[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021186822A - Method of measuring frictional force between mold and slab in continuous casting - Google Patents

Method of measuring frictional force between mold and slab in continuous casting Download PDF

Info

Publication number
JP2021186822A
JP2021186822A JP2020092871A JP2020092871A JP2021186822A JP 2021186822 A JP2021186822 A JP 2021186822A JP 2020092871 A JP2020092871 A JP 2020092871A JP 2020092871 A JP2020092871 A JP 2020092871A JP 2021186822 A JP2021186822 A JP 2021186822A
Authority
JP
Japan
Prior art keywords
mold
load
slab
frictional force
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020092871A
Other languages
Japanese (ja)
Other versions
JP6995290B2 (en
Inventor
勝彦 山田
Katsuhiko Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020092871A priority Critical patent/JP6995290B2/en
Publication of JP2021186822A publication Critical patent/JP2021186822A/en
Application granted granted Critical
Publication of JP6995290B2 publication Critical patent/JP6995290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Continuous Casting (AREA)

Abstract

To detect a status of friction between a mold and a slab with high accuracy in continuous casting of steel.SOLUTION: The frictional force is usually evaluated by comparing a load at a mold portion that oscillates up and down during a casting operation with a load during idle operation. A first measure to improve accuracy is to reduce an apparent load at the mold portion that usually accounts for the most of the load, by applying a spring so as to increase a friction proportion. The second measure is to amplify an elastic strain generated during operation at cross-section reduction portion, provided in a piston rod 31 that raises and lowers a mold oscillation portion, and so as to be detected by using only one strain gauge 35. The present invention is superior to conventional methods of measuring a hydraulic pressure and a motor load, and performing arithmetic processing.SELECTED DRAWING: Figure 3

Description

本発明は鋼の連続鋳造において鋳型から鋳片が引き抜かれる際の摩擦力を検出する方法に関している。 The present invention relates to a method of detecting a frictional force when a slab is pulled out from a mold in continuous steel casting.

鋼の連続鋳造においてレードル中の溶鋼は、鋳込流量と鋳込温度を調節するところの中間容器であるタンディシュを介して連続的に鋳型に鋳込まれる。溶鋼が鋳型壁に固着するのを防止するため、鋳型内面には常時潤滑剤が供給されるとともに鋳型を上下振動する。 溶鋼は鋳型内で1次冷却を受け、外皮が形成された鋳片は下方へ連続的に引き抜かれる。該1次冷却条件の安定性は鋳片の表面品質・皮下品質だけでなく操業(鋳込事故)にも大きく影響する。
例えば、スラブやブルーム等の大型断面の鋳造では、上記品質に対して有利なパウダーキャスティング(鋳型鋳片間の潤滑に溶融フラックスを使用する)が適用されるが、種々の原因により潤滑異常・冷却異常が発現すると、局所品質劣化や、場合により鋳片が鋳型表面に固着して破断する拘束性ブレイクアウト(外皮の破断による溶鋼流出・鋳込停止)に到る。
従って潤滑異常・冷却異常を検知し、何らかの対策をしようとする試行が古くからなされるている。
In continuous steel casting, the molten steel in the ladle is continuously cast into the mold via a tundish, which is an intermediate vessel that regulates the casting flow rate and casting temperature. In order to prevent the molten steel from sticking to the mold wall, a lubricant is constantly supplied to the inner surface of the mold and the mold vibrates up and down. The molten steel undergoes primary cooling in the mold, and the slabs on which the outer skin is formed are continuously drawn downward. The stability of the primary cooling conditions greatly affects not only the surface quality and subcutaneous quality of the slab but also the operation (casting accident).
For example, in the casting of large cross sections such as slabs and blooms, powder casting (using molten flux for lubrication between mold slabs), which is advantageous for the above quality, is applied, but due to various causes, lubrication abnormality / cooling is applied. When an abnormality occurs, it leads to local quality deterioration and, in some cases, a binding breakout in which the slab sticks to the mold surface and breaks (melted steel outflow / casting stop due to fracture of the outer skin).
Therefore, attempts have been made for a long time to detect lubrication abnormalities and cooling abnormalities and take some measures.

一つの手段として鋳型内部に多数の熱電対を配置し、伝熱解析プログラムによって時々刻々の伝熱状況を追跡する方法がある。有効ではあるが技術的に極めて高度・高価な対策である。
特許文献1には、鋳片が鋳型から引き抜かれる際の引抜抵抗を測定する方法が開示されている。それによると、上下振動機構を保有した鋳型振動台に鋳型を内装する鋳型枠を積載するに当たり、該鋳型枠と振動台間にロードセルを介在させ、且つ固定ボルトによって締め付けるに当たりもう一つのロードセルを挟み、都合2段のロードセルによって引抜荷重を測定する。
問題点は、4カ所計8点のロードセルと演算装置が必要で設備費に多少難点があるだけでなく、鋳型交換毎に微妙な調整作業を要することである。
One method is to place a large number of thermocouples inside the mold and track the heat transfer status from moment to moment with a heat transfer analysis program. Although effective, it is a technically extremely advanced and expensive measure.
Patent Document 1 discloses a method of measuring the drawing resistance when a slab is pulled out from a mold. According to it, when loading a mold frame for incorporating a mold on a mold shaking table having a vertical vibration mechanism, a load cell is interposed between the mold frame and the shaking table, and another load cell is sandwiched when tightening with a fixing bolt. , The pull-out load is measured by a two-stage load cell.
The problem is that a total of 8 load cells and arithmetic units are required at 4 locations, which not only has some difficulty in equipment cost, but also requires delicate adjustment work for each mold change.

特許文献2には、上記同様鋳片の引抜抵抗を測定する方法が開示されている。それによると、鋳型を上下振動させる油圧シリンダーの各上下室の圧力とピストン位置を検知して、演算によって引抜抵抗を求める。上記方法と類似していて同様の問題がある。 Patent Document 2 discloses a method for measuring the drawing resistance of a slab as described above. According to this, the pressure in each upper and lower chamber of the hydraulic cylinder that vibrates the mold up and down and the piston position are detected, and the extraction resistance is obtained by calculation. It is similar to the above method and has similar problems.

特許文献3には、ブレイクアウト検知方法が開示されている。それによると鋳型上下振動の負荷を何らかの方法で検出し、チャート上の異常な挙動を解析して、鋳型内で鋳片殻が破断していることを判別し、緊急一時停止する。何らかの方法として、段落[0028]に、油圧シリンダーの圧力検出・ロードセル・駆動モーターの出力値等が例示されている。
潤滑不適・固着によって鋳片殻が鋳型内で破断した状況では引抜抵抗は異常に急増し、上記方法による異常の検出は容易であり、ブレイクアウトの予知と対策(一時的な鋳込・引抜の停止)が可能になる。
Patent Document 3 discloses a breakout detection method. According to it, the load of the vertical vibration of the mold is detected by some method, the abnormal behavior on the chart is analyzed, it is determined that the slab shell is broken in the mold, and the emergency suspension is performed. As some method, paragraph [0028] exemplifies the pressure detection of the hydraulic cylinder, the load cell, the output value of the drive motor, and the like.
When the slab shell breaks in the mold due to improper lubrication or sticking, the withdrawal resistance increases abnormally, and it is easy to detect the abnormality by the above method. Breakout prediction and countermeasures (temporary casting / drawing) Stop) is possible.

上記3方法に共通の問題点を検討する。
相当な質量を持つ鋳型を含む鋳型振動台を引抜速度と同程度の速度で上限振動させる動力は空転時においてもかなり大きい。鋳込中は鋳片と鋳型面との摩擦が該動力に付加される。前者の荷重は後者の付加分よりも圧倒的に大きいので、該動力の値によって摩擦状況の微妙な変化を検知するには精度不足が否めない。
鋳片破断のような大きな抵抗の場合には問題なく検出できるが、潤滑剤の種類による微妙な潤滑差異・鋳型の熱変形による引抜抵抗の増加・鋳型組込精度に起因する抵抗の変化・鋳型テーパの不適切による抵抗の変化且つそれらの時系列変化等は上記の従来方法では偏差が小さいので検出困難である。
The problems common to the above three methods will be examined.
The power to vibrate the upper limit vibration of the mold shaking table including the mold having a considerable mass at a speed similar to the pulling speed is considerably large even at the time of idling. During casting, friction between the slab and the mold surface is added to the power. Since the load of the former is overwhelmingly larger than that of the latter, it is undeniable that the accuracy is insufficient to detect a subtle change in the frictional condition by the value of the power.
Large resistance such as slab breakage can be detected without problems, but there are subtle differences in lubrication depending on the type of lubricant, increase in extraction resistance due to thermal deformation of the mold, changes in resistance due to mold assembly accuracy, and mold. Changes in resistance due to improper taper and changes in time series thereof are difficult to detect because the deviation is small in the above-mentioned conventional method.

第2の問題点として、パウダーキャスティングは適切に実施すれば鋳片の表面・皮下品質が優れるが、条件が不適切だと拘束性ブレイクアウト・深いオシレーションマーク・パウダーのカミコミ等が発現する。パウダーの選定は高度のノウハウになっていて多くの経験から得られている。摩擦力の精密な解析がなされていないので最適化には多大の時間と労力を要している。 The second problem is that if powder casting is performed properly, the surface and subcutaneous quality of the slab is excellent, but if the conditions are inappropriate, restrictive breakout, deep oscillation marks, powder shavings, etc. will occur. The selection of powder has become a high level of know-how and has been gained from a lot of experience. Since the frictional force has not been analyzed precisely, it takes a lot of time and effort to optimize.

公開実用新案平03−116249Public Utility Model Hei 03-116249 公開特許公報2000−317596Published Patent Publication 2000-317596 公開特許公報2017−087254Published Patent Publication 2017-0872254

連続鋳造において、上下振動する鋳型と引き抜かれる鋳片間には摩擦が発生する。鋳込条件が正常であれば該摩擦力は安定した上下変動を示す。潤滑不良・鋳片の変形・鋳型の変形等が発生すると摩擦が増加する。最悪は潤滑不良により溶鋼が鋳型壁に固着し、鋳片殻が引っ張り破断してブレイクアウトに到る。該ブレイクアウトの予知として該摩擦力の検出と高度の演算システムを組み合わせた方法・装置がいくつか提起されている。
摩擦力を鋳型部全体の質量測定(ロードセル使用)から算出する方法、鋳型を振動させる動力(油圧・電動機)から計測する方法等、いずれも全体の荷重に対して摩擦力自体が小さいので検出精度が小さい。従ってブレイクアウトのような大きな抵抗の発生時には有効でも、摩擦状態の微妙な変化を常時監視するには不十分である。
本願発明は、鋳型と鋳片間の摩擦状況を高精度に監視する方法を提供することを解決すべき課題とする。
In continuous casting, friction occurs between the mold that vibrates up and down and the slab that is pulled out. If the casting conditions are normal, the frictional force shows stable vertical fluctuation. Friction increases when poor lubrication, deformation of slabs, deformation of molds, etc. occur. In the worst case, molten steel sticks to the mold wall due to poor lubrication, and the slab shell is pulled and broken, leading to breakout. As a prediction of the breakout, several methods / devices that combine the detection of the frictional force and an advanced calculation system have been proposed.
The frictional force itself is small with respect to the total load, such as the method of calculating the frictional force from the mass measurement of the entire mold (using a load cell) and the method of measuring from the power (hydraulic pressure / motor) that vibrates the mold, so the detection accuracy Is small. Therefore, even if it is effective when a large resistance such as a breakout occurs, it is insufficient to constantly monitor subtle changes in the frictional state.
An object to be solved by the present invention is to provide a method for monitoring the frictional state between a mold and a slab with high accuracy.

第1の発明は、鋼の連続鋳造に際して鋳片と鋳型間の摩擦力を検出する方法において、上下振動する鋳型部の荷重の大半をばねを介して連続鋳造機の架構で受けて該鋳型部の見掛け質量を半減以下とし、上下運動する1本のピストンロッドによって該鋳型部を上下振動させ、該ピストンロッドの中間部に設けた断面縮小部に歪みゲージを取付け、当該部の軸方向歪みを連続的に測定することを特徴とする鋳片と鋳型間の摩擦力を測定する方法である。 The first invention is a method of detecting a frictional force between a slab and a mold during continuous casting of steel, in which most of the load of the mold portion that vibrates up and down is received by the frame of the continuous casting machine via a spring and the mold portion. The apparent mass of the mold is reduced to less than half, the mold part is vibrated up and down by one piston rod that moves up and down, and a strain gauge is attached to the cross-section shrinking part provided in the middle part of the piston rod to reduce the axial strain of the part. It is a method for measuring the frictional force between a slab and a mold, which is characterized by continuous measurement.

第2の発明は、断面縮小部の上下のピストンロッド端部を連結するもう一つの連結部を併設し、該連結部に、該断面縮小部が正常な場合には該連結部には駆動力が作用せず、断面縮小部が破断した場合には替わって駆動力を伝達する機構を組み込んだことを特徴とする第1発明に記載した鋳片と鋳型間の摩擦力を測定する方法である。 In the second invention, another connecting portion for connecting the upper and lower piston rod ends of the cross-section reduction portion is provided, and if the cross-section reduction portion is normal, the connecting portion has a driving force. It is a method for measuring the frictional force between a slab and a mold according to the first invention, which is characterized in that a mechanism for transmitting a driving force is incorporated instead when the cross-section reduced portion is broken. ..

述語の定義として、『鋳型部』とは、鋳型本体と該鋳型本体を内装する鋳型枠と該鋳型枠を積載して上下振動させる振動台とから成る。 As a definition of the predicate, the "mold portion" is composed of a mold main body, a mold frame for incorporating the mold main body, and a shaking table on which the mold frame is loaded and vibrated up and down.

本発明による第1の効果は、摩擦の検出精度が格段に向上することである。
理由1は、従来方法では数トンの質量を持つ鋳型部の上下振動において振動荷重自体を直接又は間接的に検出し、演算している。対象としている摩擦力は鋳型荷重の1/10以下であるので測定精度に欠ける。本発明では鋳型部の荷重の大半をばねで受けており、駆動系に作用する荷重は半減以下(望ましくは1/10以下)となり、摩擦分が相対的に増大して細かい変化を把握することが容易となる。
理由2は、動力伝達系に発生する応力によって引抜抵抗を含んだ鋳型荷重を計測するが、動力伝達系に断面縮小部を構成することにより該応力を増幅し、微妙な変化がより精密に検出可能となる。
The first effect of the present invention is that the accuracy of friction detection is significantly improved.
The first reason is that in the conventional method, the vibration load itself is directly or indirectly detected and calculated in the vertical vibration of the mold portion having a mass of several tons. Since the target frictional force is 1/10 or less of the mold load, the measurement accuracy is lacking. In the present invention, most of the load of the mold portion is received by the spring, the load acting on the drive system is halved or less (preferably 1/10 or less), and the friction content is relatively increased to grasp small changes. Will be easy.
The second reason is that the mold load including the pull-out resistance is measured by the stress generated in the power transmission system, but the stress is amplified by forming a cross-section reduction portion in the power transmission system, and subtle changes are detected more accurately. It will be possible.

第2は、検出精度が向上する結果、潤滑不良・固着(拘束性ブレイクアウトにつながる)が即座に検出され、ブレイクアウトの予知と緊急鋳込停止による該ブレイクアウトの防止が容易になされる。 Second, as a result of improving the detection accuracy, poor lubrication / fixation (leading to a restrictive breakout) is immediately detected, and breakout prediction and prevention of the breakout by emergency casting stop are facilitated.

第3に、潤滑用パウダーを変更すると直ちに摩擦力の変化を読みとることができる。パウダーの経時変化も読みとることができ、パウダーの最適化に寄与する。
同様に記録線図の水準の変化から鋳型変形等の異変を把握することができる。
Third, the change in frictional force can be read immediately after changing the lubricating powder. The change over time of the powder can also be read, which contributes to the optimization of the powder.
Similarly, changes such as mold deformation can be grasped from changes in the level of the recording diagram.

本発明の連続鋳造における鋳片引抜抵抗の検知方法を実施する鋳型部の構造(平面図)を示す。The structure (plan view) of the mold part which carries out the detection method of the slab drawing resistance in the continuous casting of this invention is shown. 本発明の鋳片引抜抵抗の検知方法を実施する鋳型部の構造(立面図)を示す。The structure (elevation view) of the mold part which carries out the detection method of the slab drawing resistance of this invention is shown. 本発明の鋳片引抜抵抗を検知する応力検出装置の構造を示す。The structure of the stress detection device for detecting the slab drawing resistance of the present invention is shown.

以下実施の形態について図面を参照しつつ説明する。
図1(平面図)、図2(側面図)は、連続鋳造における鋳型部の構造を示す。鋳型本体11は鋳型枠12内に組み込まれる。該鋳型枠12は枠状の鋳型振動台13に積載され固定される。
該鋳型振動台13は連続鋳造機の架構に設けた基台21上にばね20を介して積載され、下死点の上方で上下方向のみ可動とする(横揺れを拘束するガイドは図示せず)。該ばね20は下死点において鋳型振動台13の荷重の大半を受け、該鋳型振動台13の見掛け荷重を大幅削減し、エレベーターにおけるバランスウェイトと似たような機能を持つ。
Hereinafter, embodiments will be described with reference to the drawings.
1 (plan view) and 2 (side view) show the structure of the mold portion in continuous casting. The mold body 11 is incorporated in the mold frame 12. The mold frame 12 is loaded and fixed on a frame-shaped mold shaking table 13.
The mold shaking table 13 is loaded on a base 21 provided in the frame of the continuous casting machine via a spring 20 and is movable only in the vertical direction above the bottom dead center (a guide for restraining rolling is not shown). ). The spring 20 receives most of the load of the mold shaking table 13 at the bottom dead center, significantly reduces the apparent load of the mold shaking table 13, and has a function similar to the balance weight in an elevator.

鋳型振動台13は振動駆動装置(図中の斜線部)により、所定速度・所定ストロークで上下振動する。該振動駆動装置は、架構に水平状態で固定された回転支点軸棒14と、該回転支点軸棒14と連接し鋳型振動台13の外周に設けられたレバー枠15と,該レバー枠15を上下に押し引きするピストンロッド16と、該ピストンロッド16を上下駆動する駆動カム19とから成る。該回転支点軸棒14を支点として該レバー枠15は上下に円弧運動する。他方該レバー枠15の中間点に設けられたバカ孔に鋳型振動台13に設けられたトラニオン17が貫通していて、該レバー枠の円弧運動に追随して該鋳型振動台13が上下垂直に運動する。 The mold shaking table 13 vibrates up and down at a predetermined speed and a predetermined stroke by a vibration driving device (hatched portion in the figure). The vibration drive device includes a rotary fulcrum shaft rod 14 fixed horizontally to the frame, a lever frame 15 connected to the rotary fulcrum shaft rod 14 and provided on the outer periphery of the mold shaking table 13, and the lever frame 15. It includes a piston rod 16 that pushes and pulls up and down, and a drive cam 19 that drives the piston rod 16 up and down. The lever frame 15 moves up and down in an arc with the rotation fulcrum shaft rod 14 as a fulcrum. On the other hand, the trunnion 17 provided in the mold shaking table 13 penetrates through the stupid hole provided at the midpoint of the lever frame 15, and the mold shaking table 13 follows the arc motion of the lever frame vertically. Exercise.

ピストンロッド16の軸方向に発生する引張・圧縮応力を検出する応力検出装置18が該ピストンロッドの一部を切除して装入・連接される。
図3は応力検出装置18の構造を示す。該応力検出装置18は、材質が高強度鋼であり形状が引張試験片と同様に中央に縮小部を持った検出片33と該検出片33が破断した場合においても駆動力を伝達するバックアップ用の連結部とから成る。
A stress detection device 18 that detects tensile / compressive stress generated in the axial direction of the piston rod 16 cuts a part of the piston rod and charges / connects the piston rod 16.
FIG. 3 shows the structure of the stress detection device 18. The stress detection device 18 is for backup, in which the detection piece 33 is made of high-strength steel and has a reduced portion in the center in the same shape as the tensile test piece, and the driving force is transmitted even when the detection piece 33 breaks. It consists of a connecting part of.

該検出片33の中央の縮小部には歪みゲージが35貼り付けてあり、ピストンロッド16(又は31)の軸方向応力を検出することができる。
縮小部を設けた理由は、ピストンロッド等駆動力伝達部材は強固に設計・製作されており、当該部では駆動力や負荷の変化に対応する弾性歪みは極めて小さく、応力検出の精度が低い。縮小部を構成すると実効断面積が数分1に減少するので歪みは数倍に増幅され検出精度が向上するからである。
A strain gauge 35 is attached to the reduced portion at the center of the detection piece 33, and the axial stress of the piston rod 16 (or 31) can be detected.
The reason for providing the reduced part is that the driving force transmission member such as the piston rod is strongly designed and manufactured, and the elastic strain corresponding to the change of the driving force and the load is extremely small in the part, and the accuracy of stress detection is low. This is because when the reduced portion is configured, the effective cross-sectional area is reduced to a fraction, so that the strain is amplified several times and the detection accuracy is improved.

バックアップ用の連結部は、ピストンロッド31の切除部の上下端部近辺に設けられた接続用フランジ32と、両フランジを僅かな隙間を持って連結するボルト37と、ナット38とから成る。
通常は該連結部には駆動力が作用しないように上側フランジ32部のボルト孔は摺動可能になっており、上側ナット38の上下間も僅かに隙間をもって締め付けられる。
縮小部34が破断すると押し上げはできても引き下げは不能になる。当該状態で連結部が押し上げ・引き下げに作用し、駆動力は該連結部に代替負荷され振動は継続する。振動曲線は多少乱れるが鋳込停止には到らない。
該断面縮小部が正常な場合には該連結部には駆動力が作用せず、断面縮小部が破断した場合には替わって駆動力を伝達するバックアップ機構の1例を示したが、他にもいろいろ工夫することができる。
The backup connecting portion includes a connecting flange 32 provided near the upper and lower ends of the cut portion of the piston rod 31, a bolt 37 connecting both flanges with a slight gap, and a nut 38.
Normally, the bolt holes of the upper flange 32 portion are slidable so that a driving force does not act on the connecting portion, and the upper and lower nuts 38 are also tightened with a slight gap between the upper and lower parts.
When the reduced portion 34 breaks, it can be pushed up but cannot be pulled down. In this state, the connecting portion acts to push up and down, the driving force is substituted on the connecting portion, and the vibration continues. The vibration curve is a little disturbed, but the casting does not stop.
An example of a backup mechanism is shown in which a driving force does not act on the connecting portion when the cross-section reduced portion is normal, and the driving force is transmitted instead when the cross-section reduced portion is broken. Can be devised in various ways.

検出部はスラブ、ブルームにかかわらず一カ所でよい。なぜなら引抜抵抗の絶対値を知ることが目的ではない。標準の操業状態と比較して、潤滑状況の微妙な差異が読みとれ、鋳片の固着を即時に探知できればよい。
鋳型振動について垂直型の場合を示したが、円弧型でも同様になし得る。
鋳型変形や鋳片変形が問題となりやすいビレットに対しても本方法は有効である。
駆動に伴う応力検出点は、ピストンロッドを例示したが他の部位においても隘路部を巧く設ければよい。
The detection unit may be located in one place regardless of whether it is a slab or a bloom. Because it is not the purpose to know the absolute value of the withdrawal resistance. It suffices if the subtle differences in lubrication conditions can be read and the sticking of slabs can be detected immediately compared to the standard operating conditions.
The case of the vertical type is shown for the mold vibration, but the same can be done for the arc type.
This method is also effective for billets where mold deformation and slab deformation are likely to be a problem.
The stress detection point associated with the drive is illustrated by the piston rod, but a bottleneck may be skillfully provided in other parts as well.

本願発明の特徴を従来の方法と比較してまとめる。
振動している鋳型と一定速度で引き抜かれている鋳片との間の摩擦又は引抜抵抗を検出するには、まず振動部全体の荷重又は質量を運動状態下(加速度が作用している)で検出する必要があり、高度の測定技術を要する。得られた信号を即時に演算し摩擦抵抗を求めるが、摩擦抵抗分は鋳型部質量の約10分の1以下であるため検出精度が不十分である。
本願発明では振動部の荷重をばねにより大半を吸収していて荷重は約10分1以下に軽減され、摩擦分の比率が増加して検出精度が向上する。
第2の精度向上策として、振動荷重を駆動系の部材に生ずる応力によって検出するが、最大荷重を受け持つピストンロッドに隘路を設けて歪みを約10倍以上増幅し、歪みゲージによって微妙な摩擦力の変化をも検出することができる。
The features of the present invention are summarized in comparison with the conventional method.
To detect the friction or pull-out resistance between the vibrating mold and the slab being pulled out at a constant speed, first apply the load or mass of the entire vibrating part under motion (acceleration is acting). It needs to be detected and requires advanced measurement technology. The obtained signal is calculated immediately to obtain the frictional resistance, but the detection accuracy is insufficient because the frictional resistance is about 1/10 or less of the mass of the mold portion.
In the present invention, most of the load of the vibrating portion is absorbed by the spring, the load is reduced to about 1/10 or less, the ratio of the friction component is increased, and the detection accuracy is improved.
As a second measure to improve accuracy, the vibration load is detected by the stress generated in the members of the drive system, but a bottleneck is provided in the piston rod that bears the maximum load to amplify the strain by about 10 times or more, and a delicate frictional force is applied by the strain gauge. Changes can also be detected.

鋳造能率30t/h、垂直曲げ式連続鋳造装置において小型ブルームの鋳込に本発明を適用した。
1) 鋳型断面寸法; 160mmm×250mm
2) 引抜速度; 1.5m/min
3) 鋳型構造; 厚肉チューブ式
4) 振動部質量(鋳型部+振動台+電磁攪拌装置); 約1700kg
5) ばね荷重; 約1200kg
6) 振動長 ; 15mm
7) 振動数 ; 100回/分
8) ピストンロッド径; 60mmA
9) 縮小部径; 15mm
10)潤滑 ; パウダーキャスティング
歪みゲージからの信号を直接指示計に送信し、時系列記録する。振動に対応する線図から引き抜き抵抗の水準と変化を読みとることができる。
始めに空運転時の上下に振福する線図の水準と幅を読みとる。鋳型交換毎の差異が小さいことを確認し、鋳型組立と取付に問題ないことを確認する。次ぎに鋳込み中の線図を読みとり比較する。潤滑性能を評価することができる。
信号値の過大な変動にはアラームを発し、鋳込の緊急一時停止を行う。
The present invention has been applied to the casting of small blooms in a vertical bending type continuous casting apparatus with a casting efficiency of 30 t / h.
1) Mold cross-sectional dimensions; 160 mm x 250 mm
2) Pull-out speed; 1.5 m / min
3) Mold structure; Thick tube type 4) Vibration part mass (mold part + shaking table + electromagnetic stirrer); Approximately 1700 kg
5) Spring load; approx. 1200 kg
6) Vibration length; 15 mm
7) Frequency; 100 times / minute 8) Piston rod diameter; 60 mmA
9) Reduced diameter; 15 mm
10) Lubrication; Powder casting The signal from the strain gauge is sent directly to the indicator and recorded in time series. The level and change of pull-out resistance can be read from the diagram corresponding to the vibration.
First, read the level and width of the diagram that swings up and down during idle operation. Confirm that the difference between each mold change is small, and confirm that there is no problem in mold assembly and mounting. Next, read and compare the diagram being cast. Lubrication performance can be evaluated.
An alarm is issued for excessive fluctuations in the signal value, and an emergency suspension of casting is performed.

本発明による連続鋳造における鋳片引抜抵抗のトレーサーは操業安定に寄与する。 The tracer of slab drawing resistance in continuous casting according to the present invention contributes to operational stability.

11;鋳型 12;鋳型枠 13;鋳型振動台 14;回転支点軸棒 15;レバー枠 16;ピストンロッド 17;トラニオン 18;応力検出装置 19;駆動カム 20;ばね 21;基台 31;ピストンロッド 32;接続用フランジ 33;検出片 34縮小部 35;歪みゲージ 36;固定ピン 37;ボルト 38;ナット 11; Mold 12; Mold frame 13; Mold shaking table 14; Rotating fulcrum shaft rod 15; Lever frame 16; Piston rod 17; Trunnion 18; Stress detector 19; Drive cam 20; Spring 21; Base 31; Piston rod 32 Connection flange 33; Detection piece 34 Reduction part 35; Strain gauge 36; Fixing pin 37; Bolt 38; Nut

Claims (2)

鋼の連続鋳造に際して鋳片と鋳型間の摩擦力を検出する方法において、上下振動する鋳型部の荷重の大半をばねを介して連続鋳造機の架構で受けて該鋳型部の見掛け質量を半減以下とし、上下運動する1本のピストンロッドによって該鋳型部を上下振動させ、該ピストンロッドの中間部に設けた断面縮小部に歪みゲージを取付け、当該部の軸方向歪みを連続的に測定することを特徴とする鋳片と鋳型間の摩擦力を測定する方法。 In the method of detecting the frictional force between the slab and the mold during continuous casting of steel, most of the load of the mold part that vibrates up and down is received by the frame of the continuous casting machine via the spring, and the apparent mass of the mold part is halved or less. The mold portion is vibrated up and down by one piston rod that moves up and down, a strain gauge is attached to the cross-sectional reduction portion provided in the middle portion of the piston rod, and the axial strain of the portion is continuously measured. A method of measuring the frictional force between a slab and a mold. 断面縮小部の上下のピストンロッド端部を連結するもう一つの連結部を併設し、該連結部に、該断面縮小部が正常な場合には該連結部には駆動力が作用せず、断面縮小部が破断した場合には替わって駆動力を伝達する機構を組み込んだことを特徴とする請求項1に記載した鋳片と鋳型間の摩擦力を測定する方法。 Another connecting portion that connects the upper and lower piston rod ends of the cross-section reduced portion is provided, and if the cross-section reduced portion is normal, no driving force acts on the connecting portion and the cross section is cross-sectioned. The method for measuring a frictional force between a slab and a mold according to claim 1, wherein a mechanism for transmitting a driving force is incorporated instead when the reduced portion is broken.
JP2020092871A 2020-05-28 2020-05-28 Method of measuring frictional force between mold and slab in continuous casting Active JP6995290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020092871A JP6995290B2 (en) 2020-05-28 2020-05-28 Method of measuring frictional force between mold and slab in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020092871A JP6995290B2 (en) 2020-05-28 2020-05-28 Method of measuring frictional force between mold and slab in continuous casting

Publications (2)

Publication Number Publication Date
JP2021186822A true JP2021186822A (en) 2021-12-13
JP6995290B2 JP6995290B2 (en) 2022-01-31

Family

ID=78850917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020092871A Active JP6995290B2 (en) 2020-05-28 2020-05-28 Method of measuring frictional force between mold and slab in continuous casting

Country Status (1)

Country Link
JP (1) JP6995290B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588958A (en) * 1978-12-28 1980-07-05 Sumitomo Heavy Ind Ltd Continuous casting machine
JPS5772760A (en) * 1980-10-27 1982-05-07 Nippon Steel Corp Method and device for measuring lubricating condition between mold and ingot in continuous casting
JPS57127549A (en) * 1981-01-30 1982-08-07 Mitsubishi Heavy Ind Ltd Oscillator for mold
JPS62286656A (en) * 1986-06-05 1987-12-12 Nippon Kokan Kk <Nkk> Friction force measuring method between mold and cast slab in continuous caster
JPS6378045A (en) * 1986-09-22 1988-04-08 Akio Otsuka Chucking method for test piece in hard/brittle material test
JP2003532540A (en) * 2000-05-10 2003-11-05 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Equipment for continuous casting of metals, especially steel
JP2013233573A (en) * 2012-05-09 2013-11-21 Nippon Steel & Sumikin Engineering Co Ltd Oscillating mold for continuous casting, setting method of preset force for coil spring included by the same, and prevention method of breakout
WO2015190605A1 (en) * 2014-06-13 2015-12-17 国立大学法人鹿児島大学 Training apparatus for recovery of paralyzed function and training method for recovery of paralyzed function

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588958A (en) * 1978-12-28 1980-07-05 Sumitomo Heavy Ind Ltd Continuous casting machine
JPS5772760A (en) * 1980-10-27 1982-05-07 Nippon Steel Corp Method and device for measuring lubricating condition between mold and ingot in continuous casting
JPS57127549A (en) * 1981-01-30 1982-08-07 Mitsubishi Heavy Ind Ltd Oscillator for mold
JPS62286656A (en) * 1986-06-05 1987-12-12 Nippon Kokan Kk <Nkk> Friction force measuring method between mold and cast slab in continuous caster
JPS6378045A (en) * 1986-09-22 1988-04-08 Akio Otsuka Chucking method for test piece in hard/brittle material test
JP2003532540A (en) * 2000-05-10 2003-11-05 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Equipment for continuous casting of metals, especially steel
JP2013233573A (en) * 2012-05-09 2013-11-21 Nippon Steel & Sumikin Engineering Co Ltd Oscillating mold for continuous casting, setting method of preset force for coil spring included by the same, and prevention method of breakout
WO2015190605A1 (en) * 2014-06-13 2015-12-17 国立大学法人鹿児島大学 Training apparatus for recovery of paralyzed function and training method for recovery of paralyzed function

Also Published As

Publication number Publication date
JP6995290B2 (en) 2022-01-31

Similar Documents

Publication Publication Date Title
EP0101521B1 (en) Method of controlling continuous casting facility
US6508128B2 (en) Method and device for monitoring a bearing arrangement
CN1330437C (en) Process for the detection of vibrations of a roll stand
JP6995290B2 (en) Method of measuring frictional force between mold and slab in continuous casting
JPH11506982A (en) Method for operating a mold
US4532975A (en) Continuous casting mold oscillator load indication system
US4762164A (en) Mold friction monitoring for breakout protection
JP2000512553A (en) Improved foot guide and control system for continuous casters
US5901773A (en) Dynamic clamping system for continuous casting machine
JP4486541B2 (en) Method and apparatus for detecting solidification end position in continuous casting machine
KR100905631B1 (en) An apparatus for measuring spring tension and assembling the spring
JP7296783B2 (en) PRESSING MACHINE, PRESSING MACHINE LOAD ABNORMALITY DETECTION METHOD AND LOAD ABNORMALITY DETECTION PROGRAM
KR100870772B1 (en) Method for estimating the quality of slab
KR20100046998A (en) Appratus for monitering synchronizing of anvil of slab sizing press and method thereof
Altan et al. Use of standardized copper cylinders for determining load and energy in forging equipment
JPS62286654A (en) Judging apparatus for casting abnormality
JPS5935711B2 (en) Slab breakout prediction detection device
JPS6061150A (en) Foreseeing method of breakout in continuous casting
CN210689899U (en) Device for detecting pre-tightening force of thermocouple of continuous casting crystallizer
JPH01197051A (en) Method for detecting perfect solidified position in continuous casting slab
JPS61279350A (en) Method for controlling continuous casting of steel
JPS602142B2 (en) How to prevent breakout in continuous casting equipment
JP2519982Y2 (en) Measuring device for drawing resistance in continuous casting equipment
JPH0663716A (en) Device for monitoring friction force between mold for continuous casting and cast slab
KR20000071539A (en) Method of determining the friction between strand shell and mold during continuous casting

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210514

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

R150 Certificate of patent or registration of utility model

Ref document number: 6995290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150