JP2021110549A - Proximity sensor - Google Patents
Proximity sensor Download PDFInfo
- Publication number
- JP2021110549A JP2021110549A JP2020000395A JP2020000395A JP2021110549A JP 2021110549 A JP2021110549 A JP 2021110549A JP 2020000395 A JP2020000395 A JP 2020000395A JP 2020000395 A JP2020000395 A JP 2020000395A JP 2021110549 A JP2021110549 A JP 2021110549A
- Authority
- JP
- Japan
- Prior art keywords
- oscillation
- circuit
- magnetic field
- coil
- proximity sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010355 oscillation Effects 0.000 claims abstract description 296
- 238000001514 detection method Methods 0.000 claims abstract description 197
- 230000008859 change Effects 0.000 claims abstract description 40
- 230000007423 decrease Effects 0.000 claims abstract description 23
- 238000013459 approach Methods 0.000 claims abstract description 22
- 230000003993 interaction Effects 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 12
- 230000002238 attenuated effect Effects 0.000 abstract description 4
- 230000004048 modification Effects 0.000 description 27
- 238000012986 modification Methods 0.000 description 27
- 238000010586 diagram Methods 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 10
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- XTKDAFGWCDAMPY-UHFFFAOYSA-N azaperone Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CCN(C=2N=CC=CC=2)CC1 XTKDAFGWCDAMPY-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
- Switches That Are Operated By Magnetic Or Electric Fields (AREA)
Abstract
Description
本発明は、近接センサに関する。 The present invention relates to a proximity sensor.
金属により形成された検知対象となる物体(以下、単に検知対象物と呼ぶ)の接近を検知するために、発振コイルを含む発振回路を用いる近接センサが提案されている(例えば、特許文献1を参照)。特許文献1に記載された技術では、検知対象物が発振コイルの漏洩磁場から離れているときには発振回路が発振し、一方、発振コイルの漏洩磁場に接近することで、発振コイルのコンダクタンスが増大して発振回路の発振条件が成立しなくなり、発振回路が発振停止状態となる。これにより、検知対象物が検知される。
A proximity sensor using an oscillation circuit including an oscillation coil has been proposed in order to detect the approach of an object to be detected (hereinafter, simply referred to as a detection object) formed of metal (for example, Patent Document 1). reference). In the technique described in
また、近接センサを高感度化するために、磁気インピーダンス素子を用いる技術が提案されている(例えば、特許文献2を参照)。特許文献2に記載された技術では、励磁コイルの内側に磁気インピーダンス素子が配置され、この磁気インピーダンス素子により、金属体からの渦電流磁束が検出される。また、励磁磁束に対して90度位相が遅れた渦電流磁束が発生するように、発振周波数が設定され、タイミング制御回路は、励磁用発振回路からの励磁電流がゼロとなる時点を中心とする所定期間にサンプリングパルスを生成する。そしてサンプリングパルスの出力期間における磁気インピーダンス素子からの出力が積分され、その積分結果が差動増幅回路において累積された後、コンパレータにおいて所定のしきい値と比較される。 Further, in order to increase the sensitivity of the proximity sensor, a technique using a magnetic impedance element has been proposed (see, for example, Patent Document 2). In the technique described in Patent Document 2, a magnetic impedance element is arranged inside the exciting coil, and the eddy current magnetic flux from the metal body is detected by the magnetic impedance element. Further, the oscillation frequency is set so that an eddy current magnetic flux whose phase is delayed by 90 degrees with respect to the exciting magnetic flux is generated, and the timing control circuit is centered on the time when the exciting current from the exciting oscillation circuit becomes zero. A sampling pulse is generated in a predetermined period. Then, the output from the magnetic impedance element during the output period of the sampling pulse is integrated, the integration result is accumulated in the differential amplifier circuit, and then compared with a predetermined threshold value in the comparator.
しかしながら、特許文献1に記載の技術では、近接センサを高感度化するためには近接センサの構造が複雑となり過ぎるために、検知対象物を検知可能な距離(以下、単に検知可能距離と呼ぶ)を十分に取れないことがある。さらに、金属自身の磁力は非常に微弱であるため、特許文献2に記載された技術では、磁気インピーダンス素子からの出力信号における信号対雑音比が良好でない。そのため、この技術でも、検知可能距離を十分に取れないことがある。
However, in the technique described in
そこで、本発明は、金属により形成された検知対象物を検知可能な距離を大きくすることが可能な近接センサを提供することを目的とする。 Therefore, an object of the present invention is to provide a proximity sensor capable of increasing the detectable distance of a detection object formed of metal.
本発明の一つの形態として、近接センサが提供される。この近接センサは、発振コイルを有し、金属により形成される検知対象物が発振コイルに近付くにつれて減衰する振幅を持つ発振信号を出力する発振回路と、検知対象物と発振コイル間の相互作用による磁界の強さの変化に応じてインピーダンスが変化する磁界検出素子を有し、磁界検出素子のインピーダンスの変化量に応じて発振信号の振幅を低下させる発振制御回路と、発振制御回路から出力される発振信号の振幅に応じた信号値と所定の閾値とを比較することで、検知対象物を検知したか否かを判定する判定回路とを有する。
係る構成を有することにより、この近接センサは、金属により形成された検知対象物を検知可能な距離を大きくすることができる。また、発振コイルと磁界検出素子とを別個に設けることにより、この近接センサは、発振コイルと磁界検出素子とが並ぶ方向における、検知対象物を検知可能な距離を、その他の方向における検知対象物を検知可能な距離よりも大きくすること、すなわち、検知方向に関して指向性を持たせることができる。
A proximity sensor is provided as one embodiment of the present invention. This proximity sensor is based on the interaction between an oscillating circuit that has an oscillating coil and outputs an oscillating signal having an amplitude that attenuates as the detection object formed of metal approaches the oscillating coil, and the oscillating object and the oscillating coil. An oscillation control circuit that has a magnetic field detection element whose impedance changes according to a change in the strength of the magnetic field and reduces the amplitude of the oscillation signal according to the amount of change in the impedance of the magnetic field detection element, and an oscillation control circuit that outputs the oscillation signal. It has a determination circuit for determining whether or not a detection target is detected by comparing a signal value corresponding to the amplitude of an oscillation signal with a predetermined threshold value.
By having such a configuration, the proximity sensor can increase the distance at which a detection object formed of metal can be detected. Further, by separately providing the oscillation coil and the magnetic field detection element, this proximity sensor sets the distance at which the detection target can be detected in the direction in which the oscillation coil and the magnetic field detection element are lined up, and the detection target in the other direction. Can be made larger than the detectable distance, that is, directional with respect to the detection direction.
この近接センサにおいて、発振制御回路は、発振回路と判定回路の間に接続され、発振信号を分圧することで発振信号の振幅を低下させることが可能な分圧回路と、磁界検出素子のインピーダンスの変化量が所定の閾値以上になると分圧回路に発振信号を分圧させ、磁界検出素子のインピーダンスの変化量が所定の閾値未満になると分圧回路に発振信号を分圧させないスイッチング素子とを有することが好ましい。
これにより、この近接センサは、所定の閾値を近接センサの用途に応じて予め設定することで、磁界検出素子により発振信号の振幅が低下する検知対象物と発振コイル間の距離を設定できるので、検知対象物を検知可能な距離を適切に設定することができる。
In this proximity sensor, the oscillation control circuit is connected between the oscillation circuit and the determination circuit, and the voltage divider circuit that can reduce the amplitude of the oscillation signal by dividing the oscillation signal and the impedance of the magnetic field detection element It has a switching element that causes the voltage divider circuit to divide the oscillation signal when the amount of change exceeds a predetermined threshold, and does not cause the voltage divider circuit to divide the oscillation signal when the amount of change in the impedance of the magnetic field detection element is less than the predetermined threshold. Is preferable.
As a result, the proximity sensor can set a predetermined threshold value in advance according to the application of the proximity sensor, so that the distance between the detection object and the oscillation coil whose amplitude of the oscillation signal is reduced by the magnetic field detection element can be set. The distance at which the detection target can be detected can be set appropriately.
あるいは、この近接センサにおいて、発振制御回路は、磁界検出素子のインピーダンスの変化量が所定の閾値以上になると発振回路から一定量の電流を発振コイル以外の所定の回路へ流すことで発振信号の振幅を低下させ、磁界検出素子のインピーダンスの変化量が所定の閾値未満になると発振回路から所定の回路への電流の流出を停止することで発振信号の振幅の低下を抑制することが好ましい。
これにより、この近接センサは、所定の閾値を近接センサの用途に応じて予め設定することで、磁界検出素子により発振信号の振幅が低下する検知対象物と発振コイル間の距離を設定できるので、検知対象物を検知可能な距離を適切に設定することができる。
Alternatively, in this proximity sensor, the oscillation control circuit causes an oscillation signal amplitude by passing a constant amount of current from the oscillation circuit to a predetermined circuit other than the oscillation coil when the amount of change in the impedance of the magnetic field detection element exceeds a predetermined threshold value. When the amount of change in the impedance of the magnetic field detection element becomes less than a predetermined threshold value, it is preferable to suppress the decrease in the amplitude of the oscillation signal by stopping the outflow of current from the oscillation circuit to the predetermined circuit.
As a result, the proximity sensor can set a predetermined threshold value in advance according to the application of the proximity sensor, so that the distance between the detection object and the oscillation coil whose amplitude of the oscillation signal is reduced by the magnetic field detection element can be set. The distance at which the detection target can be detected can be set appropriately.
あるいはまた、この近接センサにおいて、発振回路は、発振コイルに電流を供給する発振回路本体をさらに有し、磁界検出素子は、検知対象物と発振コイル間の相互作用による磁界の強さが低下するほどインピーダンスが増加し、かつ、発振コイルと発振回路本体との間に接続されることが好ましい。
これにより、この近接センサは、簡単な回路構成で検知対象物を検知可能な距離を大きくすることができる。
Alternatively, in this proximity sensor, the oscillating circuit further has an oscillating circuit body that supplies a current to the oscillating coil, and the magnetic field detecting element reduces the strength of the magnetic field due to the interaction between the object to be detected and the oscillating coil. It is preferable that the impedance increases as the frequency increases and the oscillation coil is connected to the main body of the oscillation circuit.
As a result, the proximity sensor can increase the distance at which the object to be detected can be detected with a simple circuit configuration.
あるいはまた、この近接センサにおいて、発振回路は、発振コイルに電流を供給する発振回路本体をさらに有し、磁界検出素子は、検知対象物と発振コイル間の相互作用による磁界の強さが低下するほどインピーダンスが低下し、かつ、発振回路本体に対して発振コイルと並列に接続されることが好ましい。
これにより、この近接センサは、簡単な回路構成で検知対象物を検知可能な距離を大きくすることができる。
Alternatively, in this proximity sensor, the oscillating circuit further has an oscillating circuit body that supplies a current to the oscillating coil, and the magnetic field detecting element reduces the strength of the magnetic field due to the interaction between the object to be detected and the oscillating coil. It is preferable that the impedance is lowered as much as possible, and the oscillation circuit body is connected in parallel with the oscillation coil.
As a result, the proximity sensor can increase the distance at which the object to be detected can be detected with a simple circuit configuration.
本発明の他の形態として、近接センサが提供される。この近接センサは、磁気インピーダンス素子により形成される発振コイルを有し、金属により形成された検知対象物が発振コイルに近付くにつれて、磁気インピーダンス素子によるインピーダンスの変化量及び検知対象物と発振コイル間の相互作用による磁界の強さの変化量に応じて減衰する振幅を持つ発振信号を出力する発振回路と、発振回路からの発振信号の振幅に応じた信号値と所定の閾値とを比較することで、検知対象物を検知したか否かを判定する判定回路とを有する。
係る構成を有することにより、この近接センサは、金属により形成された検知対象物を検知可能な距離を大きくすることができる。また、発振コイル自体が磁気インピーダンス素子により形成されることにより、この近接センサは、小型化できるとともに、検知方向に関する指向性を抑制することができる。
As another embodiment of the present invention, a proximity sensor is provided. This proximity sensor has an oscillating coil formed by a magnetic impedance element, and as the detection object formed of metal approaches the oscillating coil, the amount of change in impedance by the magnetic impedance element and between the detection object and the oscillating coil. By comparing an oscillating circuit that outputs an oscillating signal with an amplitude that decays according to the amount of change in the strength of the magnetic field due to interaction, and a signal value according to the amplitude of the oscillating signal from the oscillating circuit and a predetermined threshold value. It has a determination circuit for determining whether or not a detection object has been detected.
By having such a configuration, the proximity sensor can increase the distance at which a detection object formed of metal can be detected. Further, since the oscillation coil itself is formed by the magnetic impedance element, the proximity sensor can be miniaturized and the directivity regarding the detection direction can be suppressed.
以下、本発明の一つの実施形態による近接センサを、図を参照しつつ説明する。この近接センサは、発振コイルを有する発振回路から出力される発振信号の振幅に応じた信号値と閾値とを比較することで、検知対象物の有無を判定する。この近接センサは、検知対象物と発振コイル間の相互作用による磁界の強さに応じてインピーダンスが変化する磁界検出素子をさらに有する。そしてこの近接センサは、検知対象物の接近により、磁界検出素子のインピーダンスが所定の閾値以上になると、発振回路から出力される発振信号の振幅を抑制することで、発振信号の振幅に応じた信号値が閾値以下となる、発振コイルと検知対象物間の距離、すなわち、検知可能距離を大きくする。 Hereinafter, the proximity sensor according to one embodiment of the present invention will be described with reference to the drawings. This proximity sensor determines the presence / absence of an object to be detected by comparing a signal value corresponding to the amplitude of an oscillation signal output from an oscillation circuit having an oscillation coil with a threshold value. This proximity sensor further includes a magnetic field detecting element whose impedance changes according to the strength of the magnetic field due to the interaction between the object to be detected and the oscillating coil. When the impedance of the magnetic field detection element becomes equal to or higher than a predetermined threshold due to the approach of the detection object, this proximity sensor suppresses the amplitude of the oscillation signal output from the oscillation circuit, thereby suppressing the amplitude of the oscillation signal, thereby corresponding to the amplitude of the oscillation signal. Increase the distance between the oscillating coil and the detection object, that is, the detectable distance, at which the value is equal to or less than the threshold value.
図1は、本発明の一つの実施形態による近接センサの回路構成図である。近接センサ1は、発振回路10と、発振制御回路20と、判定回路30とを有する。
FIG. 1 is a circuit configuration diagram of a proximity sensor according to one embodiment of the present invention. The
発振回路10は、発振コイル11と共振コンデンサ12とで構成されるLC回路を用いた帰還型発振回路であり、例えば、ハートレー発振回路またはコルピッツ発振回路とすることができる。そのために、発振回路10は、発振コイル11と、発振コイル11と並列に接続される共振コンデンサ12と、発振コイル11及び共振コンデンサ12に電流を供給する発振回路本体13とを有する。そして発振回路10は、発振信号を発振制御回路20へ出力する。
The
ここで、発振コイル11に検知対象物100が接近するにつれて、検知対象物100に生じる渦電流による損失が増大するので、発振コイル11近傍の磁界の強度が低下する。その結果として、発振回路10の発振条件が変動する。したがって、発振回路10から出力される発振信号の振幅は、検知対象物100が発振コイル11に近付くにつれて減衰する。このことから、近接センサ1は、発振回路10から出力される発振信号の振幅の変化に基づいて、検知対象物100の有無を判定することができる。
Here, as the
発振制御回路20は、磁界検出素子21を有し、磁界検出素子21が検知した、検知対象物100と発振コイル11との相互作用による磁界の強さに応じて、発振回路10からの発振信号の振幅を制御する。本実施形態では、発振制御回路20は、磁界検出素子21のインピーダンスが所定値以上になると発振回路10からの発振信号の振幅を低下させる。そのために、発振制御回路20は、二つの抵抗のうちの一つを磁界検出素子21とする分圧回路22と、分圧回路22からの出力電圧にてオン/オフが切り替えられるスイッチング素子23と、スイッチング素子23と発振回路10の出力端子との間に接続される分圧回路24とを有する。
The
磁界検出素子21は、発振コイル11と検知対象物100の相互作用による磁界の強度の変化に応じてインピーダンスが変化する素子である。本実施形態では、磁界検出素子21は、発振コイル11と検知対象物100の相互作用による磁界の強度が減少するにつれてインピーダンスが増加する素子であり、例えば、アモルファス合金ワイヤまたは磁性体薄膜を用いて構成される磁気インピーダンス素子とすることができる。そして磁界検出素子21は、発振コイル11と検知対象物100との相互作用による磁界の強度変化を検知できるよう、例えば、発振コイル11に対する検知対象物100の想定される最接近位置と発振コイル11との間に配置される。なお、発振コイル11と磁界検出素子21の配置の詳細については後述する。
The magnetic
本実施形態では、発振コイル11に検知対象物100が接近することで検知対象物100に生じる渦電流による損失に応じて発振コイル11近傍の磁界の強度が低下するにつれて、磁界検出素子21のインピーダンスは増加する。そして詳細は後述するが、検知対象物100が発振コイル11近傍の磁界に作用しないときの磁界検出素子21のインピーダンス(以下、基準インピーダンスと呼ぶ)に対する、磁界検出素子21のインピーダンスの変化量が所定の閾値以上になると、発振制御回路20は、発振回路10から出力された発振信号の振幅を抑制する。
In the present embodiment, the impedance of the magnetic
なお、磁界検出素子21は、磁気インピーダンス素子の代わりに、磁気抵抗素子またはコイルを有してもよい。この場合も、磁界検出素子21は、発振コイル11と検知対象物100の相互作用による、発振コイル11近傍の磁界の強度が減少するにつれてインピーダンスが増加するように構成されればよい。
The magnetic
分圧回路22は、電圧源Vccに一端が接続され、他端が磁界検出素子21と接続される抵抗R0と、磁界検出素子21とにより構成される。分圧回路22において、磁界検出素子21の一端は抵抗R0の他端と接続され、磁界検出素子21の他端は接地される。そして、抵抗R0の他端と磁界検出素子21の一端との間から、電圧源Vccから供給される電圧Vが、抵抗R0のインピーダンスと磁界検出素子21のインピーダンスの和に対する、磁界検出素子21のインピーダンスの比にて分圧することで得られる電圧が出力される。したがって、磁界検出素子21のインピーダンスが高くなるほど、すなわち、発振コイル11近傍の磁界の強度が低下するほど、分圧回路22から出力される電圧は高くなる。また、抵抗R0のインピーダンス、すなわち、スイッチング素子23がオンとなる、磁界検出素子21のインピーダンスの基準インピーダンスからの変化量を近接センサ1の用途に応じて予め設定することで、磁界検出素子21により発振回路10からの発振信号の振幅が低下する、検知対象物100と発振コイル11間の距離を適切に設定できるので、近接センサ1は、検知対象物100を検知可能な距離を適切に設定することができる。
なお、抵抗R0は、インピーダンスを調整可能な可変抵抗であってもよい。この場合には、近接センサ1は、抵抗R0のインピーダンスを調整することで、スイッチング素子23がオンとなる磁界検出素子21のインピーダンス、すなわち、基準インピーダンスからのインピーダンスの変化量に対する閾値を変更することができる。すなわち、近接センサ1の検知可能距離を調節することができる。
The
The resistor R0 may be a variable resistor whose impedance can be adjusted. In this case, the
スイッチング素子23は、例えば、npn型のトランジスタであり、ベース端子が分圧回路22と接続され、コレクタ端子が分圧回路24と接続され、エミッタ端子が接地される。そしてスイッチング素子23のオン/オフは、分圧回路22から出力される電圧に応じて切り替えられる。なお、スイッチング素子23は、nチャネル型のMOSFETであってもよい。この場合には、ゲート端子が分圧回路22と接続され、ドレイン端子が分圧回路24と接続され、ソース端子が接地されればよい。
The switching
本実施形態では、上記のように、磁界検出素子21のインピーダンスが高くなるほど分圧回路22から出力される電圧は高くなり、磁界検出素子21のインピーダンスが所定の閾値以上となると、スイッチング素子23はオンとなる。この場合、発振回路10から出力され、発振制御回路20に入力された発振信号は、分圧回路24により分圧されてから判定回路30へ出力される。一方、磁界検出素子21のインピーダンスが所定の閾値よりも低い場合には、スイッチング素子23はオフとなる。この場合には、発振回路10から出力され、発振制御回路20に入力された発振信号は、分圧回路24により分圧されずに判定回路30へそのまま出力される。
In the present embodiment, as described above, the higher the impedance of the magnetic
分圧回路24は、発振回路10の出力端子とスイッチング素子23との間に直列に接続される二つの抵抗R1、R2により構成される。抵抗R1の一端は発振回路10の出力端子と接続され、他端は抵抗R2の一端と接続される。また、抵抗R2の他端はスイッチング素子23と接続される。そして抵抗R1の他端と抵抗R2の一端との間から、入力された振幅に応じた振幅を持つ発振信号が出力される。そのため、スイッチング素子23がオンになると、分圧回路24から出力される発振信号の振幅は、発振回路10から出力された発振信号の振幅を、分圧回路24の抵抗R1のインピーダンスと抵抗R2のインピーダンスの和に対する、抵抗R2のインピーダンスの比にて分圧して得られたものに減衰される。一方、スイッチング素子23がオフである場合には、抵抗R2の方へ電流が流れず、発振回路10から出力された発振信号は、分圧回路24により分圧されない。そのため、この場合には、発振回路10からの発振信号の振幅は低下せず、その発振信号が分圧回路24からそのまま出力される。
The
なお、磁界検出素子21は、検知対象物100と発振コイル11との相互作用による磁界の強さが減少するにつれて、インピーダンスも低下するように構成されてもよい。この場合には、分圧回路22において、抵抗R0よりも電圧源側に磁界検出素子21が接続されればよい。この場合、磁界検出素子21のインピーダンスが低下するほど、分圧回路22からの出力電圧は増加する。そして、基準インピーダンスからの磁界検出素子21のインピーダンスの低下量が所定の閾値以上になるとスイッチング素子23がオンとなり、上記と同様に、発振回路10からの発振信号の振幅が抑制される。
The magnetic
判定回路30は、発振信号の振幅に応じた電圧を持つ信号値と所定の閾値電圧とを比較することで、検知対象物100を検知したか否かを判定する。そのために、判定回路30は、例えば、発振制御回路20側から順に直列に接続される検波回路31と、弁別回路32と、出力回路33とを有する。
The
検波回路31は、例えば、発振制御回路20を介して入力される発振信号を包絡線検波するための回路を有する。なお、検波回路31は、入力される発振信号を整流する全波整流回路または半波整流回路と、整流された発振信号を平滑化する平滑回路を有してもよい。そして検波回路31は、発振制御回路20を介して入力される発振信号の振幅が大きいほど、大きな電圧を持つ信号を出力する。
The
弁別回路32は、検波回路31から出力された信号と所定の閾値電圧とを比較し、その比較結果に応じた電圧を持つ信号を出力する。そのために、弁別回路32は、例えば、コンパレータを有し、コンパレータの二つの入力端子の一方に、検波回路31から出力された信号が入力され、その二つの入力端子の他方に閾値電圧が入力されることで、コンパレータの出力端子から、検波回路31から出力された信号の電圧と所定の閾値電圧との比較結果に応じた電圧を持つ信号が出力される。なお、弁別回路32は、検波回路31から出力された信号の電圧と所定の閾値電圧とを比較するための他の構成の回路を有していてもよい。
The
出力回路33は、弁別回路32から出力された信号を他の回路、例えば、近接センサ1が実装される装置の主制御回路へ出力するためのインターフェース回路を有する。そして出力回路33は、弁別回路32から出力された信号、すなわち、近接センサ1による、検知対象物100の検知結果を表す検知信号を出力する。
The
図2は、検知対象物100と近接センサ1間の距離の変化に応じた、発振回路10からの発振信号の波形及び発振制御回路20を経由した発振信号の波形の変化の一例を示す図である。図2において、横軸は時間を表し、縦軸は電圧を表す。そして波形201は、発振回路10からの発振信号の波形を表し、波形202は、発振制御回路20から出力される発振信号の波形を表す。また、波形203は、検波回路31から出力される信号の波形を表し、波形204は、比較例として、発振回路10からの発振信号が検波回路31により直接検波された場合の信号の波形を表す。さらに、波形205は、出力回路33から出力される検知信号の波形を表す。なお、検知信号の電圧がV1である場合、検知対象物100が検知されたことを表し、一方、検知信号の電圧がV0である場合、検知対象物100が検知されていないことを表す。
FIG. 2 is a diagram showing an example of a change in the waveform of the oscillation signal from the
図2において、期間P1では、検知対象物100が発振コイル11に対して徐々に接近し、期間P2では、発振制御回路20が発振回路10から出力される発振信号の振幅を低下させなくても検知可能なほど検知対象物100が発振コイル11に接近した位置に存在し、期間P3では、検知対象物100が発振コイル11から徐々に遠ざかるものとする。波形201に示されるように、発振回路10からの発振信号の振幅は、検知対象物100が発振コイル11に近付くにつれて徐々に小さくなる。そして期間P2のように、検知対象物100が発振コイル11にある程度以上近付くと、発振回路10は発振しなくなる。また、発振回路10からの発振信号の振幅は、検知対象物100が発振コイル11から遠ざかるにつれて徐々に大きくなる。さらに、波形202に示されるように、時刻t1において、基準インピーダンスに対する磁界検出素子21のインピーダンスの変化量が所定の閾値以上となるほど検知対象物100が発振コイル11に近付くと、発振制御回路20のスイッチング素子23がオンとなり、発振回路10からの発振信号の振幅と比較して、発振制御回路20からの出力信号の振幅はより小さくなる。その状態は、時刻t2において、磁界検出素子21のインピーダンスの変化量が所定の閾値よりも小さくなるほど検知対象物100が発振コイル11から離れるまで継続する。したがって、波形203〜波形205に示されるように、検波回路31から出力された信号の電圧が弁別回路32で使用される閾値電圧Vsh以下となる期間が、発振回路10からの発振信号が直接検波された場合の信号の電圧が閾値電圧Vsh以下となる期間よりも長くなる。すなわち、近接センサ1に磁界検出素子21及び発振制御回路20が設けられることで、近接センサ1の検知可能距離が長くなることが分かる。
In FIG. 2, in the period P1, the
図3は、近接センサ1の外観斜視図であり、図4は、近接センサ1の分解斜視図である。そして図5は、近接センサ1が有する回路基板の側面図である。図3〜図5に示されるように、近接センサ1は、ケース101と、カバー102と、図1に示される各回路が設けられる回路基板103と、フェライト材で形成されるフェライトコア104とを有する。なお、フェライトコア104は省略されてもよい。
FIG. 3 is an external perspective view of the
回路基板103の一端側には、発振コイル11及び磁界検出素子21を構成するアモルファスワイヤを巻き付けるために円筒状のコア部103aが設けられ、その円筒状のコア部103aにフェライトコア104が挿入される。したがって、発振コイル11及び磁界検出素子21の何れも、フェライトコア104の周囲に巻き付けられる。また、回路基板103の一方の面上に、発振回路10の本体13、発振制御回路20及び判定回路30等が設けられる。ケース101とカバー102とは、それらが組み立てられた状態で回路基板103及びフェライトコア104をその内部に収容する近接センサ1の筐体を構成する。
A
磁界検出素子21は、検知対象物100が発振コイル11に最接近する際の想定位置と発振コイル11との間に配置される。図5に示される例では、検知対象物100が発振コイル11に最接近する際の想定位置は、回路基板103の表面103bの上方に位置している。そのため、発振コイル11及び磁界検出素子21は、回路基板103の表面103bに対する法線方向、すなわち、コア部103aの軸方向に沿って並べて配置されており、かつ、発振コイル11よりも磁界検出素子21の方が回路基板103の表面103bから離れた位置に設けられる。これにより、回路基板103の表面103bの法線方向、かつ、表面103bの上方において、磁界検出素子21は、検知対象物100と発振コイル11との相互作用による磁界の強さの変化を検知可能となる。したがって、回路基板103の表面103bの法線方向、かつ、表面103bの上方における近接センサ1の検知可能距離は、他の方向における近接センサ1の検知可能距離よりも大きくなる。このように、近接センサ1は、検知方向に関して指向性を持たせることができる。
The magnetic
本実施形態による近接センサ1は、様々な装置に実装することが可能である。特に、近接センサ1は、特定の方向に存在する検知対象物を検知し、それ以外の方向において磁界の変動を生じさせる物体または機構などが存在するような装置において好適に利用される。例えば、近接センサ1は、遊技機に実装され、遊技機内に設けられる流路を通過する遊技球を検知するために用いられてもよい。
The
図6(a)は、近接センサを有する遊技機における、近接センサの配置の一例を示す、遊技球の流路の外観斜視図である。この例において、遊技球は、検知対象物の一例である。図6(b)は、図6(a)において矢印A、A’側から見た線における、流路の断面図である。図6(a)及び図6(b)に示される例では、遊技機に二つの流路601、602が、それらの一部において互いに隣接するように設けられている。そして、上記の実施形態による二つの近接センサ1−1、1−2が、それぞれ、流路601と流路602とが隣接する部分において、流路601と流路602の間に配置されている。
FIG. 6A is an external perspective view of the flow path of the game ball, showing an example of the arrangement of the proximity sensors in the gaming machine having the proximity sensors. In this example, the game ball is an example of a detection object. FIG. 6B is a cross-sectional view of the flow path in the line seen from the arrows A and A'sides in FIG. 6A. In the example shown in FIGS. 6 (a) and 6 (b), the gaming machine is provided with two
近接センサ1−1は、流路601内を流下する遊技球611を検知できるように、近接センサ1−1の検知範囲621が流路601へ指向するように設置される。すなわち、流路601に近い方から順に、磁界検出素子21、発振コイル11の順に並ぶように、近接センサ1−1は配置される。したがって、近接センサ1−1の検知範囲621は、流路601と重なる一方、流路602とは重ならない。したがって、近接センサ1−1は、流路601内を流下する遊技球611が検知範囲621内に進入すると、遊技球611を検知し、一方、流路602内を流下する遊技球612を検知しない。
The proximity sensor 1-1 is installed so that the
同様に、近接センサ1−2は、流路602内を流下する遊技球612を検知できるように、近接センサ1−2の検知範囲622が流路602へ指向するように設置される。すなわち、流路602に近い方から順に、磁界検出素子21、発振コイル11の順に並ぶように、近接センサ1−2は配置される。したがって、近接センサ1−2の検知範囲622は、流路602と重なる一方、流路601とは重ならない。したがって、近接センサ1−2は、流路602内を流下する遊技球612が検知範囲622内に進入すると、遊技球612を検知し、一方、流路601内を流下する遊技球611を検知しない。このように、近接センサ1−1、1−2は、指向性を有するため、検知対象以外の流路を流下する遊技球を誤検知することなく、検知対象となる流路を流下する遊技球を検知することができる。
なお、近接センサを挟んで流路と反対側に、磁界の変動を生じさせる機構が存在する場合においても、流路側から順に磁界検出素子21、発振コイル11の順に並ぶように近接センサ1を設置することで、近接センサ1は、そのような機構の動作により遊技球を誤検知することなく、流路を流下する遊技球を精度良く検知することができる。
Similarly, the proximity sensor 1-2 is installed so that the
Even if there is a mechanism that causes fluctuations in the magnetic field on the side opposite to the flow path with the proximity sensor in between, the
以上に説明してきたように、この近接センサは、検知対象物が発振コイルに近付くにつれて減衰する振幅を持つ発振信号を出力する発振回路と別個に、検知対象物と発振コイル間の相互作用による磁界の強さに応じてインピーダンスが変化する磁界検出素子を有する。そしてこの近接センサは、検知対象物の接近により、基準インピーダンスに対する磁界検出素子のインピーダンスの変化量が所定の閾値以上になると、発振回路から出力される発振信号の振幅を抑制する。これにより、この近接センサは、発振信号の振幅に応じた信号値が閾値以下となる、発振コイルと検知対象物間の距離、すなわち、検知可能距離を大きくすることができる。また、この近接センサは、信号対雑音比が比較的良好な発振回路からの発振信号に基づいて検知対象物の有無を判定するので、検知可能距離を大きくしても、検知対象物を精度良く検知できる。さらに、この近接センサは、発振コイルと磁界検出素子の並び方向によって検知方向に指向性を持たせることができる。 As described above, this proximity sensor has a magnetic field due to the interaction between the detection object and the oscillation coil, separately from the oscillation circuit that outputs an oscillation signal having an amplitude that attenuates as the detection object approaches the oscillation coil. It has a magnetic field detection element whose impedance changes according to the strength of the coil. Then, this proximity sensor suppresses the amplitude of the oscillation signal output from the oscillation circuit when the amount of change in the impedance of the magnetic field detection element with respect to the reference impedance becomes equal to or greater than a predetermined threshold value due to the approach of the detection object. As a result, the proximity sensor can increase the distance between the oscillation coil and the detection object, that is, the detectable distance, at which the signal value corresponding to the amplitude of the oscillation signal is equal to or less than the threshold value. Further, since this proximity sensor determines the presence / absence of the detection target object based on the oscillation signal from the oscillation circuit having a relatively good signal-to-noise ratio, the detection target object can be accurately detected even if the detectable distance is increased. Can be detected. Further, this proximity sensor can have directivity in the detection direction depending on the arrangement direction of the oscillation coil and the magnetic field detection element.
変形例によれば、近接センサの発振制御回路は、分圧回路24の代わりに、定電流源を有してもよい。
According to the modification, the oscillation control circuit of the proximity sensor may have a constant current source instead of the
図7は、変形例による、近接センサ2の回路構成図である。この変形例による近接センサ2は、発振回路10と、発振制御回路40と、判定回路30とを有する。この変形例による近接センサ2は、図1に示される近接センサ1と比較して、発振制御回路40が、発振回路10とスイッチング素子23との間に接続される定電流源25を、分圧回路24の代わりに有する点、及び、発振回路10から出力される発振信号が判定回路30に直接入力される点で相違する。そこで以下では、この相違点及び関連部分について説明する。近接センサ2の他の構成要素の詳細については、近接センサ1の対応する構成要素の説明を参照されたい。
FIG. 7 is a circuit configuration diagram of the proximity sensor 2 according to a modified example. The proximity sensor 2 according to this modification has an
定電流源25は、発振回路10とスイッチング素子23との間に接続され、スイッチング素子23がオンになると、発振回路10からグラウンドへ一定の電流を流すように構成される回路である。なお、グラウンドは、発振コイル11以外の所定の回路の一例である。なお、定電流源25は、スイッチング素子23を介して、発振コイル11と異なる他の回路(図示せず)と接続されてもよい。すなわち、検知対象物100の発振コイル11への接近に伴う、基準インピーダンスに対する磁界検出素子21のインピーダンスの変化量が所定の閾値以上となると、スイッチング素子23がオンになる。そしてスイッチング素子23がオンになると、定電流源25を介して発振回路10から一定の電流が流出する。その結果、発振回路10から出力される発振信号の振幅は小さくなる。一方、磁界検出素子21のインピーダンスの変化量が所定の閾値よりも小さい場合には、スイッチング素子23はオフのままとなり、発振回路10からの電流の流出は停止される。そのため、発振回路10から出力される発振信号の振幅は低下せずに、その発振信号は判定回路30へ出力される。したがって、この変形例による近接センサ2も、上記の実施形態による近接センサ1と同様の効果を奏する。
The constant
他の変形例によれば、発振制御回路は、発振回路10の発振コイル11及び共振コンデンサ12と、発振回路本体13との間に接続されてもよい。
According to another modification, the oscillation control circuit may be connected between the
図8は、他の変形例による、近接センサ3の回路構成図である。この変形例による近接センサ3は、発振回路10と、発振制御回路50と、判定回路30とを有する。この変形例による近接センサ3は、図1に示される近接センサ1と比較して、発振制御回路50の接続位置及び構成、及び、発振回路10から出力される発振信号が判定回路30に直接入力される点で相違する。そこで以下では、この相違点及び関連部分について説明する。近接センサ3の他の構成要素の詳細については、近接センサ1の対応する構成要素の説明を参照されたい。
FIG. 8 is a circuit configuration diagram of the
発振制御回路50は、発振回路10の発振コイル11及び共振コンデンサ12と、発振回路本体13との間において、互いに並列に接続される磁界検出素子21及び抵抗R0を有する。なお、抵抗R0は、検知可能距離を調整するための可変抵抗であってもよい。そして発振回路本体13からの電流は、発振制御回路50を介して発振コイル11及び共振コンデンサ12へ供給される。したがって、検知対象物100が発振コイル11へ接近して検知対象物100と発振コイル11との相互作用による磁界の強さが減少するにつれて、磁界検出素子21のインピーダンスが大きくなり、その結果として発振コイル11及び共振コンデンサ12へ供給される電流の量が、発振制御回路50が無い場合よりも減少する。したがって、発振回路10から出力される発振信号の振幅も、発振制御回路50が無い場合より低下する。一方、検知対象物100が発振コイル11から遠ざかるにつれて、磁界検出素子21のインピーダンスが低下するので、発振コイル11及び共振コンデンサ12へ供給される電流の量が増加する。したがって、発振回路10から出力される発振信号の振幅も大きくなる。したがって、この変形例による近接センサ3も、上記の実施形態による近接センサ1と同様の効果を奏する。また、この変形例による近接センサ3は、発振制御回路50の構成を簡単化できるので、近接センサ3自体の構成も簡単化できる。
The
磁界検出素子21は、検知対象物100と発振コイル11との相互作用による磁界の強さが減少するにつれて、インピーダンスが低下するように構成されてもよい。この場合には、発振回路13本体に対して、発振制御回路50が有する磁界検出素子21が発振コイル11と並列に接続されればよい。このように磁界検出素子21が接続されることで、検知対象物100が発振コイル11に接近するにつれて、検知対象物100と発振コイル11との相互作用による磁界の強さが減少し、発振回路本体13から磁界検出素子21へ流れる電流が増加する。そのため、発振コイル11及び共振コンデンサ12に供給される電流の量が減少して、発振回路10から出力される発振信号の振幅が、発振制御回路50が無い場合における発振信号の振幅よりも低下する。したがって、この場合も、近接センサ3は、上記の実施形態による近接センサ1と同様の効果を奏する。
The magnetic
これらの変形例による近接センサも、図4に示される回路基板103に実装され、かつ、図3及び図4に示されるケース101及びカバー102内に収容されてもよい。また、これらの変形例による近接センサも、図6(a)及び図6(b)に示されるように、遊技機において流路を流下する遊技球を検知するために使用することができる。
Proximity sensors according to these modifications may also be mounted on the
さらに他の変形例によれば、発振コイル自体が磁気インピーダンス素子により形成されてもよい。 According to still another modification, the oscillation coil itself may be formed by a magnetic impedance element.
図9は、さらに他の変形例による、近接センサ4の回路構成図である。また、図10は、発振回路10及び検知対象物100の等価回路図である。この変形例による近接センサ4は、発振回路10と、判定回路30とを有する。この変形例による近接センサ4は、図1に示される近接センサ1と比較して、発振制御回路20を有さない代わりに、発振回路10が有する発振コイル14が磁気インピーダンス素子により形成される点で相違する。そこで以下では、この相違点及び関連部分について説明する。近接センサ4の他の構成要素の詳細については、近接センサ1の対応する構成要素の説明を参照されたい。
FIG. 9 is a circuit configuration diagram of the proximity sensor 4 according to still another modification. Further, FIG. 10 is an equivalent circuit diagram of the
発振コイル14は、アモルファスワイヤといった磁気インピーダンス素子により形成される。この場合、検知対象物100が発振コイル14による磁界と相互作用する場合における、発振コイル14のインピーダンスZは、次式で表される。
(1)式から明らかなように、検知対象物100が発振コイル14に近付くにつれて、検知対象物100における渦電流損による相互インダクタンスMの増加だけでなく、発振コイル14を形成する磁気インピーダンス素子の抵抗値成分の変化量Δr1が増加することにより、発振コイル14のインピーダンスZは増加する。そしてインピーダンスZの増加に応じて、発振回路10から出力される発振信号の振幅は減衰する。そのため、検知対象物100が発振コイル14に近付くにつれて、発振回路10から出力される発振信号の振幅は、発振コイル14が磁気インピーダンス素子で形成されない場合における発振信号の振幅よりも低下する。そのため、上記の実施形態及び各変形例と同様に、この変形例による近接センサ4は、検知可能距離を大きくすることができる。また、近接センサ4は、上記の実施形態または各変形例と同様に、信号対雑音比が比較的良好な発振回路からの発振信号に基づいて検知対象物100の有無を判定するので、検知可能距離を大きくしても、検知対象物100を精度良く検知できる。さらに、上記の実施形態及び各変形例と異なり、近接センサ4では、発振コイル自身が磁気インピーダンス素子で形成されるため、検知方向が指向性を有することを抑制できる。さらにまた、発振コイル自身が磁気インピーダンス素子で形成されるため、近接センサ4の回路構成を簡単化することができ、その結果として、近接センサ4を小型化することができる。
As is clear from the equation (1), as the
図11は、近接センサ4の外観斜視図であり、図12は、近接センサ4の分解斜視図である。図11及び図12に示されるように、近接センサ4は、ケース201と、カバー202と、図9に示される各回路が設けられる回路基板203とを有する。
FIG. 11 is an external perspective view of the proximity sensor 4, and FIG. 12 is an exploded perspective view of the proximity sensor 4. As shown in FIGS. 11 and 12, the proximity sensor 4 has a
回路基板203の一端側には、発振コイル14を形成するアモルファスワイヤを巻き付けるために、回路基板203の表面203aの法線方向に沿って突起する円柱状のスプール203bが設けられる。なお、スプール203bは、フェライト材で形成されてもよい。また、回路基板203の一方の面上に、発振回路10の本体及び判定回路30が設けられる。ケース201とカバー202とは、それらが組み立てられた状態で回路基板203をその内部に収容する近接センサ4の筐体を構成する。
A
上記のように、発振コイル14自身が磁気インピーダンス素子により形成されるので、近接センサ4の検知方向の指向性が抑制される。そのため、近接センサ4は、発振コイル14の巻き軸の何れ側から、すなわち、回路基板203の表面側あるいは裏面側の何れから接近する検知対象物も検知することができる。したがって、近接センサ4は、例えば、回路基板203の表面側だけでなく、裏面側の何れにも検知対象物が接近する可能性があるような装置において好適に利用される。例えば、図6(a)及び図6(b)に示される遊技機の二つの流路の何れを流下する遊技球も区別せずに検知されればよい場合には、二つの近接センサ1−1、1−2の代わりに、一つの近接センサ4が用いられてもよい。
なお、近接センサ4も、上記の実施形態または各変形例による近接センサと同様に、図3及び図4に示される筐体及び回路基板に実装されてもよい。
As described above, since the
The proximity sensor 4 may also be mounted on the housing and the circuit board shown in FIGS. 3 and 4 in the same manner as the proximity sensor according to the above embodiment or each modification.
このように、当業者は、本発明の範囲内で、実施される形態に合わせて様々な変更を行うことができる。 As described above, a person skilled in the art can make various changes within the scope of the present invention according to the embodiment.
1、1−1、1−2、2、3、4 近接センサ
10 発振回路
11、14 発振コイル
12 共振コンデンサ
13 発振回路本体
20、40、50 発振制御回路
21 磁界検出素子
22、24 分圧回路
23 スイッチング素子
25 定電流源
30 判定回路
31 検波回路
32 弁別回路
33 出力回路
100 検知対象物
101、201 ケース
102、202 カバー
103、203 回路基板
104 フェライトコア
601、602 流路
1, 1-1, 1-2, 2, 3, 4
Claims (6)
前記検知対象物と前記発振コイル間の相互作用による磁界の強さの変化に応じてインピーダンスが変化する磁界検出素子を有し、前記磁界検出素子のインピーダンスの変化量に応じて前記発振信号の振幅を低下させる発振制御回路と、
前記発振制御回路から出力される前記発振信号の振幅に応じた信号値と所定の閾値とを比較することで、前記検知対象物を検知したか否かを判定する判定回路と、
を有する近接センサ。 An oscillating circuit having an oscillating coil and outputting an oscillating signal having an amplitude that attenuates as a detection object formed of metal approaches the oscillating coil.
It has a magnetic field detection element whose impedance changes according to a change in the strength of the magnetic field due to the interaction between the detection object and the oscillation coil, and the amplitude of the oscillation signal according to the amount of change in the impedance of the magnetic field detection element. Oscillation control circuit that reduces
A determination circuit that determines whether or not the detection object has been detected by comparing a signal value corresponding to the amplitude of the oscillation signal output from the oscillation control circuit with a predetermined threshold value.
Proximity sensor with.
前記発振回路と前記判定回路の間に接続され、前記発振信号を分圧することで前記発振信号の振幅を低下させることが可能な分圧回路と、
前記磁界検出素子のインピーダンスの変化量が所定の閾値以上になると前記分圧回路に前記発振信号を分圧させ、前記磁界検出素子のインピーダンスの変化量が前記所定の閾値未満になると前記分圧回路に前記発振信号を分圧させないスイッチング素子とを有する、請求項1に記載の近接センサ。 The oscillation control circuit is
A voltage dividing circuit connected between the oscillation circuit and the determination circuit and capable of reducing the amplitude of the oscillation signal by dividing the oscillation signal.
When the amount of change in impedance of the magnetic field detection element is equal to or greater than a predetermined threshold value, the voltage dividing circuit is made to divide the oscillation signal, and when the amount of change in impedance of the magnetic field detecting element is less than the predetermined threshold value, the voltage dividing circuit is used. The proximity sensor according to claim 1, further comprising a switching element that does not divide the oscillation signal.
前記磁界検出素子は、前記検知対象物と前記発振コイル間の相互作用による磁界の強さが低下するほどインピーダンスが増加し、かつ、前記発振コイルと前記発振回路本体との間に接続される、請求項1に記載の近接センサ。 The oscillating circuit further includes an oscillating circuit body that supplies a current to the oscillating coil.
The impedance of the magnetic field detection element increases as the strength of the magnetic field decreases due to the interaction between the detection object and the oscillation coil, and the magnetic field detection element is connected between the oscillation coil and the oscillation circuit main body. The proximity sensor according to claim 1.
前記磁界検出素子は、前記検知対象物と前記発振コイル間の相互作用による磁界の強さが低下するほどインピーダンスが低下し、かつ、前記発振回路本体に対して前記発振コイルと並列に接続される、請求項1に記載の近接センサ。 The oscillating circuit further includes an oscillating circuit body that supplies a current to the oscillating coil.
The impedance of the magnetic field detection element decreases as the strength of the magnetic field decreases due to the interaction between the detection object and the oscillation coil, and the magnetic field detection element is connected to the oscillation circuit main body in parallel with the oscillation coil. , The proximity sensor according to claim 1.
前記発振回路からの前記発振信号の振幅に応じた信号値と所定の閾値とを比較することで、前記検知対象物を検知したか否かを判定する判定回路と、
を有する近接センサ。 It has an oscillating coil formed by a magnetic impedance element, and as the detection object formed of metal approaches the oscillating coil, the amount of change in impedance by the magnetic impedance element and the mutual between the detection object and the oscillating coil. An oscillator circuit that outputs an oscillation signal with an amplitude that decays according to the amount of change in the strength of the magnetic field due to the action,
A determination circuit that determines whether or not the detection target is detected by comparing a signal value corresponding to the amplitude of the oscillation signal from the oscillation circuit with a predetermined threshold value.
Proximity sensor with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020000395A JP7363487B2 (en) | 2020-01-06 | 2020-01-06 | proximity sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020000395A JP7363487B2 (en) | 2020-01-06 | 2020-01-06 | proximity sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021110549A true JP2021110549A (en) | 2021-08-02 |
JP7363487B2 JP7363487B2 (en) | 2023-10-18 |
Family
ID=77059559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020000395A Active JP7363487B2 (en) | 2020-01-06 | 2020-01-06 | proximity sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7363487B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0629818A (en) * | 1992-07-10 | 1994-02-04 | Omron Corp | Proximity switch |
JPH0818430A (en) * | 1994-06-30 | 1996-01-19 | Mitsumi Electric Co Ltd | Magnetic switch |
JP2003185759A (en) * | 2001-12-17 | 2003-07-03 | Aichi Micro Intelligent Corp | Gate system for detecting magnetic substance |
JP2011070621A (en) * | 2009-09-25 | 2011-04-07 | Go Uchiyama | Determination device for weapon |
-
2020
- 2020-01-06 JP JP2020000395A patent/JP7363487B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0629818A (en) * | 1992-07-10 | 1994-02-04 | Omron Corp | Proximity switch |
JPH0818430A (en) * | 1994-06-30 | 1996-01-19 | Mitsumi Electric Co Ltd | Magnetic switch |
JP2003185759A (en) * | 2001-12-17 | 2003-07-03 | Aichi Micro Intelligent Corp | Gate system for detecting magnetic substance |
JP2011070621A (en) * | 2009-09-25 | 2011-04-07 | Go Uchiyama | Determination device for weapon |
Also Published As
Publication number | Publication date |
---|---|
JP7363487B2 (en) | 2023-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10571593B2 (en) | Method for analysing measurement signal of metal sensor and detecting object via metal sensor | |
US20110057668A1 (en) | Inductive proximity sensor | |
WO2017015997A1 (en) | Metal sensor and method for detecting object surrounded by medium using metal sensor | |
JP2015211536A (en) | Power transmission device and power reception device | |
JP7363487B2 (en) | proximity sensor | |
JP2019074337A (en) | Magnetic sensor and current sensor provided with the same | |
JP2009059528A (en) | Proximity sensor | |
JP7380249B2 (en) | proximity sensor | |
US7068028B2 (en) | Method and apparatus for metal target proximity detection at long distances | |
US9865115B2 (en) | Coin processing device | |
JPH09321599A (en) | Detector for passing metallic piece | |
JP7300851B2 (en) | detector | |
KR100580148B1 (en) | A coin hopper | |
JP2009264992A (en) | Induction type proximity sensor | |
JP3944557B2 (en) | Coin sensor | |
EP4443181A1 (en) | Magnetic sensor and magnetic field measurement device using the same | |
JP5707976B2 (en) | Game ball detection switch and game machine | |
JP2925120B2 (en) | Proximity switch | |
US11112439B2 (en) | Evaluating circuit, system, and method for evaluating a capacitive or inductive sensor | |
JP2926927B2 (en) | Proximity switch | |
JP6380173B2 (en) | Proximity sensor and game machine | |
JP2009043512A (en) | Proximity sensor | |
JPH10126241A (en) | Approach-detecting device | |
JPH08173595A (en) | Game ball detector | |
JPH0956875A (en) | Game ball detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221107 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230704 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230918 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7363487 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |