[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021183671A - Manufacturing method of antifreeze agent derived from plant raw material and antifreeze agent - Google Patents

Manufacturing method of antifreeze agent derived from plant raw material and antifreeze agent Download PDF

Info

Publication number
JP2021183671A
JP2021183671A JP2020089284A JP2020089284A JP2021183671A JP 2021183671 A JP2021183671 A JP 2021183671A JP 2020089284 A JP2020089284 A JP 2020089284A JP 2020089284 A JP2020089284 A JP 2020089284A JP 2021183671 A JP2021183671 A JP 2021183671A
Authority
JP
Japan
Prior art keywords
antifreeze agent
raw material
plant raw
organic acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020089284A
Other languages
Japanese (ja)
Other versions
JP7452796B2 (en
Inventor
芳久 清水
Yoshihisa Shimizu
正勝 東
Masakatsu Higashi
優 柳瀬
Masaru Yanase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University NUC
Central Nippon Highway Engineering Nagoya Co Ltd
Original Assignee
Kyoto University NUC
Central Nippon Highway Engineering Nagoya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University NUC, Central Nippon Highway Engineering Nagoya Co Ltd filed Critical Kyoto University NUC
Priority to JP2020089284A priority Critical patent/JP7452796B2/en
Publication of JP2021183671A publication Critical patent/JP2021183671A/en
Application granted granted Critical
Publication of JP7452796B2 publication Critical patent/JP7452796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

To provide a novel technology capable of manufacturing an organic acid-based antifreeze agent at low cost using a cheap plant raw material such as woody waste material.SOLUTION: A method for manufacturing an antifreeze agent derived from the plant raw material of the present invention is to decompose an organic substance, such as lignin, which is contained in the plant raw material and difficult to be decomposed by aerobic decomposition by a white rot fungus, and make it low molecular weight, and this is anaerobically processed to produce an organic acid, the organic acid contained in the supernatant of this anaerobic treatment solution is concentrated by solvent extraction to form an antifreeze agent. The plant raw material can be made of wood based waste material or rice straw.SELECTED DRAWING: Figure 1

Description

本発明は、植物原料由来の凍結防止剤の製造方法及びその方法により製造された凍結防止剤に関するものである。 The present invention relates to a method for producing an antifreeze agent derived from a plant raw material and an antifreeze agent produced by the method.

冬季における道路の凍結を防止するために道路に散布される凍結防止剤として、従来から塩化ナトリウム、塩化カルシウム等の無機塩化物が大量に使用されている。しかしこれらの無機塩化物からなる凍結防止剤については、環境への二次的影響が指摘されている。具体的には、河川などの水質への影響、植物や農地への影響、周辺の鋼構造物や車両の金属腐食等である。特に高速道路や道路橋梁においては、凍結防止剤の塩化物イオンがコンクリートの内部に浸透して鉄筋を保護している不動態被膜を破壊し、鉄筋を錆びさせるのみならず、コンクリートにひび割れを生じさせ、コンクリートの剥離、剥落等の危険な状態を招くおそれがある。 As an antifreeze agent sprayed on roads to prevent roads from freezing in winter, a large amount of inorganic chlorides such as sodium chloride and calcium chloride have been conventionally used. However, it has been pointed out that the antifreeze agent consisting of these inorganic chlorides has a secondary impact on the environment. Specifically, there are effects on water quality such as rivers, effects on plants and agricultural land, and metal corrosion of surrounding steel structures and vehicles. Especially on highways and road bridges, chloride ions, which are antifreeze agents, permeate the inside of concrete and destroy the passivation film that protects the reinforcing bars, which not only rusts the reinforcing bars but also causes cracks in the concrete. There is a risk of causing dangerous conditions such as peeling and peeling of concrete.

この問題を解決するため、塩化物イオンを避けた酢酸カルシウム・マグネシウム、酢酸ナトリウム等の有機酸系凍結防止剤が製造されている。しかし従来の有機酸系の凍結防止剤は無機塩化物系の凍結防止剤に比較して生産コストが数倍となるため、経済的観点から部分的な散布にしか使用することができない。 In order to solve this problem, organic acid-based antifreeze agents such as calcium acetate / magnesium and sodium acetate that avoid chloride ions are manufactured. However, since the production cost of the conventional organic acid-based antifreeze agent is several times higher than that of the inorganic chloride-based antifreeze agent, it can be used only for partial spraying from an economical point of view.

一方、木材の伐採やその加工に伴って散材、廃材などの木質系廃棄物が大量に発生しており、その処分に困っている状況がある。そこでこれらの木質系廃材や稲わらなどの植物原料を用いて凍結防止剤を製造する試みがなされている。 On the other hand, a large amount of wood-based waste such as sprinkled wood and waste wood is generated due to logging and processing of wood, and there are situations where it is difficult to dispose of it. Therefore, attempts have been made to produce antifreeze agents using these wood-based waste materials and plant raw materials such as rice straw.

例えば特許文献1には、枯れた松材を粉砕して熱風乾燥し、乾留により発生させた木ガスから木酢液を回収し、カルシウムと反応させて凍結防止剤を製造する方法が提案されている。また特許文献2には、枯れた松材のセルロースを希硫酸で熱水処理し、中和したうえ発酵処理して得られた有機酸から凍結防止剤を製造する方法が提案されている。しかしこれらの方法は加熱処理や薬剤を必要とすることもあって、やはり凍結防止剤の製造コストが高くなるという問題を持っていた。 For example, Patent Document 1 proposes a method of crushing dead pine wood, drying it with hot air, recovering wood vinegar from wood gas generated by carbonization, and reacting it with calcium to produce an antifreeze agent. .. Further, Patent Document 2 proposes a method for producing an antifreeze agent from an organic acid obtained by treating the cellulose of dead pine wood with dilute sulfuric acid, neutralizing it, and then fermenting it. However, these methods also have a problem that the production cost of the antifreeze agent is high because they require heat treatment and chemicals.

特開2010−155913号公報Japanese Unexamined Patent Publication No. 2010-155913 特開2011−205934号公報Japanese Unexamined Patent Publication No. 2011-205934

従って本発明の目的は上記した従来の問題点を解決して、木質系廃材などの安価な植物原料を用いて、有機酸系凍結防止剤を低コストで製造することができる新規な技術を提供することである。 Therefore, an object of the present invention is to solve the above-mentioned conventional problems and provide a novel technique capable of producing an organic acid-based antifreeze agent at low cost by using an inexpensive plant raw material such as wood-based waste material. It is to be.

上記の課題を解決するためになされた本発明の植物原料由来の凍結防止剤の製造方法は、植物原料に含まれるリグニンなどの難分解性有機物を白色腐朽菌により好気性分解して低分子化したうえ、これを嫌気性処理して有機酸を生成させ、この嫌気性処理液の上澄み液に含まれる有機酸を溶媒抽出により濃縮し、凍結防止剤とすることを特徴とするものである。 In the method for producing an antifreeze agent derived from a plant material of the present invention, which has been made to solve the above problems, persistent organic substances such as lignin contained in the plant material are aerobically decomposed by white spoilage bacteria to reduce the molecular weight. Further, this is anaerobically treated to generate an organic acid, and the organic acid contained in the supernatant of the anaerobic treatment liquid is concentrated by solvent extraction to obtain an antifreeze agent.

なお、植物原料は木質系廃材又は稲わらなどとすることができる。また、植物原料をマイクロ波または高温高圧で前処理したうえで、白色腐朽菌により好気性分解することにより、分解効率を高めることもできる。また、前記有機酸が、酪酸、プロピオン酸、酢酸などの低級脂肪酸を含有するものであることが好ましい。 The plant material can be wood-based waste wood or rice straw. Further, the decomposition efficiency can be improved by pretreating the plant raw material with microwaves or high temperature and high pressure and then aerobicly decomposing it with white-rot fungi. Further, it is preferable that the organic acid contains lower fatty acids such as butyric acid, propionic acid and acetic acid.

この方法で製造された植物原料由来の凍結防止剤は塩分を含有せず、有機酸を主成分とするものであるため、従来のように環境への二次的影響が生じたり、鉄筋を錆びさせたり、コンクリートにひび割れを生じさせたりすることもない。 Since the antifreeze agent derived from plant raw materials produced by this method does not contain salt and contains organic acid as the main component, it has a secondary impact on the environment and rusts the reinforcing bars as in the past. It does not cause the concrete to crack or crack.

本発明の製造工程を示すブロック図である。It is a block diagram which shows the manufacturing process of this invention. 実施例におけるリグニン量のグラフである。It is a graph of the amount of lignin in an Example. 実施例における酸溶解性リグニン量のグラフである。It is a graph of the amount of acid-soluble lignin in an example. 嫌気性処理における有機酸生成量のグラフである。It is a graph of the organic acid production amount in an anaerobic treatment.

以下に本発明の好ましい実施形態を示す。
図1は本発明の製造工程を示すブロック図である。本発明では凍結防止剤の原料として、植物原料を使用する。植物原料の種類は特に限定されるものではないが、散材、廃材などの木質系廃棄物のほか、稲わらなども用いることができる。これらは安価、または無料で入手できるうえに、木質系廃棄物を用いれば処分に困っていた廃棄物の処理に貢献することもできる。原料となる植物原料は反応を促進するために、微粉砕しておくことが好ましい。
Hereinafter, preferred embodiments of the present invention are shown.
FIG. 1 is a block diagram showing a manufacturing process of the present invention. In the present invention, a plant raw material is used as a raw material for the antifreeze agent. The type of plant raw material is not particularly limited, but wood-based waste such as sprinkles and waste materials, as well as rice straw and the like can be used. These can be obtained cheaply or free of charge, and can also contribute to the disposal of waste that was difficult to dispose of by using wood-based waste. It is preferable that the plant raw material as a raw material is finely pulverized in order to promote the reaction.

木材は主要成分であるセルロース、ヘミセルロース、難分解性のリグニンを含むものである。本発明では木材腐朽菌の一種である白色腐朽菌を用いてこれらを好気性条件下で分解し、低分子化して多糖類とする。白色腐朽菌は木材に含まれる難分解性のリグニンを分解する能力を持ち、リグニンが分解された後に残留する、セルロース、ヘミセルロースの色である白色に変色させることから、白色腐朽菌と呼ばれる。本発明では例えばウスキイロカワタケ(phanerochaete sordida)を利用することができるが、白色腐朽菌の種類はこれに限定されるものではない。 Wood contains the main components cellulose, hemicellulose, and persistent lignin. In the present invention, a white rot fungus, which is a kind of wood rot fungus, is used to decompose these under aerobic conditions to reduce the molecular weight to a polysaccharide. White-rot fungi are called white-rot fungi because they have the ability to decompose persistent lignin contained in wood and change the color to white, which is the color of cellulose and hemicellulose that remains after the decomposition of lignin. In the present invention, for example, Phanerochaete sordida can be used, but the type of white-rot fungus is not limited to this.

寒天あるいは液体培地で予め白色腐朽菌を培養したうえ、上記した植物原料の粉砕物を添加し、室温の好気性条件下に置けば、植物原料に含まれるリグニンを白色腐朽菌が好気性分解して低分子化し、多糖類が生成される。白色腐朽菌を培養するための培地には、リン酸塩などの栄養塩やグルコースなどの易分解性有機物を添加して菌糸の成長を促進することができる。好気性分解を進行させる培地としては水を加えた液体培地を用いることにより、リグニン分解時間を短縮できることが判明した。好ましい含水率は50〜90wt%程度である。 If the white rot fungus is cultivated in advance on agar or a liquid medium, the above-mentioned crushed plant material is added, and the lignin contained in the plant material is aerobicly decomposed by aerobic conditions at room temperature. The molecular weight is reduced to produce polysaccharides. A nutrient salt such as phosphate and an easily degradable organic substance such as glucose can be added to the medium for culturing the white-rot fungus to promote the growth of hyphae. It was found that the lignin decomposition time can be shortened by using a liquid medium containing water as a medium for advancing aerobic decomposition. The preferable water content is about 50 to 90 wt%.

本発明者の実験によれば、2週間で木材中のリグニンの約50wt%が分解された。このように白色腐朽菌によるリグニンの分解にはある程度の時間を要するが、粉砕した植物原料をマイクロ波による前処理を行うことにより、リグニン分解を促進することができる。このほか、粉砕された木質原料に例えば130℃、200kPaの高温高圧による処理を施せば、さらにリグニン分解を促進することができる。 According to the inventor's experiment, about 50 wt% of lignin in wood was decomposed in 2 weeks. As described above, it takes a certain amount of time for the decomposition of lignin by the white-rot fungus, but the decomposition of lignin can be promoted by pretreating the crushed plant raw material with microwaves. In addition, if the crushed wood-based material is treated with a high temperature and high pressure of, for example, 130 ° C. and 200 kPa, lignin decomposition can be further promoted.

次に、多糖類を含む好気性分解液を嫌気性処理リアクターに送り込み、酸生成菌などの嫌気性菌により嫌気性処理を行うことにより有機酸を生成させる。酸生成菌は汚泥中から採取し、嫌気性処理リアクター内において数日間馴致しておく。実験の結果、pHが比較的高い領域において有機酸の生成量が多くなることが確認されたので、pHを7.3〜7.9のアルカリ側に調整しておくことが好ましい。pHが8を超えると有機酸の生成量が低下する傾向を示す。 Next, an aerobic decomposition solution containing a polysaccharide is sent to an anaerobic treatment reactor, and an organic acid is produced by performing anaerobic treatment with an anaerobic bacterium such as an acid-producing bacterium. Acid-producing bacteria are collected from sludge and allowed to acclimate in an anaerobic treatment reactor for several days. As a result of the experiment, it was confirmed that the amount of organic acid produced increases in the region where the pH is relatively high, so it is preferable to adjust the pH to the alkaline side of 7.3 to 7.9. When the pH exceeds 8, the amount of organic acid produced tends to decrease.

この嫌気性処理はバッチ処理であっても、連続処理であってもよい。連続処理の場合には、例えばスパイラル状の撹拌手段により嫌気性処理リアクターの槽内液を低速で出口側に向けて徐々に移動させながら、嫌気性処理を進行させることができる。この嫌気性処理により、処理液中に酢酸、プロピオン酸、酢酸などの低級脂肪酸を主とする水溶性の有機酸が生成される。 This anaerobic treatment may be a batch treatment or a continuous treatment. In the case of continuous treatment, the anaerobic treatment can be advanced while the liquid in the tank of the anaerobic treatment reactor is gradually moved toward the outlet side at a low speed by, for example, a spiral stirring means. By this anaerobic treatment, a water-soluble organic acid mainly composed of lower fatty acids such as acetic acid, propionic acid and acetic acid is produced in the treatment liquid.

嫌気性処理リアクターには嫌気性汚泥とその上澄み液が発生するが、上記した有機酸は上澄み液中に含まれる。嫌気性処理装置から上澄み液を抽出することによって、処理槽内液に含まれる有機酸の濃度を10倍程度に濃縮することができる。なお、嫌気性汚泥は酸生成菌などの嫌気性菌を多量に含有するため沈降分離して再使用できるが、必要に応じて余剰汚泥は嫌気性処理リアクターから取り除けばよい。 Anaerobic sludge and its supernatant are generated in the anaerobic treatment reactor, and the above-mentioned organic acid is contained in the supernatant. By extracting the supernatant liquid from the anaerobic treatment apparatus, the concentration of the organic acid contained in the liquid in the treatment tank can be concentrated about 10 times. Since anaerobic sludge contains a large amount of anaerobic bacteria such as acid-producing bacteria, it can be separated and reused by sedimentation, but excess sludge may be removed from the anaerobic treatment reactor if necessary.

嫌気性処理リアクターから取り出される上澄み液は黒色の液体であるうえ有機酸の濃度が低いため、そのままでは凍結防止剤として道路に散布することはできない。そこでさらに溶媒抽出により、上澄み液から水溶性の有機酸を抽出する。溶媒としては、例えばトリブチルリン酸を使用することができる。この結果、酢酸、プロピオン酸、酪酸などの有機酸をさらに10倍程度濃縮することができる。また黒色の色素は抽出されないため無色となり、そのまま道路に散布することができる凍結防止剤が得られる。 The supernatant liquid taken out from the anaerobic treatment reactor is a black liquid and has a low concentration of organic acids, so that it cannot be sprayed on the road as an antifreeze agent as it is. Therefore, a water-soluble organic acid is further extracted from the supernatant by solvent extraction. As the solvent, for example, tributyl phosphoric acid can be used. As a result, organic acids such as acetic acid, propionic acid, and butyric acid can be further concentrated about 10 times. Further, since the black pigment is not extracted, it becomes colorless, and an antifreeze agent that can be sprayed on the road as it is can be obtained.

このようにして得られた植物原料由来の凍結防止剤は塩分を含有せず、有機酸を主成分とするものである。その凍結効果を確認したところ、本発明の凍結防止剤を用いることにより、4℃における融氷速度が水道水に比較して8%速くなり、また凍結時間は水道水の6倍となることが確認された。 The antifreeze agent derived from the plant raw material thus obtained does not contain salt and contains an organic acid as a main component. As a result of confirming the freezing effect, by using the antifreeze agent of the present invention, the ice melting speed at 4 ° C. is 8% faster than that of tap water, and the freezing time is 6 times faster than that of tap water. confirmed.

以上に説明した通り、本発明によれば植物原料を白色腐朽菌による好気性処理したうえで酸生成菌による嫌気性処理を行うことにより有機酸を生成することができ、塩分を含有しない植物原料由来の凍結防止剤を安価に製造することができる。以下に本発明の実施例を示す。 As described above, according to the present invention, an organic acid can be produced by aerobic treatment with a white-rot fungus and then anaerobic treatment with an acid-producing bacterium, and the plant raw material does not contain salt. The derived antifreeze agent can be produced at low cost. Examples of the present invention are shown below.

菌類キノコ遺伝資源研究センターから分譲された白色腐朽菌(ウスキイロカワタケ、phanerochaete sordida)を(ポテト・デキストロース・寒天)培地に接種して7日間培養した。 The white-rot fungus (phanerochaete sordida) distributed from the Fungal Mushroom Genetic Resources Research Center was inoculated into a (potato, dextrose, agar) medium and cultured for 7 days.

杉と檜の混合物である木質系散材を汎用粉砕機を用いて粉砕して粒子径を1mm以下に調整し、三角フラスコに入れ、通気性の蓋で密閉した。これをオートクレーブ処理(120℃、30分)して滅菌したうえ、超純水で散材木粉の含水率を50wt%に調整した。上記の培地から直径5mmのコルクボーラーで白色腐朽菌を培地とともに打ち抜き、得られた円板を散材木粉の入った三角フラスコの中央部に1枚ずつ接種した。コントロールサンプルとして散材木粉のみの三角フラスコを作成した。双方を25℃のインキュベータ内にて好気性条件下で2週間培養した。 A wood-based powder, which is a mixture of cedar and cypress, was crushed using a general-purpose crusher to adjust the particle size to 1 mm or less, placed in an Erlenmeyer flask, and sealed with a breathable lid. This was autoclaved (120 ° C., 30 minutes) and sterilized, and the water content of the sprinkled wood powder was adjusted to 50 wt% with ultrapure water. White-rot fungi were punched out from the above medium with a cork borer having a diameter of 5 mm together with the medium, and the obtained discs were inoculated one by one into the central part of an Erlenmeyer flask containing wood flour. An Erlenmeyer flask containing only wood flour was prepared as a control sample. Both were cultured in an incubator at 25 ° C. under aerobic conditions for 2 weeks.

その後、散材木粉のリグニン量を測定した。リグニン量の測定手順は次の通りである。 Then, the amount of lignin in the wood flour was measured. The procedure for measuring the amount of lignin is as follows.

先ず、木粉サンプル1gを入れた円筒形ろ紙をエタノールとベンゼンの混合有機溶媒で、6時間ソックスレー抽出を行い、有機溶媒可溶分を抽出し、混合有機溶媒を除去した後に円筒形ろ紙とともに秤量して有機溶媒可用分を測定した。 First, a cylindrical filter paper containing 1 g of a wood flour sample is soxhlet-extracted with a mixed organic solvent of ethanol and benzene for 6 hours to extract an organic solvent-soluble component, and after removing the mixed organic solvent, weighed together with the cylindrical filter paper. Then, the usable amount of the organic solvent was measured.

上述の有機溶媒可溶分を抽出した後の脱脂木粉約0.3gを氷上にて4.5mlの72%H2SO4と合わせ、30℃で1時間インキュベーションした。次に蒸留水でH2SO4の濃度を3%にまで薄め、オートクレーブで30分間加熱処理した後、ろ過吸引した。残渣を秤量してリグニン量とした。またこのろ液0.3mLに2.7mLの3%H2SO4を加えて10倍希釈し、分光光度計を用いて205〜210nm近傍の吸光度を測定し、酸溶解性リグニン量を求めた。 After extracting the above-mentioned organic solvent-soluble component, about 0.3 g of degreased wood powder was combined with 4.5 ml of 72% H 2 SO 4 on ice and incubated at 30 ° C. for 1 hour. Next, the concentration of H 2 SO 4 was diluted to 3% with distilled water, heat-treated in an autoclave for 30 minutes, and then filtered and suctioned. The residue was weighed to give the amount of lignin. Further, 2.7 mL of 3% H 2 SO 4 was added to 0.3 mL of this filtrate to dilute it 10-fold, and the absorbance near 205 to 210 nm was measured using a spectrophotometer to determine the amount of acid-soluble lignin.

その結果は、図2、図3に示すとおりであった。図2はリグニン量を示し、コントロールサンプルでは14日経過後もリグニン量は変化しなかったが、白色腐朽菌を接種したサンプルではリグニン量が顕著に低下し、分解率は約50%であった。一方、図3に示す酸溶解性リグニンは14日経過後に少量ながら増加した。これにより、白色腐朽菌の存在により難分解性でしかも高分子のリグニンが低分子の有機物である酸溶解性リグニンに分解されていることが確認された。 The results are as shown in FIGS. 2 and 3. FIG. 2 shows the amount of lignin. In the control sample, the amount of lignin did not change even after 14 days, but in the sample inoculated with the white-rot fungus, the amount of lignin was significantly reduced and the decomposition rate was about 50%. On the other hand, the acid-soluble lignin shown in FIG. 3 increased slightly after 14 days. From this, it was confirmed that the persistent and high molecular weight lignin was decomposed into acid-soluble lignin, which is a low molecular weight organic substance, due to the presence of white-rot fungi.

次に、嫌気性処理リアクターに馴致した嫌気性汚泥を採取し、好気性処理された散材木粉含有液を投入して室温で嫌気性処理を行った。有機酸生成量を毎日測定した結果、図4の通りの結果が得られた。酢酸、プロピオン酸、イソ酪酸、酪酸が生成されたことを示している。 Next, the anaerobic sludge acclimatized to the anaerobic treatment reactor was collected, and the aerobic-treated sprinkled wood powder-containing liquid was added to perform the anaerobic treatment at room temperature. As a result of daily measurement of the amount of organic acid produced, the results shown in FIG. 4 were obtained. It shows that acetic acid, propionic acid, isobutyric acid, and butyric acid were produced.

この嫌気性処理リアクターから上澄み液を抽出し、トリブチルリン酸による溶媒抽出を行った。得られた凍結防止剤は無色であり塩分を含有しないものである。凍結防止効果を確認したところ、前記した通りこの凍結防止剤を添加することにより4℃における融氷速度が水道水に比較して8%速くなり、また凍結時間は水道水の6倍となった。これにより本発明の凍結防止剤の融雪効果、凍結防止効果が確認された。 The supernatant was extracted from this anaerobic treatment reactor, and the solvent was extracted with tributyl phosphate. The obtained antifreeze agent is colorless and does not contain salt. As a result of confirming the antifreezing effect, as described above, by adding this antifreezing agent, the ice melting speed at 4 ° C. was 8% faster than that of tap water, and the freezing time was 6 times that of tap water. .. As a result, the snow melting effect and the antifreezing effect of the antifreezing agent of the present invention were confirmed.

Claims (5)

植物原料に含まれるリグニンなどの難分解性有機物を白色腐朽菌により好気性分解して低分子化したうえ、これを嫌気性処理して有機酸を生成させ、この嫌気性処理液の上澄み液に含まれる有機酸を溶媒抽出により濃縮し、凍結防止剤とすることを特徴とする植物原料由来の凍結防止剤の製造方法。 Persistent organic substances such as lignin contained in plant raw materials are aerobically decomposed by white spoilage bacteria to reduce the molecular weight, and then anaerobically treated to generate organic acids, which are used as the supernatant of this anaerobic treatment liquid. A method for producing an antifreeze agent derived from a plant raw material, which comprises concentrating the contained organic acid by solvent extraction to obtain an antifreeze agent. 前記植物原料が、木質系廃材又は稲わらなどであることを特徴とする請求項1に記載の植物原料由来の凍結防止剤の製造方法。 The method for producing an antifreeze agent derived from a plant raw material according to claim 1, wherein the plant raw material is wood-based waste wood, rice straw, or the like. 前記植物原料をマイクロ波または高温高圧で前処理したうえで、白色腐朽菌により好気性分解することを特徴とする請求項1又は2に記載の植物原料由来の凍結防止剤の製造方法。 The method for producing an antifreeze agent derived from a plant raw material according to claim 1 or 2, wherein the plant raw material is pretreated with microwaves or high temperature and high pressure, and then aerobicly decomposed by white rot fungi. 前記有機酸が、酪酸、プロピオン酸、酢酸などの低級脂肪酸を主とするものであることを特徴とする請求項1から3の何れかに記載の植物原料由来の凍結防止剤の製造方法。 The method for producing an antifreeze agent derived from a plant raw material according to any one of claims 1 to 3, wherein the organic acid is mainly composed of lower fatty acids such as butyric acid, propionic acid and acetic acid. 請求項1から4の何れかに記載の方法により製造され、塩分を含有せず、有機酸を主成分とすることを特徴とする植物原料由来の凍結防止剤。 An antifreeze agent derived from a plant material, which is produced by the method according to any one of claims 1 to 4, does not contain salt, and contains an organic acid as a main component.
JP2020089284A 2020-05-22 2020-05-22 Method for producing antifreeze agent derived from plant materials Active JP7452796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020089284A JP7452796B2 (en) 2020-05-22 2020-05-22 Method for producing antifreeze agent derived from plant materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020089284A JP7452796B2 (en) 2020-05-22 2020-05-22 Method for producing antifreeze agent derived from plant materials

Publications (2)

Publication Number Publication Date
JP2021183671A true JP2021183671A (en) 2021-12-02
JP7452796B2 JP7452796B2 (en) 2024-03-19

Family

ID=78767159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020089284A Active JP7452796B2 (en) 2020-05-22 2020-05-22 Method for producing antifreeze agent derived from plant materials

Country Status (1)

Country Link
JP (1) JP7452796B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048684A (en) * 1999-08-10 2001-02-20 Gun Ei Chem Ind Co Ltd Crop nutrient supplement, and crop culture method for snow ladenarable land using this crop nutrient supplement
JP2007037469A (en) * 2005-08-03 2007-02-15 Kyoto Univ White-rot fungus having lignocellulose-degrading activity, and utilization thereof
JP2008263862A (en) * 2007-04-20 2008-11-06 National Agriculture & Food Research Organization Method for creating transformant of white-rot fungus and transformant obtained by the method
JP2011205934A (en) * 2010-03-29 2011-10-20 Akita Prefectural Univ Method for producing organic acid, organic acid, biodegradable plastic, snow melting agent and recycle system
JP2012515549A (en) * 2009-01-26 2012-07-12 キシレコ インコーポレイテッド Biomass processing method
CN105131984A (en) * 2015-07-07 2015-12-09 大连民族大学 Continuous reproduction technology using biomass wastes and waste liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048684A (en) * 1999-08-10 2001-02-20 Gun Ei Chem Ind Co Ltd Crop nutrient supplement, and crop culture method for snow ladenarable land using this crop nutrient supplement
JP2007037469A (en) * 2005-08-03 2007-02-15 Kyoto Univ White-rot fungus having lignocellulose-degrading activity, and utilization thereof
JP2008263862A (en) * 2007-04-20 2008-11-06 National Agriculture & Food Research Organization Method for creating transformant of white-rot fungus and transformant obtained by the method
JP2012515549A (en) * 2009-01-26 2012-07-12 キシレコ インコーポレイテッド Biomass processing method
JP2011205934A (en) * 2010-03-29 2011-10-20 Akita Prefectural Univ Method for producing organic acid, organic acid, biodegradable plastic, snow melting agent and recycle system
CN105131984A (en) * 2015-07-07 2015-12-09 大连民族大学 Continuous reproduction technology using biomass wastes and waste liquid

Also Published As

Publication number Publication date
JP7452796B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
CN1283595C (en) High-temperature aerobic fermentation of organic refuse material
WO2014139360A1 (en) Humic acid-rich biologic soil conditioner made from alcohol waste liquid and sludge from sugar mill
CN109160860A (en) Cities and towns kitchen garbage, agriculture and forestry organic waste material and riverway sludge and municipal sludge federated resourceization utilize method
Medina et al. Influence of saprophytic fungi and inorganic additives on enzyme activities and chemical properties of the biodegradation process of wheat straw for the production of organo-mineral amendments
CN112337033B (en) Harmless treatment method of abamectin slag, product and application of product as sandy soil modifier
CN105967436A (en) Method for biodegradation of organic phosphorus pesticide wastewater
CN114985433B (en) Method for soil full utilization of red mud
CN109530414B (en) Method for restoring heavy metals in soil by utilizing compost humic acid
Sanchez et al. Determination of the kinetic constants of anaerobic digestion of sugar-mill-mud waste (SMMW)
JP2011205934A (en) Method for producing organic acid, organic acid, biodegradable plastic, snow melting agent and recycle system
CN111618086A (en) Polluted soil biomineralization restoration method based on agricultural waste resource
JP7538368B1 (en) How to soften and loosen the tillage pan
JP7452796B2 (en) Method for producing antifreeze agent derived from plant materials
US20150361004A1 (en) Fertilizer using crushed stone powder and manufacturing method thereof
CN112126504A (en) Method for extracting camphor oil
CN106906261A (en) A kind of method that utilization biofermentation extracts biochemical fulvic acid from black liquid
WO2020022933A1 (en) Method of remediation of contaminated earth
JPH04363200A (en) Method for effectively utilizing industrial waste sludge at working of calcium carbonate from limestone ore
Rosli et al. Mycoremediation of Coconut Shell (Cocos Nucifera) with Ganoderma lucidum
CN106588326A (en) Waste newspaper fertilizer capable of improving soil aeration for tea tree and preparation method of waste newspaper fertilizer for tea tree
CN112723941A (en) Nitrogen and phosphorus preservation composting method for municipal domestic sludge
CN112808740B (en) Method for treating chromium slag by using plant extract
CN111517607B (en) Organic sludge treatment method
JP2005177740A (en) Method for reducing hexavalent chromium concentration
CN112250496B (en) Ecological mineral material, preparation method thereof and method for restoring composite contaminated soil by adopting ecological mineral material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240227

R150 Certificate of patent or registration of utility model

Ref document number: 7452796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150