[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021110898A - 光デバイスの製造方法 - Google Patents

光デバイスの製造方法 Download PDF

Info

Publication number
JP2021110898A
JP2021110898A JP2020004411A JP2020004411A JP2021110898A JP 2021110898 A JP2021110898 A JP 2021110898A JP 2020004411 A JP2020004411 A JP 2020004411A JP 2020004411 A JP2020004411 A JP 2020004411A JP 2021110898 A JP2021110898 A JP 2021110898A
Authority
JP
Japan
Prior art keywords
optical fiber
dopant
effective cross
sectional area
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020004411A
Other languages
English (en)
Inventor
泰裕 益子
Yasuhiro Mashiko
泰裕 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2020004411A priority Critical patent/JP2021110898A/ja
Publication of JP2021110898A publication Critical patent/JP2021110898A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lasers (AREA)

Abstract

【課題】融着接続部における光の損失を低減できる光デバイスの製造方法を提供する。【解決手段】光デバイス10の製造方法は、実効断面積が互いに異なり、コア11またはクラッド12に屈折率を変化させるドーパントが添加されている第1光ファイバF1および第2光ファイバF2の端面同士を突き当てる突き当て工程と、第1光ファイバと第2光ファイバとの突き当て面Pを加熱して、第1光ファイバと第2光ファイバとを融着接続させる加熱工程と、を有する。加熱工程において、第1光ファイバおよび第2光ファイバの少なくとも一方のドーパントを拡散移動させることで、突き当て面における第1光ファイバと第2光ファイバとの実効断面積の差異を小さくする。【選択図】図1

Description

本発明は、光デバイスの製造方法に関する。
特許文献1には、2本の光ファイバを互いに融着接続させて一体化させる方法が開示されている。融着接続により一体化された2本の光ファイバ(以下、光デバイスという)は、レーザ装置などに用いられる。
特開2017−194497号公報
このような光デバイスを製造する際に、実効断面積(Aeff)が完全に一致した2本の光ファイバを用意することは容易ではない。そして、2本の光ファイバの実効断面積が相違していると、融着接続部における光の損失が大きくなる。
本発明はこのような事情を考慮してなされ、融着接続部における光の損失を低減できる光デバイスの製造方法を提供することを目的とする。
上記課題を解決するために、本発明の一態様に係る光デバイスの製造方法は、実効断面積が互いに異なり、コアまたはクラッドに屈折率を変化させるドーパントが添加されている第1光ファイバおよび第2光ファイバの端面同士を突き当てる突き当て工程と、前記第1光ファイバと前記第2光ファイバとの突き当て面を加熱して、前記第1光ファイバと前記第2光ファイバとを融着接続させる加熱工程と、を有し、前記加熱工程において、前記第1光ファイバおよび前記第2光ファイバの少なくとも一方のドーパントを拡散移動させることで、前記突き当て面における前記第1光ファイバと前記第2光ファイバとの実効断面積の差異を小さくする。
上記態様によれば、加熱工程において、融着接続部における2本の光ファイバの実効断面積の差異を小さくすることで、融着接続部における光の損失を低減することができる。
ここで、上記態様の光デバイスの製造方法は、前記第1光ファイバおよび前記第2光ファイバのうち、一方に光源を接続し、他方に測定器を接続し、前記光源から出射されて前記第1光ファイバおよび前記第2光ファイバを通過した光のビーム品質を、前記測定器によって確認する確認工程を含んでいてもよい。
また、前記突き当て面と前記加熱工程における加熱点とが、長手方向においてずれていてもよい。
また、前記第1光ファイバの前記クラッドおよび前記第2光ファイバの前記クラッドには、屈折率を低下させる前記ドーパントが添加され、前記第1光ファイバおよび前記第2光ファイバのうち、前記突き当て面における実効断面積が小さい方に、前記加熱点がずれていてもよい。
また、前記第1光ファイバの前記コアおよび前記第2光ファイバの前記コアには、屈折率を上昇させる前記ドーパントが添加され、前記第1光ファイバおよび前記第2光ファイバのうち、前記突き当て面における実効断面積が小さい方に、前記加熱点がずれていてもよい。
また、前記第1光ファイバの前記クラッドおよび前記第2光ファイバの前記クラッドには、屈折率を低下させる前記ドーパントが添加され、前記第1光ファイバおよび前記第2光ファイバのうち、前記突き当て面における実効断面積が小さい方の前記クラッドへの前記ドーパントの添加量が、他方の前記クラッドへの前記ドーパントの添加量よりも多くてもよい。
また、前記加熱工程の前における前記第1光ファイバの実効断面積が前記第2光ファイバの実効断面積よりも小さく、前記加熱工程により、前記第1光ファイバの実効断面積を増加させ、かつ、前記第2光ファイバの実効断面積を減少させてもよい。
また、前記第1光ファイバの前記コアに屈折率を増加させるドーパントが添加され、前記第1光ファイバの前記クラッドに屈折率を減少させるドーパントが添加され、前記第2光ファイバの前記コアに屈折率を低下させるドーパントが添加されていてもよい。
また、前記第2光ファイバの前記コアに添加された、屈折率を低下させる前記ドーパントを第1ドーパントとするとき、前記第2光ファイバの前記コアには屈折率を増加させる第2ドーパントが添加され、前記第2ドーパントの熱による拡散移動の速度が前記第1ドーパントよりも大きくてもよい。
また、前記第1光ファイバおよび前記第2光ファイバのうちの一方は、前記コアに希土類が添加されている増幅用光ファイバであってもよい。
本発明の上記態様によれば、融着接続部における光の損失を低減できる光デバイスの製造方法を提供することが可能となる。
第1実施形態に係る光デバイスの断面図である。 第1実施形態における融着接続器の一例を示す図である。 第1光ファイバの断面および屈折率分布を示しており、(a)は加熱工程前の状態、(b)は加熱工程後の状態である。 第5実施形態に係るレーザ装置の概略図である。
(第1実施形態)
以下、第1実施形態の光デバイスおよびその製造方法について、図面に基づいて説明する。
図1に示すように、光デバイス10は、コア11と、クラッド12(第1クラッド)と、ポリマークラッド13(第2クラッド)と、第1被覆層14と、第2被覆層15と、を有している。光デバイス10は、第1光ファイバF1と第2光ファイバF2とが互いに融着接続されることで構成されている。図示は省略するが、融着接続前の第1光ファイバF1および第2光ファイバF2もそれぞれ、コア11と、クラッド12と、ポリマークラッド13と、第1被覆層14と、第2被覆層15と、を有している。
光デバイス10は、クラッド12およびポリマークラッド13を有する、いわゆるダブルクラッドファイバである。ただし、光デバイス10は、ポリマークラッド13を有していなくてもよい。また、本実施形態の光デバイス10は第1被覆層14および第2被覆層15を有しているが、被覆層の数は適宜変更可能である。
(方向定義)
本実施形態では、光デバイス10の長手方向を単に「長手方向」という。また、長手方向において、第1光ファイバF1側を−Z側といい、第2光ファイバF2側を+Z側という。
第1光ファイバF1および第2光ファイバF2は、互いに同種であってもよい。なお、本明細書において2本の光ファイバが「同種」であるとは、コア11およびクラッド12に含有されているドーパントの種類が同じであることをいう。
第1光ファイバF1および第2光ファイバF2は、シングルモードファイバであってもよいし、マルチモードファイバであってもよい。
コア11は石英ガラスにより形成されている。クラッド12は、石英ガラスにより形成され、コア11を囲っている。クラッド12には、石英ガラスの屈折率を低下させるドーパント(ダウンドーパントともいう)が添加されている。このようなドーパントとしては、F(フッ素)、B(ホウ素)、などを採用することができる。ダウンドーパントの添加により、少なくともコア11との界面において、クラッド12の屈折率はコア11よりも低くなっている。これにより、光をコア11内に閉じ込めることができる。
必要に応じて、コア11またはクラッド12に、屈折率を下げる目的以外のドーパント(例えば粘度調整のため等)を添加してもよい。また、コア11に、Ge(ゲルマニウム)、Cl(塩素)、P(リン)、Al(アルミニウム)、Ce(セリウム)などの屈折率を上昇させるドーパント(アップドーパントともいう)を添加してもよい。
ポリマークラッド13の材質は、UV硬化型樹脂でもよく、熱硬化型樹脂であってもよい。ポリマークラッド13は、クラッド12の屈折率よりも低い屈折率を有する材質により形成されている。
第1被覆層14は、ポリマークラッド13を覆っている。第2被覆層15は、第1被覆層14を覆っている。被覆層14、15としては、樹脂などを用いることができる。例えば、ウレタンアクリレート系、ポリブタジエンアクリレート系、エポキシアクリレート系、シリコーンアクリレート系、ポリエステルアクリレート系のUV硬化型樹脂を、被覆層14、15として採用してもよい。
ここで、融着接続部における光の損失を小さくするためには、第1光ファイバF1および第2光ファイバF2の実効断面積(Aeff)がなるべく一致していることが好ましい。しかしながら、融着接続前において、第1光ファイバF1と第2光ファイバF2との実効断面積が必ずしも一致しているとは限らない。そこで本実施形態では、以下のような工程を採用することで、実効断面積の差異を小さくしている。
まず、光デバイス10の元となる第1光ファイバF1および第2光ファイバF2を準備する(準備工程)。このとき、各光ファイバF1、F2の実効断面積を予め測定しておく。例えば、2本以上の光ファイバの実効断面積を測定し、基準値よりも大きい実効断面積を有する光ファイバと、基準値よりも小さい実効断面積を有する光ファイバと、にグループ分けしておいてもよい。基準値は、設計上の目標値であってもよいし、複数の光ファイバについての平均値であってもよい。本明細書では、第1光ファイバF1の実効断面積が、第2光ファイバF2の実効断面積よりも小さい場合について説明する。
次に、第1光ファイバF1および第2光ファイバF2の端部において、ポリマークラッド13、第1被覆層14、および第2被覆層15を除去し、クラッド12を露出させる。そして、クラッド12が露出した端部において、第1光ファイバF1および第2光ファイバF2の端面同士を突き当てる(突き当て工程)。すなわち、第1光ファイバF1および第2光ファイバF2の、コア11同士およびクラッド12同士を突き当てる。以下、突き当てられた第1光ファイバF1および第2光ファイバF2の端面を「突き当て面P」という。第1光ファイバF1と第2光ファイバF2とが融着接続された後、すなわち光デバイス10が製造された後においては、突き当て面Pは消失するため、図1では突き当て面Pを仮想線(一点鎖線)により表している。
突き当て工程は、図2に示すような融着接続器100を用いて行うことが好ましい。融着接続器100は、第1光ファイバF1の軸線と第2光ファイバF2の軸線とが一致し、かつ光ファイバF1、F2の端面同士が突き当たるように、光ファイバF1、F2を保持して位置決めすることができる。なお、図2に示す融着接続器100の形状は一例であり、適宜変更可能である。
次に、突き当て面Pを加熱して、第1光ファイバF1と第2光ファイバF2とを融着接続する(加熱工程)。加熱の具体的な方法は適宜変更可能であるが、融着接続器100によるアーク放電を用いるとよい。融着接続器100は、突き当て面Pと加熱点Hとの長手方向における相対的な位置を微調整することができるように構成されている。
ここで本実施形態では、図1に示すように、加熱工程における加熱点Hが突き当て面Pよりも第1光ファイバF1側(−Z側)にずれている。加熱点Hが突き当て面Pから長手方向にずれていても、伝熱によって突き当て面Pが加熱されて、光ファイバF1、F2が溶融して融着する。このように、加熱点Hが突き当て面Pからずれていることで、ずれている側の光ファイバ(第1光ファイバF1)のドーパントを積極的に拡散移動させることができる。そして、突き当て面Pにおける第1光ファイバF1と第2光ファイバF2との実効断面積の差異を小さくすることができる。以下、図3(a)、(b)を用いて、より詳しく説明する。
図3(a)は、加熱工程を行う前における第1光ファイバF1の断面および屈折率分布を示している。図3(a)の下部に示すように、コア11の屈折率はクラッド12の屈折率よりも大きい。これは、クラッド12に屈折率を低下させるドーパントが添加されているためである。
加熱工程においてクラッド12が熱せられると、クラッド12に添加されているドーパントが拡散移動し、コア11内に進入する。すると、コア11とクラッド12との界面近傍において、クラッド12内のドーパントの量が減少し、コア11内のドーパントの量が増加する。その結果、図3(b)に示すように、コア11とクラッド12との界面近傍において、クラッド12の屈折率が上昇し、コア11の屈折率が低下する。図3(a)と図3(b)とで、屈折率が立ち上がっている部分の幅W1、W2を比較すると、図3(b)における幅W2の方が大きくなっている。コア11の実効断面積は、屈折率の立ち上がりの幅W1、W2が大きいほど大きくなる。つまり、第1光ファイバF1の実効断面積は、加熱工程によって大きくなっている。
そして本実施形態では、加熱工程を行う前の状態において、第1光ファイバF1の実効断面積が第2光ファイバF2の実効断面積よりも小さくなっている。従って、加熱工程の際に第1光ファイバF1の実効断面積を大きくすることで、光ファイバF1、F2の実効断面積の差異を小さくすることができる。なお、加熱点Hは突き当て面Pの近傍であるため、第2光ファイバF2でもドーパントの拡散移動が生じ、第2光ファイバF2の実効断面積が増大しうる。しかしながら、加熱点Hが第1光ファイバF1側にずれていることで、第1光ファイバF1における実効断面積の増分は、第2光ファイバF2における実効断面積の増分より大きくなる。したがって、加熱工程により第2光ファイバF2の実効断面積が大きくなったとしても、突き当て面Pにおける実効断面積の差異を小さくすることができる。
ここで、加熱時間が長いほど、ドーパントの拡散移動の量が増加し、第1光ファイバF1の実効断面積が大きくなる。このため、加熱時間が過剰であると、第1光ファイバF1の実効断面積が第2光ファイバF2の実効断面積よりも大きくなってしまい、かえって実効断面積の差異が大きくなってしまうことも考えられる。そこで図2に示すように、第1光ファイバF1および第2光ファイバF2のうち、一方に光源101を接続し、他方に測定器102を接続してもよい。そして、光源101から光を出射させ、第1光ファイバF1および第2光ファイバF2を通過した光のビーム品質(例えばM:M Square)を、測定器102によって確認してもよい(確認工程)。
突き当て面Pにおける実効断面積が大きく異なっているほど、測定器102により測定されるビーム品質が低下する。逆に言えば、測定器102によって測定されたビーム品質が所定範囲内である場合、突き当て面Pにおける実効断面積の差異も所定範囲内である。したがって、上記の確認工程を行うことで、第1光ファイバF1と第2光ファイバF2との実効断面積の差異が所定の範囲内であるか否かを確認することができる。確認工程の結果、実効断面積の差異が所定の範囲内であれば加熱工程を終了し、実効断面積の差異が所定の範囲内でなければ加熱工程を継続するとよい。第1光ファイバF1の実効断面積が大きくなりすぎた場合、加熱点Hを第2光ファイバF2側にずらして加熱工程を継続し、第2光ファイバF2の実効断面積を大きくすることも可能である。
なお、石英ガラス内における拡散の速度を考慮すると、屈折率を低下させるドーパントとしてはF(フッ素)が好適である。Fを用いることで、ドーパントをクラッド12からコア11に移動させ、第1光ファイバF1の実効断面積を増大させることができる。
なお、加熱工程および確認工程の後、クラッド12が露出された部分を、樹脂によって再度被覆してもよい。この場合、再度設けられた被覆(再被覆部)によって、クラッド12の外周面を保護することができる。ただし、例えば漏れ光による発熱などの懸念が無い場合には、再被覆部を設けなくてもよい。
(第2実施形態)
次に、本発明に係る第2実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
第1実施形態では、クラッド12に添加されている、屈折率を低下させるドーパントを拡散移動させることで、第1光ファイバF1の実効断面積を上昇させた。これに対して第2実施形態では、コア11に添加されている、屈折率を上昇させるドーパントを拡散移動させることで、第1光ファイバF1の実効断面積を増加させる。
本実施形態でも、加熱工程における加熱点Hが、突き当て面Pよりも−Z側にずれている。すなわち、第1光ファイバF1および第2光ファイバF2のうち、突き当て面Pにおける実効断面積が小さい側に、加熱点Hがずれている。本実施形態では、加熱工程を行うことで、第1光ファイバF1のコア11に含まれている屈折率を上昇させるドーパントが、クラッド12に向けて拡散移動する。これにより、コア11とクラッド12との境界面の近傍において、コア11の屈折率が低下するとともに、クラッド12の屈折率が上昇する。したがって、第1実施形態と同様に、第1光ファイバF1の実効断面積を増加させて、融着接続部にける第1光ファイバF1と第2光ファイバF2との実効断面積の差異を小さくすることができる。
(第3実施形態)
次に、本発明に係る第3実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
第1実施形態および第2実施形態では、加熱点Hが突き当て面Pから長手方向にずれていたが、本実施形態では加熱点Hと突き当て面Pとの長手方向における位置を一致させる。
本実施形態における第1光ファイバF1および第2光ファイバF2では、クラッド12に添加されている屈折率を低下させるドーパントの添加量が異なる。より詳しくは、実効断面積が小さい第1光ファイバF1のクラッド12へのドーパントの添加量が、第2光ファイバF2のクラッド12へのドーパントの添加量よりも多くなっている。
本実施形態の場合、加熱点Hと突き当て面Pとが一致しているため、第1光ファイバF1および第2光ファイバF2の双方が略均等に加熱される。このため、光ファイバF1、F2の双方において、屈折率を低下させるドーパントがクラッド12からコア11に拡散移動し、実効断面積が増加する。ここで、第1光ファイバF1のクラッド12へのドーパントの添加量が大きいことにより、第2光ファイバF2よりも第1光ファイバF1の方が、実効断面積の増加分が大きくなる。したがって、突き当て面Pにおける実効断面積の差異を小さくすることができる。
(第4実施形態)
次に、本発明に係る第4実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
第1〜第3実施形態では、第1光ファイバF1および第2光ファイバF2が双方とも加熱によって実効断面積が増加するが、第1光ファイバF1の方が実効断面積の増加量が大きいことで、両者の実効断面積の差異を小さくした。これに対して第4実施形態では、第1光ファイバF1は加熱により実効断面積が増加し、第2光ファイバF2は加熱により実効断面積が減少する。
本実施形態の第1光ファイバF1は、例えばFBG(Fiber Bragg Grating)ファイバであり、コア11にはアップドーパントが添加され、クラッド12にはダウンドーパントが添加されている。本実施形態の第2光ファイバF2は、例えば増幅用光ファイバであり、コア11には、希土類であるYbと、ダウンドーパントであるBと、が添加されている。
本実施形態では、第1光ファイバF1が加熱されると、コア11のアップドーパントがクラッド12に拡散移動し、かつ、クラッド12のダウンドーパントがコア11に拡散移動する。これにより、第1光ファイバF1の実効断面積が大きくなる。一方、第2光ファイバF2が加熱されると、コア11からクラッド12に向けてダウンドーパントが拡散移動することで、コア11におけるクラッド12との境界近傍の屈折率が低下する。これにより、第2光ファイバF2の実効断面積が小さくなる。すなわち、加熱により、第1光ファイバF1の実効断面積は増加し、第2光ファイバF2の実効断面積が減少する。このため、加熱前の第1光ファイバF1の実効断面積が第2光ファイバF2より小さくても、加熱によって、第1光ファイバF1と第2光ファイバF2との実効断面積の差異を小さくできる。
以上説明したように、第1〜第4実施形態に係る光デバイス10の製造方法は、突き当て工程と、加熱工程と、を有している。突き当て工程では、実効断面積が互いに異なり、コア11またはクラッド12に屈折率を変化させるドーパントが添加されている第1光ファイバF1および第2光ファイバF2の端面同士を突き当てる。加熱工程では、第1光ファイバF1と第2光ファイバF2との突き当て面Pを加熱して、第1光ファイバF1と第2光ファイバF2とを融着接続させる。そして加熱工程において、第1光ファイバF1のドーパントを拡散移動させることで、突き当て面Pにおける第1光ファイバF1と第2光ファイバF2との実効断面積の差異を小さくしている。
このような製造方法によって製造された光デバイス10によれば、融着接続部における実効断面積の差異が小さくなるため、融着接続部における光の損失を低減することができる。
また、第1〜第4実施形態に係る製造方法は、確認工程を含んでいてもよい。確認工程では、第1光ファイバF1および第2光ファイバF2のうち、一方に光源101を接続し、他方に測定器102を接続し、光源101から出射されて第1光ファイバF1および第2光ファイバF2を通過した光のビーム品質を、測定器102によって確認する。この構成によれば、加熱工程によってかえって実効断面積の差異が大きくなってしまうことを抑制できる。
また、第1実施形態および第2実施形態に係る製造方法では、突き当て面Pと加熱工程における加熱点Hとが長手方向においてずれている。
また、第1実施形態では、第1光ファイバF1のクラッド12および第2光ファイバF2のクラッド12には、屈折率を低下させるドーパントが添加され、第1光ファイバF1および第2光ファイバF2のうち、突き当て面Pにおける実効断面積が小さい方に、加熱点Hがずれている。
また、第2実施形態では、第1光ファイバF1のコア11および第2光ファイバF2のコア11には、屈折率を上昇させるドーパントが添加され、第1光ファイバF1および第2光ファイバF2のうち、突き当て面Pにおける実効断面積が小さい方に、加熱点Hがずれている。
このように、長手方向における加熱点Hの位置を、突き当て面Pに対して長手方向にずらすことで、容易に実行断面積の差異を小さくすることができる。
また、第3実施形態に係る製造方法では、第1光ファイバF1のクラッド12および第2光ファイバF2のクラッド12には、屈折率を低下させるドーパントが添加され、第1光ファイバF1および第2光ファイバF2のうち、突き当て面Pにおける実効断面積が小さい方のクラッド12へのドーパントの添加量が、他方のクラッド12へのドーパントの添加量よりも多い。
この構成によれば、長手方向における加熱点Hの位置を、突き当て面Pに一致させる場合でも、実効断面積の差異を小さくすることができる。
また、第4実施形態に係る製造方法では、加熱工程の前における第1光ファイバF1の実効断面積が第2光ファイバF2の実効断面積よりも小さく、加熱工程により、第1光ファイバF1の実効断面積を増加させ、かつ、第2光ファイバF2の実効断面積を減少させる。この構成によれば、加熱点Hが突き当て面Pに対して+Z側あるいは−Z側のどちらにずれていたとしても、実効断面積の差異を小さくすることができる。
また、第4実施形態では、第1光ファイバF1のコア11に屈折率を増加させるドーパントが添加され、第1光ファイバF1のクラッド12に屈折率を減少させるドーパントが添加され、第2光ファイバF2のコア11に屈折率を低下させるドーパントが添加されている。この構成により、加熱工程によって第1光ファイバF1の実効断面積が増加し、かつ第2光ファイバF2の実効断面積が減少する製造方法を実現できる。
(第5実施形態)
次に、本発明に係る第5実施形態について説明する。本実施形態では、第1〜第4実施形態において説明した製造方法によって製造された光デバイス10を用いたレーザ装置について説明する。光デバイス10の基本的な構成は第1〜第3実施形態と同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
図4に示すように、レーザ装置1は、前方励起光源2と、第1コンバイナ3と、第1FBGファイバ4と、増幅用光ファイバ5と、第2FBGファイバ6と、第2コンバイナ7と、後方励起光源8と、出力端9と、を備えている。第1FBGファイバ4には、HR−FBG(High Reflectivity-Fiber Bragg Grating)4aが形成されている。第2FBGファイバ6には、OC−FBG(Output Coupler-Fiber Bragg Grating)6aが形成されている。増幅用光ファイバ5、第1FBGファイバ4、および第2FBGファイバ6は、励起光源2、8が出射する励起光によってレーザ光を生成する共振器Rを構成している。
レーザ装置1は、前方励起光源2および後方励起光源8を備えた双方向励起型である。
図1に示すように、前方励起光源2および後方励起光源8は、増幅用光ファイバ5を挟んで、それぞれ複数配置されている。前方励起光源2は前方励起光を増幅用光ファイバ5に向けて出射し、後方励起光源8は後方励起光を増幅用光ファイバ5に向けて出射する。これら励起光源2、8としては、例えばレーザダイオードを用いることができる。
第1コンバイナ3および第2コンバイナ7は、増幅用光ファイバ5を挟んだ両側に配置されている。第1コンバイナ3は、各前方励起光源2が出射した励起光を、1本の光ファイバに結合し、増幅用光ファイバ5に向かわせる。第2コンバイナ7は、各後方励起光源8が出射した励起光を、1本の光ファイバに結合し、増幅用光ファイバ5に向かわせる。
増幅用光ファイバ5は、1種類または2種類以上の活性元素が添加されたコアと、コアを覆うクラッド(第1クラッド)と、クラッドを覆うポリマークラッド(第2クラッド)と、ポリマークラッドを覆う被覆層と、を有している。増幅用光ファイバ5は、ダブルクラッドファイバである。コアに添加する活性元素としては、例えばエルビウム(Er)、イッテルビウム(Yb)、あるいはネオジム(Nd)などの希土類元素が使用される。これらの活性元素は、励起状態で光を放出する。コアおよびクラッドとしては石英ガラスなどを用いることができる。第2クラッドとしては、ポリマーなどの樹脂を用いることができる。被覆層としては、アクリル樹脂やシリコーン樹脂などの樹脂材料を用いることができる。
第1FBGファイバ4は、増幅用光ファイバ5の前方に融着接続されている。HR−FBG4aは、第1FBGファイバ4のコア内に形成されている。HR−FBG4aは、励起状態にされた増幅用光ファイバ5の活性元素が放出する光のうち信号光の波長の光をほぼ100%の反射率で反射するように調整されており、第1FBGファイバ4の長手方向に沿って一定の周期で高屈折率の部分が繰り返される構造となっている。
第2FBGファイバ6は、増幅用光ファイバ5の後方に融着接続されている。OC−FBG6aは、第2FBGファイバ6のコア内に形成されている。OC−FBG6aは、HR−FBG4aとほぼ同様の構造を有しているが、HR−FBG4aよりも低い反射率で、光を反射するように調整されている。
増幅用光ファイバ5内では、HR−FBG4aおよびOC−FBG6aで反射した信号光が、増幅用光ファイバ5の長手方向で往復する。信号光は、この往復に伴って増幅されてレーザ光となる。このように、共振器R内では、光が増幅されてレーザ光が生成される。レーザ光の一部は、OC−FBG6aを透過し、出力端9に到達し、出力端9からレーザ装置1の外部に出射される。
このようなレーザ装置1では、光ファイバ同士の融着接続部で生じる光の損失が、レーザ装置1の性能の低下につながる場合がある。そこで本実施形態では、レーザ装置1が有する融着接続部に、第1〜第4実施形態で説明した融着接続方法を用いる。例えば、第1FBGファイバ4および増幅用光ファイバ5のうちの一方を、第1〜第3実施形態における第1光ファイバF1とし、他方を第2光ファイバF2としてもよい。あるいは、増幅用光ファイバ5および第2FBGファイバ6のうちの一方を、第1〜第3実施形態における第1光ファイバF1とし、他方を第2光ファイバF2としてもよい。また、第1FBGファイバ4または第2FBGファイバ6を第4実施形態における第1光ファイバF1とし、増幅用光ファイバ5を第4実施形態における第2光ファイバF2としてもよい。
すなわち、第1光ファイバF1および第2光ファイバF2のうちの一方は、コア11に希土類が添加されている増幅用光ファイバ5であってもよい。このような構成によれば、増幅用光ファイバ5と他の光ファイバとの融着接続部における実効断面積の差異が小さくなり、融着接続部における光の損失を低減することができる。したがって、レーザ装置1の性能を向上させることが可能となる。
なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、第5実施形態のレーザ装置1において、増幅用光ファイバ5以外の融着接続部に、第1〜第3実施形態で説明した融着接続方法を採用してもよい。
また、前記第5実施形態における励起光源2、8に代えて、MOPA(Master Oscillator Power Amplifier)方式のレーザユニットを採用しても良い。
また、第4実施形態の第2光ファイバF2(Yb増幅ファイバ)のコア11に、ダウンドーパントであるB(第1ドーパント)に加えて、アップドーパントであるAl(第2ドーパント)を添加してもよい。AlよりもBの方が熱による拡散移動の速度が大きいため、第2光ファイバF2を加熱すると、コア11からクラッド12へのBの移動量がAlの移動量よりも大きくなる。この場合も、第2光ファイバF2の実効断面積が減少するため、第4実施形態で説明した作用効果が得られる。なお、AlおよびBに限らず、第2ドーパントの熱による拡散移動の速度が第1ドーパントよりも大きければ、具体的なドーパントの種類は適宜変更してもよい。また、第2光ファイバF2の種類はYb増幅ファイバに限らず、適宜変更してもよい。
その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
例えば、第5実施形態のレーザ装置1において、第1〜第4実施形態で説明した融着接続方法を混在させてもよい。
5…増幅用光ファイバ 10…光デバイス 11…コア 12…クラッド 101…光源 102…測定器 F1…第1光ファイバ F2…第2光ファイバ H…加熱点 P…突き当て面

Claims (10)

  1. 実効断面積が互いに異なり、コアまたはクラッドに屈折率を変化させるドーパントが添加されている第1光ファイバおよび第2光ファイバの端面同士を突き当てる突き当て工程と、
    前記第1光ファイバと前記第2光ファイバとの突き当て面を加熱して、前記第1光ファイバと前記第2光ファイバとを融着接続させる加熱工程と、を有し、
    前記加熱工程において、前記第1光ファイバおよび前記第2光ファイバの少なくとも一方のドーパントを拡散移動させることで、前記突き当て面における前記第1光ファイバと前記第2光ファイバとの実効断面積の差異を小さくする、光デバイスの製造方法。
  2. 前記第1光ファイバおよび前記第2光ファイバのうち、一方に光源を接続し、他方に測定器を接続し、前記光源から出射されて前記第1光ファイバおよび前記第2光ファイバを通過した光のビーム品質を、前記測定器によって確認する確認工程を含む、請求項1に記載の光デバイスの製造方法。
  3. 前記突き当て面と前記加熱工程における加熱点とが、長手方向においてずれている、請求項1または2に記載の光デバイスの製造方法。
  4. 前記第1光ファイバの前記クラッドおよび前記第2光ファイバの前記クラッドには、屈折率を低下させる前記ドーパントが添加され、
    前記第1光ファイバおよび前記第2光ファイバのうち、前記突き当て面における実効断面積が小さい方に、前記加熱点がずれている、請求項3に記載の光デバイスの製造方法。
  5. 前記第1光ファイバの前記コアおよび前記第2光ファイバの前記コアには、屈折率を上昇させる前記ドーパントが添加され、
    前記第1光ファイバおよび前記第2光ファイバのうち、前記突き当て面における実効断面積が小さい方に、前記加熱点がずれている、請求項3に記載の光デバイスの製造方法。
  6. 前記第1光ファイバの前記クラッドおよび前記第2光ファイバの前記クラッドには、屈折率を低下させる前記ドーパントが添加され、
    前記第1光ファイバおよび前記第2光ファイバのうち、前記突き当て面における実効断面積が小さい方の前記クラッドへの前記ドーパントの添加量が、他方の前記クラッドへの前記ドーパントの添加量よりも多い、請求項1または2に記載の光デバイスの製造方法。
  7. 前記加熱工程の前における前記第1光ファイバの実効断面積が前記第2光ファイバの実効断面積よりも小さく、
    前記加熱工程により、前記第1光ファイバの実効断面積を増加させ、かつ、前記第2光ファイバの実効断面積を減少させる、請求項1または2に記載の光デバイスの製造方法。
  8. 前記第1光ファイバの前記コアに屈折率を増加させるドーパントが添加され、
    前記第1光ファイバの前記クラッドに屈折率を減少させるドーパントが添加され、
    前記第2光ファイバの前記コアに屈折率を低下させるドーパントが添加されている、請求項7に記載の光デバイスの製造方法。
  9. 前記第2光ファイバの前記コアに添加された、屈折率を低下させる前記ドーパントを第1ドーパントとするとき、前記第2光ファイバの前記コアには屈折率を増加させる第2ドーパントが添加され、
    前記第2ドーパントの熱による拡散移動の速度が前記第1ドーパントよりも大きい、請求項8に記載の光デバイスの製造方法。
  10. 前記第1光ファイバおよび前記第2光ファイバのうちの一方は、前記コアに希土類が添加されている増幅用光ファイバである、請求項1から9のいずれか1項に記載の光デバイスの製造方法。
JP2020004411A 2020-01-15 2020-01-15 光デバイスの製造方法 Pending JP2021110898A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020004411A JP2021110898A (ja) 2020-01-15 2020-01-15 光デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020004411A JP2021110898A (ja) 2020-01-15 2020-01-15 光デバイスの製造方法

Publications (1)

Publication Number Publication Date
JP2021110898A true JP2021110898A (ja) 2021-08-02

Family

ID=77060523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020004411A Pending JP2021110898A (ja) 2020-01-15 2020-01-15 光デバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2021110898A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253003A (ja) * 1990-08-03 1992-09-08 American Teleph & Telegr Co <Att> 光通信システム
JPH05224060A (ja) * 1991-11-15 1993-09-03 Sumitomo Electric Ind Ltd モードフィールド径変換ファイバ
JPH10300970A (ja) * 1997-04-24 1998-11-13 Sumitomo Electric Ind Ltd 光ファイバ素子及び光ファイバ接続方法
EP1174740A1 (en) * 2000-07-21 2002-01-23 Corning Incorporated Method and apparatus for splicing optical fibers having different mode field diameters
JP2004309706A (ja) * 2003-04-04 2004-11-04 Furukawa Electric Co Ltd:The 光ファイバの接続方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253003A (ja) * 1990-08-03 1992-09-08 American Teleph & Telegr Co <Att> 光通信システム
JPH05224060A (ja) * 1991-11-15 1993-09-03 Sumitomo Electric Ind Ltd モードフィールド径変換ファイバ
JPH10300970A (ja) * 1997-04-24 1998-11-13 Sumitomo Electric Ind Ltd 光ファイバ素子及び光ファイバ接続方法
EP1174740A1 (en) * 2000-07-21 2002-01-23 Corning Incorporated Method and apparatus for splicing optical fibers having different mode field diameters
JP2004309706A (ja) * 2003-04-04 2004-11-04 Furukawa Electric Co Ltd:The 光ファイバの接続方法

Similar Documents

Publication Publication Date Title
US6751241B2 (en) Multimode fiber laser gratings
JP5460914B2 (ja) ファイバレーザ装置およびレーザ光照射位置の位置決め方法
KR20100048689A (ko) 광 커플러 및 이를 포함하는 광섬유 레이저 시스템
US10666010B1 (en) Fiber laser pump reflector
JP2005303166A (ja) 光ファイバ端面構造、光ファイバレーザ及びレーザ加工装置
GB2444091A (en) A Laser Amplifier
US8902494B2 (en) Amplification optical fiber with optical component and fiber laser device including the same
US8665514B2 (en) Multi-core optical amplification fiber wound with decreasing radius of curvature
JP2009271108A (ja) 光コンバイナ及びその製造方法
US7978943B2 (en) Monolithic pump coupler for high-aspect ratio solid-state gain media
US20150247972A1 (en) Optical fiber, fiber laser, and optical fiber manufacturing method
JP4855429B2 (ja) ダブルクラッドファイバの接続方法
JP6744074B2 (ja) 光ファイバグレーティング用光ファイバおよびファイバレーザ装置
JPWO2011048999A1 (ja) レーザ光出射用素子、及び、その製造方法、及び、それを用いたファイバレーザ装置
CN114072712B (zh) 光合并器、激光装置、以及光合并器的制造方法
JP2021110898A (ja) 光デバイスの製造方法
WO2020045569A1 (ja) クラッドモード光除去構造、レーザ装置、及びクラッドモード光除去構造の製造方法
CN108603983B (zh) 光学模块及光输出装置
JP5671706B2 (ja) ファイバレーザ発振器
JP7268245B2 (ja) 活性元素添加光ファイバ、活性元素添加光ファイバ用母材、共振器、及び、ファイバレーザ装置
CN117063357A (zh) 激光装置以及加工装置
WO2020203136A1 (ja) ファイバレーザ装置
CN109071312A (zh) 制造具有破坏对称性的纵向突起的光纤
JP6853291B2 (ja) レーザ装置の製造方法
JP2010177314A (ja) ダブルクラッドファイバ、ファイバレーザ装置及び光増幅器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231031