[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021126044A - Method for producing organic compound derived from microalga - Google Patents

Method for producing organic compound derived from microalga Download PDF

Info

Publication number
JP2021126044A
JP2021126044A JP2018084767A JP2018084767A JP2021126044A JP 2021126044 A JP2021126044 A JP 2021126044A JP 2018084767 A JP2018084767 A JP 2018084767A JP 2018084767 A JP2018084767 A JP 2018084767A JP 2021126044 A JP2021126044 A JP 2021126044A
Authority
JP
Japan
Prior art keywords
microalgae
organic compound
cell
slurry
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018084767A
Other languages
Japanese (ja)
Inventor
和士 岡田
Kazushi Okada
和士 岡田
浩隆 千田
Hirotaka Senda
浩隆 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chitose Lab Corp
Original Assignee
Chitose Lab Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chitose Lab Corp filed Critical Chitose Lab Corp
Priority to JP2018084767A priority Critical patent/JP2021126044A/en
Priority to PCT/JP2019/007481 priority patent/WO2019207949A1/en
Publication of JP2021126044A publication Critical patent/JP2021126044A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

To effectively release microalga cells and intercellular matrices and obtain an easy-to-use organic compound derived from microalga.SOLUTION: Provided is a method for producing an organic compound, comprising: a releasing step in which microalga cells included in a microalga slurry are released to obtain released cells and intercellular matrices; an intercellular matrix recovery step in which the released cells and the intercellular matrices are separated to obtain the intercellular matrices; and an organic compound obtaining step in which the intercellular matrices obtained in the intercellular matrix recovery step are used to obtain an organic compound derived from microalga.SELECTED DRAWING: Figure 1

Description

本発明は,微細藻類由来の有機化合物を製造する方法に関する。 The present invention relates to a method for producing an organic compound derived from microalgae.

微細藻類は,アルジナンなどの有機化合物を生産する。微細藻類由来の有機化合物は,バイオ燃料などの原料として利用される。このため,微細藻類から有機化合物を得ることは,有用である。 Microalgae produce organic compounds such as arginan. Organic compounds derived from microalgae are used as raw materials for biofuels and the like. Therefore, it is useful to obtain organic compounds from microalgae.

例えば,国際公開WO2013−121509号パンフレット(特許文献1)では,次亜塩素酸を用いることで,ボツリオコッカス・ブラウニーの単細胞を細胞間マトリクスから分離することが記載されている。次亜塩素酸が混入された細胞間マトリクスを用いて炭化水素を得た場合,得られた炭化水素を精製することが難しい。 For example, the international publication WO2013-121509 pamphlet (Patent Document 1) describes that the single cells of Botryococcus brownie are separated from the extracellular matrix by using hypochlorous acid. When hydrocarbons are obtained using an extracellular matrix mixed with hypochlorous acid, it is difficult to purify the obtained hydrocarbons.

特許第6033551号公報には,水溶性スラリーから炭化水素を得る方法が記載されている。この方法は,炭化水素生産性微生物を含む水性スラリーを加熱し,その細胞質中及び/又は細胞間マトリクス中に蓄積された炭化水素を水性スラリー中に遊離させて炭化水素の抽出効率を向上させる。 Japanese Patent No. 6033551 describes a method for obtaining a hydrocarbon from a water-soluble slurry. This method heats an aqueous slurry containing hydrocarbon-producing microorganisms and liberates the hydrocarbons accumulated in the cytoplasm and / or the intercellular matrix into the aqueous slurry to improve the efficiency of hydrocarbon extraction.

特開2017-38536号公報には,微細藻類由来バイオマスを含むスラリーから,アルジナンを浮遊分離処理することを特徴とするアルジナン組成物の製造方法が記載されている。 Japanese Unexamined Patent Publication No. 2017-38536 describes a method for producing an arginan composition, which comprises performing planktonic separation treatment of arginane from a slurry containing microalgae-derived biomass.

国際公開WO2013−121509号パンフレットInternational Publication WO2013-121509 Pamphlet 特許第6033551号公報Japanese Patent No. 6033551 特開2017-38536号公報JP-A-2017-38536

微細藻類の細胞及び細胞間マトリクスを効果的に遊離し,しかも利用しやすい微細藻類由来の有機化合物を得ることが望まれる。 It is desired to obtain an organic compound derived from microalgae that effectively releases microalgae cells and extracellular matrix and is easy to use.

本明細書は,基本的には,微細藻類のスラリーを用いて,微細藻類の細胞や細胞間マトリクスを遊離させ,その後に,遊離した細胞を取り除いて細胞間マトリクスを得れば,利用しやすい微細藻類由来の有機化合物を得ることができるという知見に基づく。つまり,この明細書における発明の特徴の一つは,細胞間マトリクスをいったん得て,その細胞間マトリクスを用いて有機化合物を得ることにある。 This specification is easy to use if, basically, a microalgae slurry is used to release microalgae cells and an intercellular matrix, and then the released cells are removed to obtain an intercellular matrix. Based on the finding that organic compounds derived from microalgae can be obtained. That is, one of the features of the invention in this specification is that an extracellular matrix is once obtained, and an organic compound is obtained using the extracellular matrix.

この有機化合物の製造方法は,遊離工程と,細胞間マトリクス回収工程と,有機化合物取得工程とを含む。
遊離工程は,微細藻類スラリーに含まれる微細藻類の細胞遊離を起こし,遊離細胞及び細胞間マトリクスを得るための工程である。細胞間マトリクス回収工程は,遊離工程で得られた遊離細胞と細胞間マトリクスとを分離して,細胞間マトリクスを得るための工程である。有機化合物取得工程は,細胞間マトリクス回収工程で得られた細胞間マトリクスを用いて,微細藻類由来の有機化合物を得るための工程である。この工程は,油脂抽出工程ともよばれる。
上記の微細藻類由来の有機化合物は,炭化水素とアルジナンを含む。この製造方法は,微細藻類由来の炭化水素を得る方法であってもよいし,微細藻類由来のアルジナンを得る方法であってもよい。
微細藻類は,ボツリオコッカス属に属する微細藻類であることが好ましく,ボツリオコッカス・ブラウニー又はボツリオコッカス・ブラウニーから派生したボツリオコッカス・ブラウニー株であることが好ましい。
また,微細藻類スラリーは,含水率が75〜99.9重量%であり,遊離工程が,微細藻類スラリーを凍結する工程を含むものであってもよい。
また,微細藻類スラリーは,含水率が75〜99.9重量%であり,遊離工程が,微細藻類スラリーを50℃以上70℃以下で5分以上5日以下加熱する工程を含むものであってもよい。
また,微細藻類スラリーは,含水率が75〜99.9重量%であり,遊離工程が,微細藻類スラリーに塩化ナトリウム及びグリセロールのいずれか又は両方を添加する工程を含むものであってもよい。
The method for producing this organic compound includes a release step, an extracellular matrix recovery step, and an organic compound acquisition step.
The release step is a step for causing cell release of microalgae contained in the microalgae slurry to obtain free cells and an intercellular matrix. The extracellular matrix recovery step is a step for separating the free cells obtained in the free step and the extracellular matrix to obtain an extracellular matrix. The organic compound acquisition step is a step for obtaining an organic compound derived from microalgae by using the cell-cell matrix obtained in the cell-cell matrix recovery step. This process is also called a fat extraction process.
The above-mentioned organic compounds derived from microalgae include hydrocarbons and arginane. This production method may be a method for obtaining a hydrocarbon derived from microalgae, or a method for obtaining arginane derived from microalgae.
The microalgae is preferably a microalgae belonging to the genus Botryococcus, and is preferably a Botryococcus brownie strain derived from Botryococcus brownie or Botryococcus brownie.
Further, the microalgae slurry has a water content of 75 to 99.9% by weight, and the liberation step may include a step of freezing the microalgae slurry.
The microalgae slurry has a water content of 75 to 99.9% by weight, and the liberation step includes a step of heating the microalgae slurry at 50 ° C. or higher and 70 ° C. or lower for 5 minutes or longer and 5 days or shorter. May be good.
Further, the microalgae slurry has a water content of 75 to 99.9% by weight, and the liberation step may include a step of adding either or both of sodium chloride and glycerol to the microalgae slurry.

本明細書に記載された発明によれば,微細藻類スラリーを用いて所定の遊離条件を採用することで,微細藻類の細胞及び細胞間マトリクスを効果的に遊離し,その後に細胞間マトリクスを得て,利用しやすい微細藻類由来の有機化合物を得ることができる。 According to the invention described herein, by adopting predetermined release conditions using a microalgae slurry, the cells of the microalgae and the intercellular matrix are effectively released, and then the intercellular matrix is obtained. Therefore, an organic compound derived from microalgae that is easy to use can be obtained.

図1は,処理工程の例を説明するためのフローチャートである。FIG. 1 is a flowchart for explaining an example of a processing process. 図2は,実施例1の条件3における細胞遊離の状況を示す図面に替わる顕微鏡写真である。FIG. 2 is a photomicrograph that replaces the drawing showing the state of cell release under condition 3 of Example 1. 図3は,実施例1の条件6における細胞遊離の状況を示す図面に替わる顕微鏡写真である。FIG. 3 is a photomicrograph instead of a drawing showing the state of cell release under condition 6 of Example 1. 図4は,実施例1の条件8における細胞遊離の状況を示す図面に替わる顕微鏡写真である。FIG. 4 is a photomicrograph that replaces the drawing showing the state of cell release under condition 8 of Example 1. 図5は,実施例4における細胞遊離の状況を示す図面に替わる顕微鏡写真及びその評価を示す図である。FIG. 5 is a diagram showing a micrograph and an evaluation thereof in place of the drawing showing the state of cell release in Example 4. 図6は,実施例4における細胞遊離の状況を示す図面に替わる顕微鏡写真及びその評価を示す図である。FIG. 6 is a diagram showing a micrograph and an evaluation thereof in place of the drawing showing the state of cell release in Example 4. 図7は,実施例6の条件2における細胞遊離の状況を示す図面に替わる顕微鏡写真である。FIG. 7 is a photomicrograph instead of a drawing showing the state of cell release under condition 2 of Example 6. 図8は,実施例6の条件4における細胞遊離の状況を示す図面に替わる顕微鏡写真である。FIG. 8 is a photomicrograph instead of a drawing showing the state of cell release under condition 4 of Example 6. 図9は,実施例6の条件6における細胞遊離の状況を示す図面に替わる顕微鏡写真である。FIG. 9 is a photomicrograph instead of a drawing showing the state of cell release under condition 6 of Example 6. 図10は,実施例7における細胞遊離の状況を示す図面に替わる顕微鏡写真及びその評価を示す図である。FIG. 10 is a diagram showing a micrograph and an evaluation thereof in place of the drawing showing the state of cell release in Example 7. 図11は,実施例9において得られた粗油のGC/MS結果を示す図面に替わるグラフである。FIG. 11 is a graph that replaces the drawing showing the GC / MS results of the crude oil obtained in Example 9. 図12は,実施例9において得られたアルジナンのTG/DTA結果を示す図面に替わるグラフである。FIG. 12 is a graph that replaces the drawing showing the TG / DTA results of Arginan obtained in Example 9. 図13に比較例1にて得た粗油のGC/MS結果を示す。FIG. 13 shows the GC / MS results of the crude oil obtained in Comparative Example 1. 図14に比較例1にて得た乾燥藻体のTG/DTA結果を示す。FIG. 14 shows the TG / DTA results of the dried algae obtained in Comparative Example 1. 図15に実施例10にて得た粗油のGC/MS結果を示す。FIG. 15 shows the GC / MS results of the crude oil obtained in Example 10. 図16に実施例10にて得たアルジナンのTG/DTA結果を示す。FIG. 16 shows the TG / DTA results of Arginan obtained in Example 10.

以下,本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜修正したものも含む。 Hereinafter, embodiments for carrying out the present invention will be described. The present invention is not limited to the forms described below, but also includes those which are appropriately modified by those skilled in the art from the following forms to the extent obvious to those skilled in the art.

本明細書に記載される発明は,微細藻類由来の有機化合物を得る方法に関する。 The invention described herein relates to a method for obtaining an organic compound derived from microalgae.

微細藻類とは,人の肉眼では個々の存在が識別できないような微小な藻類を意味する。
微細藻類の例は,藍色植物門,灰色植物門,紅色植物門,緑色植物門,クリプト植物門,ハプト植物門,不等毛植物門,渦鞭毛植物門,ユーグレナ植物門,クロララクニオン植物門に属する微細藻類である。これらは,1種単独で使用してもよく,2種以上を併用してもよい。これらの中でも,微細藻類としては,緑色植物門が好ましく,緑藻であることがより好ましい。バイオマスを産生する点で,微細藻類として,ヘマトコッカス(Haematococcus sp.)属,クラミドモナス(Chlamydomonas sp.)属,クロロコッカム(Chlorococcum sp.)属,ボツリオコッカス(Botryococcus sp.)属が好ましい。
Microalgae means microalgae whose individual existence cannot be identified by the human eye.
Examples of microalgae are indigo plants, gray plants, crimson plants, green plants, cryptophyta, haptophyta, unequal hair plants, whirlpool plants, euglena plants, chloralakunion plants. It is a microalga belonging to the phylum. These may be used alone or in combination of two or more. Among these, as the microalgae, the phylum Green algae is preferable, and green algae are more preferable. In terms of producing biomass, as microalgaes, the genus Haematococcus sp., The genus Chlamydomonas sp., The genus Chlamydomonas sp., The genus Botryococcus sp.

ボツリオコッカス属の微細藻類は,主として細胞外に炭化水素などの有機化合物の重合合成物であるアルジナンが主成分の細胞間マトリクスを形成し,2−10μmのサイズの細胞数個〜数百個からなる群体(40−300μm)を維持し,生活圏を形成している。また,細胞内で生産した炭化水素の95%を細胞間マトリクスに蓄積させている。このように蓄積した炭化水素及びアルジナンなどの有機化合物は,バイオ燃料やバイオリファイナリーの原料として期待される。ボツリオコッカス属に属する微細藻類の例は,ボツリオコッカス・ブラウニー及びボツリオコッカス・プロチュバランスである。ボツリオコッカス・ブラウニーの例は,ボツリオコッカス・ブラウニーA品種(Race−A)及びボツリオコッカス・ブラウニーB品種(Race−B),並びにその派生株及び変異株である。ボツリオコッカス・ブラウニーの他の例は,テトラテルペンであるリコポジン,(Lycopadiene)を主要な有機化合物として生産するL品種やC18−C20アルカン(例えば,n−アルカンやエポキシn−アルカン)を生産するS品種である。本明細書において,「ボツリオコッカス・ブラウニーA品種」は,脂肪酸由来の直鎖状有機化合物を生産するボツリオコッカス・ブラウニーの品種を意味し,具体的には,C25-31直鎖状アルカジエン若しくはアルカトリエン(ここで,炭素原子数は前記範囲の奇数の整数である)を生産する特性を有するボツリオコッカス・ブラウニーの品種を意味する。また,本明細書において,「ボツリオコッカス・ブラウニーB品種」は,テルペン類である有機化合物を生産するボツリオコッカス・ブラウニーの品種を意味し,具体的には,C30-37直鎖状若しくは分枝状のトリテルペン,特に式:CnH2n-10(式中,nは30〜37の整数である)で表されるメチル化されたトリテルペンを生産する特性を有するボツリオコッカス・ブラウニーの品種を意味する。ボツリオコッカス・ブラウニーA品種及びB品種は,当該技術分野で公知の品種特性に基づき,同定することが出来る(Metzger, P.ら, Phytochemistry, 第24巻, 第10号, p. 2305-2312, 1985年)。 Botryococcus microalgae form an extracellular matrix mainly composed of arginane, which is a polymerization compound of organic compounds such as hydrocarbons, outside the cells, and several to several hundred cells with a size of 2-10 μm. It maintains a colony (40-300 μm) consisting of and forms a living area. In addition, 95% of the hydrocarbon produced in the cell is accumulated in the extracellular matrix. Organic compounds such as hydrocarbons and arginane accumulated in this way are expected as raw materials for biofuels and biorefineries. Examples of microalgaes belonging to the genus Botryococcus are Botryococcus brownie and Botryococcus prochubalance. Examples of Botryococcus brownie are the Botryococcus brownie A variety (Race-A) and the Botryococcus brownie B variety (Race-B), as well as their derivatives and mutants. Other examples of Botryococcus brownie include L varieties and C 18- C 20 alkanes (eg, n-alkanes and epoxy n-alkanes) that produce the tetraterpene lycopazine, (Lycopageene) as the major organic compound. It is an S variety to be produced. In the present specification, "Botryococcus brownie A variety" means a variety of Botryococcus brownie that produces a linear organic compound derived from a fatty acid, and specifically, C25-31 linear alkaziene. Alternatively, it means a Botryococcus brownie variety having the property of producing alkatriene (here, the number of carbon atoms is an odd integer in the above range). Further, in the present specification, "Botryococcus brownie B variety" means a variety of Botryococcus brownie that produces an organic compound which is a terpene, and specifically, C30-37 linear or linear or Branched triterpenes, especially those of Botryococcus brownie, which have the property of producing methylated triterpenes represented by the formula: C n H 2n-10 (where n is an integer between 30 and 37). Means a variety. Botryococcus brownie A and B varieties can be identified based on cultivar characteristics known in the art (Metzger, P. et al., Phytochemistry, Vol. 24, No. 10, p. 2305-2312). , 1985).

微細藻類を入手する方法は,特に制限はなく,目的に応じて適宜選択することができ,例えば,自然界より採取する方法,市販品を用いる方法,保存機関や寄託機関から入手してもよいし,さらにこれらを培養してもよい。微細藻類は,純化工程を経由したものであることが好ましい。純化工程とは,微細藻類を単一の種類にする目的で行う工程であり,必ずしも完全に単独の微細藻類のみにすることをいうものではない。 The method for obtaining microalgae is not particularly limited and may be appropriately selected according to the purpose. For example, a method for collecting microalgae from the natural world, a method using a commercially available product, or a method for obtaining microalgae may be obtained from a storage organization or a depository organization. , In addition, these may be cultivated. The microalgae are preferably those that have undergone a purification step. The purification step is a step performed for the purpose of making microalgae into a single type, and does not necessarily mean making only a single type of microalgae.

微細藻類由来の有機化合物とは,例えば,微細藻類から得ることができる炭化水素やアルジナンを意味する。本明細書において,「炭化水素」は,炭素及び水素からなる有機化合物を意味し,具体的には,特定の数の炭素原子を含む,直鎖状若しくは分枝状の脂肪族,脂環式又は芳香族炭化水素を意味する。例えば,「C20-40炭化水素」は,少なくとも20個且つ多くても40個の炭素原子を含む,直鎖状若しくは分枝状の脂肪族,脂環式又は芳香族炭化水素を意味する。炭素数20〜40の範囲(C20-40)の直鎖状若しくは分枝状の脂肪族又は脂環式炭化水素であることが好ましく,C25-31直鎖状アルカジエン若しくはアルカトリエン(ここで,炭素原子数は前記範囲の奇数の整数である),又はC30-37直鎖状若しくは分枝状のトリテルペンであることがより好ましい。本明細書において,「アルカジエン」は,上記で定義された炭化水素であって,2個のC-C単結合が二重結合に置換された炭化水素を意味し,「アルカトリエン」は,上記で定義された炭化水素であって,3個のC-C単結合が二重結合に置換された炭化水素を意味する。また,本明細書において,「トリテルペン」は,ファルネシル二リン酸(FPP)の2量化によって生成するプレスクアレン二リン酸を前駆体として生合成されるC30炭化水素から派生する炭化水素を意味する。 The organic compound derived from microalgae means, for example, a hydrocarbon or arginane that can be obtained from microalgae. In the present specification, "hydrocarbon" means an organic compound composed of carbon and hydrogen, and specifically, a linear or branched aliphatic or alicyclic compound containing a specific number of carbon atoms. Or it means an aromatic hydrocarbon. For example, "C 20-40 hydrocarbon" means a linear or branched aliphatic, alicyclic or aromatic hydrocarbon containing at least 20 and at most 40 carbon atoms. It is preferably a linear or branched aliphatic or alicyclic hydrocarbon in the range of 20-40 carbons (C 20-40 ), preferably C 25-31 linear alkaziene or alkatorien (here). , The number of carbon atoms is an odd integer in the above range), or C 30-37 linear or branched triterpenes are more preferred. In the present specification, "alkaziene" means a hydrocarbon defined above, in which two CC single bonds are replaced with a double bond, and "alkatorien" is defined above. It means a hydrocarbon in which three CC single bonds are replaced with double bonds. Further, in the present specification, "triterpene" means a hydrocarbon derived from C 30 hydrocarbon biosynthesized using presqualene diphosphate produced by dimerization of farnesyl diphosphate (FPP) as a precursor. ..

ボツリオコッカス属の微細藻類が生産する有機化合物は,先に説明した通りである。例えば,ボツリオコッカス属のB品種の株が高生産する有機化合物は,C30からC37(炭素数30〜37)のトリテルペン構造を持つ有機化合物を高生産することが知られている。この有機化合物は,バイオ燃料やバイオリファイナリー原料として期待されている。一方,アルジナンについては,機器分析により構造推定がなされており,B品種が生産するアルジナンは,テルペノイドに由来する高分子重合体であり,炭化水素鎖の中に二重結合が存在することから,ゴム様,スポンジ様の弾力を有すると予想され,各種工業分野での利用が期待されている。 The organic compounds produced by Botryococcus microalgae are as described above. For example, it is known that an organic compound highly produced by a strain of the B cultivar of the genus Botryococcus produces a high amount of an organic compound having a triterpene structure of C30 to C37 (carbon number 30 to 37). This organic compound is expected as a biofuel and a biorefinery raw material. On the other hand, the structure of arginan has been estimated by instrumental analysis. The arginan produced by cultivar B is a polymer polymer derived from terpenoids, and since there are double bonds in the hydrocarbon chain, it is necessary. It is expected to have rubber-like and sponge-like elasticity, and is expected to be used in various industrial fields.

アルジナンとは,例えば,微細藻類が成長の過程で数個〜数百個の細胞の集合体(コロニー)を形成した際に産生される有機化合物類等の重合合成物(バイオポリマー)を意味する(特開2017-38536号公報)。 Ardinane means, for example, a polymerization compound (biopolymer) such as organic compounds produced when microalgae form an aggregate (colony) of several to several hundred cells in the process of growth. (Japanese Patent Laid-Open No. 2017-38536).

有機化合物の製造方法は,遊離工程と,細胞間マトリクス回収工程と,有機化合物取得工程とを含む。この方法は,微細藻類を培養する培養工程,スラリーを得るスラリー化工程,及び,得られた有機化合物を精製する精製工程といった炭水化物に関する公知の工程をさらに含んでもよい。 The method for producing an organic compound includes a release step, an extracellular matrix recovery step, and an organic compound acquisition step. This method may further include known steps relating to carbohydrates, such as a culturing step of culturing microalgae, a slurry step of obtaining a slurry, and a purification step of purifying the obtained organic compound.

培養工程
例えば特許第6033551号公報に記載された方法に従って微細藻類を培養できる。以下,ボツリオコッカス・ブラウニーを用いる例について説明するものの,本明細書に記載される微細藻類はボツリオコッカス・ブラウニーに限定されるものではない。培養工程では,ボツリオコッカス・ブラウニーを培養する。この工程では,ボツリオコッカス・ブラウニーの特徴に合わせて,公知の培養方法を適宜採用すればよい。また,ボツリオコッカス・ブラウニーが十分に存在している場合は,培養工程を適宜省略しても良い。ボツリオコッカス・ブラウニーの培養培地の組成の例は,AF6培地,Chu13培地,BG11培地,MDM培地等,一般的な無機培地及びこれらの改変培地を含むことができる。無機培地には,通常,窒素源として,Ca(NO・4HOやKNO,NaNOが,その他の主要な栄養成分としてKHPOやMgSO・7HOが含まれる。なお,各組成はそれと同等の性質を持つ化合物と適宜置き換えても良いし,上記以外の化合物を含んでも良い。培養形態としては,オープンポンド型やレースウェイ型の開放系培養形態や,チューブ型やPBR型の閉鎖系培養形態であってもよい。必要に応じて二酸化炭素の供給や培養液の循環,LED等での光の照射を行い,培養することができる。ボツリオコッカス・ブラウニーの回収方法は培養液をそのまま回収しても良いし,遠心分離や適宜な孔径の濾布によりボツリオコッカス・ブラウニーを含む微細藻類を分離・濃縮し,回収してもよい。また,ボツリオコッカス・ブラウニーは静置後,浮上する特性を有するため,培養後に培養液を静置し,浮上したボツリオコッカス・ブラウニーを含む上層をかき取り,回収しても良い。左記は培養の一例であって,ボツリオコッカス・ブラウニーを培養するための公知の培地及び培養形態を適宜用いることができる。培養環境は,屋外にて行っても良いし,屋内にて行っても良い。屋内で培養する場合は,LED等の光源を用いて,特定の波長の光を特定の強度で照射できるものが好ましい。光の照射時間の例は,1日当たり1時間以上24時間以下であり,6時間以上18時間以下でも良いし,9時間以上15時間以下でも良い。培養期間の例は,1日以上6ヶ月以下であり,3日以上3ヶ月以下でも良く,7日以上,1ヶ月以下でも良く,ボツリオコッカス・ブラウニーの特徴に応じて適宜調整すればよい。培養温度は常温が好ましい。培養温度の例は15℃以上40℃以下であり,より好ましくは20℃以上35℃以下がよい。培地に二酸化炭素等の気体を通気させても良い。この場合の二酸化炭素濃度は,1体積%以上100体積%以下でも良いし,5体積%以上20体積%以下でも良い。また,連続的に通気させても良いし,間欠的に通気させても良い。培地は,適宜撹拌しても良いし,静置しても良い。
Culturing process For example, microalgae can be cultivated according to the method described in Japanese Patent No. 6033551. Hereinafter, an example using Botryococcus brownie will be described, but the microalgae described in the present specification is not limited to Botryococcus brownie. In the culturing process, Botryococcus brownie is cultivated. In this step, a known culture method may be appropriately adopted according to the characteristics of Botryococcus brownie. In addition, if a sufficient amount of Botryococcus brownie is present, the culture step may be omitted as appropriate. Examples of the composition of the culture medium of Botryococcus brownie can include general inorganic media such as AF6 medium, Chu13 medium, BG11 medium, and MDM medium, and modified media thereof. The mineral medium, usually as a nitrogen source, the Ca (NO 3) 2 · 4H 2 O and KNO 3, NaNO 3, include KH 2 PO 4 and MgSO 4 · 7H 2 O as other key nutrients .. Each composition may be appropriately replaced with a compound having the same properties as that, or may contain a compound other than the above. The culture form may be an open pond type or raceway type open system culture form, or a tube type or PBR type closed system culture form. If necessary, carbon dioxide can be supplied, the culture solution can be circulated, and light can be irradiated with an LED or the like for culturing. As a method for recovering Botryococcus brownie, the culture solution may be recovered as it is, or microalgae including Botryococcus brownie may be separated and concentrated by centrifugation or a filter cloth having an appropriate pore size and recovered. .. In addition, since Botryococcus brownie has the property of floating after standing, the culture solution may be allowed to stand after culturing, and the upper layer containing the floating Botryococcus brownie may be scraped off and collected. The left is an example of culture, and a known medium and culture form for culturing Botryococcus brownie can be appropriately used. The culture environment may be outdoors or indoors. When culturing indoors, it is preferable that a light source such as an LED can be used to irradiate light of a specific wavelength with a specific intensity. An example of the light irradiation time is 1 hour or more and 24 hours or less per day, 6 hours or more and 18 hours or less, or 9 hours or more and 15 hours or less. Examples of the culture period are 1 day or more and 6 months or less, 3 days or more and 3 months or less, 7 days or more and 1 month or less, and may be appropriately adjusted according to the characteristics of Botryococcus brownie. The culture temperature is preferably room temperature. An example of the culture temperature is 15 ° C. or higher and 40 ° C. or lower, more preferably 20 ° C. or higher and 35 ° C. or lower. A gas such as carbon dioxide may be aerated in the medium. In this case, the carbon dioxide concentration may be 1% by volume or more and 100% by volume or less, or 5% by volume or more and 20% by volume or less. Further, the air may be continuously ventilated or may be ventilated intermittently. The medium may be appropriately stirred or allowed to stand.

スラリー化工程は,微細藻類を含む微細藻類スラリーを得るための工程である。
微細藻類スラリーとは,微細藻類が含まれる流動性のある混合物の総称である。
微細藻類スラリーの例は,特許第6033551号公報や特開2017-38536号公報に記載された微細藻類水性スラリーである。
微細藻類スラリーに含まれる微細藻類の状況は,例えば,ボツリオコッカス・ブラウニーを公知の培養方法を用いて培養した培養液であり,微細藻類スラリーの例は,ボツリオコッカス・ブラウニーを含む微細藻類を分離・濃縮した濃縮液,または,水を加えて含水率を調整した混合液である。
微細藻類スラリーに含まれる微細藻類以外の成分は,培養に使用した培地成分である。開放系培養形態の場合は,ゴミや土砂,雑菌類等,培養中に混入した不純物も含まれてもよいし,不純物が取り除かれてもよい。
The slurrying step is a step for obtaining a microalgae slurry containing microalgae.
Microalgae slurry is a general term for a fluid mixture containing microalgae.
Examples of the microalgae slurry are the microalgae aqueous slurry described in Japanese Patent No. 6033551 and JP-A-2017-38536.
The state of the microalgae contained in the microalgae slurry is, for example, a culture solution obtained by culturing Botryococcus brownie using a known culture method, and an example of the microalgae slurry is a microalgae containing Botryococcus brownie. It is a concentrated solution in which the above is separated and concentrated, or a mixed solution in which water is added to adjust the water content.
The components other than the microalgae contained in the microalgae slurry are the medium components used for culturing. In the case of the open culture form, impurities mixed during the culture such as dust, earth and sand, and germs may be contained, or the impurities may be removed.

遊離工程は,微細藻類スラリーに含まれる微細藻類の細胞遊離を起こし,遊離細胞及び細胞間マトリクスを得るための工程である。微細藻類の細胞遊離とは,例えば,微細藻類スラリーに含まれるボツリオコッカス・ブラウニーが数個〜数百個の細胞が細胞間マトリクスを土台に群体を形成している状態から,細胞間マトリクスから離れて数個〜数百個の細胞が単独で浮遊している状態に移行することである。微細藻類の細胞遊離を確認する方法は,例えば,顕微鏡を用いて,ボツリオコッカス・ブラウニーの群体と遊離細胞の割合を観察することである。さらに,顕微鏡写真を撮影し,画像解析ソフトを用いて,遊離細胞遊離率を算出することができる。遊離細胞とは,複数の細胞が直接または間接的に接合して形成した集合体に対し,独立して存在する細胞である。遊離細胞の例は,微細藻類スラリーに含まれるボツリオコッカス・ブラウニーの細胞間マトリクスから離れて単独で浮遊している細胞である。細胞間マトリクスとは,細胞外に存在する細胞を間接的に接合させる土台として機能する高分子構造体である。細胞間マトリクスの例は,植物体では,セルロースやヘミセルロースといった多糖質,脊椎動物ではコラーゲン,プロテオグリカンといった糖タンパク質が主成分である細胞間マトリクスを形成している。微細藻類においては,セルロースや寒天といった多糖質に加え,炭化水素などの有機化合物の重合合成物からなるアルジナンが主成分である細胞間マトリクスがある。 The release step is a step for causing cell release of microalgae contained in the microalgae slurry to obtain free cells and an intercellular matrix. The cell release of microalgae is, for example, from the state in which several to several hundred cells of Botryococcus brownie contained in the microalgae slurry form a colony based on the intercellular matrix, and from the intercellular matrix. It is the transition to a state in which several to several hundred cells are suspended alone. A method of confirming the cell release of microalgae is, for example, to observe the colony of Botryococcus brownie and the proportion of free cells using a microscope. In addition, micrographs can be taken and image analysis software can be used to calculate the free cell release rate. A free cell is a cell that exists independently of an aggregate formed by directly or indirectly joining a plurality of cells. An example of a free cell is a cell that floats alone away from the extracellular matrix of Botryococcus brownie contained in a microalgae slurry. The extracellular matrix is a polymer structure that functions as a base for indirectly joining cells that exist outside the cell. An example of the extracellular matrix is that in plants, polysaccharides such as cellulose and hemicellulose are formed, and in vertebrates, glycoproteins such as collagen and proteoglycan are the main components. In microalgae, in addition to polysaccharides such as cellulose and agar, there is an intercellular matrix whose main component is arginane, which is a polymerized compound of organic compounds such as hydrocarbons.

細胞遊離工程は,ボツリオコッカス・ブラウニーを含む微細藻類スラリーを,細胞遊離を促進する条件に曝し,ボツリオコッカス・ブラウニー細胞を細胞間マトリクスから遊離させる工程である。この工程ではボツリオコッカス・ブラウニーの特性を利用し,細胞遊離条件を適宜採用すればよい。 The cell release step is a step in which a microalgae slurry containing Botryococcus brownie is exposed to conditions that promote cell release, and Botryococcus brownie cells are released from the intercellular matrix. In this step, the characteristics of Botryococcus brownie may be utilized and cell release conditions may be appropriately adopted.

公知の細胞遊離条件として,グリセロールやキシリトール,エリスリトール,ソルビトール,塩化ナトリウムなど,浸透圧の変化により細胞遊離を促す方法がある。これらは,1種又は2種以上をスラリーに添加すればよい。これらは,スラリーに対し1質量%以上30質量%以下,3質量%以上20質量%以下,3質量%以上10質量%以下,5質量%以上20質量%以下,又は5質量%以上10質量%以下で添加すればよい。また,これらは0.05規定(M)以上10規定(M)以下,0.1M以上5M以下,0.3M以上4M以下,0.4M以上2M以下となるように添加してもよい。また,次亜塩素酸の添加により,細胞を破壊し殺菌する手法があり,この際も細胞遊離が起きる。これらの化学的な処理は精製物からの添加物の除去が問題になる場合があるため,化成品を添加せずに細胞遊離を促す方法が好ましい。 Known cell release conditions include methods for promoting cell release by changing osmotic pressure, such as glycerol, xylitol, erythritol, sorbitol, and sodium chloride. For these, one kind or two or more kinds may be added to the slurry. These are 1% by mass or more and 30% by mass or less, 3% by mass or more and 20% by mass or less, 3% by mass or more and 10% by mass or less, 5% by mass or more and 20% by mass or less, or 5% by mass or more and 10% by mass or less with respect to the slurry. It may be added below. Further, these may be added so as to be 0.05 regulation (M) or more and 10 regulation (M) or less, 0.1M or more and 5M or less, 0.3M or more and 4M or less, 0.4M or more and 2M or less. In addition, there is a method of destroying and sterilizing cells by adding hypochlorous acid, and cell liberation also occurs at this time. Since removal of additives from the purified product may be a problem in these chemical treatments, a method of promoting cell release without adding a chemical product is preferable.

物理的な処理として,微細藻類スラリーを45℃以上70℃以下(又は,45℃以上70℃未満,50℃以上65℃以下,55℃以上60℃以下)の加温条件に曝すことで高温ストレスにより細胞遊離を促すことが可能である。また,凍結融解することで,細胞遊離が起こることを見出したため,これらの手法を用いればよい。加温条件により細胞遊離を引き起こすためには,一定温度に保温できる設備を用いればよく,凍結融解により細胞遊離を引き起こすためには冷凍設備を用いて微細藻類スラリーを凍結させ,常温以上の温度で解凍すればよい。 As a physical treatment, high temperature stress is achieved by exposing the microalgae slurry to heating conditions of 45 ° C or higher and 70 ° C or lower (or 45 ° C or higher and lower than 70 ° C, 50 ° C or higher and 65 ° C or lower, 55 ° C or higher and 60 ° C or lower). It is possible to promote cell release. We also found that cell release occurs by freezing and thawing, so these methods may be used. In order to induce cell liberation under heating conditions, equipment that can keep the temperature at a constant temperature should be used, and in order to induce cell liberation by freezing and thawing, the microalgae slurry is frozen using a freezing equipment and at a temperature above room temperature. Just unzip it.

この他に,高効率で細胞遊離が起こる条件を適宜採用してもよい。そのような条件の例は,超音波処理やUV照射などを用いて,細胞が細胞間マトリクスから遊離する条件のものである。細胞遊離の効率としては60%以上100%以下が好ましく,より好ましくは90%以上100%以下であり,95%以上99%以下でもよいし,96%以上98%以下でもよい)。 In addition to this, conditions under which cell release occurs with high efficiency may be appropriately adopted. An example of such a condition is a condition in which cells are released from the extracellular matrix by using ultrasonic treatment, UV irradiation, or the like. The efficiency of cell release is preferably 60% or more and 100% or less, more preferably 90% or more and 100% or less, 95% or more and 99% or less, or 96% or more and 98% or less).

細胞間マトリクス回収工程は,遊離細胞と細胞間マトリクスとを分離し,細胞間マトリクスを得るための工程である。細胞分離工程は,上記の様にしてボツリオコッカス・ブラウニー細胞を遊離させた細胞間マトリクスと遊離細胞を分離する工程である。この工程ではボツリオコッカス・ブラウニーの特性を利用し,細胞分離条件を適宜採用すればよい。遊離細胞と細胞間マトリクスの大きさの違いを利用し,細胞遊離後の細胞は濾布により細胞間マトリクスと分離することができる。また,細胞間マトリクスは浮上し,細胞は沈殿する特性を有するため,遠心分離や静置分離により細胞間マトリクスを回収してもよい。細胞遊離後の細胞除去が不充分な場合,遊離細胞が純度低下に繋がるため,細胞除去後にpH9以上のアルカリ条件(例えば,pH9以上13以下,pH9以上12以下,又はpH10以上12以下)に曝し,遊離細胞を完全に除去することが好ましい。この際,遊離細胞除去後,濾布上で洗浄・脱水し,細胞間マトリクスを回収することが好ましい。 The extracellular matrix recovery step is a step for separating free cells and the extracellular matrix to obtain an extracellular matrix. The cell separation step is a step of separating the extracellular matrix from which Botryococcus brownie cells have been released and the free cells as described above. In this step, the characteristics of Botryococcus brownie may be utilized and cell separation conditions may be appropriately adopted. Utilizing the difference in size between the free cells and the extracellular matrix, the cells after cell release can be separated from the extracellular matrix by filtration cloth. In addition, since the extracellular matrix has the property of ascending and precipitating cells, the extracellular matrix may be recovered by centrifugation or static separation. Insufficient cell removal after cell release leads to a decrease in purity of the free cells. Therefore, after cell removal, the cells are exposed to alkaline conditions of pH 9 or more and 13 or less, pH 9 or more and 12 or less, or pH 10 or more and 12 or less). , It is preferable to completely remove free cells. At this time, after removing free cells, it is preferable to wash and dehydrate on a filter cloth to collect the extracellular matrix.

有機化合物取得工程は,細胞間マトリクス回収工程で得られた細胞間マトリクスを用いて,微細藻類由来の有機化合物を得るための工程である。油脂抽出工程は,上記の様にして回収した細胞間マトリクスから有機化合物を抽出し,炭化水素とアルジナンを分離・精製する工程である。この工程では公知の油脂抽出方法を適宜採用すればよい。
一般的な方法として,搾油機を用いた圧搾法や抽出溶媒として有機溶媒を使用した抽出法,これらを併用した圧抽法をもちいてもよい。抽出法の有機溶媒としては,具体的に,n−ヘキサン,クロロホルム,メタノール,エタノール,ジエチルエーテル,アセトン,n−ヘプタデセン,n−エイコサジエンからなる1群の有機溶媒から1種以上,又はヘキサン/アセトンの混合溶媒,クロロホルム/メタノールの混合溶媒,エタノール/ジエチルエーテルの混合溶媒等に例示される前記有機溶媒の混合物である。また,n−ヘキサンを使用する抽出法ではボツリオコッカス・ブラウニーからなる微細藻類スラリーを用いた場合,細胞表面の多糖層と水がゲル化し,抽出効率が低下するため,乾燥藻体を用いる。細胞除去工程を経ることで細胞と共に多糖層も除去できるため,水が含まれた状態でもゲル化が起きず,有機化合物を効率よく抽出することが可能である。
油脂抽出した細胞間マトリクスを乾燥させることで高純度のアルジナンを得ることができる。
The organic compound acquisition step is a step for obtaining an organic compound derived from microalgae by using the cell-cell matrix obtained in the cell-cell matrix recovery step. The fat extraction step is a step of extracting an organic compound from the intercellular matrix recovered as described above to separate and purify hydrocarbons and arginane. In this step, a known fat extraction method may be appropriately adopted.
As a general method, a squeezing method using an oil squeezing machine, an extraction method using an organic solvent as an extraction solvent, or a squeezing method using these in combination may be used. Specifically, the organic solvent of the extraction method is one or more from a group of organic solvents consisting of n-hexane, chloroform, methanol, ethanol, diethyl ether, acetone, n-heptadecene, and n-eicosaziene, or hexane / acetone. It is a mixture of the above-mentioned organic solvents exemplified in the mixed solvent of the above, the mixed solvent of chloroform / methanol, the mixed solvent of ethanol / diethyl ether, and the like. In the extraction method using n-hexane, when a microalgae slurry consisting of Botryococcus brownie is used, the polysaccharide layer on the cell surface and water gel, and the extraction efficiency decreases, so dry algae are used. Since the polysaccharide layer can be removed together with the cells through the cell removal step, gelation does not occur even in the state of containing water, and organic compounds can be efficiently extracted.
High-purity arginane can be obtained by drying the extracellular matrix extracted from fats and oils.

精製工程
さらにアルジナンなどの有機化合物を高純度にするために,有機溶媒,酸,及び塩基を併用した公知の精製処理を行うこともできる。精製工程自体は公知である。精製工程の例は,還流,抽出である。
Purification Step Further, in order to increase the purity of an organic compound such as alginan, a known purification treatment using an organic solvent, an acid, and a base can be performed. The purification process itself is known. Examples of purification steps are reflux and extraction.

微細藻類由来の有機化合物の用途
微細藻類由来の有機化合物は,例えば,高分子原料,化粧品原料,潤滑油,食品,バイオ燃料,発酵原料,飼料,餌,及び肥料に利用できる。
[実施例]
Applications of Microalgae-Derived Organic Compounds Microalgae-derived organic compounds can be used, for example, in polymer raw materials, cosmetic raw materials, lubricating oils, foods, biofuels, fermentation raw materials, feeds, feeds, and fertilizers.
[Example]

1.細胞遊離評価
実施例および比較例にて調製した各種サンプルの顕微鏡写真を撮影し,画像解析ソフト(ImageJ)を用いて,群体内の細胞遊離率を算出し,細胞遊離の段階的な指標とした。評価段階は,評価A:90%以上,評価B:60〜90%未満,評価C:40〜60%未満,評価D:10〜40%未満,評価E:10%未満の5段階とし,評価Aが最もよく細胞遊離しているとし,評価Eが細胞遊離していないとした。
1. 1. Cell release evaluation Micrographs of various samples prepared in Examples and Comparative Examples were taken, and the cell release rate in the colony was calculated using image analysis software (ImageJ) and used as a stepwise index of cell release. .. Evaluation A: 90% or more, Evaluation B: 60 to less than 90%, Evaluation C: 40 to less than 60%, Evaluation D: 10 to less than 40%, Evaluation E: Less than 10%. It was assumed that A was the most cell-free and evaluation E was not cell-free.

2.含水率の測定
実施例および比較例にて調製した各種サンプルの含水率は加熱乾燥式水分計(エー・アンド・デイ MX−50)を用いて測定した。測定条件は以下の通りである。
<測定条件>
昇温度開始温度;25℃
最終到達温度;110℃
昇温速度;+10℃/分
終了条件;0.10%/分
2. Measurement of Moisture Content The moisture content of various samples prepared in Examples and Comparative Examples was measured using a heat-drying moisture meter (A & D MX-50). The measurement conditions are as follows.
<Measurement conditions>
Temperature rise start temperature; 25 ° C
Final temperature reached; 110 ° C
Heating rate; + 10 ° C / min Termination condition: 0.10% / min

3.粗油含有率の測定
実施例および比較例にて調製した各種サンプルの乾燥重量0.5gに対し,n−ヘキサン10mlを加え1時間振とう混和後,ヘキサン相を回収する操作を2回繰り返した。回収したヘキサン相を遠心エバポレーターにて減圧蒸留を行い,n−ヘキサンを除去し,残留液を粗油として,各種サンプルの乾燥重量当たりの粗油重量を粗油含有率とした。
3. 3. Measurement of crude oil content To 0.5 g of dry weight of various samples prepared in Examples and Comparative Examples, 10 ml of n-hexane was added, mixed by shaking for 1 hour, and then the operation of recovering the hexane phase was repeated twice. .. The recovered hexane phase was distilled under reduced pressure using a centrifugal evaporator to remove n-hexane, the residual liquid was used as crude oil, and the crude oil weight per dry weight of various samples was defined as the crude oil content.

4.炭化水素構成比の測定
実施例および比較例にて調製した各種サンプルから得られた粗油を用いてGC/MS(島津ガスクロマトグラフQP−5050)にて成分分析を実施し,粗油中の炭化水素と脂肪酸の構成比を求めた。測定条件は以下の通りである。
4. Measurement of hydrocarbon composition ratio Using crude oil obtained from various samples prepared in Examples and Comparative Examples, component analysis was performed by GC / MS (Shimadzu Gas Chromatograph QP-5050), and hydrocarbons in the crude oil were used. The composition ratio of hydrogen and fatty acid was determined. The measurement conditions are as follows.

<分析前処理>
(1) 粗油サンプルを100mg計量した後,n−ヘキサン5mLを加えてよく溶解させる。
(2) このヘキサン溶液50μlと,トリメチルシリル化剤(BSTFA) 50μl,n−ヘキサン100μlを加えて80℃,1h加熱し,この試料をTMS化試料とする。
<測定条件>
カラム SHIMADZU−GLC ZB−1
(φ0.25 mm x 60 m,膜厚0.25 μm)
カラム昇温 120℃(1 min)−15℃/min −230℃(1 min)
−5℃/min−320℃−10℃/min−340℃(12 min)
測定時間 40.33 min
装置 島津ガスクロマトグラフ質量分析計QP−5050
キャリア 0.5 mL/min He (定流量制御)
圧力 80 kPa
全流 27.7 mL/min
線速度 18.8 cm/sec
パージ流量 3 mL/min
試料注入口 Split, 330℃
Split比 1:50
検出器 インターフェース温度260℃,イオン源250℃
SCANモードm/z 35〜700
試料注入量 1 μl
<Analysis preprocessing>
(1) After weighing 100 mg of the crude oil sample, add 5 mL of n-hexane and dissolve well.
(2) 50 μl of this hexane solution, 50 μl of trimethylsilylating agent (BSTFA), and 100 μl of n-hexane are added and heated at 80 ° C. for 1 h, and this sample is used as a TMS-ized sample.
<Measurement conditions>
Column SHIMADZU-GLC ZB-1
(Φ0.25 mm x 60 m, film thickness 0.25 μm)
Column temperature rise 120 ° C (1 min) -15 ° C / min-230 ° C (1 min)
-5 ° C / min-320 ° C-10 ° C / min-340 ° C (12 min)
Measurement time 40.33 min
Equipment Shimadzu Gas Chromatograph Mass Spectrometer QP-5050
Carrier 0.5 mL / min He (constant flow control)
Pressure 80 kPa
Total flow 27.7 mL / min
Linear velocity 18.8 cm / sec
Purge flow rate 3 mL / min
Sample inlet Split, 330 ° C
Slit ratio 1:50
Detector interface temperature 260 ° C, ion source 250 ° C
SCAN mode m / z 35-700
Sample injection volume 1 μl

<炭化水素構成比計算方法>
ドデカン及びスクアレンを炭化水素標品として検量線を作成し,炭化水素構成比を算出した。
<Hydrocarbon composition ratio calculation method>
A calibration curve was prepared using dodecane and squalene as hydrocarbon preparations, and the hydrocarbon composition ratio was calculated.

5.アルジナン含有量の測定
特開2015−124091号公報に記載の測定方法に準じてアルジナン含有量を測定した。詳細は,実施例および比較例にて調製した各種サンプルに対し,示差熱・熱重量同時測定装置を用い,以下の温度条件における360℃以上での重量減少率より求めた。測定条件は以下の通りである。
<測定条件>
昇温度開始温度;25℃
最終到達温度;800℃
昇温速度;+10℃/分(なお,100℃の時点で30分維持する)
温度校正標準試料(インジウム(156.6℃),亜鉛(419.4℃))
5. Measurement of arginane content The arginane content was measured according to the measurement method described in JP-A-2015-124091. The details were determined from the weight loss rate at 360 ° C. or higher under the following temperature conditions using a differential thermal / thermogravimetric simultaneous measuring device for various samples prepared in Examples and Comparative Examples. The measurement conditions are as follows.
<Measurement conditions>
Temperature rise start temperature; 25 ° C
Final temperature reached; 800 ° C
Temperature rise rate; + 10 ° C / min (maintain for 30 minutes at 100 ° C)
Temperature calibration standard sample (indium (156.6 ° C), zinc (419.4 ° C))

ボツリオコッカス・ブラウニーNIES−836株を既存の培養方法により培養し,孔径40μmの濾布を用いて回収・濃縮し,微細藻類スラリーを得た。微細藻類スラリーの含水率が90重量%になるように調整し,20mlずつ8本の遠心管に分注した。各遠心管を常温(24℃),冷蔵(4℃),加温(60℃),凍結(−20℃)条件下で24時間または48時間静置した。 The Botryococcus brownie NIES-836 strain was cultured by an existing culture method, and collected and concentrated using a filter cloth having a pore size of 40 μm to obtain a microalgae slurry. The water content of the microalgae slurry was adjusted to 90% by weight, and 20 ml each was dispensed into eight centrifuge tubes. Each centrifuge tube was allowed to stand for 24 hours or 48 hours under the conditions of room temperature (24 ° C.), refrigeration (4 ° C.), warming (60 ° C.), and freezing (-20 ° C.).

静置後,顕微鏡観察により,細胞遊離の状況を評価し,孔径40μmの濾布を用いて遊離細胞を除去し,0.1N水酸化カリウム溶液を加え,アルカリ条件に1日曝し,各条件にて細胞除去した細胞間マトリクスを孔径40μmの濾布で洗浄・濃縮回収した後,風乾にて乾燥させた。各条件にて得た細胞間マトリクス乾燥重量0.5gに対し,n−ヘキサン10mlを加え1時間振とう混和後,ヘキサン相を回収する操作を2回繰り返し,ヘキサン相から粗油を抽出した。回収した粗油量から各種サンプルの粗油含有率を算出した。 After standing, the state of cell release was evaluated by microscopic observation, free cells were removed using a filter cloth with a pore size of 40 μm, a 0.1N potassium hydroxide solution was added, and the cells were exposed to alkaline conditions for 1 day. The cell-cell matrix from which the cells had been removed was washed with a filter cloth having a pore size of 40 μm, concentrated and collected, and then dried by air drying. To 0.5 g of the dry weight of the intercellular matrix obtained under each condition, 10 ml of n-hexane was added and mixed by shaking for 1 hour, and then the operation of recovering the hexane phase was repeated twice to extract crude oil from the hexane phase. The crude oil content of various samples was calculated from the amount of crude oil recovered.

また,抽出後の細胞間マトリクスを乾燥し,精製アルジナンとして,アルジナン含有率を測定した。加温または凍結条件において細胞遊離が高効率で起き,得られた細胞間マトリクス中の粗油含有率が高く,80%以上の高純度のアルジナンを精製できることが分かった。 In addition, the extracellular matrix after extraction was dried, and the arginane content was measured as purified arginane. It was found that cell release occurs with high efficiency under warming or freezing conditions, the crude oil content in the obtained extracellular matrix is high, and high-purity arginane of 80% or more can be purified.

表1に,実施例1の各条件における細胞遊離評価,粗油含有率,アルジナン含有率を示す。 Table 1 shows the cell release evaluation, crude oil content, and arginane content under each condition of Example 1.

Figure 2021126044
Figure 2021126044

図2に,実施例1の条件3における細胞遊離の状況を示す顕微鏡写真を示す。図3には実施例1の条件6における細胞遊離の状況を示す顕微鏡写真を示す。図4には実施例1の条件8における細胞遊離の状況を示す顕微鏡写真を示す。なお,顕微鏡写真は画像処理により,細胞・遊離細胞は黒色,アルジナンは灰色と識別できる。細胞遊離が起きない場合は,黒色の群体として,細胞遊離した場合は灰色の群体として観察できる。 FIG. 2 shows a micrograph showing the state of cell release under condition 3 of Example 1. FIG. 3 shows a micrograph showing the state of cell release under condition 6 of Example 1. FIG. 4 shows a micrograph showing the state of cell release under condition 8 of Example 1. Micrographs can be identified as black for cells and free cells and gray for arginan by image processing. When cell release does not occur, it can be observed as a black colony, and when cells are released, it can be observed as a gray colony.

ボツリオコッカス・ブラウニーNIES−836株を既存の培養方法により培養し,孔径40μmの濾布を用いて回収・濃縮し,微細藻類スラリーを得た。微細藻類スラリーの含水率を98重量%になるように調整し,100μlずつ遠心管に分注した。各遠心管を40℃,45℃,50℃,55℃,60℃,65℃,70℃,80℃の条件下で1時間,2時間,4時間静置した。静置後,顕微鏡観察により,細胞遊離の状況を評価した。表2に実施例2における細胞遊離評価を示す。 The Botryococcus brownie NIES-836 strain was cultured by an existing culture method, and collected and concentrated using a filter cloth having a pore size of 40 μm to obtain a microalgae slurry. The water content of the microalgae slurry was adjusted to 98% by weight, and 100 μl each was dispensed into a centrifuge tube. Each centrifuge tube was allowed to stand for 1 hour, 2 hours, and 4 hours under the conditions of 40 ° C., 45 ° C., 50 ° C., 55 ° C., 60 ° C., 65 ° C., 70 ° C., and 80 ° C. After standing, the state of cell release was evaluated by microscopic observation. Table 2 shows the cell release evaluation in Example 2.

Figure 2021126044
Figure 2021126044

加温による細胞遊離処理における加温温度域は50℃以上,70℃未満が好ましく,55℃以上から65℃以下がより好ましいことが分かった。さらに,処理時間は1時間以上であれば効果があり,好ましくは2時間以上処理すればよいことが分かった。 It was found that the heating temperature range in the cell release treatment by heating is preferably 50 ° C. or higher and lower than 70 ° C., and more preferably 55 ° C. or higher and 65 ° C. or lower. Furthermore, it was found that if the treatment time is 1 hour or more, it is effective, and preferably 2 hours or more should be treated.

ボツリオコッカス・ブラウニーNIES−836株を既存の培養方法により培養し,孔径40μmの濾布を用いて回収・濃縮し,微細藻類スラリーを得た。微細藻類スラリーの含水率を90重量%になるように調整し,100μlずつ遠心管に分注した。各遠心管を−4℃,−20℃,−80℃の条件下で凍結し,解凍後に顕微鏡観察により,細胞遊離の状況を評価した。
凍結による細胞遊離処理において,凍結温度によらず,スラリーが凍結することで細胞遊離が起こることが分かった。
表3に実施例3における細胞遊離評価を示す。
The Botryococcus brownie NIES-836 strain was cultured by an existing culture method, and collected and concentrated using a filter cloth having a pore size of 40 μm to obtain a microalgae slurry. The water content of the microalgae slurry was adjusted to 90% by weight, and 100 μl each was dispensed into a centrifuge tube. Each centrifuge tube was frozen under the conditions of -4 ° C, -20 ° C, and -80 ° C, and after thawing, the state of cell release was evaluated by microscopic observation.
It was found that in the cell release treatment by freezing, cell release occurs by freezing the slurry regardless of the freezing temperature.
Table 3 shows the cell release evaluation in Example 3.

Figure 2021126044
Figure 2021126044

ボツリオコッカス・ブラウニーNIES−836株を既存の培養方法により培養し,孔径40μmの濾布を用いて回収・濃縮し,微細藻類スラリーを得た。微細藻類スラリーの含水率を85重量%,90重量%,98重量%になるように調整した。各微細藻類スラリーを60℃の条件下で4時間静置し,顕微鏡観察により,細胞遊離の状況を評価した。
加温による細胞遊離処理において,藻体濃度が高濃度になっても細胞遊離の効率が低下しないことが分かった。図5には実施例4における細胞遊離評価を示す。
The Botryococcus brownie NIES-836 strain was cultured by an existing culture method, and collected and concentrated using a filter cloth having a pore size of 40 μm to obtain a microalgae slurry. The water content of the microalgae slurry was adjusted to 85% by weight, 90% by weight, and 98% by weight. Each microalgae slurry was allowed to stand at 60 ° C. for 4 hours, and the state of cell release was evaluated by microscopic observation.
It was found that the efficiency of cell release does not decrease even if the algae concentration becomes high in the cell release process by heating. FIG. 5 shows the cell release evaluation in Example 4.

ボツリオコッカス・ブラウニーNIES−836株を既存の培養方法により培養し,孔径40μmの濾布を用いて回収・濃縮し,微細藻類スラリーを得た。微細藻類スラリーの含水率を82重量%,91重量%,96重量%になるように調整した。各微細藻類スラリーを−20℃の条件下で凍結し,顕微鏡観察により,細胞遊離の状況を評価した。
凍結による細胞遊離処理において,藻体濃度が高濃度になっても細胞遊離の効率が低下しないことが分かった。図6には実施例5における細胞遊離評価を示す。
The Botryococcus brownie NIES-836 strain was cultured by an existing culture method, and collected and concentrated using a filter cloth having a pore size of 40 μm to obtain a microalgae slurry. The water content of the microalgae slurry was adjusted to 82% by weight, 91% by weight, and 96% by weight. Each microalgae slurry was frozen under the condition of −20 ° C., and the state of cell release was evaluated by microscopic observation.
It was found that in the cell release treatment by freezing, the efficiency of cell release does not decrease even if the algae concentration becomes high. FIG. 6 shows the cell release evaluation in Example 5.

ボツリオコッカス・ブラウニーNIES−836株を既存の培養方法により培養し,孔径40μmの濾布を用いて回収・濃縮し,含水率を85.6重量%の微細藻類スラリーを得た。上記微細藻類スラリーを20mlずつ遠心管に分注し,含水率90重量%となるように各溶液を添加した。各溶液はグルコース溶液,グリセロール溶液,塩化ナトリウム溶液であり,5%グルコース,10%グルコース,5%グリセロール,10%グリセロール,0.5M塩化ナトリウム,1M塩化ナトリウム濃度となるように調整した。各溶媒条件において常温下で48時間静置した。静置後,孔径40μmの濾布を用いて遊離細胞を除去し,顕微鏡観察により,細胞遊離の状況を評価し,0.1N水酸化カリウム溶液を加え,アルカリ条件に1日曝し,各条件にて細胞除去した細胞間マトリクスを孔径40μmの濾布で洗浄・濃縮回収した後,風乾にて乾燥させた。各条件にて得た細胞間マトリクス乾燥重量0.5gに対し,n−ヘキサン10mlを加え1時間振とう混和後,ヘキサン相を回収する操作を2回繰り返し,ヘキサン相から粗油を抽出した。回収した粗油量から各種サンプルの粗油含有率を算出した。また,抽出後の細胞間マトリクスを乾燥し,精製アルジナンとして,アルジナン含有率を測定した。 The Botryococcus brownie NIES-836 strain was cultured by an existing culture method, and collected and concentrated using a filter cloth having a pore size of 40 μm to obtain a microalgae slurry having a water content of 85.6% by weight. 20 ml of the above microalgae slurry was dispensed into a centrifuge tube, and each solution was added so that the water content was 90% by weight. Each solution was a glucose solution, a glycerol solution, and a sodium chloride solution, and was adjusted to have a concentration of 5% glucose, 10% glucose, 5% glycerol, 10% glycerol, 0.5 M sodium chloride, and 1 M sodium chloride. It was allowed to stand at room temperature for 48 hours under each solvent condition. After standing, free cells were removed using a filter cloth with a pore size of 40 μm, the state of cell release was evaluated by microscopic observation, a 0.1N potassium hydroxide solution was added, and the cells were exposed to alkaline conditions for 1 day. The cell-cell matrix from which the cells had been removed was washed with a filter cloth having a pore size of 40 μm, concentrated and collected, and then dried by air drying. To 0.5 g of the dry weight of the intercellular matrix obtained under each condition, 10 ml of n-hexane was added and mixed by shaking for 1 hour, and then the operation of recovering the hexane phase was repeated twice to extract crude oil from the hexane phase. The crude oil content of various samples was calculated from the amount of crude oil recovered. In addition, the extracellular matrix after extraction was dried, and the arginane content was measured as purified arginane.

グリセロールまたは塩化ナトリウム添加条件において細胞遊離が起き,細胞遊離の割合に応じてアルジナン純度が高くなることが分かった。
表4には実施例6の各条件における細胞遊離評価,粗油含有率,アルジナン含有率を示す。図7には実施例6の条件2における顕微鏡写真を示す。図8は実施例6の条件4における顕微鏡写真を示す。図9には実施例6の条件6における顕微鏡写真を示す。
It was found that cell release occurs under the condition of addition of glycerol or sodium chloride, and the purity of arginane increases according to the rate of cell release.
Table 4 shows the cell release evaluation, crude oil content, and arginane content under each condition of Example 6. FIG. 7 shows a photomicrograph under Condition 2 of Example 6. FIG. 8 shows a photomicrograph under condition 4 of Example 6. FIG. 9 shows a photomicrograph under condition 6 of Example 6.

Figure 2021126044
Figure 2021126044

ボツリオコッカス・ブラウニーUTEX572株を既存の培養方法により培養し,孔径20μmの濾布を用いて回収・濃縮し,微細藻類スラリーを得た。微細藻類スラリーの含水率を98重量%になるように調整し,100μl遠心管に分注し,−20℃の条件下で1時間凍結し,解凍後に顕微鏡観察により,細胞遊離の状況を評価した。図10には実施例7における細胞遊離評価を示す。 The Botryococcus brownie UTEX572 strain was cultured by an existing culture method, and collected and concentrated using a filter cloth having a pore size of 20 μm to obtain a microalgae slurry. The water content of the microalgae slurry was adjusted to 98% by weight, dispensed into a 100 μl centrifuge tube, frozen under the condition of −20 ° C. for 1 hour, thawed, and then the state of cell release was evaluated by microscopic observation. .. FIG. 10 shows the cell release evaluation in Example 7.

ボツリオコッカス・プロチュバランスACOI249株を既存の培養方法により培養し,孔径20μmの濾布を用いて回収・濃縮し,微細藻類スラリーを得た。微細藻類スラリーの含水率を98重量%になるように調整し,100μl遠心管に分注し,−20℃の条件下で1時間凍結し,解凍後に顕微鏡観察により,細胞遊離することを確認した。 The Botryococcus prochubalance ACOI249 strain was cultured by an existing culture method, and collected and concentrated using a filter cloth having a pore size of 20 μm to obtain a microalgae slurry. The water content of the microalgae slurry was adjusted to 98% by weight, dispensed into a 100 μl centrifuge tube, frozen under the condition of −20 ° C. for 1 hour, and after thawing, it was confirmed by microscopic observation that the cells were released. ..

加温条件によるアルジナン製造方法
ボツリオコッカス・ブラウニーNIES−836株を既存の培養方法により培養し,孔径40μmの濾布を用いて回収・濃縮し,含水率を98重量%の微細藻類スラリー10Lを得た。
上記微細藻類スラリーのうち5Lを60℃,1日加温条件に曝し,細胞遊離を促した。細胞遊離後,孔径40μmの濾布を用いて遊離細胞を除去し,0.1N水酸化カリウム溶液を加え,アルカリ条件に1日曝し,細胞除去した細胞間マトリクスを孔径40μmの濾布で洗浄・濃縮回収した。その後,風乾にて乾燥させ,細胞間マトリクスを53g得た。
上記にて得た細胞間マトリクスの乾燥重量に対し,20倍量のn−ヘキサンを加え1時間振とう混和後,ヘキサン相を回収する操作を2回繰り返し,ヘキサン相から粗油を抽出し,35gの粗油を得た。この細胞間マトリクス中の粗油含有率は65%であり,抽出粗油の炭化水素構成比は100%であった。
粗油抽出後の固形分を回収・乾燥し調製アルジナンを15g得た。この調製アルジナンのアルジナン含有率は87%であった。
図11に実施例9にて得た粗油のGC/MS(ガスクロマトグラフ質量分析)結果を示す。
図12に実施例9にて得たアルジナンのTG/DTA(熱重量及び示差熱分析)結果を示す。
[比較例1]
Alginan production method under heating conditions Botryococcus brownie NIES-836 strain was cultivated by an existing culture method, collected and concentrated using a filter cloth having a pore size of 40 μm, and 10 L of microalgae slurry having a water content of 98% by weight was obtained. Obtained.
5 L of the above microalgae slurry was exposed to heating conditions at 60 ° C. for 1 day to promote cell release. After cell release, free cells are removed using a filter cloth with a pore size of 40 μm, a 0.1N potassium hydroxide solution is added, the cells are exposed to alkaline conditions for 1 day, and the cell-removed intercellular matrix is washed with a filter cloth having a pore size of 40 μm. Concentrated and recovered. Then, it was dried by air drying, and 53 g of extracellular matrix was obtained.
To the dry weight of the intercellular matrix obtained above, 20 times the amount of n-hexane was added, mixed by shaking for 1 hour, and then the operation of recovering the hexane phase was repeated twice to extract crude oil from the hexane phase. 35 g of crude oil was obtained. The crude oil content in this extracellular matrix was 65%, and the hydrocarbon composition ratio of the extracted crude oil was 100%.
The solid content after crude oil extraction was recovered and dried to obtain 15 g of prepared arginan. The arginane content of this prepared arginan was 87%.
FIG. 11 shows the GC / MS (gas chromatograph mass spectrometry) results of the crude oil obtained in Example 9.
FIG. 12 shows the TG / DTA (thermogravimetric analysis and differential thermal analysis) results of arginan obtained in Example 9.
[Comparative Example 1]

実施例9で得られた微細藻類スラリー4Lを孔径40μmの濾布を用いて濃縮し,60℃の恒温乾燥器にて乾燥し,乾燥藻体を80g得た。上記にて得た乾燥藻体の乾燥重量に対し,20倍量のn−ヘキサンを加え1時間振とう混和後,ヘキサン相を回収する操作を2回繰り返し,ヘキサン相から粗油を抽出し,46gの粗油を得た。この乾燥藻体中の粗油含有率は57%であり,抽出粗油の炭化水素構成比は85%であった。また,乾燥藻体のアルジナン含有率は16%であった。図13に比較例1にて得た粗油のGC/MS結果を示す。
図14に比較例1にて得た乾燥藻体のTG/DTA結果を示す。
4 L of the microalgae slurry obtained in Example 9 was concentrated using a filter cloth having a pore size of 40 μm and dried in a constant temperature dryer at 60 ° C. to obtain 80 g of dried algae. To the dry weight of the dried algae obtained above, 20 times the amount of n-hexane was added and mixed by shaking for 1 hour, and then the operation of recovering the hexane phase was repeated twice to extract crude oil from the hexane phase. 46 g of crude oil was obtained. The crude oil content in the dried algae was 57%, and the hydrocarbon composition ratio of the extracted crude oil was 85%. The alginan content of the dried algae was 16%. FIG. 13 shows the GC / MS results of the crude oil obtained in Comparative Example 1.
FIG. 14 shows the TG / DTA results of the dried algae obtained in Comparative Example 1.

実施例9の製造方法で得た炭化水素は炭化水素構成比が100%でり,比較例1に比べ,高純度の炭化水素を回収することができた。また,実施例9の製造方法で得たアルジナンは純度87%と高純度であり,アルジナンの回収率は80%であった。 The hydrocarbon obtained by the production method of Example 9 had a hydrocarbon composition ratio of 100%, and a high-purity hydrocarbon could be recovered as compared with Comparative Example 1. The arginan obtained by the production method of Example 9 had a high purity of 87%, and the recovery rate of arginane was 80%.

凍結条件によるアルジナン製造方法
ボツリオコッカス・ブラウニーNIES−836株を既存の培養方法により培養し,孔径40μmの濾布を用いて回収・濃縮し,含水率を82重量%の微細藻類スラリー800mLを得た。微細藻類スラリーのうち500mLを冷凍機にて凍結し,室温にて解凍し,細胞遊離を促した。細胞遊離後,孔径40μmの濾布を用いて遊離細胞を除去し,0.1N水酸化カリウム溶液を加え,アルカリ条件に1日曝し,細胞除去した細胞間マトリクスを孔径40μmの濾布で洗浄・濃縮回収し,湿潤細胞間マトリクス(含水率65%)150mlを得た。そのうち半量を風乾にて乾燥させ,細胞間マトリクスを26g得た。
Alginan production method under freezing conditions Botryococcus brownie NIES-836 strain was cultivated by an existing culture method, and collected and concentrated using a filter cloth having a pore size of 40 μm to obtain 800 mL of a microalgae slurry having a water content of 82% by weight. rice field. 500 mL of the microalgae slurry was frozen in a refrigerator and thawed at room temperature to promote cell release. After cell release, free cells were removed using a filter cloth with a pore size of 40 μm, a 0.1N potassium hydroxide solution was added, the cells were exposed to alkaline conditions for 1 day, and the intercellular matrix from which the cells had been removed was washed with a filter cloth having a pore size of 40 μm. The cells were concentrated and recovered to obtain 150 ml of a wet cell matrix (water content 65%). Half of it was dried by air drying to obtain 26 g of extracellular matrix.

上記にて得た細胞間マトリクスの乾燥重量に対し,20倍量のn−ヘキサンを加え1時間振とう混和後,ヘキサン相を回収する操作を2回繰り返し,ヘキサン相から粗油を抽出し,19gの粗油を得た。この細胞間マトリクス中の粗油含有率は72%であり,抽出粗油の炭化水素構成比は100%であった。粗油抽出後の固形分を回収・乾燥し調製アルジナンを14g得た。この調製アルジナンのアルジナン含有率は80%であった。 To the dry weight of the intercellular matrix obtained above, 20 times the amount of n-hexane was added, mixed by shaking for 1 hour, and then the operation of recovering the hexane phase was repeated twice to extract crude oil from the hexane phase. 19 g of crude oil was obtained. The crude oil content in this extracellular matrix was 72%, and the hydrocarbon composition ratio of the extracted crude oil was 100%. The solid content after crude oil extraction was recovered and dried to obtain 14 g of prepared arginane. The arginane content of this prepared arginan was 80%.

図15に実施例10にて得た粗油のGC/MS結果を示す。
図16に実施例10にて得たアルジナンのTG/DTA結果を示す。
[比較例2]
FIG. 15 shows the GC / MS results of the crude oil obtained in Example 10.
FIG. 16 shows the TG / DTA results of Arginan obtained in Example 10.
[Comparative Example 2]

実施例10にて得た微細藻類スラリー200mLを60℃の恒温乾燥器にて乾燥し,乾燥藻体を36g得た。上記にて得た乾燥藻体の乾燥重量に対し,20倍量のn−ヘキサンを加え1時間振とう混和後,ヘキサン相を回収する操作を2回繰り返し,ヘキサン相から粗油を抽出し,20gの粗油を得た。この乾燥藻体中の粗油含有率は55%であり,抽出粗油の炭化水素構成比は86%であった。また,乾燥藻体のアルジナン含有率は15%であった。 200 mL of the microalgae slurry obtained in Example 10 was dried in a constant temperature dryer at 60 ° C. to obtain 36 g of dried algae. To the dry weight of the dried algae obtained above, 20 times the amount of n-hexane was added and mixed by shaking for 1 hour, and then the operation of recovering the hexane phase was repeated twice to extract crude oil from the hexane phase. 20 g of crude oil was obtained. The crude oil content in the dried algae was 55%, and the hydrocarbon composition ratio of the extracted crude oil was 86%. The alginan content of the dried algae was 15%.

実施例10の製造方法で得た炭化水素は炭化水素構成比が100%であり,藻体中の炭化水素の回収率は88%であった。また,純度80%の高純度アルジナンを調整でき,アルジナンの回収率は88%であった。実施例10の方法は,比較例2の方法に比べて回収率が高く,しかも高純度なアルジナンを調製できることが示された。 The hydrocarbon obtained by the production method of Example 10 had a hydrocarbon composition ratio of 100%, and the recovery rate of the hydrocarbon in the algae was 88%. In addition, high-purity arginane with a purity of 80% could be adjusted, and the recovery rate of arginane was 88%. It was shown that the method of Example 10 has a higher recovery rate than the method of Comparative Example 2 and can prepare high-purity arginane.

水相を含む細胞間マトリクスからの粗油抽出
実施例7にて得た湿潤細胞間マトリクス(含水率65%)75mlの重量に対し,20倍量のn−ヘキサンを加え1時間振とう混和後,ヘキサン相を回収する操作を2回繰り返し,ヘキサン相から粗油を抽出し,15gの粗油を得た。この細胞間マトリクス中の粗油含有率は72%であり,抽出粗油の炭化水素構成比は100%であった。また,炭化水素回収率は88%であった。
細胞除去工程を経ることで,乾燥処理をせずに有機溶媒を用いた抽出法が利用可能であることが示された。
Extraction of crude oil from an intercellular matrix containing an aqueous phase To the weight of 75 ml of the wet intercellular matrix (water content 65%) obtained in Example 7, 20 times the amount of n-hexane was added and shaken for 1 hour. , The operation of recovering the hexane phase was repeated twice, and crude oil was extracted from the hexane phase to obtain 15 g of crude oil. The crude oil content in this extracellular matrix was 72%, and the hydrocarbon composition ratio of the extracted crude oil was 100%. The hydrocarbon recovery rate was 88%.
It was shown that the extraction method using an organic solvent can be used without drying treatment by going through the cell removal step.

本発明は,炭化水素やアルジナンといった微細藻類由来の有機化合物の製造方法に関するので,高分子原料,化粧品原料,潤滑油,食品,バイオ燃料,発酵原料,飼料,餌,及び肥料といった産業において利用されうる。
Since the present invention relates to a method for producing an organic compound derived from microalgae such as hydrocarbons and alginans, it is used in industries such as polymer raw materials, cosmetic raw materials, lubricating oils, foods, biofuels, fermentation raw materials, feeds, feeds, and fertilizers. sell.

Claims (7)

微細藻類スラリーに含まれる微細藻類の細胞遊離を起こし,遊離細胞及び細胞間マトリクスを得る遊離工程と,
前記遊離細胞と前記細胞間マトリクスとを分離し,前記細胞間マトリクスを得る細胞間マトリクス回収工程と,
前記細胞間マトリクス回収工程で得られた細胞間マトリクスを用いて,前記微細藻類由来の有機化合物を得る有機化合物取得工程と,
を含む有機化合物の製造方法。
A release process that causes cell release of microalgae contained in the microalgae slurry to obtain free cells and an extracellular matrix, and
An intercellular matrix recovery step of separating the free cells and the extracellular matrix to obtain the extracellular matrix, and
Using the cell-cell matrix obtained in the cell-cell matrix recovery step, an organic compound acquisition step of obtaining an organic compound derived from the microalgae, and an organic compound acquisition step.
A method for producing an organic compound containing.
請求項1に記載の有機化合物の製造方法であって,
前記有機化合物が,炭化水素とアルジナンを含む,方法。
The method for producing an organic compound according to claim 1.
A method in which the organic compound comprises hydrocarbons and arginane.
請求項1に記載の有機化合物の製造方法であって,
前記微細藻類が,ボツリオコッカス属に属する微細藻類である,方法。
The method for producing an organic compound according to claim 1.
A method in which the microalgae are microalgaes belonging to the genus Botryococcus.
請求項1に記載の有機化合物の製造方法であって,
前記微細藻類が,ボツリオコッカス・ブラウニー又はボツリオコッカス・ブラウニーから派生したボツリオコッカス・ブラウニー株である,方法。
The method for producing an organic compound according to claim 1.
The method, wherein the microalgae is a Botryococcus brownie or a Botryococcus brownie strain derived from Botryococcus brownie.
請求項1に記載の有機化合物の製造方法であって,
前記微細藻類スラリーは,含水率が75〜99.9重量%であり,
前記遊離工程は,前記微細藻類スラリーを凍結する工程を含む,方法。
The method for producing an organic compound according to claim 1.
The microalgae slurry has a water content of 75 to 99.9% by weight.
The release step comprises a step of freezing the microalgae slurry.
請求項1に記載の有機化合物の製造方法であって,
前記微細藻類スラリーは,含水率が75〜99.9重量%であり,
前記遊離工程は,前記微細藻類スラリーを50℃以上70℃以下で5分以上5日以下加熱する工程を含む,方法。
The method for producing an organic compound according to claim 1.
The microalgae slurry has a water content of 75 to 99.9% by weight.
The release step comprises a step of heating the microalgae slurry at 50 ° C. or higher and 70 ° C. or lower for 5 minutes or longer and 5 days or shorter.
請求項1に記載の有機化合物の製造方法であって,
前記微細藻類スラリーは,含水率が75〜99.9重量%であり,
前記遊離工程は,前記微細藻類スラリーに塩化ナトリウム及びグリセロールのいずれか又は両方を添加する工程を含む,方法。

The method for producing an organic compound according to claim 1.
The microalgae slurry has a water content of 75 to 99.9% by weight.
The method comprising the step of adding sodium chloride and / or both of sodium chloride and glycerol to the microalgae slurry.

JP2018084767A 2018-04-26 2018-04-26 Method for producing organic compound derived from microalga Pending JP2021126044A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018084767A JP2021126044A (en) 2018-04-26 2018-04-26 Method for producing organic compound derived from microalga
PCT/JP2019/007481 WO2019207949A1 (en) 2018-04-26 2019-02-27 Method for producing organic compound derived from microalga

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018084767A JP2021126044A (en) 2018-04-26 2018-04-26 Method for producing organic compound derived from microalga

Publications (1)

Publication Number Publication Date
JP2021126044A true JP2021126044A (en) 2021-09-02

Family

ID=68294965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018084767A Pending JP2021126044A (en) 2018-04-26 2018-04-26 Method for producing organic compound derived from microalga

Country Status (2)

Country Link
JP (1) JP2021126044A (en)
WO (1) WO2019207949A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463550B2 (en) * 2008-10-10 2014-04-09 国立大学法人 東京大学 Hydrocarbon production method and hydrocarbon production system
WO2011003024A2 (en) * 2009-07-01 2011-01-06 The Regents Of The University Of California Extraction of extracellular terpenoids from microalgae colonies
JP2013070688A (en) * 2011-09-29 2013-04-22 Mitsubishi Chemicals Corp Method for recovering component produced by microorganism

Also Published As

Publication number Publication date
WO2019207949A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US20110138682A1 (en) Algal culture production, harvesting , and processing
Abdullah et al. Algae oil extraction from freshwater microalgae Chlorella vulgaris
WO2010116611A1 (en) Micro-alga belonging to genus navicula, process for production of oil by culture of the micro-alga, and oil collected from the micro-alga
JP2015012842A (en) Culturing method of squalene-producing seaweed using waste water of white distilled liquor as culture medium
CA2871438C (en) Biofilm culture of microalgae on a liquid surface
CN103834611A (en) Separation and purification method for Salvia Miltiorrhiza protoplast
RU2603748C2 (en) Method for production of fatty acids methyl ester suitable for use in engine
Jackson et al. Repetitive extraction of botryococcene from Botryococcus braunii: a study of the effects of different solvents and operating conditions
CN104328053A (en) Scenedesmus capable of highly yielding oil as well as culture method and application thereof
Trejo et al. Exploration of fatty acid methyl esters (FAME) in cyanobacteria for a wide range of algae-based biofuels
JP6709484B1 (en) Method for culturing heterotrophic microalgae using palm oil factory effluent (POME) and method for producing DHA
JP2021126044A (en) Method for producing organic compound derived from microalga
JP2010187645A (en) Microalga belonging to scenedesmus, oil manufacturing method including process for culturing the microalgae, and oil collected from microalga
JP6730582B2 (en) A method for separating Botryococcus, a high oil producer, using radiation.
CN108822226A (en) A method of extracting polysaccharide from microalgae algae-residue
CN106148194B (en) Microalgae and its purposes
JP6604590B2 (en) Euglena and culture method thereof, paramylon and production method thereof
JP2013233105A (en) High hydrocarbon yield algae and production method thereof
CN105623831B (en) A kind of extracting method of microalgae grease
KR101535080B1 (en) A method for dehydrating microalgae
JP5943361B2 (en) Method for producing triacylglycerol
CN107083280B (en) A kind of method using antimicrobial fiber separate microorganism grease
TWI589693B (en) Chlamydopodium sp. and uses thereof
JP6884451B2 (en) Heterotrophic microalgae culture method and DHA production method using palm oil factory effluent (POME)
JP7279343B2 (en) Microalgae Botryococcus terribilis strain TEPMO-26, method for producing hydrocarbon, dry alga body and alga body residue