[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021172561A - Surface-coated boehmite, resin film composite, and carbon material composite - Google Patents

Surface-coated boehmite, resin film composite, and carbon material composite Download PDF

Info

Publication number
JP2021172561A
JP2021172561A JP2020077974A JP2020077974A JP2021172561A JP 2021172561 A JP2021172561 A JP 2021172561A JP 2020077974 A JP2020077974 A JP 2020077974A JP 2020077974 A JP2020077974 A JP 2020077974A JP 2021172561 A JP2021172561 A JP 2021172561A
Authority
JP
Japan
Prior art keywords
boehmite
coated
resin film
zeta potential
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020077974A
Other languages
Japanese (ja)
Other versions
JP7422398B2 (en
Inventor
颯汰 八木
Futa Yagi
康博 太田
Yasuhiro Ota
健二 木戸
Kenji Kido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Lime Industry Co Ltd
Original Assignee
Kawai Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Lime Industry Co Ltd filed Critical Kawai Lime Industry Co Ltd
Priority to JP2020077974A priority Critical patent/JP7422398B2/en
Publication of JP2021172561A publication Critical patent/JP2021172561A/en
Application granted granted Critical
Publication of JP7422398B2 publication Critical patent/JP7422398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a surface-coated boehmite that can maintain negative zeta potential in a wide pH range and also has high dispersibility in a wide pH range.SOLUTION: A surface-coated boehmite includes an anionic polymer electrolyte forming an outermost layer. The zeta potential in an aqueous solution is kept negative even when the pH is changed.SELECTED DRAWING: Figure 2

Description

本発明は、最外層がアニオン性高分子電解質であり、水溶液中におけるゼータ電位が、pHを変化させても負のままである表面被覆ベーマイトに関する。また、本発明は、樹脂フィルムに当該表面被覆ベーマイトが付着した樹脂フィルム複合材料、及び炭素材に当該表面被覆ベーマイトが付着した炭素材複合材料にも関する。 The present invention relates to a surface-coated boehmite in which the outermost layer is an anionic polyelectrolyte and the zeta potential in an aqueous solution remains negative even when the pH is changed. The present invention also relates to a resin film composite material in which the surface coating boehmite is adhered to a resin film, and a carbon material composite material in which the surface coating boehmite is adhered to a carbon material.

ベーマイトは、AlOOH又はAl・HOで表される組成式を有し、樹脂添加剤や研磨材として利用されている(特許文献1)。 Boehmite has a composition formula represented by AlOOH or Al 2 O 3 · H 2 O , is used as a resin additive or abrasive (Patent Document 1).

特開2012−214337号公報Japanese Unexamined Patent Publication No. 2012-214337

発明者らが、水溶液中におけるベーマイトのゼータ電位を、塩基性側から酸性側へ連続的にpHを調整して測定したところ(ゼータ電位の詳細な測定方法は、後述の実施例に記載)、ベーマイトの種類にもよるが、ベーマイトのゼータ電位は、pH5〜7付近でゼロ(等電点)になり、pH5〜7よりも低いpHにおいては正であり、pH5〜7よりも高いpHにおいては負になることが分かった。したがって、例えば、5〜7よりも大きいpH範囲(すなわち、ベーマイトの表面電荷が負であるpH範囲)において、正電荷を有する物質にベーマイトを付着させたとしても、pHが5〜7未満になるとベーマイトの表面電荷は正になるため、ベーマイトは当該物質から分離するおそれがある。 When the inventors measured the zeta potential of boehmite in an aqueous solution by continuously adjusting the pH from the basic side to the acidic side (detailed measurement method of the zeta potential is described in Examples described later). Depending on the type of boehmite, the zeta potential of boehmite becomes zero (isoelectric point) near pH 5-7, is positive at pH lower than pH 5-7, and is positive at pH higher than pH 5-7. It turned out to be negative. Therefore, for example, in a pH range larger than 5 to 7 (that is, a pH range in which the surface charge of boehmite is negative), even if boehmite is attached to a substance having a positive charge, the pH becomes less than 5 to 7. Since the surface charge of the boehmite becomes positive, the boehmite may separate from the substance.

また、発明者らは、ベーマイトは、pH4程度の水溶液中での分散性は高いものの、水溶液のpHが6〜8程度になると、凝集が起こり、分散性が悪化するという問題を有することも見出した。 The inventors have also found that although boehmite has high dispersibility in an aqueous solution having a pH of about 4, agglutination occurs when the pH of the aqueous solution reaches about 6 to 8, and the dispersibility deteriorates. rice field.

本発明は上記課題に鑑み、広いpH範囲にわたって負のゼータ電位を維持でき、且つ、広いpH範囲にわたって高い分散性を有する表面被覆ベーマイトを提供することを目的とする。また、本発明は、樹脂フィルムに当該表面被覆ベーマイトが付着した樹脂フィルム複合材料、及び炭素材に当該表面被覆ベーマイトが付着した炭素材複合材料を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a surface-coated boehmite that can maintain a negative zeta potential over a wide pH range and has high dispersibility over a wide pH range. Another object of the present invention is to provide a resin film composite material in which the surface-coated boehmite is adhered to a resin film, and a carbon material composite material in which the surface-coated boehmite is adhered to a carbon material.

本発明は、以下に掲げる態様の発明を提供する。
(項目1)
高分子電解質で被覆された表面被覆ベーマイトであって、
最外層がアニオン性高分子電解質であり、
水溶液中におけるゼータ電位が、pHを変化させても負のままである、
表面被覆ベーマイト。
The present invention provides the inventions of the following aspects.
(Item 1)
A surface-coated boehmite coated with a polymer electrolyte.
The outermost layer is an anionic polyelectrolyte,
The zeta potential in aqueous solution remains negative with varying pH,
Surface coating boehmite.

(項目2)
前記ゼータ電位は、−15mVから−50mVである、
項目1に記載の表面被覆ベーマイト。
(Item 2)
The zeta potential is -15 mV to -50 mV.
The surface-coated boehmite according to item 1.

(項目3)
前記アニオン性高分子電解質は、ポリ(4−スチレンスルホン酸)ナトリウム、ポリアクリル酸、及びポリビニル硫酸の少なくとも一種である、
項目1又は2に記載の表面被覆ベーマイト。
(Item 3)
The anionic polyelectrolyte is at least one of poly (4-styrene sulfonic acid) sodium, polyacrylic acid, and polyvinyl sulfuric acid.
The surface-coated boehmite according to item 1 or 2.

(項目4)
アニオン性高分子電解質とカチオン性高分子電解質とによって交互に被覆されている、
項目1から3のいずれか1項に記載の表面被覆ベーマイト。
(Item 4)
Alternately coated with anionic polyelectrolytes and cationic polyelectrolytes,
The surface-coated boehmite according to any one of items 1 to 3.

(項目5)
前記カチオン性高分子電解質は、ポリ(塩化ジアリルジメチルアンモニウム)、及びポリエチレンイミンの少なくとも一種である、
項目4に記載の表面被覆ベーマイト。
(Item 5)
The cationic polyelectrolyte is at least one of poly (diallyldimethylammonium chloride) and polyethyleneimine.
The surface coating boehmite according to item 4.

(項目6)
樹脂フィルムに、項目1から5のいずれか1項に記載の表面被覆ベーマイトが付着した樹脂フィルム複合材料。
(Item 6)
A resin film composite material in which the surface-coated boehmite according to any one of items 1 to 5 is attached to the resin film.

(項目7)
炭素材に、項目1から5のいずれか1項に記載の表面被覆ベーマイトが付着した炭素材複合材料。
(Item 7)
A carbon material composite material in which the surface coating boehmite according to any one of items 1 to 5 is attached to the carbon material.

(項目8)
項目6に記載の樹脂フィルム複合材料、又は、項目7に記載の炭素材複合材料を使用した二次電池材料。
(Item 8)
The resin film composite material according to item 6 or the secondary battery material using the carbon material composite material according to item 7.

本発明の表面被覆ベーマイトは、広いpH範囲にわたって負のゼータ電位を維持でき、且つ、広いpH範囲にわたって高い分散性を有する。 The surface-coated boehmite of the present invention can maintain a negative zeta potential over a wide pH range and has high dispersibility over a wide pH range.

(a)板状ベーマイトの長径及び短径を説明する図、(b)鱗片状ベーマイトの長径及び短径を説明する図、(c)針状ベーマイトの長径及び短径を説明する図である。It is a figure explaining the major axis and the minor axis of the plate-shaped boehmite, (b) the figure explaining the major axis and the minor axis of the scaly boehmite, and (c) the figure explaining the major axis and the minor axis of the needle-shaped boehmite. 実施例1、実施例2、実施例5、実施例6、比較例1及び比較例3のゼータ電位のグラフである。It is a graph of the zeta potential of Example 1, Example 2, Example 5, Example 6, Comparative Example 1 and Comparative Example 3. ベーマイト試料の分散性を示す写真であり、(a)実施例2の写真、(b)比較例1の写真である。It is a photograph showing the dispersibility of a boehmite sample, and is (a) a photograph of Example 2 and (b) a photograph of Comparative Example 1. (a)実施例1のベーマイト試料の、PVDFフィルムに対する付着状態を示すSEM画像、(b)比較例1のベーマイト試料の、PVDFフィルムに対する付着状態を示すSEM画像である。(A) is an SEM image showing the adhered state of the boehmite sample of Example 1 to the PVDF film, and (b) is an SEM image showing the adhered state of the boehmite sample of Comparative Example 1 to the PVDF film.

本発明の表面被覆ベーマイト、樹脂フィルム複合材料、及び炭素材複合材料について説明する。 The surface coating boehmite, the resin film composite material, and the carbon material composite material of the present invention will be described.

本発明は、最外層がアニオン性高分子電解質であり、水溶液中におけるゼータ電位が、pHを変化させても負のままである、表面被覆ベーマイトに関する。ゼータ電位は、水溶液の温度が25℃で測定された値である。 The present invention relates to a surface-coated boehmite in which the outermost layer is an anionic polyelectrolyte and the zeta potential in an aqueous solution remains negative even when the pH is changed. The zeta potential is a value measured at a temperature of the aqueous solution of 25 ° C.

ゼータ電位は、−15mVから−50mVであることが好ましい。ゼータ電位がこのような範囲にあることにより、静電相互作用が強く働くため、表面被覆ベーマイトは正電荷を有する物質に付着しやすい。 The zeta potential is preferably -15 mV to -50 mV. When the zeta potential is in such a range, the electrostatic interaction works strongly, so that the surface-coated boehmite easily adheres to a substance having a positive charge.

被覆対象であるベーマイトの形状は特に限定されず、例えば、鱗片状、板状又は針状ベーマイトを使用することができる。 The shape of the boehmite to be covered is not particularly limited, and for example, scaly, plate-shaped or needle-shaped boehmite can be used.

アニオン性高分子電解質は、特に限定されないが、例えば、ポリ(4−スチレンスルホン酸)ナトリウム(PSS)、ポリアクリル酸(PAA)、及びポリビニル硫酸(PVS)の少なくとも一種を使用することができる。 The anionic polyelectrolyte is not particularly limited, and for example, at least one of poly (4-styrene sulfonic acid) sodium (PSS), polyacrylic acid (PAA), and polyvinyl sulfuric acid (PVS) can be used.

表面被覆ベーマイトは、最外層がアニオン性高分子電解質となるように、アニオン性高分子電解質とカチオン性高分子電解質とによって、交互に被覆されていることが好ましい。 It is preferable that the surface-coated boehmite is alternately coated with an anionic polyelectrolyte and a cationic polyelectrolyte so that the outermost layer becomes an anionic polyelectrolyte.

カチオン性高分子電解質は、特に限定されないが、例えば、ポリ(塩化ジアリルジメチルアンモニウム)(PDDA)、及びポリエチレンイミン(PEI)の少なくとも一種を使用することができる。 The cationic polyelectrolyte is not particularly limited, and for example, at least one of poly (diallyldimethylammonium chloride) (PDDA) and polyethyleneimine (PEI) can be used.

アニオン性高分子電解質とカチオン性高分子電解質とによって交互に被覆された表面被覆ベーマイトを調製する際には、まず、ベーマイトの表面をアニオン性高分子電解質で被覆する。次に、アニオン性高分子電荷質を、カチオン性高分子電解質で被覆し、その後、カチオン性高分子電解質をアニオン性高分子電解質でさらに被覆する。被覆回数は、特に限定されない。また、アニオン性高分子電解質又はカチオン性高分子電解質を複数層設ける場合、それぞれ異なる種類のアニオン性高分子電解質又はカチオン性高分子電解質を使用してもよい。例えば、一層目のアニオン性高分子電解質と三層目のアニオン性高分子電解質とは、異なるアニオン性高分子電解質を使用してもよい。 When preparing a surface-coated boehmite alternately coated with an anionic polyelectrolyte and a cationic polyelectrolyte, first, the surface of the boehmite is coated with the anionic polyelectrolyte. Next, the anionic polyelectrolyte is coated with the cationic polyelectrolyte, and then the cationic polyelectrolyte is further coated with the anionic polyelectrolyte. The number of coatings is not particularly limited. Further, when a plurality of layers of anionic polyelectrolyte or cationic polyelectrolyte are provided, different types of anionic polyelectrolyte or cationic polyelectrolyte may be used. For example, different anionic polyelectrolytes may be used for the first-layer anionic polyelectrolyte and the third-layer anionic polyelectrolyte.

本発明は、樹脂フィルムの表面に、上記の表面被覆ベーマイトが付着した樹脂フィルム複合材料にも関する。樹脂フィルムとしては、例えば、ポリフッ化ビニリデン(PVDF)製のフィルムや、ポリエチレン(PE)製のフィルムが挙げられる。本発明の表面被覆ベーマイトを付着させることにより、樹脂フィルムの寸法を安定化させることができる。本発明の樹脂フィルム複合材料は、例えば、二次電池用のセパレータとして利用できる。 The present invention also relates to a resin film composite material in which the above-mentioned surface coating boehmite is adhered to the surface of the resin film. Examples of the resin film include a film made of polyvinylidene fluoride (PVDF) and a film made of polyethylene (PE). By adhering the surface coating boehmite of the present invention, the dimensions of the resin film can be stabilized. The resin film composite material of the present invention can be used, for example, as a separator for a secondary battery.

本発明は、炭素材の表面に、上記の表面被覆ベーマイトが付着した炭素材複合材料にも関する。炭素材としては、例えば、グラファイトが挙げられる。本発明の表面被覆ベーマイトを付着させることにより、炭素材の寸法を安定化させることができる。本発明の炭素材複合材料は、例えば、二次電池用の負極材として利用できる。 The present invention also relates to a carbon material composite material in which the above-mentioned surface coating boehmite is attached to the surface of the carbon material. Examples of the carbon material include graphite. By adhering the surface-coated boehmite of the present invention, the dimensions of the carbon material can be stabilized. The carbon material composite material of the present invention can be used, for example, as a negative electrode material for a secondary battery.

以下では、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

[ベーマイト試料の調製]
原料ベーマイトの特性、及び、最外層の高分子電解質の種類を表1に示す。図1は、原料ベーマイトの長径及び短径を説明する図であり、(長径/短径)はアスペクト比と呼ばれる。
[Preparation of boehmite sample]
Table 1 shows the characteristics of the raw material boehmite and the types of the polymer electrolyte in the outermost layer. FIG. 1 is a diagram for explaining the major axis and the minor axis of the raw material boehmite, and (major axis / minor axis) is called an aspect ratio.

<実施例1>
(1)イオン交換水にPSS(シグマアルドリッチ製)を加え、PSSの濃度が1wt%であるPSS水溶液を調製した。同様に、イオン交換水にPDDA(シグマアルドリッチ製)を加え、PDDAの濃度が1wt%であるPDDA水溶液を調製した。
(2)PSS水溶液、及び、PDDA水溶液に、0.5Mとなるように塩化ナトリウム(ナイカイ塩業株式会社製)を加えた。
(3)50mLの遠沈管に、一次粒子の中心粒子径が2μmの板状ベーマイト(河合石灰工業株式会社製、アスペクト比:5)を1.0g入れ、その遠沈管にPSS水溶液30mLを加えて懸濁液とした。
(4)ホモジナイザー(Sonic&Materials inc.製「VCX−400」)を用いて、懸濁液内のベーマイト凝集物を超音波解砕した。
(5)懸濁液の入った遠沈管をチューブローテータ(TAITEC製「RT−50」)にセットし、30分振とうした。
(6)遠沈管を遠心分離機(KUBOTA製、高速冷却遠心分離機「6200」)にセットし、回転数8000rpmで10分間遠心分離を行い、スラリー中のベーマイトを沈降させた。
(7)遠沈管内の上澄みを捨て、新たにイオン交換水30mLを加えた。
(8)ボルテックスミキサー(TAITEC「Se−08」)を用いて遠沈管内を攪拌し、沈降していたベーマイトを分散させた。
(9)上記(6)から(8)を2回繰り返し、余分なPSSを洗い流した。これにより、原料ベーマイトの表面がPSSで被覆されたベーマイトが得られた。
(10)遠沈管内の上澄みを捨て、ベーマイトが残った遠沈管にPDDA水溶液30mLを加えて再び懸濁液とした。
(11)上記懸濁液をボルテックスミキサーで攪拌し、ベーマイトを均一分散させた。
(12)懸濁液の入った遠沈管をチューブローテータにセットし、30分振とうした。
(13)遠沈管を遠心分離機にセットし、回転数8000rpmで10分間遠心分離を行い、スラリー中のベーマイトを沈降させた。
(14)遠沈管内の上澄みを捨て、新たにイオン交換水30mLを加えた。
(15)ボルテックスミキサーを用いて遠沈管内を攪拌し、沈降していたベーマイトを分散させた。
(16)上記(13)から(15)を2回繰り返し、余分なPDDAを洗い流した。これにより、PSS層がPDDAによって被覆されたベーマイトが得られた。
(17)遠沈管内の上澄みを捨て、ベーマイトが残った遠沈管にPSS水溶液30mLを加えて再び懸濁液とした。
(18)上記懸濁液をボルテックスミキサーで攪拌し、ベーマイトを均一分散させた。
(19)懸濁液の入った遠沈管をチューブローテータにセットし、30分振とうした。
(20)遠沈管を遠心分離機にセットし、回転数8000rpmで10分間遠心分離を行い、スラリー中のベーマイトを沈降させた。
(21)遠沈管内の上澄みを捨て、新たにイオン交換水30mLを加えた。
(22)ボルテックスミキサーを用いて遠沈管内を攪拌し、沈降していたベーマイトを分散させた。
(23)上記(20)から(22)を2回繰り返し、余分なPSSを洗い流した。
(24)洗浄工程後の沈降したベーマイトを回収し、60℃の乾燥機で24時間乾燥させた。このようにして、最外層がPSSである表面被覆ベーマイトが得られた。
<Example 1>
(1) PSS (manufactured by Sigma-Aldrich) was added to ion-exchanged water to prepare a PSS aqueous solution having a PSS concentration of 1 wt%. Similarly, PDDA (manufactured by Sigma-Aldrich) was added to ion-exchanged water to prepare a PDDA aqueous solution having a PDDA concentration of 1 wt%.
(2) Sodium chloride (manufactured by Naikai Salt Industries Co., Ltd.) was added to the PSS aqueous solution and the PDDA aqueous solution so as to have a concentration of 0.5 M.
(3) Put 1.0 g of plate-shaped boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 5) having a central particle diameter of 2 μm into a 50 mL centrifuge tube, and add 30 mL of PSS aqueous solution to the centrifuge tube. It was made into a suspension.
(4) Using a homogenizer (“VCX-400” manufactured by Sonic & Materials Inc.), boehmite agglutination in the suspension was ultrasonically crushed.
(5) The centrifuge tube containing the suspension was set in a tube rotator (“RT-50” manufactured by TAITEC) and shaken for 30 minutes.
(6) The centrifuge tube was set in a centrifuge (manufactured by KUBOTA, high-speed cooling centrifuge "6200"), and centrifugation was performed at a rotation speed of 8000 rpm for 10 minutes to settle boehmite in the slurry.
(7) The supernatant in the centrifuge tube was discarded, and 30 mL of ion-exchanged water was newly added.
(8) The inside of the centrifuge tube was stirred using a vortex mixer (TAITEC "Se-08") to disperse the sedimented boehmite.
(9) The above (6) to (8) were repeated twice to wash away excess PSS. As a result, boehmite in which the surface of the raw material boehmite was coated with PSS was obtained.
(10) The supernatant in the centrifuge tube was discarded, and 30 mL of the PDDA aqueous solution was added to the centrifuge tube in which boehmite remained to make a suspension again.
(11) The suspension was stirred with a vortex mixer to uniformly disperse boehmite.
(12) The centrifuge tube containing the suspension was set in a tube rotator and shaken for 30 minutes.
(13) The centrifuge tube was set in a centrifuge, and centrifugation was performed at a rotation speed of 8000 rpm for 10 minutes to settle boehmite in the slurry.
(14) The supernatant in the centrifuge tube was discarded, and 30 mL of ion-exchanged water was newly added.
(15) The inside of the centrifuge tube was stirred using a vortex mixer to disperse the sedimented boehmite.
(16) The above (13) to (15) were repeated twice to wash away excess PDDA. As a result, boehmite in which the PSS layer was coated with PDDA was obtained.
(17) The supernatant in the centrifuge tube was discarded, and 30 mL of the PSS aqueous solution was added to the centrifuge tube in which boehmite remained to make a suspension again.
(18) The suspension was stirred with a vortex mixer to uniformly disperse boehmite.
(19) The centrifuge tube containing the suspension was set in a tube rotator and shaken for 30 minutes.
(20) The centrifuge tube was set in a centrifuge, and centrifugation was performed at a rotation speed of 8000 rpm for 10 minutes to settle boehmite in the slurry.
(21) The supernatant in the centrifuge tube was discarded, and 30 mL of ion-exchanged water was newly added.
(22) The inside of the centrifuge tube was stirred using a vortex mixer to disperse the sedimented boehmite.
(23) The above (20) to (22) were repeated twice to wash away excess PSS.
(24) The precipitated boehmite after the washing step was collected and dried in a dryer at 60 ° C. for 24 hours. In this way, a surface-coated boehmite having a PSS outermost layer was obtained.

<実施例2>
アニオン性高分子電解質をPSSからPAAに変更した以外は、実施例1と同じ方法により、表面被覆ベーマイトを調製した。
<Example 2>
A surface-coated boehmite was prepared by the same method as in Example 1 except that the anionic polyelectrolyte was changed from PSS to PAA.

<実施例3>
アニオン性高分子電解質をPSSからPVSに変更した以外は、実施例1と同じ方法により、表面被覆ベーマイトを調製した。
<Example 3>
A surface-coated boehmite was prepared by the same method as in Example 1 except that the anionic polyelectrolyte was changed from PSS to PVS.

<実施例4>
原料ベーマイトを、一次粒子の中心粒子径が5μmの鱗片状ベーマイト(河合石灰工業株式会社製、アスペクト比:20)に変更した以外は、実施例1と同じ方法により、表面被覆ベーマイトを調製した。
<Example 4>
A surface-coated boehmite was prepared by the same method as in Example 1 except that the raw material boehmite was changed to scaly boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 20) having a central particle diameter of 5 μm.

<実施例5>
原料ベーマイトを、一次粒子の中心粒子径が2μmの鱗片状ベーマイト(河合石灰工業株式会社製、アスペクト比:40)に変更した以外は、実施例1と同じ方法により、表面被覆ベーマイトを調製した。
<Example 5>
A surface-coated boehmite was prepared by the same method as in Example 1 except that the raw material boehmite was changed to scaly boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 40) having a central particle diameter of 2 μm.

<実施例6>
原料ベーマイトを、一次粒子の中心粒子径が3.5μmの針状ベーマイト(河合石灰工業株式会社製、アスペクト比:30)に変更した以外は、実施例1と同じ方法により、表面被覆ベーマイトを調製した。
<Example 6>
Surface-coated boehmite was prepared by the same method as in Example 1 except that the raw material boehmite was changed to needle-shaped boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 30) having a central particle diameter of 3.5 μm. bottom.

<比較例1>
(1)50mLの遠沈管に、一次粒子の中心粒子径が2μmの板状ベーマイト(河合石灰工業株式会社製、アスペクト比:5)を1.0g入れ、その遠沈管にイオン交換水30mLを加えて懸濁液とした。
(2)ホモジナイザーを用いて、懸濁液内のベーマイト凝集物を超音波解砕した。
(3)遠沈管を遠心分離機にセットし、回転数8000rpmで10分間遠心分離を行い、スラリー中のベーマイトを沈降させた。なお、比較例1では、この遠心分離処理は1回だけしか行っていない。
(4)遠沈管内の上澄みを捨て、沈降したベーマイトを回収し、60℃で24時間乾燥した。
(5)上記手順により、表面が高分子電解質で被覆されていないベーマイトを得た。
<Comparative example 1>
(1) Put 1.0 g of plate-shaped boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 5) having a central particle diameter of 2 μm into a 50 mL centrifuge tube, and add 30 mL of ion-exchanged water to the centrifuge tube. To make a suspension.
(2) Using a homogenizer, the boehmite agglutination in the suspension was ultrasonically crushed.
(3) The centrifuge tube was set in a centrifuge and centrifuged at a rotation speed of 8000 rpm for 10 minutes to settle boehmite in the slurry. In Comparative Example 1, this centrifugation treatment was performed only once.
(4) The supernatant in the centrifuge tube was discarded, and the settled boehmite was collected and dried at 60 ° C. for 24 hours.
(5) By the above procedure, boehmite whose surface was not coated with a polymer electrolyte was obtained.

<比較例2>
原料ベーマイトを、一次粒子の中心粒子径が5μmの鱗片状ベーマイト(河合石灰工業株式会社製、アスペクト比:20)に変更した以外は、比較例1と同じ方法により、ベーマイト試料を調製した。
<Comparative example 2>
A boehmite sample was prepared by the same method as in Comparative Example 1 except that the raw material boehmite was changed to scaly boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 20) having a central particle size of 5 μm.

<比較例3>
原料ベーマイトを、一次粒子の中心粒子径が2μmの鱗片状ベーマイト(河合石灰工業株式会社製、アスペクト比:40)に変更した以外は、比較例1と同じ方法により、ベーマイト試料を調製した。
<Comparative example 3>
A boehmite sample was prepared by the same method as in Comparative Example 1 except that the raw material boehmite was changed to scaly boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 40) having a central particle size of 2 μm.

<比較例4>
原料ベーマイトを、一次粒子の中心粒子径が3.5μmの針状ベーマイト(河合石灰工業株式会社製、アスペクト比:30)に変更した以外は、比較例1と同じ方法により、ベーマイト試料を調製した。
<Comparative example 4>
A boehmite sample was prepared by the same method as in Comparative Example 1 except that the raw material boehmite was changed to needle-shaped boehmite (manufactured by Kawai Lime Industry Co., Ltd., aspect ratio: 30) having a central particle diameter of 3.5 μm. ..

[ゼータ電位の測定]
以下の手順により、実施例1、実施例2、実施例5、実施例6、比較例1及び比較例2のベーマイト試料のゼータ電位を測定した。ゼータ電位の測定結果を、表2及び図2に示す。
(1)イオン交換水に、ベーマイト試料を所定量加えて、ゼータ電位が測定できる程度の濃度に調整した懸濁液を作製した。
(2)硝酸の希釈溶液を懸濁液に加えて、pH2程度まで、懸濁液のpHを低下させた。そして、水酸化ナトリウムの希釈溶液を懸濁液に加えて順次pHを上昇させ、所定のpHにおいて、ゼータ電位計(大塚電子製「ELS−2000」)を使用してゼータ電位を測定した。懸濁液の温度は、25℃に維持した。
[Measurement of zeta potential]
The zeta potentials of the boehmite samples of Example 1, Example 2, Example 5, Example 6, Comparative Example 1 and Comparative Example 2 were measured by the following procedure. The measurement results of the zeta potential are shown in Table 2 and FIG.
(1) A predetermined amount of boehmite sample was added to ion-exchanged water to prepare a suspension adjusted to a concentration at which the zeta potential could be measured.
(2) A diluted solution of nitric acid was added to the suspension to lower the pH of the suspension to about pH 2. Then, a diluted solution of sodium hydroxide was added to the suspension to gradually raise the pH, and the zeta potential was measured at a predetermined pH using a zeta potential meter (“ELS-2000” manufactured by Otsuka Electronics Co., Ltd.). The temperature of the suspension was maintained at 25 ° C.

[分散安定性の評価]
以下の手順により、実施例1から6及び比較例1から4のベーマイト試料の、イオン交換水中における分散安定性について評価した。分散安定性の結果を表1に示す。表1において、「○」は、ベーマイト試料の分散状態が維持されていることを意味し、「△」は、ベーマイト試料の一部が沈降していることを意味し、「×」は、ベーマイト試料が完全に沈降していることを意味する。実施例1〜4及び比較例1〜2の結果は、測定開始から10分後の結果であり、実施例5及び比較例3の結果は、測定開始から180分後の結果であり、実施例6及び比較例4の結果は、測定開始から90分後の結果である。分散状態を示す一例として、図3に、pH6〜8における、実施例2及び比較例1の分散性試験の写真を示す。
(1)容器にイオン交換水10.0gとベーマイト試料0.1gを加え、懸濁液を調製した。
(2)ホモジナイザーを用いて、懸濁液内におけるベーマイト試料の凝集物を超音波解砕した。
(3)懸濁液を所定のpHに調整した。pHを低下させる場合には、硝酸の希釈溶液を懸濁液に加え、pHを上昇させる場合には、水酸化ナトリウムの希釈溶液を懸濁液に加えた。
(4)pHを調整した懸濁液を10mLメスシリンダーに移し、ベーマイト試料の沈降具合を目視により確認した。
[Evaluation of dispersion stability]
The dispersion stability of the boehmite samples of Examples 1 to 6 and Comparative Examples 1 to 4 in ion-exchanged water was evaluated by the following procedure. The results of dispersion stability are shown in Table 1. In Table 1, "○" means that the dispersed state of the boehmite sample is maintained, "△" means that a part of the boehmite sample is settled, and "x" means boehmite. It means that the sample is completely settled. The results of Examples 1 to 4 and Comparative Examples 1 and 2 are the results 10 minutes after the start of measurement, and the results of Examples 5 and 3 are the results 180 minutes after the start of measurement. The results of 6 and Comparative Example 4 are the results 90 minutes after the start of measurement. As an example showing the dispersed state, FIG. 3 shows photographs of the dispersibility test of Example 2 and Comparative Example 1 at pH 6 to 8.
(1) 10.0 g of ion-exchanged water and 0.1 g of boehmite sample were added to the container to prepare a suspension.
(2) Using a homogenizer, agglomerates of boehmite samples in the suspension were ultrasonically crushed.
(3) The suspension was adjusted to a predetermined pH. A diluted solution of nitric acid was added to the suspension to lower the pH, and a diluted solution of sodium hydroxide was added to the suspension to raise the pH.
(4) The pH-adjusted suspension was transferred to a 10 mL measuring cylinder, and the sedimentation condition of the boehmite sample was visually confirmed.

[樹脂に対する付着性の評価]
以下の手順により、実施例1から6及び比較例1から4のベーマイト試料の、樹脂サンプル片に対する付着性を評価した。付着性の結果を、表1に示す。表1において、「○」は、樹脂サンプル片に、ベーマイト試料が十分に付着していることを意味し、「×」は、樹脂サンプル片に、ベーマイト試料がほとんど付着していないことを意味する。付着状態を示す一例として、図4に、実施例1及び比較例1のベーマイト試料を使用した付着試験後の樹脂サンプル片のSEM(走査型電子顕微鏡)画像を示す。
(1)容器にイオン交換水9.0g、工業用アルコール1.0g(今津薬品工業製「クリンエースハイ」)、及びベーマイト試料0.1gを加え、懸濁液を調製した。
(2)ホモジナイザーを用いて、懸濁液内のベーマイト試料の凝集物を超音波解砕した。
(3)篩を用意し、その上に、樹脂サンプル片を置き、樹脂サンプル片に上記の懸濁液をまんべんなく垂らした。なお、樹脂サンプル片としては、ポリフッ化ビニリデン(PVDF)のフィルム(近江オドエアーサービス株式会社製、PVDFバッグ)の表面をPDDAで処理し、表面に正電荷を付与したものを使用した。
(4)イオン交換水を用いて、篩上の樹脂サンプル片を念入りに洗浄した。
(5)樹脂サンプル片を60℃の乾燥機内で24時間乾燥させた。
(6)乾燥後の樹脂サンプル片の表面を走査型電子顕微鏡(JEOL製「JSM−7500FA」)で観察した。
[Evaluation of adhesiveness to resin]
The adhesiveness of the boehmite samples of Examples 1 to 6 and Comparative Examples 1 to 4 to the resin sample pieces was evaluated by the following procedure. The adhesiveness results are shown in Table 1. In Table 1, "○" means that the boehmite sample is sufficiently adhered to the resin sample piece, and "x" means that the boehmite sample is hardly adhered to the resin sample piece. .. As an example showing the adhesion state, FIG. 4 shows SEM (scanning electron microscope) images of the resin sample pieces after the adhesion test using the boehmite samples of Example 1 and Comparative Example 1.
(1) 9.0 g of ion-exchanged water, 1.0 g of industrial alcohol (“Clean Ace High” manufactured by Imazu Pharmaceutical Co., Ltd.), and 0.1 g of boehmite sample were added to a container to prepare a suspension.
(2) Using a homogenizer, agglomerates of boehmite samples in the suspension were ultrasonically crushed.
(3) A sieve was prepared, a resin sample piece was placed on the sieve, and the above suspension was evenly dropped on the resin sample piece. As the resin sample piece, a vinylidene fluoride (PVDF) film (PVDF bag manufactured by Omi Odo Air Service Co., Ltd.) was treated with PDDA to give a positive charge to the surface.
(4) The resin sample piece on the sieve was thoroughly washed with ion-exchanged water.
(5) The resin sample piece was dried in a dryer at 60 ° C. for 24 hours.
(6) The surface of the dried resin sample piece was observed with a scanning electron microscope (“JSM-7500FA” manufactured by JEOL).

Figure 2021172561
Figure 2021172561

Figure 2021172561
Figure 2021172561

表2及び図2に示すように、実施例1〜6の表面被覆ベーマイトは、pH2〜12の範囲で、ゼータ電位が負であった。なお、一般に、pH2未満、及び、pH12以上の範囲では、ゼータ電位の測定が困難であることが知られており、本実施例及び比較例でもこれらのpH範囲ではゼータ電位を測定することができなかった。 As shown in Table 2 and FIG. 2, the surface-coated boehmite of Examples 1 to 6 had a negative zeta potential in the pH range of 2 to 12. In general, it is known that it is difficult to measure the zeta potential in the range of less than pH 2 and pH 12 or more, and the zeta potential can be measured in these pH ranges also in this example and the comparative example. There wasn't.

表1及び図3に示すように、実施例1〜6の表面被覆ベーマイトは、pH6〜8及びpH11であっても、分散性が高かった。これに対し、比較例1〜4のベーマイト試料は、pH6〜8において、その一部又は全部が沈降していた。 As shown in Table 1 and FIG. 3, the surface-coated boehmite of Examples 1 to 6 had high dispersibility even at pH 6 to 8 and pH 11. On the other hand, the boehmite samples of Comparative Examples 1 to 4 had some or all of them precipitated at pH 6 to 8.

一般に、ベーマイトを、液体と混合して使用する場合(例えば、スラリー)、廃液処理など様々な観点から、液体は中性に調製されることが好ましい。本発明の表面被覆ベーマイトは、中性付近(pH6〜8)でも高い分散性を有しているため、幅広い用途で利用可能である。 In general, when boehmite is mixed with a liquid and used (for example, a slurry), the liquid is preferably prepared to be neutral from various viewpoints such as waste liquid treatment. Since the surface-coated boehmite of the present invention has high dispersibility even near neutrality (pH 6 to 8), it can be used in a wide range of applications.

表1及び図4に示すように、実施例1及び実施例4の表面被覆ベーマイトは、PVDFフィルムに対する付着性が高かった。これに対し、比較例1及び比較例2のベーマイト試料は、PVDFフィルムにほとんど付着しなかった。したがって、本発明の表面被覆ベーマイトが付着した樹脂フィルム複合材料は、高い寸法安定性を有し、例えば、二次電池用のセパレータとして有用である。 As shown in Table 1 and FIG. 4, the surface-coated boehmite of Examples 1 and 4 had high adhesion to the PVDF film. On the other hand, the boehmite samples of Comparative Example 1 and Comparative Example 2 hardly adhered to the PVDF film. Therefore, the resin film composite material to which the surface-coated boehmite of the present invention is attached has high dimensional stability and is useful as a separator for, for example, a secondary battery.

Claims (8)

高分子電解質で被覆された表面被覆ベーマイトであって、
最外層がアニオン性高分子電解質であり、
水溶液中におけるゼータ電位が、pHを変化させても負のままである、
表面被覆ベーマイト。
A surface-coated boehmite coated with a polymer electrolyte.
The outermost layer is an anionic polyelectrolyte,
The zeta potential in aqueous solution remains negative with varying pH,
Surface coating boehmite.
前記ゼータ電位は、−15mVから−50mVである、
請求項1に記載の表面被覆ベーマイト。
The zeta potential is -15 mV to -50 mV.
The surface-coated boehmite according to claim 1.
前記アニオン性高分子電解質は、ポリ(4−スチレンスルホン酸)ナトリウム、ポリアクリル酸、及びポリビニル硫酸の少なくとも一種である、
請求項1又は2に記載の表面被覆ベーマイト。
The anionic polyelectrolyte is at least one of poly (4-styrene sulfonic acid) sodium, polyacrylic acid, and polyvinyl sulfuric acid.
The surface-coated boehmite according to claim 1 or 2.
アニオン性高分子電解質とカチオン性高分子電解質とによって交互に被覆されている、
請求項1から3のいずれか1項に記載の表面被覆ベーマイト。
Alternately coated with anionic polyelectrolytes and cationic polyelectrolytes,
The surface-coated boehmite according to any one of claims 1 to 3.
前記カチオン性高分子電解質は、ポリ(塩化ジアリルジメチルアンモニウム)、及びポリエチレンイミンの少なくとも一種である、
請求項4に記載の表面被覆ベーマイト。
The cationic polyelectrolyte is at least one of poly (diallyldimethylammonium chloride) and polyethyleneimine.
The surface-coated boehmite according to claim 4.
樹脂フィルムに、請求項1から5のいずれか1項に記載の表面被覆ベーマイトが付着した樹脂フィルム複合材料。 A resin film composite material in which the surface-coated boehmite according to any one of claims 1 to 5 is attached to a resin film. 炭素材に、請求項1から5のいずれか1項に記載の表面被覆ベーマイトが付着した炭素材複合材料。 A carbon material composite material in which the surface-coated boehmite according to any one of claims 1 to 5 is attached to the carbon material. 請求項6に記載の樹脂フィルム複合材料、又は、請求項7に記載の炭素材複合材料を使用した二次電池材料。 A secondary battery material using the resin film composite material according to claim 6 or the carbon material composite material according to claim 7.
JP2020077974A 2020-04-27 2020-04-27 Surface-coated boehmite, resin film composite materials, carbon material composite materials Active JP7422398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020077974A JP7422398B2 (en) 2020-04-27 2020-04-27 Surface-coated boehmite, resin film composite materials, carbon material composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020077974A JP7422398B2 (en) 2020-04-27 2020-04-27 Surface-coated boehmite, resin film composite materials, carbon material composite materials

Publications (2)

Publication Number Publication Date
JP2021172561A true JP2021172561A (en) 2021-11-01
JP7422398B2 JP7422398B2 (en) 2024-01-26

Family

ID=78278751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020077974A Active JP7422398B2 (en) 2020-04-27 2020-04-27 Surface-coated boehmite, resin film composite materials, carbon material composite materials

Country Status (1)

Country Link
JP (1) JP7422398B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257419A (en) * 2002-02-28 2003-09-12 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2010064945A (en) * 2008-09-12 2010-03-25 Toyohashi Univ Of Technology Method for manufacturing ceramic composite particle and functional ceramic composite particle
JP2010238392A (en) * 2009-03-30 2010-10-21 Dainippon Printing Co Ltd Electrolyte sheet, electrolyte sheet-electrode assembly and fuel cell
JP2013211260A (en) * 2012-03-02 2013-10-10 Hitachi Maxell Ltd Positive electrode material for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014165007A (en) * 2013-02-25 2014-09-08 Toyota Industries Corp Negative electrode for nonaqueous secondary battery and manufacture of the same, and nonaqueous secondary battery
JP2016531993A (en) * 2013-09-18 2016-10-13 セルガード エルエルシー Nanoparticle-filled porous membrane and related methods
JP2016219275A (en) * 2015-05-21 2016-12-22 日立マクセル株式会社 Lithium ion secondary battery
JP2018181816A (en) * 2017-04-21 2018-11-15 トヨタ自動車株式会社 Lithium ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257419A (en) * 2002-02-28 2003-09-12 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2010064945A (en) * 2008-09-12 2010-03-25 Toyohashi Univ Of Technology Method for manufacturing ceramic composite particle and functional ceramic composite particle
JP2010238392A (en) * 2009-03-30 2010-10-21 Dainippon Printing Co Ltd Electrolyte sheet, electrolyte sheet-electrode assembly and fuel cell
JP2013211260A (en) * 2012-03-02 2013-10-10 Hitachi Maxell Ltd Positive electrode material for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014165007A (en) * 2013-02-25 2014-09-08 Toyota Industries Corp Negative electrode for nonaqueous secondary battery and manufacture of the same, and nonaqueous secondary battery
JP2016531993A (en) * 2013-09-18 2016-10-13 セルガード エルエルシー Nanoparticle-filled porous membrane and related methods
JP2016219275A (en) * 2015-05-21 2016-12-22 日立マクセル株式会社 Lithium ion secondary battery
JP2018181816A (en) * 2017-04-21 2018-11-15 トヨタ自動車株式会社 Lithium ion secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
堂地要 他: "ヘテロ凝集によるベーマイト−シリカ複合粒子の調製", 粉体工学会誌, vol. 55巻9号, JPN6022036782, 10 September 2018 (2018-09-10), JP, pages 478 - 482, ISSN: 0005149480 *

Also Published As

Publication number Publication date
JP7422398B2 (en) 2024-01-26

Similar Documents

Publication Publication Date Title
Mates et al. Environmentally-safe and transparent superhydrophobic coatings
JP5721623B2 (en) Surface coating method for inorganic solid particles, especially titanium dioxide pigment particles
JP2020518682A (en) Coating composition, coating film, and electromagnetic wave shielding composite
US20050014851A1 (en) Colloidal core-shell assemblies and methods of preparation
JP6266626B2 (en) Fluoropolymer coating
WO2017130946A1 (en) Coated fine particles of alkaline-earth metal compound, dispersion in organic solvent, resin composition, and image display device
EP3954744B1 (en) Aqueous particle dispersion and process for forming an aqueous particle dispersion
García et al. Influence of TiO 2 nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composite membranes
Mozia et al. Influence of Ag/titanate nanotubes on physicochemical, antifouling and antimicrobial properties of mixed‐matrix polyethersulfone ultrafiltration membranes
Rima et al. Protein amyloid fibrils as template for the synthesis of silica nanofibers, and their use to prepare superhydrophobic, lotus‐like surfaces
JP2020513298A (en) Coating method and its product
Li et al. Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide
JP5659371B2 (en) Organic solvent dispersion blended with flaky titanium oxide, method for producing the same, titanium oxide film using the same, and method for producing the same
JP2021172561A (en) Surface-coated boehmite, resin film composite, and carbon material composite
JP2021172560A (en) Surface-coated boehmite, resin film composite, and carbon material composite
KR102308262B1 (en) Method for coating the surface of inorganic particles, in particular titanium dioxide pigment particles
WO2019189254A1 (en) Dispersion for silicon carbide sintered body, green sheet for silicon carbide sintered body and prepreg material for silicon carbide sintered body using same, and method of producing same
WO2009002994A1 (en) Nanoclay filled fluoropolymer dispersions and method of forming same
JP2009256790A (en) Coating method of titanium oxide
JP4722412B2 (en) Conductive tin oxide powder, method for producing the same, conductive paste and conductive paint
JP2016188338A (en) Additive for water-based coating, and water-based coating composition
TW201412635A (en) Material containing dispersed hydroxyapatite microparticles and manufacturing method therefor
Qian et al. Multilayer network membranes based on evenly dispersed nanofibers/Co3O4 nanoneedles for high‐efficiency separation of micrometer‐scale oil/water emulsions
JP6979196B2 (en) Method for exfoliating layered mineral powder and method for producing layered nanoplate complex
Dede et al. Investigation of Electrophoretic Mobility of Various Nanofibers in Ethanol or Water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240109

R150 Certificate of patent or registration of utility model

Ref document number: 7422398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150