[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021195476A - Modified siloxane diacid anhydride and positive type photosensitive polyimide resin composition - Google Patents

Modified siloxane diacid anhydride and positive type photosensitive polyimide resin composition Download PDF

Info

Publication number
JP2021195476A
JP2021195476A JP2020103833A JP2020103833A JP2021195476A JP 2021195476 A JP2021195476 A JP 2021195476A JP 2020103833 A JP2020103833 A JP 2020103833A JP 2020103833 A JP2020103833 A JP 2020103833A JP 2021195476 A JP2021195476 A JP 2021195476A
Authority
JP
Japan
Prior art keywords
group
compound
polyimide resin
acid anhydride
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020103833A
Other languages
Japanese (ja)
Other versions
JP7519819B2 (en
Inventor
正仁 井手
Masahito Ide
浩史 稲成
Hiroshi Inenari
貴雄 眞鍋
Takao Manabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2020103833A priority Critical patent/JP7519819B2/en
Publication of JP2021195476A publication Critical patent/JP2021195476A/en
Application granted granted Critical
Publication of JP7519819B2 publication Critical patent/JP7519819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Silicon Polymers (AREA)

Abstract

To provide an organically modified siloxane diacid anhydride, and a positive type photosensitive polyimide resin composition obtained using the same which is excellent in adhesion.SOLUTION: A modified siloxane diacid anhydride is obtained by reacting (A) an organic compound having two carbon-carbon double bonds and an acid decomposable group in one molecule, (B) a silicon compound having two SiH groups in one molecule and (C) a compound having a carbon-carbon double bond and an acid anhydride group one by one in one molecule, has an acid anhydride group at a terminal, and is represented by the following formula. In the formula, G has a protected acidic group and has a main chain having 1 to 50 carbon atoms; X represents an organic group having an acid anhydride group in the structure; R represents an organic group having 1 to 20 carbon atoms; and n and m are integers of 1 to 50.SELECTED DRAWING: None

Description

本発明は、変性シロキサン二酸無水物およびポジ型感光性ポリイミド樹脂組成物に関する発明である。 The present invention relates to a modified siloxane diic anhydride and a positive photosensitive polyimide resin composition.

フォトリソグラフィにより簡便にパターン形成が出来る感光性樹脂は、半導体やディスプレイ等のエレクトロニクス分野において広く利用されている材料である。それら感光性樹脂の中でも高い耐熱性を有する材料としてポリイミド系感光性樹脂が挙げられ、酸性基をポリマー中に有するポリイミド樹脂を用いた組成物が提案されている。 Photosensitive resins, which can easily form patterns by photolithography, are materials widely used in the electronics field such as semiconductors and displays. Among these photosensitive resins, a polyimide-based photosensitive resin is mentioned as a material having high heat resistance, and a composition using a polyimide resin having an acidic group in a polymer has been proposed.

ポリイミド樹脂は剛性が高く、柔軟性付与させる目的で、特許文献1に記載されているように、分子中にシロキサン構造を有するポリイミド樹脂を得る手法も多く提案されている。しかし、合成時に用いるシロキサンジアミン化合物は純度が低く、高温時に低分子シロキサンが揮発することで電気配線での接合不良を起こす問題や、各種基材との密着性に欠けるなどの問題を有している。 As described in Patent Document 1, many methods for obtaining a polyimide resin having a siloxane structure in its molecule have been proposed for the purpose of imparting flexibility to the polyimide resin because of its high rigidity. However, the siloxane diamine compound used during synthesis has low purity and has problems such as poor bonding in electrical wiring due to volatilization of small molecule siloxane at high temperature and lack of adhesion to various substrates. There is.

一方、特許文献2にはシロキサン構造を有する二酸無水物を用いてポリイミド樹脂を得る技術も提案されている。ただし上記と同様、密着性に欠けるポリイミド樹脂となる課題を有している。 On the other hand, Patent Document 2 also proposes a technique for obtaining a polyimide resin using a diacid anhydride having a siloxane structure. However, as described above, there is a problem that the polyimide resin lacks adhesion.

特開2005−056921号公報Japanese Unexamined Patent Publication No. 2005-056921 特許第5873529号Patent No. 5873529

有機変性したシロキサン二酸無水物およびそれを用いて得られる密着性に優れるポジ型感光性ポリイミド樹脂組成物を提供する事である。 It is an object of the present invention to provide an organically modified siloxane diic anhydride and a positive photosensitive polyimide resin composition obtained by using the same and having excellent adhesion.

上記を達成の為に検討を重ねた結果、有機変性したシロキサン二酸無水物およびそれを用いて得られるポリイミド樹脂をベースとしたポジ型感光性ポリイミド樹脂組成物が、柔軟性を有し、かつ、優れた密着性を有する事を見出すに至った。本発明は、以下からなるものである。 As a result of repeated studies to achieve the above, the positive photosensitive polyimide resin composition based on the organically modified siloxane diacid anhydride and the polyimide resin obtained by using the organically modified siloxane diacid anhydride has flexibility and , We have found that it has excellent adhesion. The present invention comprises the following.

〔1〕.成分(A)1分子中に炭素−炭素二重結合を2個および酸分解性基を有する有機化合物、成分(B)1分子中にSiH基を2個有するケイ素化合物、成分(C)1分子中に炭素−炭素二重結合および酸無水物基を1個ずつ有する化合物、を反応させることで得られ、末端に酸無水物基を有する以下構造で表される変性シロキサン二酸無水物。 [1]. Component (A) is an organic compound having two carbon-carbon double bonds and an acid-degradable group in one molecule, component (B) is a silicon compound having two SiH groups in one molecule, and component (C) is one molecule. A modified siloxane diacid anhydride having the following structure, which is obtained by reacting a compound having a carbon-carbon double bond and one acid anhydride group in the compound, and having an acid anhydride group at the terminal.

Figure 2021195476
Figure 2021195476

(上記化学式において、Gは保護された酸性基を有し主鎖の炭素数が1から50であって、H原子、O原子、N原子、ハロゲン原子、S原子のいずれかの原子を一種、又は、2種以上含む有機基で表され、Xは酸無水物基を構造中に有する有機基、Rは炭素数1から20で表される有機基を示し、n、mは1〜50の整数である) (In the above chemical formula, G has a protected acidic group, has 1 to 50 carbon atoms in the main chain, and is a kind of H atom, O atom, N atom, halogen atom, or S atom. Alternatively, it is represented by an organic group containing two or more kinds, X is an organic group having an acid anhydride group in the structure, R is an organic group represented by 1 to 20 carbon atoms, and n and m are 1 to 50. (It is an integer)

〔2〕.成分(C)が以下に記載される化合物より選ばれる事を特徴とする〔1〕に記載の変性シロキサン二酸無水物。 [2]. The modified siloxane diic acid anhydride according to [1], wherein the component (C) is selected from the compounds described below.

Figure 2021195476
Figure 2021195476

〔3〕.成分(A)が少なくともN原子又はS原子を有する化合物であることを特徴とする〔1〕又は〔2〕に記載の変性シロキサン二酸無水物。 [3]. The modified siloxane diacid anhydride according to [1] or [2], wherein the component (A) is a compound having at least an N atom or an S atom.

〔4〕.〔1〕から〔3〕のいずれか1項に記載の変性シロキサン二酸無水物とジアミン化合物又はジイソシアネート化合物とを反応させる事により得られるポリイミド樹脂。 [4]. A polyimide resin obtained by reacting the modified siloxane diic anhydride according to any one of [1] to [3] with a diamine compound or a diisocyanate compound.

〔5〕.成分(A)が下記一般式(a)で表される事を特徴とする〔4〕に記載のポリイミド樹脂。(下記一般式のZは、tert−ブトキシカルボニル基、ベンジルオキシカルボニル基、トリメチルシリル基、tert−ブチルジメチルシリル基、メトキシメチル基、エトキシメチル基、テトラヒドロピラニル基、アセチル基、ベンジル基、p−メトキシベンジル基から選ばれる保護基を表す) [5]. The polyimide resin according to [4], wherein the component (A) is represented by the following general formula (a). (Z in the following general formula is tert-butoxycarbonyl group, benzyloxycarbonyl group, trimethylsilyl group, tert-butyldimethylsilyl group, methoxymethyl group, ethoxymethyl group, tetrahydropyranyl group, acetyl group, benzyl group, p- Represents a protecting group selected from methoxybenzyl groups)

Figure 2021195476
Figure 2021195476

〔6〕.成分(A)が下記一般式(b)で表される事を特徴とする〔4〕又は〔5〕に記載のポリイミド樹脂。(下記一般式のZは、tert−ブトキシカルボニル基、ベンジルオキシカルボニル基、トリメチルシリル基、tert−ブチルジメチルシリル基、メトキシメチル基、エトキシメチル基、テトラヒドロピラニル基、アセチル基、ベンジル基、p−メトキシベンジル基から選ばれる保護基を表す) [6]. The polyimide resin according to [4] or [5], wherein the component (A) is represented by the following general formula (b). (Z in the following general formula is tert-butoxycarbonyl group, benzyloxycarbonyl group, trimethylsilyl group, tert-butyldimethylsilyl group, methoxymethyl group, ethoxymethyl group, tetrahydropyranyl group, acetyl group, benzyl group, p- Represents a protecting group selected from methoxybenzyl groups)

Figure 2021195476
Figure 2021195476

〔7〕.〔4〕〜〔6〕に記載のポリイミド樹脂、および、光酸発生剤を必須成分とするポジ型感光性組成物。 [7]. [4] A positive photosensitive composition containing the polyimide resin according to [6] and a photoacid generator as essential components.

本発明は、有機変性したシロキサン二酸無水物およびそれを用いて得られる密着性に優れるポリイミド樹脂をベースとしたポジ型感光性ポリイミド樹脂組成物を提供する事である。 The present invention is to provide a positive photosensitive polyimide resin composition based on an organically modified siloxane diic anhydride and a polyimide resin having excellent adhesion obtained by using the same.

(変性シロキサン二酸無水物)
上記、変性シロキサン二酸無水物は、(A)1分子中に炭素−炭素二重結合を2個および酸分解性基を有する有機化合物、(B)1分子中にSiH基を2個有するケイ素化合物、(C)1分子中に炭素−炭素二重結合および酸無水物基を1個ずつ有する化合物、を反応させることで末端に酸無水物基を有する以下構造で表されるシロキサン二酸無水物得られる事を見出した。
(Modified siloxane diic acid anhydride)
The above-mentioned modified siloxane diichydride is (A) an organic compound having two carbon-carbon double bonds and an acid-degradable group in one molecule, and (B) silicon having two SiH groups in one molecule. By reacting a compound, (C) a compound having a carbon-carbon double bond and one acid anhydride group in one molecule, a siloxane diacid anhydride represented by the following structure having an acid anhydride group at the terminal is reacted. I found that I could get something.

Figure 2021195476
Figure 2021195476

(上記化学式において、Gは酸分解性基を有し主鎖の炭素数が1から50であって、H原子、O原子、N原子、ハロゲン原子、S原子のいずれかの原子を一種、又は、2種以上含む有機基で表され、Xは酸無水物基を構造中に有する有機基、Rは炭素数1から20で表される有機基を示し、n、mは1〜50の整数である) (In the above chemical formula, G has an acid-degradable group, has 1 to 50 carbon atoms in the main chain, and is one of H atom, O atom, N atom, halogen atom, and S atom, or It is represented by an organic group containing two or more kinds, X is an organic group having an acid anhydride group in the structure, R is an organic group represented by 1 to 20 carbon atoms, and n and m are integers of 1 to 50. Is)

ここで言う構造Gとは、主鎖の炭素数が1から50であって、H原子、O原子、N原子、ハロゲン原子、S原子のいずれかの原子を一種、又は、2種以上含む有機基であり、かつ、分子中に酸分解性基を有するものであれば、特に限定されるものではない。 The structure G referred to here is an organic having 1 to 50 carbon atoms in the main chain and containing one or more of H atom, O atom, N atom, halogen atom and S atom. It is not particularly limited as long as it is a group and has an acid-degradable group in the molecule.

酸分解性基とは、酸物質によって分解し、酸性基に変化する官能基を示す。酸分解性基の例としては、保護された酸性基が挙げられ、感光性樹脂に導入されることでよく用いられる官能基である。感光性樹脂の場合、配合されている光酸発生剤から露光によって発生した酸物質によってこの酸分解性基が分解し、酸性基に変化することによって、アルカリ性の現像液への溶解性が変化し、パターニング可能な感光性樹脂として機能する。 An acid-degradable group is a functional group that is decomposed by an acid substance and changed to an acidic group. Examples of acid-degradable groups include protected acidic groups, which are functional groups often used when introduced into photosensitive resins. In the case of a photosensitive resin, this acid-degradable group is decomposed by an acid substance generated by exposure from the compounded photoacid generator and changed to an acidic group, so that the solubility in an alkaline developer changes. , Functions as a patternable photosensitive resin.

さらに当発明で得られるポリイミド樹脂では、構造Gを有さないシロキサン分子を有する樹脂と比較して基材との密着性・樹脂強度を向上させるために有効であり、かつ、ポリイミド樹脂の特長である耐熱性を損なう事無く導入する観点から、下記にあるヒドロシリル化反応を用いて導入する方法が好ましい又は。 Further, the polyimide resin obtained by the present invention is effective for improving the adhesion to the substrate and the resin strength as compared with the resin having a siloxane molecule having no structure G, and is a feature of the polyimide resin. From the viewpoint of introduction without impairing a certain heat resistance, the method of introduction using the hydrosilylation reaction described below is preferable.

以下、ヒドロシリル化による変性シロキサン二酸無水物を得るための各必須成分について説明する。 Hereinafter, each essential component for obtaining a modified siloxane diic acid anhydride by hydrosilylation will be described.

(成分(A):1分子中に炭素−炭素二重結合を2個および酸分解性基を有する有機化合物)
上記、変性シロキサン二酸無水物は、成分(A)の1分子中に炭素−炭素二重結合を2個および酸分解性基を有する有機化合物と、後述の成分(B)および(C)と反応させることによって得ることが出来る。本件発明中の(A)成分である1分子中に炭素−炭素二重結合を2個および酸分解性基を有する有機化合物であれば特に限定されない。入手性などの観点から、下記一般式(a)で表される化合物、
(Component (A): Organic compound having two carbon-carbon double bonds and an acid-degradable group in one molecule)
The above-mentioned modified siloxane diacid anhydride includes an organic compound having two carbon-carbon double bonds and an acid-degradable group in one molecule of the component (A), and the components (B) and (C) described later. It can be obtained by reacting. The present invention is not particularly limited as long as it is an organic compound having two carbon-carbon double bonds and an acid-degradable group in one molecule which is the component (A) in the present invention. From the viewpoint of availability, the compound represented by the following general formula (a),

Figure 2021195476
Figure 2021195476

(一般式のZは、tert−ブトキシカルボニル基、ベンジルオキシカルボニル基、トリメチルシリル基、tert−ブチルジメチルシリル基、メトキシメチル基、エトキシメチル基、テトラヒドロピラニル基、アセチル基、ベンジル基、p−メトキシベンジル基から選ばれる保護基を表す) (Z in the general formula is tert-butoxycarbonyl group, benzyloxycarbonyl group, trimethylsilyl group, tert-butyldimethylsilyl group, methoxymethyl group, ethoxymethyl group, tetrahydropyranyl group, acetyl group, benzyl group, p-methoxy. Represents a protecting group selected from benzyl groups)

又は、下記一般式(b)で表される化合物が好適に使用する事ができる。 Alternatively, the compound represented by the following general formula (b) can be preferably used.

Figure 2021195476
Figure 2021195476

(一般式のZは、tert−ブトキシカルボニル基、ベンジルオキシカルボニル基、トリメチルシリル基、tert−ブチルジメチルシリル基、メトキシメチル基、エトキシメチル基、テトラヒドロピラニル基、アセチル基、ベンジル基、p−メトキシベンジル基から選ばれる保護基を表す) (Z in the general formula is tert-butoxycarbonyl group, benzyloxycarbonyl group, trimethylsilyl group, tert-butyldimethylsilyl group, methoxymethyl group, ethoxymethyl group, tetrahydropyranyl group, acetyl group, benzyl group, p-methoxy. Represents a protecting group selected from benzyl groups)

耐熱性の観点で好ましくは、下記一般式(a)で表される化合物、好適に使用する事ができる。 From the viewpoint of heat resistance, the compound represented by the following general formula (a) can be preferably used.

Figure 2021195476
Figure 2021195476

(一般式のZは、tert−ブトキシカルボニル基、ベンジルオキシカルボニル基、トリメチルシリル基、tert−ブチルジメチルシリル基、メトキシメチル基、エトキシメチル基、テトラヒドロピラニル基、アセチル基、ベンジル基、p−メトキシベンジル基から選ばれる保護基を表す) (Z in the general formula is tert-butoxycarbonyl group, benzyloxycarbonyl group, trimethylsilyl group, tert-butyldimethylsilyl group, methoxymethyl group, ethoxymethyl group, tetrahydropyranyl group, acetyl group, benzyl group, p-methoxy. Represents a protecting group selected from benzyl groups)

また、成分(A)と併用して、酸分解性基を有さない炭素−炭素二重結合を有する有機化合物(A’)も反応に用いる事もできる。 In addition, an organic compound (A') having a carbon-carbon double bond having no acid-degradable group can also be used in the reaction in combination with the component (A).

成分(A’)の具体例としては、ジアリルフタレート、ジエチレングリコールビスアリルカーボネート、トリメチロールプロパンジアリルエーテル、ジアリリデンペンタエリスリット、ジアリルモノメチルイソシアヌレート。ジアリルモノプロピルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、ジアリルモノベンジルイソシアヌレート、ジアリルジメチルグリコールウリル、1,4−ブタンジオールジビニルエーテル、ノナンジオールジビニルエーテル、1,4−シクロへキサンジメタノールジビニルエーテル、トリエチレングリコールジビニルエーテル、ビスフェノールSのジアリルエーテル、ジビニルベンゼン、ジビニルビフェニル、1,3−ジイソプロペニルベンゼン、1,4−ジイソプロペニルベンゼン、1,3−ビス(アリルオキシ)アダマンタン、1,3−ビス(ビニルオキシ)アダマンタン、ジシクロペンタジエン、ビニルシクロへキセン、1,5−ヘキサジエン、1,9−デカジエン、ジアリルエーテル、ビスフェノールAジアリルエーテル、2,5−ジアリルフェノールアリルエーテル、下記一般式(c)で表される化合物 Specific examples of the component (A') include diallyl phthalate, diethylene glycol bisallyl carbonate, trimethylolpropane diallyl ether, diallylidene pentaerythritol, and diallyl monomethylisocyanurate. Dialyl monopropyl isocyanurate, diallyl monoglycidyl isocyanurate, diallyl monobenzyl isocyanurate, diallyl dimethyl glycol uryl, 1,4-butanediol divinyl ether, nonanediol divinyl ether, 1,4-cyclohexanedimethanol divinyl ether, tri Ethylene glycol divinyl ether, bisphenol S diallyl ether, divinylbenzene, divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, 1,3-bis (allyloxy) adamantan, 1,3-bis (Vinyloxy) adamantan, dicyclopentadiene, vinylcyclohexene, 1,5-hexadiene, 1,9-decadien, diallyl ether, bisphenol A diallyl ether, 2,5-diallylphenol allyl ether, represented by the following general formula (c). Compound to be

Figure 2021195476
Figure 2021195476

等が挙げられる。 And so on.

成分(A’)としては、得られる硬化物の着色が少なく、耐熱性が高いという観点からは、ジアリルモノメチルイソシアヌレート。ジアリルモノプロピルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、ジアリルモノベンジルイソシアヌレート、ビニルシクロヘキセン、ジシクロペンタジエン、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジアリルエーテル、が好ましい。 As the component (A'), diallyl monomethylisocyanurate is used from the viewpoint that the obtained cured product is less colored and has high heat resistance. Dialyl monopropyl isocyanurate, diallyl monoglycidyl isocyanurate, diallyl monobenzyl isocyanurate, vinylcyclohexene, dicyclopentadiene, and diallyl ether of 2,2-bis (4-hydroxycyclohexyl) propane are preferred.

特に、耐熱性、耐光性が高いという観点から下記一般式(d)で表されるジアリルモノメチルイソシアヌレート。ジアリルモノプロピルイソシアヌレート、及びその誘導体が特に好ましい。 In particular, diallyl monomethylisocyanurate represented by the following general formula (d) from the viewpoint of high heat resistance and light resistance. Dialyl monopropyl isocyanurate and its derivatives are particularly preferred.

Figure 2021195476
Figure 2021195476

(式中Rは水素原子又は炭素数1〜50の一価の有機基を示す)
で表される化合物が好ましい。
(R in the formula indicates a hydrogen atom or a monovalent organic group having 1 to 50 carbon atoms)
The compound represented by is preferable.

(成分(B):1分子中にSiH基を2個有するケイ素化合物)
成分(B)としては、SiH基を2個有するケイ素化合物、つまり、Si原子を分子中に有するSiH基を2個有する化合物であれば特に限定せず使用できる。最も一般的に入手し易いものとして、SiH基末端直鎖状ポリシロキサンが挙げられるが、ジメチルシロキサン単位、ジフェニルシロキサン単位、メチルフェニルシロキサン単位の単一重合体、および、それぞれのシロキサン単位の共重合体についてジメチルハイドロジェンシリル基で末端が封鎖されたポリオルガノシロキサン重合体であれば特に限定されない。具体的には、例えば、1,1,3,3−テトラメチルジシロキサン、1,1,3,3,5,5,―ヘキサメチルトリシロキサン、1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサンなどが、好ましい例として例示される。また、SiH基末端のポリシロキサン化合物以外のケイ素系化合物も用いる事ができ、例えば、1,4−ビス(ジメチルシリル)ベンゼン、1,4−ビス(ジフェニルシリル)ベンゼン、1,4−ビス(メチルフェニルシリル)ベンゼン、などが具体的に挙げられる。
(Component (B): Silicon compound having two SiH groups in one molecule)
The component (B) can be used without particular limitation as long as it is a silicon compound having two SiH groups, that is, a compound having two SiH groups in the molecule. The most commonly available ones are SiH group-terminated linear polysiloxanes, which are monopolymers of dimethylsiloxane units, diphenylsiloxane units, methylphenylsiloxane units, and copolymers of each siloxane unit. The above is not particularly limited as long as it is a polyorganosiloxane polymer whose end is closed with a dimethylhydrogensilyl group. Specifically, for example, 1,1,3,3-tetramethyldisiloxane, 1,1,3,3,5,5,-hexamethyltrisiloxane, 1,1,5,5-tetramethyl-3. , 3-Diphenyltrisiloxane and the like are exemplified as preferable examples. Further, silicon-based compounds other than the polysiloxane compound at the end of the SiH group can also be used, and for example, 1,4-bis (dimethylsilyl) benzene, 1,4-bis (diphenylsilyl) benzene, and 1,4-bis ( Methylphenylsilyl) benzene, etc. are specifically mentioned.

(成分(C):1分子中に炭素−炭素二重結合および酸無水物基を1個ずつ有する化合物)
成分(C)としては、1分子中に炭素−炭素二重結合および酸無水物基を1個ずつ有する化合物であれば特に限定せず使用する事ができる。具体的な例としては、無水マレイン酸、シトラコン酸無水物、イタコン酸無水物、アリルコハク酸無水物、ナジック酸無水物、メチルナジック酸無水物、テトラヒドロ無水フタル酸、テトラヒドロメチル無水フタル酸、テトラメチルフェニル無水フタル酸 が挙げられる。反応性の観点より、ナジック酸無水物、メチルナジック酸無水物、アリルコハク酸無水物 が好ましい。
(Component (C): A compound having one carbon-carbon double bond and one acid anhydride group in one molecule)
As the component (C), any compound having one carbon-carbon double bond and one acid anhydride group in one molecule can be used without particular limitation. Specific examples include maleic anhydride, citraconic anhydride, itaconic acid anhydride, allylsuccinic anhydride, nadic acid anhydride, methylnagic acid anhydride, tetrahydrophthalic anhydride, tetrahydromethylphthalic anhydride, and tetramethyl. Phthalic anhydride is mentioned. From the viewpoint of reactivity, nadic acid anhydride, methyl nagic acid anhydride, and allyl succinic acid anhydride are preferable.

(成分(A)、(B)、(C)の反応)
成分(A)、(B)、(C)を反応させ変性シロキサン二酸無水物を得る方法としては、ヒドロシリル化反応を用いる。この場合、スムーズに反応を進行させる目的で触媒を用いても良い。
(Reaction of components (A), (B), (C))
A hydrosilylation reaction is used as a method for obtaining a modified siloxane diic acid anhydride by reacting the components (A), (B) and (C). In this case, a catalyst may be used for the purpose of allowing the reaction to proceed smoothly.

ヒドロシリル化反応の触媒としては、例えば次のようなものを用いることができる。白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体(例えば、Pt(CH2=CH22(PPh32、Pt(CH2=CH22Cl2)、白金−ビニルシロキサン錯体(例えば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4m)、白金−ホスフィン錯体(例えば、Pt(PPh34、Pt(PBu34)、白金−ホスファイト錯体(例えば、Pt[P(OPh)34、Pt[P(OBu)34)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号及び3159662号明細書中に記載された白金−炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。更に、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体も本発明において有用である。 As the catalyst for the hydrosilylation reaction, for example, the following can be used. Platinum alone, a carrier such as alumina, silica, carbon black, etc. on which solid platinum is supported, platinum chloride acid, a complex of platinum chloride acid with alcohol, aldehyde, ketone, etc., a platinum-olefin complex (for example, Pt (CH) 2 = CH 2 ) 2 (PPh 3 ) 2 , Pt (CH 2 = CH 2 ) 2 Cl 2 ), Platinum-vinylsiloxane complex (for example, Pt (ViMe 2 SiOSiMe 2 Vi) n , Pt [(MeViSiO) 4 ] m ), platinum-phosphine complex (eg Pt (PPh 3 ) 4 , Pt (PBu 3 ) 4 ), platinum-phosphite complex (eg Pt [P (OPh) 3 ] 4 , Pt [P (OBu) 3). 4 ) (In the formula, Me is a methyl group, Bu is a butyl group, Vi is a vinyl group, Ph is a phenyl group, and n and m are integers.), Dicarbonyldichloroplatinum, Karstedt catalyst. Also, the platinum-hydrogen complex described in Ashby's US Pat. Nos. 3,159,601 and 3159662, and the platinum alcoholate described in Lamoreoux's US Pat. No. 3220972. Examples include catalysts. Further, the platinum chloride-olefin complex described in Modic's US Pat. No. 3,516,946 is also useful in the present invention.

また、白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl23、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4、等が挙げられる。 Further, examples of catalysts other than platinum compounds, RhCl (PPh) 3, RhCl 3, RhAl 2 O 3, RuCl 3, IrCl 3, FeCl 3, AlCl 3, PdCl 2 · 2H 2 O, NiCl 2, TiCl 4 , Etc. can be mentioned.

これらの中では、触媒活性の点から塩化白金酸、白金−オレフィン錯体、白金−ビニルシロキサン錯体等が好ましい。また、これらの触媒は単独で使用してもよく、2種以上併用してもよい。 Among these, platinum chloride acid, platinum-olefin complex, platinum-vinylsiloxane complex and the like are preferable from the viewpoint of catalytic activity. Further, these catalysts may be used alone or in combination of two or more.

成分(A)、(B)、(C)の反応させる順序については、まず成分(A)と(B)とをSiH基量を多くした条件でヒドロシリル化により反応させ、次に成分(C)を逐次で反応させ、末端に酸無水物基を導入する事によって、変性シロキサン二酸無水物を得る事ができる。 Regarding the reaction order of the components (A), (B), and (C), first, the components (A) and (B) are reacted by hydrosilylation under the condition that the amount of SiH group is increased, and then the component (C) is reacted. A modified siloxane diichydride can be obtained by sequentially reacting with and introducing an acid anhydride group at the terminal.

(ポリイミド樹脂について)
本発明の変性シロキサン二酸無水物を用いて得られるポリイミド樹脂は、一般にジアミン化合物又はジイソシアネート化合物との反応により得られ、特に限定されるものではない。
(About polyimide resin)
The polyimide resin obtained by using the modified siloxane diacid anhydride of the present invention is generally obtained by reaction with a diamine compound or a diisocyanate compound, and is not particularly limited.

本発明のポリイミド合成のために用いるジアミンとしては、例えば、[ビス(4−アミノ−3−カルボキシ)フェニル]メタン、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノフェニルエタン、4,4’−ジアミノフェニルエーテル、4,4’−ジジアミノフェニルスルフィド、4,4’−ジジアミノフェニルスルホン、1,5−ジアミノナフタレン、3,3−ジメチル−4,4’−ジアミノビフェニル、5−アミノ−1−(4’−アミノフェニル)−1,3,3−トリメチルインダン、6−アミノ−1−(4’−アミノフェニル)−1,3,3−トリメチルインダン、4,4’−ジアミノベンズアニリド、3,5−ジアミノ−3’−トリフルオロメチルベンズアニリド、3,5−ジアミノ−4’−トリフルオロメチルベンズアニリド、3,4’−ジアミノジフェニルエーテル、2,7−ジアミノフルオレン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、4,4’−メチレン−ビス(2−クロロアニリン)、2,2’,5,5’−テトラクロロ−4,4’−ジアミノビフェニル、2,2’−ジクロロ−4,4’−ジアミノ−5,5’−ジメトキシビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)−ビフェニル、1,3’−ビス(4−アミノフェノキシ)ベンゼン、1,3’−ビス(3−アミノフェノキシ)ベンゼン、9,9−ビス(4−アミノフェニル)フルオレン、4,4’−(p−フェニレンイソプロピリデン)ビスアニリン、4,4’−(m−フェニレンイソプロピリデン)ビスアニリン、2,2’−ビス[4−(4−アミノ−2−トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’−ビス[4−(4−アミノ−2−トリフルオロメチル)フェノキシ]−オクタフルオロビフェニル等の芳香族ジアミン;ジアミノテトラフェニルチオフェン等の芳香環に結合された2個のアミノ基と当該アミノ基の窒素原子以外のヘテロ原子を有する芳香族ジアミン;1,1−メタキシリレンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、4,4−ジアミノヘプタメチレンジアミン、1,4−ジアミノシクロヘキサン、イソフォロンジアミン、テトラヒドロジシクロペンタジエニレンジアミン、ヘキサヒドロ−4,7−メタノインダニレンジメチレンジアミン、トリシクロ[6,2,1,02.7]−ウンデシレンジメチルジアミン、4,4’−メチレンビス(シクロヘキシルアミン)等の脂肪族ジアミンおよび脂環式ジアミン等及びそれらの誘導体などが挙げられ、これらを単独で、又は任意の割合で混合した混合物を好ましく用いることができる。 Examples of the diamine used for the polyimide synthesis of the present invention include [bis (4-amino-3-carboxy) phenyl] methane, p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenylmethane, 4, 4'-Diaminophenyl ethane, 4,4'-diaminophenyl ether, 4,4'-didiaminophenyl sulfide, 4,4'-didiaminophenyl sulfone, 1,5-diaminonaphthalene, 3,3-dimethyl-4 , 4'-Diaminobiphenyl, 5-amino-1- (4'-aminophenyl) -1,3,3-trimethylindan, 6-amino-1- (4'-aminophenyl) -1,3,3- Trimethylindan, 4,4'-diaminobenzanilide, 3,5-diamino-3'-trifluoromethylbenzanilide, 3,5-diamino-4'-trifluoromethylbenzanilide, 3,4'-diaminodiphenyl ether, 2,7-Diaminofluorene, 2,2-bis (4-aminophenyl) hexafluoropropane, 4,4'-methylene-bis (2-chloroaniline), 2,2', 5,5'-tetrachloro- 4,4'-Diaminobiphenyl, 2,2'-dichloro-4,4'-diamino-5,5'-dimethoxybiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 4,4'- Diamino-2,2'-bis (trifluoromethyl) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane , 2,2-bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] ) Phenyl] Hexafluoropropane, 1,4-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) -biphenyl, 1, 3'-bis (4-aminophenoxy) benzene, 1,3'-bis (3-aminophenoxy) benzene, 9,9-bis (4-aminophenyl) fluorene, 4,4'-(p-phenylene isopropylidene) ) Bisaniline, 4,4'-(m-phenylene isopropylidene) bisaniline, 2,2'-bis [4- (4-amino-2-trifluoromethylphenoxy) phenyl] hexafluoropropane, 4,4'-bis [4-( 4-Amino-2-trifluoromethyl) phenoxy] -aromatic diamines such as octafluorobiphenyl; two amino groups bonded to an aromatic ring such as diaminotetraphenylthiophene and heteroatoms other than the nitrogen atom of the amino groups. Aromatic diamines with; 1,1-methoxylylene diamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, octamethylenediamine, nonamethylenediamine, 4,4-diaminoheptamethylenediamine, 1,4 -Diaminocyclohexane, Isophorondiamine, Tetrahydrodicyclopentadiene diamine, Hexahydro-4,7-Metanoindanylenedimethylenediamine, Tricyclo [6,2,1,02.7] -Undecylendimethyldiamine, 4,4 Examples thereof include aliphatic diamines such as ′ -methylenebis (cyclohexylamine), alicyclic diamines and the like, and derivatives thereof, and a mixture thereof can be preferably used alone or in an arbitrary ratio.

さらに、樹脂の溶剤への溶解性を向上させ塗布性を確保する目的で、上記、ポリイミド樹脂のポリマー分子中に脂環式構造又はスルホン基を有している事が好ましい。脂環式構造のポリマー分子への導入方法は限定されないが、原料のジアミン、又は、テトラカルボン酸化合物にこれら構造を有しているものを用いる事で簡便に導入する事ができる。ジアミン化合物について記載したが、ジアミン化合物のアミノ基をイソシアネート基に置き換えたジイソシアネート化合物も、ジアミン化合物と同様に用いることができる。 Further, for the purpose of improving the solubility of the resin in the solvent and ensuring the coatability, it is preferable that the above-mentioned polyimide resin has an alicyclic structure or a sulfone group in the polymer molecule. The method for introducing the alicyclic structure into the polymer molecule is not limited, but it can be easily introduced by using a diamine as a raw material or a tetracarboxylic dian compound having these structures. Although the diamine compound has been described, a diisocyanate compound in which the amino group of the diamine compound is replaced with an isocyanate group can also be used in the same manner as the diamine compound.

(ポジ型感光性ポリイミド樹脂組成物)
上記方法により得られたポリイミド樹脂に、光酸発生剤を添加する事でポジ型の感光性樹脂組成物とする事ができる。本発明で用いる光酸発生剤は、特に種類については限定されず、複数のものを併用することもできる。
(Positive photosensitive polyimide resin composition)
A positive photosensitive resin composition can be obtained by adding a photoacid generator to the polyimide resin obtained by the above method. The type of photoacid generator used in the present invention is not particularly limited, and a plurality of photoacid generators may be used in combination.

好ましい光酸発生剤としては、芳香族スルホニウム塩およびヨードニウム塩、オキシムスルホネート類、イミドスルホネート類、カルボン酸エステル類が挙げられる。これらの中でも、光感度が高くなる事から、オキシムスルホネート類、イミドスルホネート類が好ましい。また、光により発生する酸化合物も特に限定されないが、酸分解性基を効率的に分解できる酸強度のものが好ましく、例えば、CF3SO3 -+、C49SO3 -+、B(C654 -+、PF6 -+、SbF6 -+等が挙げられる。 Preferred photoacid generators include aromatic sulfonium salts and iodonium salts, oxime sulfonates, imide sulfonates and carboxylic acid esters. Among these, oxime sulfonates and imide sulfonates are preferable because the light sensitivity is high. Although not particularly limited acid compound produced by light, preferably it has an acid strength to decompose an acid-decomposable group efficiently, for example, CF 3 SO 3 - H + , C 4 F 9 SO 3 - H + , B (C 6 F 5) 4 - H +, PF 6 - H +, SbF 6 - H + , and the like.

上記ポジ型感光性樹脂組成物における光酸発生剤の含有量は、特に制限はないが、硬化性の観点から、成分(A)の100重量部に対して、0.01〜10重量部であることが好ましい。光酸発生剤の量が少ないと、硬化に長時間を要したり、十分に硬化した硬化物が得られなかったりする場合がある。また、光酸発生剤が多いと、色が硬化物に残ったり、急硬化のために着色したり、耐熱性を損なったり、耐光性を損なったりするため、好ましくない場合がある。 The content of the photoacid generator in the positive photosensitive resin composition is not particularly limited, but from the viewpoint of curability, it is 0.01 to 10 parts by weight with respect to 100 parts by weight of the component (A). It is preferable to have. If the amount of the photoacid generator is small, it may take a long time to cure, or a sufficiently cured cured product may not be obtained. Further, if the amount of the photoacid generator is large, the color may remain on the cured product, the color may be colored due to rapid curing, the heat resistance may be impaired, or the light resistance may be impaired, which may not be preferable.

(光増感剤)
上記ポジ型感光性樹脂組成物は、光増感剤を含有していてもよい。光増感剤添加により、上記ポジ型感光性樹脂組成物において、可視光等への感度を向上させることができ、さらにg線(436nm)、h線(405nm)およびi線(365nm)等の高波長の光に感度を持たせることができる。これらの増感剤を、上述のカチオン重合開始剤、ラジカル重合開始剤および光酸発生剤等と併用して使用することにより、上記ポジ型感光性樹脂組成物の硬化性の調整を行うことができる。上記増感剤としては、アントラセン系化合物およびチオキサントン系化合物等が挙げられる。
(Photosensitizer)
The positive photosensitive resin composition may contain a photosensitizer. By adding a photosensitizer, the sensitivity of the positive photosensitive resin composition to visible light and the like can be improved, and further, g-line (436 nm), h-line (405 nm), i-line (365 nm) and the like can be improved. Sensitivity can be given to high-wavelength light. By using these sensitizers in combination with the above-mentioned cationic polymerization initiator, radical polymerization initiator, photoacid generator and the like, the curability of the above-mentioned positive photosensitive resin composition can be adjusted. can. Examples of the sensitizer include anthracene-based compounds and thioxanthone-based compounds.

上記アントラセン系化合物の具体例としては、アントラセン、2−エチル−9,10−ジメトキシアントラセン、9,10−ジメチルアントラセン、9,10−ジブトキシアントラセン、9,10−ジプロポキシアントラセン、9,10−ジエトキシアントラセン、1,4−ジメトキシアントラセン、9−メチルアントラセン、2−エチルアントラセン、2−tert−ブチルアントラセン、2,6−ジ−tert−ブチルアントラセン、9,10−ジフェニル−2,6−ジ−tert−ブチルアントラセン等が挙げられる。特に入手しやすい観点からは、上記アントラセン系化合物として、アントラセン、9,10−ジメチルアントラセン、9,10−ジブトキシアントラセン、9,10−ジプロポキシアントラセンおよび9,10−ジエトキシアントラセン等が好ましい。 Specific examples of the anthracene-based compound include anthracene, 2-ethyl-9,10-dimethoxyanthracene, 9,10-dimethylanthracene, 9,10-dibutoxyanthracene, 9,10-dipropoxyanthracene, and 9,10-. Diethoxyanthracene, 1,4-dimethoxyanthracene, 9-methylanthracene, 2-ethylanthracene, 2-tert-butyl anthracene, 2,6-di-tert-butyl anthracene, 9,10-diphenyl-2,6-di -Tart-butyl anthracene and the like can be mentioned. From the viewpoint of being particularly easily available, as the anthracene-based compound, anthracene, 9,10-dimethylanthracene, 9,10-dibutoxyanthracene, 9,10-dipropoxyanthracene, 9,10-diethoxyanthracene and the like are preferable.

上記アントラセン系化合物として、硬化物の透明性に優れる観点からはアントラセンが好ましく、硬化性組成物との相溶性に優れる観点からは9,10−ジブトキシアントラセン、9,10−ジプロポキシアントラセンおよび9,10−ジエトキシアントラセン等が好ましい。 As the anthracene-based compound, anthracene is preferable from the viewpoint of excellent transparency of the cured product, and 9,10-dibutoxyanthracene, 9,10-dipropoxyanthracene and 9 from the viewpoint of excellent compatibility with the curable composition. , 10-Diethoxyanthracene and the like are preferred.

(溶剤)
また感光性樹脂組成物として用いる際、多くは基板にコーティングして使用するため、溶剤に希釈して感光性樹脂組成物とするが、使用できる溶剤としては、特に限定されるものではなく、具体的には、ベンゼン、トルエン、ヘキサンおよびヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソランおよびジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトンおよびシクロヘキサノン等のケトン系溶媒、プロピレングリコール−1−モノメチルエーテル−2−アセテート(PGMEA)およびエチレングリコールジエチルエーテル等のグリコール系溶剤、クロロホルム、塩化メチレンおよび1,2−ジクロロエタン等のハロゲン系溶剤等が挙げられる。
(solvent)
Further, when used as a photosensitive resin composition, since it is often used by coating it on a substrate, it is diluted with a solvent to obtain a photosensitive resin composition, but the solvent that can be used is not particularly limited and is not particularly limited. Specifically, hydrocarbon solvents such as benzene, toluene, hexane and heptane, ether solvents such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane and diethyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone and the like. Examples thereof include a ketone solvent such as propylene glycol-1-monomethyl ether-2-acetate (PGMEA) and a glycol solvent such as ethylene glycol diethyl ether, and a halogen solvent such as chloroform, methylene chloride and 1,2-dichloroethane.

(パターン形成方法について)
上記ポジ型感光性樹脂組成物を基材上に1〜5μmの膜厚で層状塗布し、乾燥させることによって得た積層体(基材/感光性樹脂組成物)を、露光後、アルカリ性現像液によって現像することによって、パターンを形成することが出来る。
(About pattern formation method)
The laminate (base material / photosensitive resin composition) obtained by coating the positive photosensitive resin composition on a substrate in a layered manner with a thickness of 1 to 5 μm and drying it is exposed to an alkaline developer. A pattern can be formed by developing with.

上記ポジ型感光性樹脂組成物を露光するための光源としては、使用する光酸発生剤および増感剤の吸収波長を発光する光源を使用すればよく、通常200〜450nmの範囲の波長を含む光源(例えば、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ハイパワーメタルハライドランプ、キセノンランプ、カーボンアークランプ又は発光ダイオード等)を使用できる。 As the light source for exposing the positive photosensitive resin composition, a light source that emits the absorption wavelengths of the photoacid generator and the sensitizer to be used may be used, and usually includes a wavelength in the range of 200 to 450 nm. A light source (eg, high pressure mercury lamp, ultrahigh pressure mercury lamp, metal halide lamp, high power metal halide lamp, xenon lamp, carbon arc lamp, light emitting diode, etc.) can be used.

上記ポジ型感光性樹脂組成物を反応させるための露光量は特に制限されないが、好ましくは1〜10000mJ/cm2、より好ましくは1〜3000mJ/cm2である。露光量が少ないと上記ポジ型感光性樹脂組成物が反応しない場合がある。露光量が多いと反応が過剰に進行し、求める形状のパターンが得られない場合がある。 The exposure amount for reacting the positive photosensitive resin composition is not particularly limited, but is preferably 1 to 10000 mJ / cm 2 , more preferably 1 to 3000 mJ / cm 2 . If the exposure amount is small, the positive photosensitive resin composition may not react. If the amount of exposure is large, the reaction may proceed excessively and the pattern of the desired shape may not be obtained.

また溶剤除去および硬化物の物性向上の目的で、露光前後に熱を加えプリベークおよびアフターベークさせてもよい。硬化温度は適宜設定され得るが、好ましくは40〜400℃、より好ましくは60〜350℃である。 Further, for the purpose of removing the solvent and improving the physical properties of the cured product, heat may be applied before and after exposure to prebake and afterbake. The curing temperature can be appropriately set, but is preferably 40 to 400 ° C, more preferably 60 to 350 ° C.

アルカリ現像液によるパターニング形成について特に限定される方法はなく、一般的に行われる浸漬法又はスプレー法等の現像方法により露光部を溶解および除去して所望のパターンを形成することができる。 There is no particular limitation on the patterning formation with the alkaline developer, and a desired pattern can be formed by dissolving and removing the exposed portion by a developing method such as a commonly used dipping method or spraying method.

また、アルカリ現像において使用される現像液については、一般に使用されるものであれば特に限定なく使用することができる。上記現像液の具体例としては、テトラメチルアンモニウムハイドロオキサイド(TMAH)水溶液およびコリン水溶液等の有機アルカリ水溶液、水酸化カリウム水溶液、水酸化ナトリウム水溶液、炭酸カリウム水溶液、炭酸ナトリウム水溶液および炭酸リチウム水溶液等の無機アルカリ水溶液等が挙げられる。上記水溶液は、溶解速度等の調整のためにアルコールおよび界面活性剤等を含有していてもよい。上記水溶液の濃度は、露光部と未露光部とのコントラストがつきやすいという観点から、25重量%以下であることが好ましく、10重量%以下がより好ましく、5重量%以下であることがさらに好ましい。 Further, the developer used in alkaline development can be used without particular limitation as long as it is generally used. Specific examples of the developer include organic alkaline aqueous solutions such as tetramethylammonium hydroxide (TMAH) aqueous solution and choline aqueous solution, potassium hydroxide aqueous solution, sodium hydroxide aqueous solution, potassium carbonate aqueous solution, sodium carbonate aqueous solution and lithium carbonate aqueous solution. Examples thereof include an inorganic alkaline aqueous solution. The aqueous solution may contain alcohol, a surfactant and the like for adjusting the dissolution rate and the like. The concentration of the aqueous solution is preferably 25% by weight or less, more preferably 10% by weight or less, still more preferably 5% by weight or less, from the viewpoint that the contrast between the exposed portion and the unexposed portion is easily obtained. ..

以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.

(パターニング性評価)
実施例および比較例で得られた樹脂組成物を用いてパターニング性評価サンプルを作製した。まずガラス基板へ、実施例および比較例で得られた樹脂組成物を膜厚が2μmとなるようにスピンコーティングし、100℃に加熱したホットプレート上で2分間加熱した。次に露光装置(高圧水銀ランプ、手動露光機、大日本科研社製)を用い、50μmのラインアンドスペースパターンが刻まれたマスクを通して、それぞれの樹脂組成物に最適な積算光量で露光し(ソフトコンタクト露光)、露光後1分間放置した。その後、アルカリ性現像液(TMAH2.38%水溶液)に180秒間浸漬後、30秒間水洗してパターンを形成した。その後、230℃のホットプレート上で30分間加熱してパターニング性評価用のサンプルを得た。
(Evaluation of patterning property)
A patterning property evaluation sample was prepared using the resin compositions obtained in Examples and Comparative Examples. First, the resin compositions obtained in Examples and Comparative Examples were spin-coated on a glass substrate so as to have a film thickness of 2 μm, and heated on a hot plate heated to 100 ° C. for 2 minutes. Next, using an exposure device (high-pressure mercury lamp, manual exposure machine, manufactured by Dainippon Kaken Co., Ltd.), exposure was performed with the optimum integrated light intensity for each resin composition through a mask engraved with a 50 μm line and space pattern (soft). Contact exposure), left for 1 minute after exposure. Then, it was immersed in an alkaline developer (TMAH 2.38% aqueous solution) for 180 seconds and then washed with water for 30 seconds to form a pattern. Then, it was heated on a hot plate at 230 ° C. for 30 minutes to obtain a sample for evaluation of patterning property.

得られたパターニング性評価サンプルについて、3D測定レーザー顕微鏡(LEXT OLS4000、オリンパス社製)および触針式表面形状測定器(Dektak150、Veeco社製)を用いてパターン形状を観測し、50μmラインアンドスペースの状態を下記基準に従い評価した。 The pattern shape of the obtained patterning property evaluation sample was observed using a 3D measurement laser microscope (LEXT OLS4000, manufactured by Olympus) and a stylus type surface shape measuring instrument (Dektak150, manufactured by Veeco), and a 50 μm line and space was observed. The condition was evaluated according to the following criteria.

<評価基準>
○:実用可能なレベル(50μmラインアンドスペースに残膜無し)
×:実用に適さないレベル(50μmラインアンドスペースに残膜有り)
<Evaluation criteria>
◯: Practical level (no residual film in 50 μm line and space)
×: Level not suitable for practical use (remaining film on 50 μm line and space)

(密着性評価)
実施例および比較例で得られたポリイミド樹脂溶液をCu製膜ウェハ基板上に膜厚5μmでスピンコーティングした後250℃1時間ホットプレートで加熱する事で、ポリイミド樹脂膜を形成した。次にJIS K5600−V−VI(ISO2409)に準じてクロ
スカット試験を行い、Cu薄膜への密着性評価を行った。
(Adhesion evaluation)
The polyimide resin solutions obtained in Examples and Comparative Examples were spin-coated on a Cu film-forming wafer substrate with a film thickness of 5 μm and then heated on a hot plate at 250 ° C. for 1 hour to form a polyimide resin film. Next, a cross-cut test was performed according to JIS K5600-V-VI (ISO2409) to evaluate the adhesion to the Cu thin film.

●評価指標
0:剥離無し 1:1〜10%剥離 2:20〜30%剥離
3:50%剥離 4:70〜80%剥離 5:90%以上剥離
● Evaluation index 0: No peeling 1: 1-10% peeling 2: 20-30% peeling 3: 50% peeling 4: 70-80% peeling 5: 90% or more peeling

(耐熱性評価)
熱重量測定装置(TGA、島津製作所製)を用いて、室温から500℃まで10℃/分で昇温させ、1%重量減少温度を指標として評価を行った。
(Heat resistance evaluation)
Using a thermogravimetric measuring device (TGA, manufactured by Shimadzu Corporation), the temperature was raised from room temperature to 500 ° C. at 10 ° C./min, and evaluation was performed using the 1% weight loss temperature as an index.

(合成例1)
500mL四つ口フラスコにトルエン100g、1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン15gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。tert−ブトキシカルボニル基で保護されたジアリルイソシアヌル酸11g、1‘4’−ジオキサン10g、白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0163gの混合液を30分かけて滴下した。滴下終了から3時間後に1H−NMRでアリル基の反応率が100%であることを確認し、60℃冷却した。その後、アリルコハク酸無水物1.5gとトルエン3gの混合溶液を滴下した。滴下終了から5時間後に1H−NMRでアリルコハク酸無水物の二重結合の反応率が100%であることを確認し、冷却した反応を終了した。トルエンを減圧留去し、酸無水物基を末端に有する変性シロキサン化合物Aを得た。
(Synthesis Example 1)
Toluene (100 g) and 1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane (15 g) were placed in a 500 mL four-necked flask, the gas phase portion was replaced with nitrogen, and the mixture was heated and stirred at an internal temperature of 105 ° C. A mixed solution of 11 g of diallyl isocyanuric acid protected with a tert-butoxycarbonyl group, 10 g of 1'4'-dioxane, and 0.0163 g of a xylene solution of a platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise over 30 minutes. Three hours after the completion of the dropping , it was confirmed by 1 H-NMR that the reaction rate of the allyl group was 100%, and the mixture was cooled at 60 ° C. Then, a mixed solution of 1.5 g of allyl succinic anhydride and 3 g of toluene was added dropwise. Five hours after the completion of the dropping, 1 H-NMR confirmed that the reaction rate of the double bond of the allyl succinic anhydride was 100%, and the cooling reaction was completed. Toluene was distilled off under reduced pressure to obtain a modified siloxane compound A having an acid anhydride group at the end.

次に、200mLのフラスコ中に、溶剤としてN,N−ジメチルホルムアミド20g、上記で得た変性シロキサン化合物Aを2.5g、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン1.5gを投入し、室温、窒素雰囲気下で30分間撹拌した。さらにN,N−ジメチルホルムアミド5g、ピリジン0.8g、無水酢酸1.5gを順次フラスコに投入し、90℃に加熱しながら3時間撹拌した。常温に戻ってから、フラスコに500mLのイソプロピルアルコールを投入し、析出物を回収した。更に500mLリットルのイソプロピルアルコールで洗浄を3回行い、得られた析出物を80℃で6時間減圧乾燥し、ポリイミド樹脂Aを得た。 Next, in a 200 mL flask, 20 g of N, N-dimethylformamide, 2.5 g of the modified siloxane compound A obtained above, and 1.5 g of 2,2-bis (4-aminophenyl) hexafluoropropane were added as a solvent. The mixture was charged and stirred at room temperature and a nitrogen atmosphere for 30 minutes. Further, 5 g of N, N-dimethylformamide, 0.8 g of pyridine and 1.5 g of acetic anhydride were sequentially put into a flask, and the mixture was stirred for 3 hours while heating at 90 ° C. After returning to room temperature, 500 mL of isopropyl alcohol was put into the flask, and the precipitate was collected. Further, the washing was carried out three times with 500 mL liter of isopropyl alcohol, and the obtained precipitate was dried under reduced pressure at 80 ° C. for 6 hours to obtain a polyimide resin A.

(合成例2)
500mL四つ口フラスコにトルエン100g、1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン15gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。tert−ブトキシカルボニル基で保護されたジアリルビスフェノールS15g、1‘4’−ジオキサン10g、白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0163gの混合液を30分かけて滴下した。滴下終了から3時間後に1H−NMRでアリル基の反応率が100%であることを確認し、60℃冷却した。その後、アリルコハク酸無水物1.5gとトルエン3gの混合溶液を滴下した。滴下終了から5時間後に1H−NMRでアリルコハク酸無水物の二重結合の反応率が100%であることを確認し、冷却した反応を終了した。トルエンを減圧留去し、酸無水物基を末端に有する変性シロキサン化合物Bを得た。
(Synthesis Example 2)
Toluene (100 g) and 1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane (15 g) were placed in a 500 mL four-necked flask, the gas phase portion was replaced with nitrogen, and the mixture was heated and stirred at an internal temperature of 105 ° C. A mixed solution of 15 g of diallyl bisphenol S protected with a tert-butoxycarbonyl group, 10 g of 1'4'-dioxane, and 0.0163 g of a xylene solution of a platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise over 30 minutes. Three hours after the completion of the dropping , it was confirmed by 1 H-NMR that the reaction rate of the allyl group was 100%, and the mixture was cooled at 60 ° C. Then, a mixed solution of 1.5 g of allyl succinic anhydride and 3 g of toluene was added dropwise. Five hours after the completion of the dropping, 1 H-NMR confirmed that the reaction rate of the double bond of the allyl succinic anhydride was 100%, and the cooling reaction was completed. Toluene was distilled off under reduced pressure to obtain a modified siloxane compound B having an acid anhydride group at the end.

次に、200mLのフラスコ中に、溶剤としてN,N−ジメチルホルムアミド20g、上記で得た変性シロキサン化合物Bを2.5g、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン1.5gを投入し、室温、窒素雰囲気下で30分間撹拌した。さらにN,N−ジメチルホルムアミド5g、ピリジン0.8g、無水酢酸1.5gを順次フラスコに投入し、90℃に加熱しながら3時間撹拌した。常温に戻ってから、フラスコに500mLのイソプロピルアルコールを投入し、析出物を回収した。更に500mLリットルのイソプロピルアルコールで洗浄を3回行い、得られた析出物を80℃で6時間減圧乾燥し、ポリイミド樹脂Bを得た。 Next, in a 200 mL flask, 20 g of N, N-dimethylformamide, 2.5 g of the modified siloxane compound B obtained above, and 1.5 g of 2,2-bis (4-aminophenyl) hexafluoropropane were added as a solvent. The mixture was charged and stirred at room temperature and a nitrogen atmosphere for 30 minutes. Further, 5 g of N, N-dimethylformamide, 0.8 g of pyridine and 1.5 g of acetic anhydride were sequentially put into a flask, and the mixture was stirred for 3 hours while heating at 90 ° C. After returning to room temperature, 500 mL of isopropyl alcohol was put into the flask, and the precipitate was collected. Further, washing with 500 mL liter of isopropyl alcohol was carried out three times, and the obtained precipitate was dried under reduced pressure at 80 ° C. for 6 hours to obtain a polyimide resin B.

(合成例3)
500mL四つ口フラスコにトルエン100g、1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン15gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。tert−ブトキシカルボニル基で保護されたジアリルイソシアヌル酸8g、ジアリルモノメチルイソシアヌレート2g、1‘4’−ジオキサン10g、白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0163gの混合液を30分かけて滴下した。滴下終了から3時間後に1H−NMRでアリル基の反応率が100%であることを確認し、60℃冷却した。その後、アリルコハク酸無水物1.5gとトルエン3gの混合溶液を滴下した。滴下終了から5時間後に1H−NMRでアリルコハク酸無水物の二重結合の反応率が100%であることを確認し、冷却した反応を終了した。トルエンを減圧留去し、酸無水物基を末端に有する変性シロキサン化合物Cを得た。
(Synthesis Example 3)
Toluene (100 g) and 1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane (15 g) were placed in a 500 mL four-necked flask, the gas phase portion was replaced with nitrogen, and the mixture was heated and stirred at an internal temperature of 105 ° C. 30 a mixture of 8 g of diallyl isocyanuric acid protected by a tert-butoxycarbonyl group, 2 g of diallyl monomethylisocyanurate, 10 g of 1'4'-dioxane, and 0.0163 g of a xylene solution of a platinum vinylsiloxane complex (containing 3 wt% as platinum). Dropped over minutes. Three hours after the completion of the dropping , it was confirmed by 1 H-NMR that the reaction rate of the allyl group was 100%, and the mixture was cooled at 60 ° C. Then, a mixed solution of 1.5 g of allyl succinic anhydride and 3 g of toluene was added dropwise. Five hours after the completion of the dropping, 1 H-NMR confirmed that the reaction rate of the double bond of the allyl succinic anhydride was 100%, and the cooling reaction was completed. Toluene was distilled off under reduced pressure to obtain a modified siloxane compound C having an acid anhydride group at the end.

次に、200mLのフラスコ中に、溶剤としてN,N−ジメチルホルムアミド20g、上記で得た変性シロキサン化合物Cを2.5g、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン1.5gを投入し、室温、窒素雰囲気下で30分間撹拌した。さらにN,N−ジメチルホルムアミド5g、ピリジン0.8g、無水酢酸1.5gを順次フラスコに投入し、90℃に加熱しながら3時間撹拌した。常温に戻ってから、フラスコに500mLのイソプロピルアルコールを投入し、析出物を回収した。更に500mLリットルのイソプロピルアルコールで洗浄を3回行い、得られた析出物を80℃で6時間減圧乾燥し、ポリイミド樹脂Cを得た。 Next, in a 200 mL flask, 20 g of N, N-dimethylformamide, 2.5 g of the modified siloxane compound C obtained above, and 1.5 g of 2,2-bis (4-aminophenyl) hexafluoropropane were placed as a solvent. The mixture was charged and stirred at room temperature and a nitrogen atmosphere for 30 minutes. Further, 5 g of N, N-dimethylformamide, 0.8 g of pyridine and 1.5 g of acetic anhydride were sequentially put into a flask, and the mixture was stirred for 3 hours while heating at 90 ° C. After returning to room temperature, 500 mL of isopropyl alcohol was put into the flask and the precipitate was collected. Further, washing with 500 mL liter of isopropyl alcohol was carried out three times, and the obtained precipitate was dried under reduced pressure at 80 ° C. for 6 hours to obtain a polyimide resin C.

(合成例4)
500mL四つ口フラスコにトルエン100g、1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン15gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。tert−ブトキシカルボニル基で保護されたジアリルイソシアヌル酸11g、1‘4’−ジオキサン10g、白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0163gの混合液を30分かけて滴下した。滴下終了から3時間後に1H−NMRでアリル基の反応率が100%であることを確認し、60℃冷却した。その後、イタコン酸無水物1.2gとトルエン3gの混合溶液を滴下した。滴下終了から5時間後に1H−NMRでイタコン酸無水物の二重結合の反応率が100%であることを確認し、冷却した反応を終了した。トルエンを減圧留去し、酸無水物基を末端に有する変性シロキサン化合物Dを得た。
(Synthesis Example 4)
Toluene (100 g) and 1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane (15 g) were placed in a 500 mL four-necked flask, the gas phase portion was replaced with nitrogen, and the mixture was heated and stirred at an internal temperature of 105 ° C. A mixed solution of 11 g of diallyl isocyanuric acid protected with a tert-butoxycarbonyl group, 10 g of 1'4'-dioxane, and 0.0163 g of a xylene solution of a platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise over 30 minutes. Three hours after the completion of the dropping , it was confirmed by 1 H-NMR that the reaction rate of the allyl group was 100%, and the mixture was cooled at 60 ° C. Then, a mixed solution of 1.2 g of itaconic acid anhydride and 3 g of toluene was added dropwise. Five hours after the completion of the dropping , it was confirmed by 1 H-NMR that the reaction rate of the double bond of the itaconic acid anhydride was 100%, and the cooling reaction was completed. Toluene was distilled off under reduced pressure to obtain a modified siloxane compound D having an acid anhydride group at the end.

次に、200mLのフラスコ中に、溶剤としてN,N−ジメチルホルムアミド20g、上記で得た変性シロキサン化合物Dを2.5g、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン1.5gを投入し、室温、窒素雰囲気下で30分間撹拌した。さらにN,N−ジメチルホルムアミド5g、ピリジン0.8g、無水酢酸1.5gを順次フラスコに投入し、90℃に加熱しながら3時間撹拌した。常温に戻ってから、フラスコに500mLのイソプロピルアルコールを投入し、析出物を回収した。更に500mLリットルのイソプロピルアルコールで洗浄を3回行い、得られた析出物を80℃で6時間減圧乾燥し、ポリイミド樹脂Dを得た。 Next, in a 200 mL flask, 20 g of N, N-dimethylformamide, 2.5 g of the modified siloxane compound D obtained above, and 1.5 g of 2,2-bis (4-aminophenyl) hexafluoropropane were placed as a solvent. The mixture was charged and stirred at room temperature and a nitrogen atmosphere for 30 minutes. Further, 5 g of N, N-dimethylformamide, 0.8 g of pyridine and 1.5 g of acetic anhydride were sequentially put into a flask, and the mixture was stirred for 3 hours while heating at 90 ° C. After returning to room temperature, 500 mL of isopropyl alcohol was put into the flask, and the precipitate was collected. Further, washing with 500 mL liter of isopropyl alcohol was carried out three times, and the obtained precipitate was dried under reduced pressure at 80 ° C. for 6 hours to obtain a polyimide resin D.

(合成比較例1)
200mLのフラスコ中に、溶剤としてN,N−ジメチルホルムアミド20g、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン1.0g、シロキサンジアミン(商品名:KF−8010、信越化学工業株式会社製)を1.0g、2,2’−ヘキサフルオロプロピリデンジフタル酸二無水物2.5gを投入し、室温、窒素雰囲気下で30分間撹拌した。さらにN,N−ジメチルホルムアミド5g、ピリジン0.8g、無水酢酸1.5gを順次フラスコに投入し、90℃に加熱しながら3時間撹拌した。常温に戻ってから、フラスコに500mLのイソプロピルアルコールを投入し、析出物を回収した。更に500mLリットルのイソプロピルアルコールで洗浄を3回行い、得られた析出物を80℃で6時間減圧乾燥し、ポリイミド樹脂E‘を得た。
(Composite Comparative Example 1)
In a 200 mL flask, 20 g of N, N-dimethylformamide, 1.0 g of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, and siloxane diamine (trade name: KF-8010, Shin-Etsu Chemical Co., Ltd.) were used as solvents. 1.0 g of (manufactured by Kogyo Co., Ltd.) and 2.5 g of 2,2'-hexafluoropropyridene diphthalic acid dianhydride were added, and the mixture was stirred at room temperature and in a nitrogen atmosphere for 30 minutes. Further, 5 g of N, N-dimethylformamide, 0.8 g of pyridine and 1.5 g of acetic anhydride were sequentially put into a flask, and the mixture was stirred for 3 hours while heating at 90 ° C. After returning to room temperature, 500 mL of isopropyl alcohol was put into the flask, and the precipitate was collected. Further, washing with 500 mL liter of isopropyl alcohol was carried out three times, and the obtained precipitate was dried under reduced pressure at 80 ° C. for 6 hours to obtain a polyimide resin E'.

次に、ポリイミド樹脂E‘3gをTHF50mLにピリジン0.1g、二炭酸ジtertブチル3gを入れ、70℃で1時間攪拌した。H1−NMRによってイソシアヌル酸のNHピークの消失によって保護反応の完了を確認し、フェノール酸基が保護されたポリイミド樹脂Eを得た。 Next, 3 g of polyimide resin E'was added to 50 mL of THF with 0.1 g of pyridine and 3 g of di-tert-butyl dicarbonate, and the mixture was stirred at 70 ° C. for 1 hour. The completion of the protection reaction was confirmed by the disappearance of the NH peak of isocyanuric acid by H 1-NMR, and the polyimide resin E in which the phenolic acid group was protected was obtained.

(実施例1)
ポリイミド樹脂として、合成例1に記載のポリイミド樹脂A0.50g、光酸発生剤として1,8−ナフタレンジカルボン酸イミドトリフルオロメチルスルホネート0.10gを溶剤のPGMEA(プロピレングリコールモノメチルエーテルアセテート)3.5gに溶解させ、感光性組成物1を調製した。
(Example 1)
As the polyimide resin, 0.50 g of the polyimide resin A described in Synthesis Example 1 and 0.10 g of 1,8-naphthalenedicarboxylic acid imide trifluoromethyl sulfonate as a photoacid generator are used as a solvent PGMEA (propylene glycol monomethyl ether acetate) 3.5 g. The photosensitive composition 1 was prepared by dissolving in.

(実施例2)
ポリイミド樹脂として、合成例2に記載のポリイミド樹脂B0.50g、光酸発生剤として1,8−ナフタレンジカルボン酸イミドトリフルオロメチルスルホネート0.10gを溶剤のPGMEA(プロピレングリコールモノメチルエーテルアセテート)3.5gに溶解させ、感光性組成物2を調製した。
(Example 2)
As the polyimide resin, 0.50 g of the polyimide resin B described in Synthesis Example 2 and 0.10 g of 1,8-naphthalenedicarboxylic acid imide trifluoromethyl sulfonate as a photoacid generator are used as a solvent PGMEA (propylene glycol monomethyl ether acetate) 3.5 g. The photosensitive composition 2 was prepared.

(実施例3)
ポリイミド樹脂として、合成例3に記載のポリイミド樹脂C0.50g、光酸発生剤として1,8−ナフタレンジカルボン酸イミドトリフルオロメチルスルホネート0.10gを溶剤のPGMEA(プロピレングリコールモノメチルエーテルアセテート)3.5gに溶解させ、感光性組成物3を調製した。
(Example 3)
As the polyimide resin, 0.50 g of the polyimide resin C described in Synthesis Example 3 and 0.10 g of 1,8-naphthalenedicarboxylic acid imide trifluoromethyl sulfonate as a photoacid generator are used as a solvent PGMEA (propylene glycol monomethyl ether acetate) 3.5 g. The photosensitive composition 3 was prepared.

(実施例4)
ポリイミド樹脂として、合成例4に記載のポリイミド樹脂D0.50g、光酸発生剤として1,8−ナフタレンジカルボン酸イミドトリフルオロメチルスルホネート0.10gを溶剤のPGMEA(プロピレングリコールモノメチルエーテルアセテート)3.5gに溶解させ、感光性組成物4を調製した。
(Example 4)
As the polyimide resin, 0.50 g of the polyimide resin D described in Synthesis Example 4 and 0.10 g of 1,8-naphthalenedicarboxylic acid imide trifluoromethyl sulfonate as a photoacid generator are used as a solvent PGMEA (propylene glycol monomethyl ether acetate) 3.5 g. The photosensitive composition 4 was prepared.

(比較例1)
ポリイミド樹脂として、合成比較例1に記載のポリイミド樹脂E0.50g、光酸発生剤として1,8−ナフタレンジカルボン酸イミドトリフルオロメチルスルホネート0.10gを溶剤のPGMEA(プロピレングリコールモノメチルエーテルアセテート)3.5gに溶解させ、感光性組成物5を調製した。
(Comparative Example 1)
3. As the polyimide resin, 0.50 g of the polyimide resin E described in Synthetic Comparative Example 1 and 0.10 g of 1,8-naphthalenedicarboxylic acid imide trifluoromethyl sulfonate as a photoacid generator are used as a solvent PGMEA (propylene glycol monomethyl ether acetate). The photosensitive composition 5 was prepared by dissolving it in 5 g.

(結果)
実施例1〜4および比較例1で得られたポリイミド樹脂溶液に対し、前述の評価を行った。その結果を表1に示す。
(result)
The polyimide resin solutions obtained in Examples 1 to 4 and Comparative Example 1 were evaluated as described above. The results are shown in Table 1.

Figure 2021195476
Figure 2021195476

本発明は、半導体やディスプレイ等のエレクトロニクスデバイス用の絶縁層間膜、接着剤、コーティング剤および封止剤等の様々な分野で利用することができる。 The present invention can be used in various fields such as insulating interlayer films for electronic devices such as semiconductors and displays, adhesives, coating agents and encapsulants.

Claims (7)

(A)1分子中に炭素−炭素二重結合を2個および酸分解性基を有する有機化合物、(B)1分子中にSiH基を2個有するケイ素化合物、(C)1分子中に炭素−炭素二重結合および酸無水物基を1個ずつ有する化合物、を反応させることで得られ、末端に酸無水物基を有する以下構造で表される変性シロキサン二酸無水物。
Figure 2021195476
(上記化学式において、Gは保護された酸性基を有し主鎖の炭素数が1から50であって、H原子、O原子、N原子、ハロゲン原子、S原子のいずれかの原子を一種、又は、2種以上含む有機基で表され、Xは酸無水物基を構造中に有する有機基、Rは炭素数1から20で表される有機基を示し、n、mは1〜50の整数である)
(A) an organic compound having two carbon-carbon double bonds and an acid anhydride group in one molecule, (B) a silicon compound having two SiH groups in one molecule, and (C) carbon in one molecule. -A modified siloxane diic acid anhydride having the following structure, which is obtained by reacting a compound having a carbon double bond and one acid anhydride group at a time, and having an acid anhydride group at the terminal.
Figure 2021195476
(In the above chemical formula, G has a protected acidic group, has 1 to 50 carbon atoms in the main chain, and is a kind of H atom, O atom, N atom, halogen atom, or S atom. Alternatively, it is represented by an organic group containing two or more kinds, X is an organic group having an acid anhydride group in the structure, R is an organic group represented by 1 to 20 carbon atoms, and n and m are 1 to 50. (It is an integer)
前記成分(C)が以下に記載される化合物より選ばれる事を特徴とする請求項1に記載の変性シロキサン二酸無水物。
Figure 2021195476
The modified siloxane diic acid anhydride according to claim 1, wherein the component (C) is selected from the compounds described below.
Figure 2021195476
前記成分(A)が少なくともN原子又はS原子を有する化合物であることを特徴とする請求項1又は2に記載の変性シロキサン二酸無水物。
The modified siloxane diic acid anhydride according to claim 1 or 2, wherein the component (A) is a compound having at least an N atom or an S atom.
請求項1から3のいずれか1項に記載の変性シロキサン二酸無水物とジアミン化合物又はジイソシアネート化合物とを反応させる事により得られるポリイミド樹脂。 A polyimide resin obtained by reacting the modified siloxane diic anhydride according to any one of claims 1 to 3 with a diamine compound or a diisocyanate compound. 前記成分(A)が下記一般式(a)で表される事を特徴とする請求項4に記載のポリイミド樹脂。(下記一般式のZは、tert−ブトキシカルボニル基、ベンジルオキシカルボニル基、トリメチルシリル基、tert−ブチルジメチルシリル基、メトキシメチル基、エトキシメチル基、テトラヒドロピラニル基、アセチル基、ベンジル基、p−メトキシベンジル基から選ばれる保護基を表す)
Figure 2021195476
The polyimide resin according to claim 4, wherein the component (A) is represented by the following general formula (a). (Z in the following general formula is tert-butoxycarbonyl group, benzyloxycarbonyl group, trimethylsilyl group, tert-butyldimethylsilyl group, methoxymethyl group, ethoxymethyl group, tetrahydropyranyl group, acetyl group, benzyl group, p- Represents a protecting group selected from methoxybenzyl groups)
Figure 2021195476
前記成分(A)が下記一般式(b)で表される事を特徴とする請求項4又は5に記載のポリイミド樹脂。(下記一般式のZは、tert−ブトキシカルボニル基、ベンジルオキシカルボニル基、トリメチルシリル基、tert−ブチルジメチルシリル基、メトキシメチル基、エトキシメチル基、テトラヒドロピラニル基、アセチル基、ベンジル基、p−メトキシベンジル基から選ばれる保護基を表す)
Figure 2021195476
The polyimide resin according to claim 4 or 5, wherein the component (A) is represented by the following general formula (b). (Z in the following general formula is tert-butoxycarbonyl group, benzyloxycarbonyl group, trimethylsilyl group, tert-butyldimethylsilyl group, methoxymethyl group, ethoxymethyl group, tetrahydropyranyl group, acetyl group, benzyl group, p- Represents a protecting group selected from methoxybenzyl groups)
Figure 2021195476
請求項4〜6のいずれか1項に記載のポリイミド樹脂、および、光酸発生剤を必須成分とするポジ型感光性組成物。 A positive photosensitive composition containing the polyimide resin according to any one of claims 4 to 6 and a photoacid generator as essential components.
JP2020103833A 2020-06-16 2020-06-16 Modified siloxane dianhydride and positive-type photosensitive polyimide resin composition Active JP7519819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020103833A JP7519819B2 (en) 2020-06-16 2020-06-16 Modified siloxane dianhydride and positive-type photosensitive polyimide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020103833A JP7519819B2 (en) 2020-06-16 2020-06-16 Modified siloxane dianhydride and positive-type photosensitive polyimide resin composition

Publications (2)

Publication Number Publication Date
JP2021195476A true JP2021195476A (en) 2021-12-27
JP7519819B2 JP7519819B2 (en) 2024-07-22

Family

ID=79197278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020103833A Active JP7519819B2 (en) 2020-06-16 2020-06-16 Modified siloxane dianhydride and positive-type photosensitive polyimide resin composition

Country Status (1)

Country Link
JP (1) JP7519819B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021181526A (en) * 2020-05-19 2021-11-25 株式会社カネカ Isocyanuric acid derivative, polymer, positive type photosensitive resin composition, insulation film and its manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5206977B2 (en) 2009-03-12 2013-06-12 信越化学工業株式会社 Novel polyimide silicone, photosensitive resin composition containing the same, and pattern forming method
JP2010265374A (en) 2009-05-14 2010-11-25 Shin-Etsu Chemical Co Ltd Isocyanuric ring-containing polysiloxane with terminal hydrogen
JP5417623B2 (en) 2009-12-10 2014-02-19 信越化学工業株式会社 Polyimide-based photocurable resin composition, pattern forming method, and film for protecting substrate
JP6262133B2 (en) 2012-07-04 2018-01-17 株式会社カネカ Positive photosensitive composition, thin film transistor and compound
JP6810677B2 (en) 2017-12-05 2021-01-06 信越化学工業株式会社 New tetracarboxylic dianhydride, polyimide resin and its manufacturing method, photosensitive resin composition, pattern forming method and cured film forming method, interlayer insulating film, surface protective film, electronic parts
JP7257134B2 (en) 2018-12-03 2023-04-13 株式会社カネカ Positive photosensitive composition, pattern cured film and method for producing the same
JP2021181526A (en) 2020-05-19 2021-11-25 株式会社カネカ Isocyanuric acid derivative, polymer, positive type photosensitive resin composition, insulation film and its manufacturing method
JP2021195475A (en) 2020-06-16 2021-12-27 株式会社カネカ Modified siloxane diacid anhydride and negative type photosensitive polyimide resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021181526A (en) * 2020-05-19 2021-11-25 株式会社カネカ Isocyanuric acid derivative, polymer, positive type photosensitive resin composition, insulation film and its manufacturing method

Also Published As

Publication number Publication date
JP7519819B2 (en) 2024-07-22

Similar Documents

Publication Publication Date Title
KR101366731B1 (en) Silphenylene-bearing polymer, photo-curable resin composition, patterning process, and substrate circuit protective film
JP6003973B2 (en) Insulating resin composition and use thereof
JP5417623B2 (en) Polyimide-based photocurable resin composition, pattern forming method, and film for protecting substrate
JP5638767B2 (en) Curable composition
WO2017099183A1 (en) Resin composition, method for producing resin, method for producing resin film and method for producing electronic device
JP2010285517A (en) Photocurable composition, and insulating thin film and thin film transistor obtained using the same
JP7209809B2 (en) Alkali-soluble polyimide, method for producing same, negative photosensitive resin composition, cured film, and method for producing patterned cured film
JP5054158B2 (en) Positive photosensitive composition
JP2021195475A (en) Modified siloxane diacid anhydride and negative type photosensitive polyimide resin composition
KR102492042B1 (en) Photosensitive resin composition, dry film and cured product thereof, electronic component or optical product comprising cured product, and adhesive comprising photosensitive resin composition
JP2021123652A (en) Resin composition, cured film, laminate, method for producing cured film, and semiconductor device
JP2001066781A (en) Polyamide having side chain of acetal or cyclic derivative thereof and heat-resistant photoresist composition prepared from the same
JP7519819B2 (en) Modified siloxane dianhydride and positive-type photosensitive polyimide resin composition
JP2019168680A (en) Photosensitive resin composition, photosensitive resin laminate, and pattern forming method
JP4552584B2 (en) Flattening resin layer, and semiconductor device and display device having the same
JP2022034458A (en) Modified siloxane diisocyanate compound, polyimide resin, and positive photosensitive polyimide resin composition
TW202415710A (en) Manufacturing process for phenolic hydroxyl-group containing branched organopolysiloxane
JP2022034457A (en) Modified siloxane diisocyanate compound, polyimide resin, and negative photosensitive polyimide resin composition
TWI856083B (en) Alkali-soluble polyimide and its production method, negative photosensitive resin composition, hardened film, and pattern hardened film production method
CN105452383B (en) Photosensitive polymer combination, its embossing pattern film, the manufacturing method of embossing pattern film, the electronic unit comprising embossing pattern film or optical goods and the bonding agent comprising photosensitive polymer combination
JP6021866B2 (en) Photocurable composition and insulating thin film and thin film transistor using the same
JP6021867B2 (en) Photocurable composition and insulating thin film and thin film transistor using the same
JP2021195474A (en) Modified siloxane diacid anhydride and polyimide resin
CN114514470A (en) Pattern forming method, photosensitive resin composition, method for manufacturing laminate, and method for manufacturing semiconductor device
JP7433934B2 (en) Negative photosensitive polyamide resin composition and cured film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240709

R150 Certificate of patent or registration of utility model

Ref document number: 7519819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150