160は、それぞれ、例えば、CPU(Central Processing Unit)などのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め自動運転制御装置100のHDDやフラッシュメモリなどの記憶装置(非一過性の記憶媒体を備える記憶装置)に格納されていてもよいし、DVDやCD−ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体(非一過性の記憶媒体)がドライブ装置に装着されることで自動運転制御装置100のHDDやフラッシュメモリにインストールされてもよい。記憶部170は、ROM(Read Only Memory)やRAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリ等で実現される。記憶部170には、例えば、構造情報172、状態情報174、状態モデル176、および重み情報178が記憶されている。これらの情報の詳細については後述する。自動運転制御装置100は「車両制御装置」の一例である。
図2は、第1制御部120および第2制御部160の機能構成図である。第1制御部120は、例えば、認識部122と、情報管理部124と、行動計画生成部126とを備える。第1制御部120は、例えば、AI(Artificial Intelligence;人工知能)による機能と、予め与えられたモデルによる機能とを並行して実現する。例えば、「交差点を認識する」機能は、ディープラーニング等による交差点の認識と、予め与えられた条件(パターンマッチング可能な信号、道路標示などがある)に基づく認識とが並行して実行され、双方に対してスコア付けして総合的に評価することで実現されてよい。これによって、自動運転の信頼性が担保される。
認識部122は、カメラ10、レーダ装置12、およびLIDAR14から物体認識装置16を介して入力された情報に基づいて、車両Mの周辺にある物体の位置、および速度、加速度等の状態を認識する。物体の位置は、例えば、車両Mの代表点(重心や駆動軸中心など)を原点とした絶対座標上の位置として認識され、制御に使用される。物体の位置は、その物体の重心やコーナー等の代表点で表されてもよいし、表現された領域で表されてもよい。物体の「状態」とは、物体の加速度やジャーク、あるいは「行動状態」(例えば車線変更をしている、またはしようとしているか否か)を含んでもよい。
また、認識部122は、例えば、車両Mが走行している車線(走行車線)を認識する。例えば、認識部122は、第2地図情報62から得られる道路区画線のパターン(例えば実線と破線の配列)と、カメラ10によって撮像された画像から認識される車両Mの周辺の道路区画線のパターンとを比較することで、走行車線を認識する。なお、認識部122は、道路区画線に限らず、道路区画線や路肩、縁石、中央分離帯、ガードレールなどを含む走路境界(道路境界)を認識することで、走行車線を認識してもよい。この認識において、ナビゲーション装置50から取得される車両Mの位置やINSによる処理結果が加味されてもよい。また、認識部122は、一時停止線、障害物、赤信号、料金所、その他の道路事象、道路構造を認識する。
認識部122は、走行車線を認識する際に、走行車線に対する車両Mの位置や姿勢を認識する。認識部122は、例えば、車両Mの基準点の車線中央からの乖離、および車両Mの進行方向の車線中央を連ねた線に対してなす角度を、走行車線に対する車両Mの相対位置および姿勢として認識してもよい。これに代えて、認識部122は、走行車線のいずれかの側端部(道路区画線または道路境界)に対する車両Mの基準点の位置などを、走行車線に対する車両Mの相対位置として認識してもよい。
情報管理部124は、行動計画生成部126が処理に用いる情報を取得する。例えば、情報管理部124は、第1地図情報54や、第2地図情報62、記憶部170に記憶された情報、認識部122の認識結果を取得し、取得した情報を行動計画生成部126に提供する。
行動計画生成部126は、原則的には推奨車線決定部61により決定された推奨車線を走行し、更に、車両Mの周辺状況に対応できるように、車両Mが自動的に(運転者の操作に依らずに)将来走行する目標軌道を生成する。目標軌道は、例えば、速度要素を含んでいる。例えば、目標軌道は、車両Mの到達すべき地点(軌道点)を順に並べたものとして表現される。軌道点は、道なり距離で所定の走行距離(例えば数[m]程度)ごとの車両Mの到達すべき地点であり、それとは別に、所定のサンプリング時間(例えば0コンマ数[sec]程度)ごとの目標速度および目標加速度が、目標軌道の一部として生成される。また、軌道点は、所定のサンプリング時間ごとの、そのサンプリング時刻における車両Mの到達すべき位置であってもよい。この場合、目標速度や目標加速度の情報は軌道点の間隔で表現される。
行動計画生成部126は、目標軌道を生成するにあたり、自動運転のイベントを設定してよい。自動運転のイベントには、定速走行イベント、低速追従走行イベント、車線変更イベント、分岐イベント、合流イベント、テイクオーバーイベントなどがある。行動計画生成部126は、起動させたイベントに応じた目標軌道を生成する。行動計画生成部126の詳細については後述する。
第2制御部160は、行動計画生成部126によって生成された目標軌道を、予定の時刻通りに車両Mが通過するように、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220を制御する。
第2制御部160は、例えば、取得部162と、速度制御部164と、操舵制御部166とを備える。取得部162は、行動計画生成部126により生成された目標軌道(軌道点)の情報を取得し、メモリ(不図示)に記憶させる。速度制御部164は、メモリに記憶された目標軌道に付随する速度要素に基づいて、走行駆動力出力装置200またはブレーキ装置210を制御する。操舵制御部166は、メモリに記憶された目標軌道の曲がり具合に応じて、ステアリング装置220を制御する。速度制御部164および操舵制御部166の処理は、例えば、フィードフォワード制御とフィードバック制御との組み合わせにより実現される。一例として、操舵制御部166は、車両Mの前方の道路の曲率に応じたフィードフォワード制御と、目標軌道からの乖離に基づくフィードバック制御とを組み合わせて実行する。
走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、内燃機関、電動機、および変速機などの組み合わせと、これらを制御するECU(Electronic Control Unit)とを備える。ECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って、上記の構成を制御する。
ブレーキ装置210は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ブレーキECUとを備える。ブレーキECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置210は、運転操作子80に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置210は、上記説明した構成に限らず、第2制御部160から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。
ステアリング装置220は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って、電動モータを駆動し、転舵輪の向きを変更させる。
[行動計画生成部の詳細]
図3は、行動計画生成部126の機能構成の一例を示す図である。行動計画生成部126は、例えば、第1導出部130と、第2導出部132と、第3導出部134と、指標導出部(導出部)136と、推定部138と、行動決定部140と、を備える。
第1導出部130は、第1指標を導出する。第2導出部132は、第2指標を導出する。第3導出部134は、第3指標を導出する。指標導出部136は、第1指標、第2指標、および第3指標に基づいて、予測確率を導出する。予測確率は、例えば、他車両が走行する道路に、他車両が進行可能な複数の経路が想定される場合、想定される経路のそれぞれに対して、他車両が将来走行する予定の予測確率である。推定部138は、統合指標に基づいて、他車両の進行方向を推定する。行動決定部140は、推定された他車両の進行方向(予測確率)に基づいて、車両を制御する。以下、各機能部の詳細、および指標の導出手法に説明する。
(第1指標の導出手法)
第1導出部130は、他車両が存在する道路構造に基づいて、第1指標(確率)を導出する。第1導出部130は、例えば、認識部122により認識された道路構造と、構造情報172とに基づいて、第1指標を導出する。第1導出部130は、地図情報(第2地図情報62)に道路構造を示す情報が関連付けられている場合、他車両が存在している位置を推定し、地図情報において推定した位置に関連付けられた道路構造を特定してもよい。
図4は、構造情報172の内容の一例を示す図である。構造情報172は、識別情報に対して、道路構造、道路構造の詳細、確率に対する重み、他車両が左折方向に進行する確率、他車両が直進方向に進行する確率、および他車両が右折方向に進行する確率が関連付けられた情報である。図4の例では、確率A、確率B、確率Cの順で、確率が高い。確率Aと、確率Bと、確率Cとの合計は、例えば「1」である。図4の例では、道路構造に関連付けられた重みは同一であるものとして示しているが、異なる大きさの重みが付与されていてもよい。重みの付与の詳細については後述する。
図4、後述する図8、図9、および図12において、「A」、「B」、「C」という記載をしているが、各図の「A」、「B」、「C」は、傾向を示しているだけであり、それぞれ異なる値であってもよい。
第1導出部130は、構造情報172の道路構造のうち、認識部122により認識された道路構造と合致する道路構造を特定する。図5に示すように、第1導出部130が、認識部122の認識結果に基づいて他車両mが走行するベースパスPA1の所定距離L内に次のベースパスPA2が存在し、3つのベースパス(PA2−PA4)の分岐点が存在すると判定した場合、道路構造は交差点であると判定する。
第1導出部130は、構造情報172において特定した道路構造に関連付けられた確率と重みを導出する。例えば、第1導出部130は、他車両が走行するベースパスに右パスも左パスも存在しないと判定した場合、道路は単車線であると判定し、単車線に関連付けられた確率を導出する(図4、図6のNo101参照)。単車線では、例えば、直進方向確率が最も確率が高く、左折方向確率と右折方向確率とは同程度である。「パス」とは、他車両が通過可能であると推定される経路である。
以下、他車両が存在する道路構造の詳細(具体例)について、単車線以外の道路構造について説明する。セミコロンの左側の記載は他車両が存在する道路構造であり、右側は道路構造の詳細(具体例)である。
複数車線の右端;車両が走行するベースパスに右パスが存在せず、左パスが存在する(図4、図6のNo102参照)。この場合、例えば、直進方向確率、左折方向確率(左方向に進行する確率、左車線に進行する確率)、右折方向確率(右方向に進行する確率、右車線に進行する確率)の順で確率が高い。
複数車線の真ん中;車両が走行するベースパスに右パスおよび左パスが存在する(図4、図6のNo103参照)。この場合、例えば、直進方向確率が左折方向確率および右折方向確率よりも高く、左折方向確率と右折方向確率とは同程度である。
複数車線の左端;車両が走行するベースパスに右パスが存在し、左パスが存在しない(図4、図6のNo104参照)。この場合、例えば、直進方向確率、右折方向確率、左折方向確率の順で確率が高い。
交差点;車両が走行するベースパスから所定距離内に次のベースパスが存在し、3つのベースパスの分岐点が存在する(図4、図6のNo105参照)。この場合、例えば、直進方向確率、左折方向確率、右折方向確率は同程度である。
右折専用レーン;車両が走行するベースパスから所定距離内に次のベースパスが存在し、車両の前方のベースパスの属性に「右折」が関連付けられているレーンを走行している(図4、図6のNo106参照)。この場合、例えば、右折方向確率、直進方向確率、左折方向確率の順で確率が高い。
例えば、第1導出部130は、認識部122の認識結果または地図情報に関連付けられた情報に基づいて、ベースパス(道路)に関連付けられた属性を取得する。属性とは、例えば、道路の交通規則に関する制約に関する情報である。道路の交通に関する制約(法律や規則)を遵守する方向に進む確率は、上記制約を遵守しないことになる方向に進む確率よりも高くなる。
左折専用レーン;車両が走行するベースパスから所定距離内に次のベースパスが存在し、車両の前方のベースパスの属性に「左折」が関連付けられているレーンを走行している(図4、図6のNo107参照)。この場合、例えば、左折方向確率、直進方向確率、右折方向確率の順で確率が高い。
直進右折専用レーン;車両が走行するベースパスから所定距離内に次のベースパスが存在し、車両の前方のベースパスの属性に「右折」が関連付けられ、「左折」が関連付けられていない(直進が関連付けられている)レーンを走行している(図4、図7のNo108参照)。この場合、例えば、直進方向確率および右折方向確率が、同程度であり、且つ左折方向確率よりも高い。
直進左折専用レーン;車両が走行するベースパスの所定距離内に次のベースパスが存在し、車両の前方のベースパスの属性に「左折」が関連付けられ、「右折」が関連付けられていない(直進が関連付けられている)レーンを走行している(図4、図7のNo109参照)。この場合、例えば、直進方向確率および左折方向確率が、同程度であり、且つ右折方向確率よりも高い。
右折矢印信号;ベースパスから所定距離以内において、右矢印信号がベースパス上の交差点に存在する(図4、図7のNo110参照)。この場合、例えば、右折方向確率、直進方向確率、左折方向確率の順で確率が高い。
直進矢印信号;ベースパスから所定距離以内において、直進矢印信号がベースパス上の交差点に存在する(図4、図7のNo111参照)。この場合、例えば、直進方向確率が右折方向確率および左折方向確率よりも高く、右折方向確率および左折方向確率は同程度の確率である。
左矢印信号;ベースパスから所定距離以内において、左矢印信号がベースパス上の交差点に存在する(図4、図7のNo112参照)。この場合、例えば、左折方向確率、直進方向確率、右折方向確率の順で確率が高い。
上述したように、第1導出部130は、道路構造に基づいて、経路に対する確率(第1指標)を導出する。
(第2指標の導出手法)
第2導出部132は、他車両の明示的な行動に基づいて、第2指標(確率)を導出する。明示的な行動とは、例えば、方向指示器が示す方向や、ブレーキランプの点灯状態である。明示的な行動は、方向指示器が示す方向の他、車両または車両の乗員が示す明示的な行動であればよく、例えば、乗員が明示するジェスチャーであってもよい。
第2導出部132は、認識部122により認識された他車両の明示的な行動と、状態情報174とに基づいて、第2指標を導出する。図8は、状態情報174の内容の一例を示す図である。状態情報174は、識別情報に対して、明示的な行動に関するイベント、イベントの内容、確率に対する重み、他車両が左折方向に進行する確率、他車両が直進方向に進行する確率、および他車両が右折方向に進行する確率が関連付けられた情報である。図8の例では、確率A、確率B、確率Cの順で、確率が高い。確率Aと、確率Bと、確率Cとの合計は、例えば「1」である。
第2導出部132は、認識部122により認識された他車両の明示的な行動に合致する、状態情報174のイベント(イベントの内容)を特定し、特定したイベントに関連付けられた確率と重みを導出する。例えば、右方向指示器のランプを点滅している場合、右折方向確率、直進方向確率、左折方向確率の順で確率が高く、左方向指示器のランプを点滅している場合、左折方向確率、直進方向確率、右折方向確率の順で確率が高い。ブレーキランプが点滅している場合、左折方向確率、直進方向確率、および右折方向確率は同程度である。
第2導出部132は、状態情報174に代えて、状態情報174Aを用いて確率を導出してもよい。図9は、状態情報174Aの内容の一例を示す図である。状態情報174Aは、状態情報174の内容に加え、更に以下の内容を含む。
例えば、他車両の右方向指示器が点滅しているときに、他車両が左にレーンチェンジした場合、例えば、確率は、右折方向確率、直進方向確率、左折方向確率の順で高くなる(図9のNo211、図10参照)。
図10は、他車両が右方向指示器のランプを点滅させているときに左レーンチェンジを行った場面の一例を示す図である。図10に示すように、他車両が、時刻tで右方向指示器のランプを点滅させて、時刻t+1、時刻t+2で左レーンチェンジを行った場合、第2導出部132は、前述した図9のNо211の状態に該当すると判定し、例えば、左折方向確率「C」、直進方向確率「B」、および右折方向確率「A」を導出する。
例えば、他車両の右方向指示器が点滅しているときに、他車両が右にレーンチェンジした場合、例えば、確率は、右折方向確率、直進方向確率、左折方向確率の順で高くなる(図9のNo212参照)。
例えば、他車両の左方向指示器が点滅しているときに、他車両が左にレーンチェンジした場合、例えば、確率は、左折方向確率、直進方向確率、右折方向確率の順で高くなる(図9のNo213参照)。
例えば、他車両の左方向指示器が点滅しているときに、他車両が右にレーンチェンジした場合、例えば、確率は、左折方向確率、直進方向確率、右折方向確率の順で高くなる(図9のNo214参照)。
例えば、他車両のブレーキランプが点滅(または点灯)しているときに、他車両が左にレーンチェンジした場合、例えば、左折方向確率が、直進方向確率および右折方向確率よりも高く、直進方向確率および右折方向確率は同等である(図9のNo215参照)。
例えば、他車両のブレーキランプが点滅(または点灯)しているときに、他車両が右にレーンチェンジした場合、例えば、右折方向確率が、直進方向確率および左折方向確率よりも高く、直進方向確率および左折方向確率は同等である(図9のNo216参照)。
上記以外のイベントである場合、左折方向確率が、直進方向確率および右折方向確率は同等である(図9のNo217参照)。
上記の第2指標に関連付けられている重みは、イベントごとに異なっていてもよい。例えば、他車両が車線変更を行った後、明示的行動を行うイベントに関連付けられた重みは、他車両が車線変更を行わずに明示的行動を行うイベントに関連付けられた重みよりも大きい。例えば、図9のNo212、およびNo213のように、方向指示器のランプの点滅状態と他車両の行動とが矛盾しないイベントに関連付けられた重みは他のイベントに関連付けられた重みよりも大きい。図9のNo211、およびNo214のように、方向指示器のランプの点滅状態と他車両の行動とが矛盾するイベントに関連付けられた重みは、図9のNо201またはNo202のように、単に方向指示器が点滅したイベントに関連付けられた重みよりも小さい。
上述したように、第2導出部132は、認識部122により認識された方向指示器の状態および他車両のレーンチェンジの状態に基づいて、経路に対する確率(第2指標)を導出する。
(第3指標の導出手法)
第3導出部134は、他車両が暗黙的に示す暗黙的行動に基づいて、第3指標(確率)を導出する。暗黙的な行動とは、例えば、車両が行き先を明示する行動とは異なる行動であって、例えば、他車両の走行状態を示す行動である。暗黙的な行動は、他車両の速度、他車両の加速度、他車両の位置のうち一以上の情報で表される。他車両の位置とは、例えば、他車両が走行する車線に対する他車両の位置である。
第3導出部134は、認識部122により認識された他車両の暗黙的な行動と、状態モデル176とに基づいて、第3指標を導出する。図11は、状態モデル176の処理の概念図である。状態モデル176は、他車両の暗黙的な行動を示す情報が入力されると、左折方向確率、直進方向確率、および右折方向確率を導出するモデルである。状態モデル176は、学習データを学習した学習済モデルである。学習データは、他車両の暗黙的な行動を示す情報(速度、加速度、および位置)と、第3指標とが関連付けられた複数の情報である。状態モデル176は、他車両の暗黙的な行動を示す情報が入力されると、入力された情報に関連付けられた第3指標を導出するように学習された学習済モデルである。
状態モデル176は、サポートベクターマシンや、ニューラルネットワークなどのディープラーニング技術を用いたモデル(機械学習モデル)であってもよいし、所定の関数であってもよい。
上記の例では、状態モデル176が、第3指標を導出するものとしたが、行動計画生成部126は、速度、加速度、または位置の一以上の情報と、予め設定された情報とを比較し、比較結果に基づいて、第3指標を導出してもよい。例えば、行動計画生成部126は、加速が第1所定加速度以上であり、且つ他車両の基準位置と隣接車線との距離が第2距離未満である場合、隣接車線に進行する確率を高くし、現在走行している車線を走行する確率を次に高くし、隣接車線とは反対側の隣接車線に進行する確率を次に高くする。すなわち、第3導出部134は、上記のような機械学習によって生成されたモデルを用いずに、所定の関数や規則に基づいて、第3指標を導出してもよい。
上記の例では、行動計画生成部126が、認識部122により認識された情報を予め用意された情報に当てはめて第1指標または第2指標を導出するものとしたが、行動計画生成部126は、サポートベクターマシンや、ニューラルネットワークなどのディープラーニング技術を用いたモデルを用いて、第1指標または第2指標を導出してもよい。例えば、画像や道路構造または明示的行動に関する指標を入力すると、第1指標または第2指標を出力するモデルが用いられてもよい。
(統合指標の導出手法)
指標導出部136は、各指標に関連付けられた重み(優劣)、第1指標、第2指標、および第3指標に基づいて、統合指標を導出する。統合指標とは、第1指標、第2指標、および第3指標が反映された左折方向確率、直進方向確率、および右折方向確率である。
図12は、統合指標が導出される処理について説明するため図である。指標導出部136は、例えば、第1指標−第3指標の左折方向確率を合計した第1合計指標と、第1指標−第3指標の直進方向確率を合計した第2合計指標と、第1指標−第3指標の右折方向確率を合計した第3合計指標とを導出する。更に、指標導出部136は、所定の関数やモデルに、第1合計指標−第3合計指標を適用して、統合指標を導出する。指標導出部136は、例えば、ソフトマックス関数を用いて、第1合計指標−第3合計指標を正規化して左折方向確率、直進方向確率、および右折方向確率を導出する。図12の例では、統合指標は、左折方向確率「c%」、直進方向確率「b%」、および右折方向確率「a%」である。
(重みの設定手法)
ここで、第1指標、第2指標、または第3指標に関連付けられている重みは、指標ごとに予め設定されているものとしたが、指標導出部136は、他車両が走行する道路の特性に基づいて、第1指標−第3指標の重みを設定してもよい。道路の特性とは、道路構造や、道路の所在(位置)と道路の構造との組み合わせ、道路の所在、他車両が走行している道路における制約(例えば法律や規則)等である。例えば、指標導出部136は、道路における制約が存在し、他車両がその制約を遵守して走行する必要がある場合、第1指標の重みを他の指標の重みよりも高く設定してもよい。例えば、他車両が左折専用レーンを走行している場合、第2指標または第3指標に関わらず他車両は左折する確率が高いためである。
例えば、指標導出部136は、記憶部170に記憶された重み情報を参照して、各指標の重みを設定してもよい。図13は、重み情報178の内容の一例を示す図である。図13の例では、道路の位置と道路構造との組み合わせ(道路の特性)ごとに、各指標の重みが対応付けられた情報である。重み情報178は、その位置を走行する車両の挙動や、シミュレーション結果に基づいて、生成された情報である。
指標導出部136は、例えば、第1指標の重みを、第2指標の重みおよび第3指標の重みよりも高く設定する。例えば、指標導出部136は、第1指標の重みの傾向と、第2指標の重みの傾向または第3指標の重みの傾向とが相反する場合、第1指標の重みを、第2指標の重みまたは第3指標の重みよりも高く設定してもよい。他車両は、道路構造の特徴に応じた行動を行う可能性が高いためである。
指標導出部136は、重み情報178を用いることに代えて(または加えて)、道路の特性ごとに設定された規則や、基準、関数を用いて、第1指標−第3指標に対する重みを導出してもよい。
指標導出部136は、第2指標の重みを、第3指標の重みよりも高く設定してもよい。例えば、指標導出部136は、第2指標の重みの傾向と、第3指標の重みの傾向とが相反する場合、第2指標の重みを、第3指標よりも高く設定してもよい。他車両が明示的な行動の意思を示している場合、暗黙的行動に関わらず、他車両は明示的な行動の意思に合致した行動を行う確率が高いためである。
特定の道路においては、第3指標の重みを第1指標の重みまたは第2指標の重みよりも大きくしてもよい。例えば、特定の道路では、第1指標または第2指標に関わらず他車両が第3指標に合致する傾向で行動する確率が高い場合があるためである。
指標導出部136は、他車両が予め設定された所定の行動を行った場合、第2指標の重みを第1指標の重みまたは第3指標の重みよりも大きくしてもよい。所定の行動は、例えば記憶部170に予め記憶されている。所定の行動とは、例えば、他車両が右折専用レーンに車線変更した後に右方向指示器のランプを点滅させる第1行動や、他車両が右折専用レーンに車線変更した後に左方向指示器のランプを点滅させる第2行動等の行動である。第1行動を行った他車両は、右折する確率が高いためである。第2行動を行った他車両は、誤って右折専用レーンに進入してしまったことが想定され、交差点に進入する前に車線変更する前の車線に戻る確率が高いいためである。
(推定結果の導出手法)
推定部138は、統合指標に基づいて、他車両の進行方向を推定する。図14は、他車両の進行方向を推定する処理について説明するための図である。推定部138は、道路構造と、予め設定された軌道モデルとに基づいて、他車両が進行する軌道を予測する。軌道モデルとは、道路構造ごとに予め設定された他車両が進行する軌道パターンである。
図14に示すように、他車両mの前方に交差点が存在する場合、他車両mは、交差点に向かって直進して交差点を右折する軌道OR1、交差点に向かって直進して交差点を通過する軌道OR2、または交差点に向かって直進して交差点を左折する軌道OR3の軌道に沿って走行することが予測される。このように道路構造に基づいて軌道パターンは予め設定されている。軌道OR1は右折方向に関連付けられ、軌道OR2は直進方向に関連付けられ、軌道OR3は左折方向に関連付けられている。更に、これらの各軌道に対して、時刻ごとの車両の位置が対応付けられている。時刻ごとの車両の位置は、実験データや、観測データ、シミュレーション結果に基づく車両の位置である。観測データは、道路構造を走行する車両の軌跡が観測されたデータである。
行動決定部140は、推定部138の推定結果に基づいて、車両Mの行動を決定する。行動決定部140は、想定される他車両の挙動に応じた車両の挙動を、予測確率に基づいて統合し、統合後の車両の挙動に基づいて、車両の挙動を制御する。例えば、行動決定部140は、時刻ごとの他車両の位置に基づいて車両の速度や加速度、位置を決定する。行動決定部140は、例えば、他車両が軌道OR1−OR3に基づいて走行する走行パターンごとに、車両の挙動を導出する。そして、行動決定部140は、走行パターンに対応する総合指標に基づいて、車両の挙動を導出する。行動決定部140は、例えば、走行パターンごとの総合指標に基づいて車両の挙動に対する反映率を導出し、更に導出した反映率に基づいて車両の挙動を決定する。例えば、軌道OR1の走行パターンに対応する総合指標が、他の軌道の走行パターンの総合指標よりも大きい場合、軌道OR1の走行パターンに応じた車両の挙動の反映率が、他の軌道の走行パターンに応じた車両の挙動の反映率よりも大きくなる。他車両が軌道OR1の走行パターンである場合、交差点の手前で減速することが予測されるため、行動決定部140は、例えば、他車両と車両との車間距離が閾値以下にならないように、車両Mを減速させる。反映率は、例えば、予め設定された関数や、予め規定された統計的な処理の手法に基づいて導出される。
上述した例では、主に他車両mが交差点に近づいた場合における他車両mが進行する方向を推定するものとしたが、上記と同様の考え方に基づいて、車両Mが走行する車線に他車両mがレーンチェンジする確率が導出されてもよい。
図15は、車両Mの挙動の一例を示す図である。図15に示すように、他車両mが車線R1を走行し、車両Mが車線R2(車線R1に隣接する車線)を走行している。他車両mが直進する確率が、車線R2に進入してくる確率よりも所定度合以上高い場合、車両Mは、予め設定された閾値以下の挙動を維持しながら走行する。例えば車両Mは、他車両mが車線変更する20%の確率を考慮して少し減速(後述する図16の減速度よりも小さい減速度で減速)しつつ走行する。行動決定部140は、例えば、所定の関数に他車両mが車線R2を走行する確率を適用して車両Mの速度を決定する。所定の関数とは、例えば、式(1)などの速度を導出するための関数である。「V」は速度であり、「C」は係数であり、「P」は確率である。
V=C(1−P)…(1)
図16は、車両Mの挙動の他の一例を示す図である。図16に示すように、他車両mが車線R2に進入してくる確率が、直進する確率よりも所定度合以上高い場合、車両Mは、減速して車線R2を走行する。
図17は、比較例の車両の加減速度の度合と、実施形態の車両Mの加減速度の度合とを比較するための図である。比較例の車両は、本実施形態の車両Mのように、他車両mの将来の進行方向や他車両mが将来走行する車線等を予測する機能を有さない車両(または精度よく予測する機能を有さない車両)である。比較例の車両は、将来の他車両mの位置を推定せずに走行を行うため、他車両が、車両Mが走行する車線に進入してきたり、右折または左折のために減速したりすると、その他車両の挙動に応じて閾値以上の加減速が、比較的頻繁に生じる場合がある。
これに対して、実施形態の車両Mは、将来の他車両mの動きや意図に基づいて他車両が進行可能な複数の経路のそれぞれに対して他車両が将来走行する予測経路を導出し、更に上記の複数の経路のそれぞれに応じた車両Mの挙動を導出する。そして、車両Mは、他車両mが将来走行する予測確率に基づいて、他車両mの複数の経路のそれぞれに応じた車両Mの挙動を統合して車両Mの挙動を決定する。これにより、車両Mは、閾値以下の挙動を多くしつつ、閾値を超える挙動の頻度を少なくすることができる。例えば、車両Mは、他車両が、車両Mが走行する車線に進入してきたり、右折または左折のために減速したりする前に、推定された他車両の挙動に基づいて、閾値以上の加減速が生じないように振る舞うことができ、閾値Th以上の加速または減速が生じる頻度が、比較例の車両において閾値Th以上の加速または減速が生じる頻度に比較して少ない。
上記のように、行動計画生成部126は、他車両mが進行する経路を精度よく予測することができる。これにより車両Mは、より滑らかに走行を行うことができ、乗員の車両Mの乗り心地を向上させることができる。
なお、推定部138は、閾値以上の確率に関連付けられた軌道に沿って他車両が走行する可能性が存在すると推定してもよい。例えば、推定部138は、左折方向に関連付けられた軌道OR3に進行する確率が閾値未満である場合、軌道OR1または軌道OR2に進行する確率が存在すると推定してもよい。
そして、行動決定部140は、他車両が軌道OR1に沿って走行した場合における車両Mの第1挙動と、他車両が軌道OR2に沿って走行した場合における車両Mの第2挙動とのうち、より他車両mの挙動の変化が大きくなる軌道に基づいて車両Mを走行させる。例えば軌道OR1は、他車両mが直進する軌道であり、軌道OR2は、他車両mが左折する軌道である。この場合、行動計画生成部126は、左折の際に他車両が減速することが予測される軌道OR2に基づいて、車両Mを制御する。
このように、自動運転制御装置100は、他車両mの挙動を一つに絞らずに、車両Mの加速度の変化が大きくならないように車両Mを制御することで、乗員の車両Mの乗り心地を向上させることができる。例えば、自動運転制御装置100は、他車両mの行動を予測し、この予測結果に基づいて予め車両Mを制御することにより、車両Mの加減速度が所定値以上になることを抑制することができる。自動運転制御装置100は、上記の抑制度合を、予測した所定時間後の他車両mの位置に基づいて決定することができるため、より滑らかな車両Mの制御を実現することができる。
なお、行動決定部140は、予測確率の大きさに対応した車両(自車両)の挙動変化量に基づいて車両の挙動を決定してもよい。例えば、行動決定部140は、他車両が所定の経路に沿って走行する予測確率が〇〇パーセントである場合、その予測確率の経路を走行する際の他車両の挙動に対応する車両の挙動における挙動変化量に〇〇パーセントを乗算したものを最終的な車両の挙動としてもよい。
また、推定部138は、例えば、統合指標のうち最も大きい確率に関連付けられた軌道に沿って他車両が進行すると推定してもよい。この場合、行動決定部140は、推定された他車両の軌道に基づく走行パターンに基づいて車両Mの挙動を決定する。
[フローチャート]
図18は、自動運転制御装置100により実行される処理の流れの一例を示すフローチャートである。本処理は、例えば、所定間隔で実行される。
まず、第1制御部120が、車両Mの周辺に処理対象の他車両が存在するか否かを判定する(ステップS100)。処理対象の他車両は、例えば、車両Mから所定距離以内に存在する車両である。より具体的には、処理対象の他車両は、車両Mの前方に存在し、且つ車両Mから所定距離以内に存在する車両である。
処理対象の他車両が存在する場合、情報管理部124が、以降の処理に用いる情報を取得する(ステップS102)。以降の処理に用いる情報とは、上述した第1指標−第3指標を導出する処理に利用される情報である。
次に、行動計画生成部126は、処理対象の他車両の周辺の道路構造を特定する(ステップS104)。次に、第1導出部130が、特定した道路構造と構造情報172とに基づいて、第1指標を導出する(ステップS106)。次に、第2導出部132が、方向指示器の状態と、状態情報174とに基づいて、第2指標を導出する(ステップS108)。次に、第3導出部134が、速度、加速度、他車両の位置、および状態モデル176に基づいて、第3指標を導出する(ステップS110)。
次に、指標導出部136が、ステップS106−S110で導出された第1指標−第3指標に基づいて、統合指標を導出する(ステップS112)。次に、推定部138が、ステップS114で導出された統合指標に基づいて、他車両の行動を推定する(ステップS114)。次に、行動決定部140が、ステップS116で推定された他車両の行動に基づいて、車両Mの行動を決定する(ステップS116)。これにより本フローチャートの1ルーチンの処理は終了する。
上記のように自動運転制御装置100は、複数の経路に対して他車両が進行する予測確率を導出することで、より精度よく他車両が走行する経路を予測することができる。更に、自動運転制御装置100は、他車両が走行する経路に基づいて、車両を制御することで、より車両を滑らかに走行させることができる。
[ハードウェア構成]
図19は、実施形態の自動運転制御装置100のハードウェア構成の一例を示す図である。図示するように、自動運転制御装置100は、通信コントローラ100−1、CPU100−2、ワーキングメモリとして使用されるRAM(Random Access Memory)100−3、ブートプログラムなどを格納するROM(Read Only Memory)100−4、フラッシュメモリやHDD(Hard Disk Drive)などの記憶装置100−5、ドライブ装置100−6などが、内部バスあるいは専用通信線によって相互に接続された構成となっている。通信コントローラ100−1は、自動運転制御装置100以外の構成要素との通信を行う。記憶装置100−5には、CPU100−2が実行するプログラム100−5aが格納されている。このプログラムは、DMA(Direct Memory Access)コントローラ(不図示)などによってRAM100−3に展開されて、CPU100−2によって実行される。これによって、認識部122、情報管理部124、および行動計画生成部126のうち一部または全部が実現される。
上記説明した実施形態は、以下のように表現することができる。
プログラムを記憶した記憶装置と、
ハードウェアプロセッサと、を備え、
前記ハードウェアプロセッサが前記記憶装置に記憶されたプログラムを実行することにより、
車両の周辺の道路構造および他車両を含む周辺環境を認識し、
前記認識された前記他車両が走行する道路に、前記他車両が進行可能な複数の経路が想定される場合、前記想定される経路のそれぞれに対して、前記他車両が将来走行する予測確率を導出し、
前記導出された前記予測確率に基づいて、前記車両の挙動を制御する、
ように構成されている、車両制御装置。
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
1‥車両システム、10‥カメラ、12‥レーダ装置、16‥物体認識装置、100‥自動運転制御装置、122‥認識部、124‥情報管理部、126‥行動計画生成部、130‥第1導出部、132‥第2導出部、134‥第3導出部、136‥指標導出部、140‥行動決定部、160‥第2制御部、170‥記憶部、172‥構造情報、174、174A‥状態情報、176‥状態モデル

Claims (13)

  1. 車両の周辺の道路構造および他車両を含む周辺環境を認識する認識部と、
    前記認識部により認識された前記他車両が走行する道路に、前記他車両が進行可能な複数の経路が想定される場合、前記想定される経路のそれぞれに対して、前記他車両が将来走行する予測確率を導出する導出部と、
    前記導出部により導出された前記予測確率に基づいて、前記車両の挙動を制御する走行制御部と、
    を備える車両制御装置。
  2. 前記導出部は、前記認識部により認識された周辺環境から得られた、前記他車両が存在する道路構造と、前記他車両が明示的に示す明示的行動と、前記他車両が暗黙的に示す暗黙的行動とに基づいて、前記予測確率を導出する、
    請求項1に記載の車両制御装置。
  3. 前記導出部は、前記道路構造、前記明示的行動、および前記暗黙的行動に関連付けられた優劣を加味して前記予測確率を導出する、
    請求項2に記載の車両制御装置。
  4. 前記導出部は、前記他車両が走行する道路の特性に基づいて、前記道路構造、前記明示的行動、および前記暗黙的行動に関連付けられた優劣を設定し、設定した優劣を加味して前記予測確率を導出する、
    請求項2または3に記載の車両制御装置。
  5. 前記導出部は、前記暗黙的行動よりも前記明示的行動を優先して前記予測確率を導出する、
    請求項2から4のうちいずれか1項に記載の車両制御装置。
  6. 前記導出部は、前記明示的行動よりも前記道路構造を優先して前記予測確率を導出する、
    請求項2から5のうちいずれか1項に記載の車両制御装置。
  7. 前記導出部は、前記他車両が車線変更した後に前記明示的行動を行った場合、前記他車両が車線変更せずに前記明示的行動を行った場合よりも、前記明示的行動が前記予測確率に与える影響度を大きくする、
    請求項2から6のうちいずれか1項に記載の車両制御装置。
  8. 前記道路構造は、前記車両が存在する道路の周辺の交差点の有無、前記道路の車線の種別、または前記道路に設けられた標識の種別のうち少なくとも一つを含み、
    前記明示的行動は、前記他車両に設けられた方向指示器の制御状態、或いは前記方向指示器の制御と前記他車両が行った車線変更の有無との組み合わせを含み、
    前記暗黙的行動は、前記他車両の位置、速度、または加速度のうち少なくとも一つを含む、
    請求項2から7のうちいずれか1項に記載の車両制御装置。
  9. 前記複数の経路は、前記他車両が直進する第1経路と、前記他車両が左折または右折する第2経路とを含み、
    前記導出部は、前記第1経路に対する第1予測確率と、前記第2経路に対する第2予測確率とを導出し、
    前記走行制御部は、前記導出部により導出された前記第1予測確率と前記第2予測確率とに基づいて、前記車両の挙動を制御する、
    請求項2から8のうちいずれか1項に記載の車両制御装置。
  10. 前記複数の経路は、前記他車両が直進する第1経路と、前記他車両が車線変更する第3経路とを含み、
    前記導出部は、前記第1経路に対する第1予測確率と、前記第3経路に対する第3予測確率とを導出し、
    前記走行制御部は、前記導出部により導出された前記第1予測確率と前記第3予測確率とに基づいて、前記車両の挙動を制御する、
    請求項2から9のうちいずれか1項に記載の車両制御装置。
  11. 前記走行制御部は、想定される前記他車両の挙動に応じた前記車両の挙動を、前記導出部により導出された前記予測確率に基づいて統合し、統合後の前記車両の挙動に基づいて、前記車両の挙動を制御する、
    請求項1から10のうちいずれか1項に記載の車両制御装置。
  12. コンピュータが、
    車両の周辺の道路構造および他車両を含む周辺環境を認識し、
    前記認識された前記他車両が走行する道路に、前記他車両が進行可能な複数の経路が想定される場合、前記想定される経路のそれぞれに対して、前記他車両が将来走行する予測確率を導出し、
    前記導出された前記予測確率に基づいて、前記車両の挙動を制御する、
    車両制御方法。
  13. コンピュータに、
    車両の周辺の道路構造および他車両を含む周辺環境を認識させ、
    前記認識された前記他車両が走行する道路に、前記他車両が進行可能な複数の経路が想定される場合、前記想定される経路のそれぞれに対して、前記他車両が将来走行する予測確率を導出させ、
    前記導出された前記予測確率に基づいて、前記車両の挙動を制御させる、
    プログラム。
JP2020022750A 2020-02-13 2020-02-13 車両制御装置、車両制御方法、およびプログラム Active JP7313298B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020022750A JP7313298B2 (ja) 2020-02-13 2020-02-13 車両制御装置、車両制御方法、およびプログラム
US17/170,929 US11685406B2 (en) 2020-02-13 2021-02-09 Vehicle control device, vehicle control method, and storage medium
CN202110181486.3A CN113320541B (zh) 2020-02-13 2021-02-09 车辆控制装置、车辆控制方法及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020022750A JP7313298B2 (ja) 2020-02-13 2020-02-13 車両制御装置、車両制御方法、およびプログラム

Publications (2)

Publication Number Publication Date
JP2021127002A true JP2021127002A (ja) 2021-09-02
JP7313298B2 JP7313298B2 (ja) 2023-07-24

Family

ID=77272437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020022750A Active JP7313298B2 (ja) 2020-02-13 2020-02-13 車両制御装置、車両制御方法、およびプログラム

Country Status (3)

Country Link
US (1) US11685406B2 (ja)
JP (1) JP7313298B2 (ja)
CN (1) CN113320541B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7175344B1 (ja) 2021-05-11 2022-11-18 三菱電機株式会社 車両制御装置、車両制御システム、車両制御方法及び車両制御プログラム
WO2024111389A1 (ja) * 2022-11-24 2024-05-30 株式会社デンソー 処理システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220056923A (ko) * 2020-10-28 2022-05-09 현대자동차주식회사 자율주행 제어 장치 및 방법
DE102021210545A1 (de) * 2021-09-22 2023-03-23 Robert Bosch Gesellschaft mit beschränkter Haftung Verbesserte Vorhersage für Fahrmanöver von Fremdfahrzeugen
US12065170B2 (en) * 2021-09-28 2024-08-20 GM Global Technology Operations LLC Automated driving systems and control logic for lane localization of target objects in mapped environments
US11804131B2 (en) * 2021-11-24 2023-10-31 GM Global Technology Operations LLC Communication system for determining vehicle context and intent of a target vehicle based on perceived lane of travel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103925A (ja) * 2016-12-28 2018-07-05 日立オートモティブシステムズ株式会社 車両制御装置
JP2019016104A (ja) * 2017-07-05 2019-01-31 株式会社デンソー 車両制御装置
JP2019026183A (ja) * 2017-08-02 2019-02-21 クラリオン株式会社 車両制御装置、速度制御方法
JP2019094044A (ja) * 2017-11-17 2019-06-20 株式会社デンソー 車両制御装置
WO2019150525A1 (ja) * 2018-02-01 2019-08-08 本田技研工業株式会社 車両制御装置、車両、および車両制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9248834B1 (en) * 2014-10-02 2016-02-02 Google Inc. Predicting trajectories of objects based on contextual information
US9934688B2 (en) * 2015-07-31 2018-04-03 Ford Global Technologies, Llc Vehicle trajectory determination
JP6565480B2 (ja) 2015-08-24 2019-08-28 住友電気工業株式会社 運転支援装置、コンピュータプログラム及び運転支援システム
BR112019014912A2 (pt) 2017-01-20 2020-03-31 Nissan Motor Co., Ltd. Método de previsão de comportamento de veículo e aparelho de previsão de comportamento de veículo
US20200164873A1 (en) * 2017-05-16 2020-05-28 Nissan Motor Co., Ltd. Action Prediction Method and Action Prediction Device of Traveling Assistance Device
JP7043765B2 (ja) * 2017-09-21 2022-03-30 日産自動車株式会社 車両走行制御方法及び装置
US11352009B2 (en) * 2017-10-10 2022-06-07 Honda Motor Co., Ltd. Vehicle control apparatus, vehicle control method, and program
JP2019156269A (ja) * 2018-03-15 2019-09-19 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
DE102018222176A1 (de) * 2018-12-18 2020-06-18 Robert Bosch Gmbh Vorhersage des Spurwechsels von Fremdfahrzeugen
DE102019206178A1 (de) * 2019-04-30 2020-11-05 Ford Global Technologies, Llc Verfahren und Vorrichtung zum Abschätzen einer Fahrspurwechselabsicht eines Fahrzeugs
US11529961B2 (en) * 2019-09-30 2022-12-20 GM Cruise Holdings LLC. Tracking object path in map prior layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103925A (ja) * 2016-12-28 2018-07-05 日立オートモティブシステムズ株式会社 車両制御装置
JP2019016104A (ja) * 2017-07-05 2019-01-31 株式会社デンソー 車両制御装置
JP2019026183A (ja) * 2017-08-02 2019-02-21 クラリオン株式会社 車両制御装置、速度制御方法
JP2019094044A (ja) * 2017-11-17 2019-06-20 株式会社デンソー 車両制御装置
WO2019150525A1 (ja) * 2018-02-01 2019-08-08 本田技研工業株式会社 車両制御装置、車両、および車両制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7175344B1 (ja) 2021-05-11 2022-11-18 三菱電機株式会社 車両制御装置、車両制御システム、車両制御方法及び車両制御プログラム
JP2022176417A (ja) * 2021-05-11 2022-11-29 三菱電機株式会社 車両制御装置、車両制御システム、車両制御方法及び車両制御プログラム
WO2024111389A1 (ja) * 2022-11-24 2024-05-30 株式会社デンソー 処理システム

Also Published As

Publication number Publication date
JP7313298B2 (ja) 2023-07-24
CN113320541A (zh) 2021-08-31
US20210253136A1 (en) 2021-08-19
CN113320541B (zh) 2024-05-14
US11685406B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
JP7440324B2 (ja) 車両制御装置、車両制御方法、及びプログラム
JP7313298B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2019128614A (ja) 予測装置、予測方法、およびプログラム
JP7000202B2 (ja) 車両制御システム、車両制御方法、およびプログラム
US11106206B2 (en) Vehicle control device, vehicle control method, and storage medium
JP2021155006A (ja) 移動体制御装置、移動体制御方法、およびプログラム
CN113460080A (zh) 车辆控制装置、车辆控制方法及存储介质
JP2021160426A (ja) 移動体制御装置、移動体制御方法、およびプログラム
CN113525413A (zh) 车辆控制装置、车辆控制方法及存储介质
CN110341703B (zh) 车辆控制装置、车辆控制方法及存储介质
JP2021160533A (ja) 車両制御装置、車両制御方法、及びプログラム
US11836993B2 (en) Method for controlling vehicle, vehicle control device, and storage medium
JP7225185B2 (ja) 車両制御装置、車両制御方法、およびプログラム
CN115140086A (zh) 车辆控制装置、车辆控制方法及存储介质
CN114506316A (zh) 车辆控制装置、车辆控制方法以及存储介质
JP7123867B2 (ja) 車両制御装置、車両制御装方法、およびプログラム
JP2021160531A (ja) 車両制御装置、車両制御方法、及びプログラム
JP2021160399A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2021149464A (ja) 車両制御装置、車両制御方法、およびプログラム
US12115984B2 (en) Vehicle control device, vehicle control method, and non-transitory computer-readable recording medium recording program
JP7050098B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2022044236A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2021154886A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2021008227A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2021124747A (ja) 車両制御装置、車両制御方法、およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230711

R150 Certificate of patent or registration of utility model

Ref document number: 7313298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150