[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021163794A - 電波吸収体 - Google Patents

電波吸収体 Download PDF

Info

Publication number
JP2021163794A
JP2021163794A JP2020061582A JP2020061582A JP2021163794A JP 2021163794 A JP2021163794 A JP 2021163794A JP 2020061582 A JP2020061582 A JP 2020061582A JP 2020061582 A JP2020061582 A JP 2020061582A JP 2021163794 A JP2021163794 A JP 2021163794A
Authority
JP
Japan
Prior art keywords
layer
radio wave
wave absorber
openings
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020061582A
Other languages
English (en)
Inventor
宏和 田中
Hirokazu Tanaka
陽介 中西
Yosuke Nakanishi
広宣 待永
Hironobu Machinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2020061582A priority Critical patent/JP2021163794A/ja
Priority to PCT/JP2021/008821 priority patent/WO2021199921A1/ja
Priority to US17/915,243 priority patent/US20230144249A1/en
Publication of JP2021163794A publication Critical patent/JP2021163794A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/008Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with a particular shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Textile Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

【課題】モアレが視認されにくい電波吸収体を提供する。【解決手段】電波吸収体1aは、抵抗層10と、導電層30と、誘電体層20とを備える。抵抗層10は、第一主面12を有し、第一主面12に沿って等間隔で形成された複数の第一開口部11を有する。導電層30は、第二主面32を有し、第二主面32に沿って等間隔で形成された複数の第二開口部31を有する。誘電体層20は、抵抗層10と導電層30との間に配置されている。電波吸収体1aにおいて、第一比Ra及び第二比Rbのうちより大きい値を、第一比Ra及び第二比Rbのうちより小さい値で除して得られる値Dが1.3以上である。第一比Raは、第一開口部11同士の距離WRに対する第一開口部11の大きさGRの比(GR/WR)である。第二比Rbは、第二開口部31同士の距離WCに対する第二開口部31の大きさGCの比(GC/WC)である。【選択図】図2A

Description

本発明は、電波吸収体に関する。
従来、透明な電波吸収体を提供することが試みられている。
例えば、特許文献1には、透視性を有する電磁波吸収体が記載されている。電磁波吸収体において、透明基材の片面に細線メッシュパターンからなる反射層が形成されている。その反射層の上に、透明な固体誘電体層が粘着剤層を介して積層されている。さらに、その固体誘電体層の上に、周波数選択遮蔽層が粘着剤層を介して積層されている。その周波数選択遮蔽層は、透明基材の片面にFSS素子の細線パターンが形成されることによって構成されている。その周波数選択遮蔽層の上に、透明な固体誘電体層が接着剤層を介して積層されている。その固体誘電体層の上に、周波数選択遮蔽層が粘着剤層を介して積層されている。その周波数選択遮蔽層は、透明基材の片面にFSS素子の細線パターンが形成されることによって構成されている。反射層の細線メッシュパターン及び周波数選択遮蔽層の細線パターンは、15〜80μmの線幅を有する。
特許文献2には、誘電体を有する電波吸収体が記載されており、その誘電体の表面には位相調整機能を有する電波吸収面が形成されている。加えて、電波吸収面とは反対側の誘電体表面には電波反射面が形成されている。電波吸収面において、独立した複数の金属線素子が配設されている。加えて、電波反射面において、独立した複数の金属線素子が配設されている。このため、誘電体として光の透過率が高い材質を用いることにより、電波吸収体の光の透過率が高くなり、例えば、電波吸収体を窓ガラスに取り付けることもできる。
特開2009−170887号公報 特開2003−78276号公報
特許文献1に記載の電磁波吸収体では、複数の細線メッシュパターンが重なり合っている。また、特許文献2に記載の電磁波吸収体では、電波吸収面における独立した複数の金属線素子と、電波反射面における独立した複数の金属線素子とが重なり合っている。幾何学的に規則正しく分布するパターンを重ね合わせると、そのパターンの間隔の疎密によってモアレという斑紋が生じることが知られている。モアレの発生は、電磁波吸収体の見映えを低下させる可能性がある。特許文献1及び2では、モアレに対する対策について具体的に検討されておらず、特許文献1及び2に記載の技術は、モアレに対する対策を講じる観点から再検討の余地を有する。
このような事情に鑑み、本発明は、開口部を有する複数の層が重なり合うことによって発生するモアレが視認されにくい電波吸収体を提供する。
本発明は、
第一主面を有し、前記第一主面に沿って第一方向に等間隔で形成された複数の第一開口部を有する抵抗層と、
第二主面を有し、前記第二主面に沿って第二方向に等間隔で形成された複数の第二開口部を有する導電層と、
前記抵抗層の厚み方向において前記抵抗層と前記導電層との間に配置された誘電体層と、を備え、
最近接の前記第一開口部同士の距離に対する前記第一方向における前記第一開口部の大きさの比である第一比及び最近接の前記第二開口部同士の距離に対する前記第二方向における前記第二開口部の大きさの比である第二比のうちより大きい値を、前記第一比及び前記第二比のうちより小さい値で除して得られる値が1.3以上である、
電波吸収体を提供する。
上記の電波吸収体において、抵抗層と導電層とが重なり合うことによって発生するモアレが視認されにくい。
図1Aは、本発明に係る電波吸収体の一例の一方の主面の平面図である。 図1Bは、図1Aに示す電波吸収体の他方の主面の平面図である。 図2Aは、図1Aに示すIIa-IIa線を切断線とする電波吸収体の断面図である。 図2Bは、図1Aに示す電波吸収体の変形例を示す平面図である。 図2Cは、図1Aに示す電波吸収体の別の変形例を示す平面図である。 図3Aは、本発明に係る電波吸収体の別の一例を示す平面図である。 図3Bは、本発明に係る電波吸収体のさらに別の一例を示す平面図である。 図3Cは、本発明に係る電波吸収体のさらに別の一例を示す平面図である。 図4は、本発明に係る電波吸収体のさらに別の一例を示す断面図である。
電波吸収体として、抵抗層と、導電層と、抵抗層と導電層との間に配置された誘電体層とを備えた構成が知られている。このような電波吸収体において、抵抗層及び導電層のそれぞれが複数の開口部を有することは、電波吸収体に透明性をもたらす観点から有利である。加えて、電波吸収体の透明性及び電波吸収体の電波吸収性能の空間的なばらつきを抑制するために、抵抗層及び導電層のそれぞれにおいて複数の開口部が等間隔で形成されていることが有利である。一方、この場合、抵抗層と導電層とが重なり合うことによってモアレが発生しうる。そこで、本発明者らは、モアレに対する対策について鋭意検討を重ねた。その結果、本発明者らは、所定の条件が満たされるように、抵抗層及び導電層のそれぞれにおいて複数の開口部を形成することによって、電波吸収体においてモアレが視認されにくいことを新たに見出した。この新たな知見に基づき、本発明者らは本発明に係る電波吸収体を案出した。本明細書において「透明性」とは、特に説明する場合を除き、可視光に対する透明性を意味する。
本発明の実施形態について、図面を参照しつつ説明する。なお、本発明は、以下の実施形態には限定されない。
図1A、図1B、及び図2Aに示す通り、電波吸収体1aは、抵抗層10と、導電層30と、誘電体層20とを備えている。抵抗層10は、第一主面12を有し、第一主面12に沿って第一方向に等間隔で形成された複数の第一開口部11を有する。導電層30は、第二主面32を有し、第二主面32に沿って第二方向に等間隔で形成された複数の第二開口部31を有する。誘電体層20は、抵抗層10の厚み方向において抵抗層10と導電層30との間に配置されている。電波吸収体1aにおいて、第一比Ra及び第二比Rbのうちより大きい値を、第一比Ra及び第二比Rbのうちより小さい値で除して得られる値Dが1.3以上である。第一比Raは、最近接の第一開口部11同士の距離WRに対する第一方向における第一開口部11の大きさGRの比(GR/WR)である。第二比Rbは、最近接の第二開口部31同士の距離WCに対する第二方向における第二開口部31の大きさGCの比(GC/WC)である。
電波吸収体1aにおいて、複数の第一開口部11を有する抵抗層10と、複数の第二開口部31を有する導電層30とが重なり合っている。複数の第一開口部11は第一方向に等間隔で形成されており、複数の第二開口部31は第二方向に等間隔で形成されている。このため、電波吸収体1aにおいて、モアレが発生すると考えられる。しかし、電波吸収体1aにおいて、上記の値Dが1.3以上であることによりモアレが視認されにくい。その理由は定かではないが、値Dが1.3以上であることにより、肉眼では認識が困難なほど狭いピッチでモアレが発生するためであると考えられる。
値Dの上限は、特定の値に限定されない。値Dの上限は、例えば、電波吸収体1aが所望の電波吸収性能を有するように調整されうる。
電波吸収体1aにおいて値Dが1.3以上である限り、第一比Raと第二比Rbとの大小関係は、特定の関係に限定されない。第一比Raは、第二比Rbより大きくてもよく、小さくてもよい。
電波吸収体1aにおいて値Dが1.3以上である限り、第一比Raは特定の値に限定されない。第一比Raは、例えば5以上である。これにより、距離WRに対してGRが小さくなりにくく、第一開口部11に接した枠が視認されにくい。第一比Raは、10以上であってもよく、20以上であってもよい。第一比Raは、例えば100以下である。これにより、抵抗層10のシート抵抗を所望の範囲に調整しやすい。第一比Raは、70以下であってもよく、50以下であってもよい。
電波吸収体1aにおいて値Dが1.3以上である限り、第二比Rbは特定の値に限定されない。第二比Rbは、例えば5以上である。これにより、距離WCに対してGCが小さくなりにくく、第二開口部31に接した枠が視認されにくい。第二比Rbは、10以上であってもよく、20以上であってもよい。第二比Rbは、例えば100以下である。これにより、導電層30のシート抵抗を所望の範囲に調整しやすい。第二比Rbは、70以下であってもよく、50以下であってもよい。
電波吸収体1aにおいて値Dが1.3以上である限り、最近接の第一開口部11同士の距離WRは特定の値に限定されない。距離WRは、例えば100μm以下であり、50μm以下であってもよい。一方、距離WRは、望ましくは10μm以下である。これにより、抵抗層10を平面視したときに第一開口部11に接した枠が視認されにくい。加えて、抵抗層10の開口率を高めやすく、抵抗層10が高い透明性を有しやすい。距離WRは、例えば5μm以上である。
電波吸収体1aにおいて値Dが1.3以上である限り、第一方向における第一開口部11の大きさGRは特定の値に限定されない。大きさGRは、例えば50μm以上であり、100μm以上であってもよく、400μm以上であってもよい。大きさGRは、例えば1000μm以下であり、700μm以下であってもよく、500μm以下であってもよい。
抵抗層10の厚みは特定の値に限定されない。抵抗層10の厚みは、例えば10nm以上であり、15nm以上であってもよく、20nm以上であってもよい。抵抗層10の厚みは、例えば500nm以下である。これにより、抵抗層10が反りにくく、抵抗層10においてクラックが発生しにくい。抵抗層10の厚みは、450nm以下であってもよく、400nm以下であってもよい。
抵抗層10のシート抵抗は、特定の値に限定されない。抵抗層10のシート抵抗は、例えば350〜600Ω/□であり、100〜700Ω/□であってもよい。抵抗層10のシート抵抗は、例えば、渦電流法に従って測定できる。
抵抗層10をなす材料の比抵抗ρ1は、特定の値に限定されない。抵抗層10をなす材料の比抵抗は、例えば、4×10-5〜1×10-4Ω・cmである。抵抗層10をなす材料の比抵抗は、5×10-5〜1×10-4Ω・cmであってもよい。
比抵抗ρ1は、例えば、抵抗層10から所定の寸法の断片を採取し、その断片のシート抵抗Rf、第一開口部11の大きさGR、最近接の第一開口部11同士の距離WR、及び抵抗層10の厚みt1を測定することによって、Rf=(ρ1/t1){(GR+WR)/WR}の関係に基づき決定できる。シート抵抗Rfは、非接触抵抗計を用いた渦電流法に従って測定できる。大きさGR及び距離WRは、光学顕微鏡を用いてその断片を観察することによって決定できる。また、抵抗層10の厚みt1は、例えば、透過型電子顕微鏡(TEM)を用いて、抵抗層10の断面を観察することによって決定できる。また、抵抗層10をなす材料の比抵抗ρ1は、その材料の材料組成を分析して、その材料組成と同一の組成を有する膜を形成し、その膜のシート抵抗及び厚みを測定することによって決定されてもよい。
抵抗層10をなす材料は、特定の材料に限定されない。抵抗層10をなす材料は、金属、合金、及び金属酸化物等の無機材料であってもよいし、導電性高分子及びカーボンナノチューブ等の有機材料であってもよい。
抵抗層10は、複数の貫通孔が形成された均一な厚みを有する膜であってもよいし、織物であってもよい。織物をなす繊維は、導電性高分子及びカーボンナノチューブ等の有機材料であってもよいし、金属及び合金等の無機材料であってもよい。
電波吸収体1aにおいて値Dが1.3以上である限り、抵抗層10の開口率は特定の値に限定されない。抵抗層10は、例えば65%以上の開口率を有する。これにより、抵抗層10が高い透明性を有しやすい。抵抗層10の開口率は、抵抗層10を平面視したときの複数の第一開口部11の開口面積Safと抵抗層10の非開口部の面積Sbfとの和Saf+Sbfに対する、複数の第一開口部11の開口面積Safの比Saf/(Saf+Sbf)である。
抵抗層10の開口率は、望ましくは70%以上であり、より望ましくは75%以上である。抵抗層10の開口率は、例えば99%以下であり、98%以下であってもよく、97%以下であってもよい。
電波吸収体1aにおいて値Dが1.3以上である限り、複数の第一開口部11の配置は特定の配置に限定されない。例えば、第一方向は、互いに交差する複数の並び方向を含んでいてもよい。例えば、抵抗層10において、複数の第一開口部11は、その中心が第一主面12おいて正方格子をなすように配置されている。換言すると、抵抗層10において、第一方向は、互いに直交する並び方向を含んでいる。
電波吸収体1aにおいて値Dが1.3以上である限り、第一開口部11の形状は、特定の形状に限定されない。例えば、第一開口部11は平面視で正方形状である。
電波吸収体1aにおいて値Dが1.3以上である限り、最近接の第二開口部31同士の距離WCは特定の値に限定されない。距離WCは、例えば100μm以下であり、50μm以下であってもよい。一方、距離WCは、望ましくは10μm以下である。これにより、導電層30を平面視したときに第二開口部31に接した枠が視認されにくい。加えて、導電層30の開口率を高めやすく、導電層30が高い透明性を有しやすい。距離WRは、例えば5μm以上である。
電波吸収体1aにおいて値Dが1.3以上である限り、第二方向における第二開口部31の大きさGCは特定の値に限定されない。大きさGCは、例えば50μm以上であり、100μm以上であってもよく、400μm以上であってもよい。大きさGCは、例えば1000μm以下であり、700μm以下であってもよく、500μm以下であってもよい。
導電層30の厚みは特定の値に限定されない。導電層30の厚みは、例えば50nm以上であり、100nm以上であってもよく、500nm以上であってもよい。導電層30の厚みは、例えば2000nm以下である。これにより、導電層30が反りにくく、導電層30においてクラックが発生しにくい。導電層30の厚みは、1000nm以下であってもよく、500nm以下であってもよい。
導電層30のシート抵抗は、特定の値に限定されない。導電層30のシート抵抗は、典型的には、抵抗層10のシート抵抗より低い。導電層30のシート抵抗は、例えば100Ω/□以下であり、50Ω/□以下であってもよく、30Ω/□以下であってもよい。導電層30のシート抵抗は、例えば0.1Ω/□以上であり、0.5Ω/□以上であってもよく、1Ω/□以上であってもよい。導電層30のシート抵抗は、例えば、渦電流法に従って測定できる。
導電層30をなす材料の比抵抗ρ2は、特定の値に限定されない。導電層30をなす材料の比抵抗は、例えば、2×10-5Ω・cm以下である。導電層30をなす材料の比抵抗は、1×10-5Ω・cm以下であってもよい。導電層30をなす材料の比抵抗は、例えば、1×10-6Ω・cm以上である。比抵抗ρ2は、例えば、比抵抗ρ1と同様にして決定されうる。
導電層30をなす材料は、特定の材料に限定されない。導電層30をなす材料は、金属、合金、及び金属酸化物等の無機材料であってもよいし、導電性高分子及びカーボンナノチューブ等の有機材料であってもよい。
導電層30は、複数の貫通孔が形成された均一な厚みを有する膜であってもよいし、織物であってもよい。織物をなす繊維は、導電性高分子及びカーボンナノチューブ等の有機材料であってもよいし、金属及び合金等の無機材料であってもよい。
電波吸収体1aにおいて値Dが1.3以上である限り、導電層30の開口率は特定の値に限定されない。導電層30は、例えば65%以上の開口率を有する。これにより、導電層30が高い透明性を有しやすい。導電層30の開口率は、導電層30を平面視したときの複数の第二開口部31の開口面積Sasと導電層30の非開口部の面積Sbsとの和Sas+Sbsに対する、複数の第二開口部31の開口面積Sasの比Sas/(Sas+Sbs)である。
導電層30の開口率は、望ましくは70%以上であり、より望ましくは75%以上である。導電層30の開口率は、例えば99%以下であり、98%以下であってもよく、97%以下であってもよい。
電波吸収体1aにおいて値Dが1.3以上である限り、複数の第二開口部31の配置は特定の配置に限定されない。例えば、第二方向は、互いに交差する複数の並び方向を含んでいてもよい。例えば、導電層30において、複数の第二開口部31は、その中心が第二主面32おいて正方格子をなすように配置されている。換言すると、導電層30において、第二方向は、互いに直交する並び方向を含んでいる。電波吸収体1aにおいて、第二方向は、例えば、第一方向と平行に延びる方向である。
電波吸収体1aにおいて値Dが1.3以上である限り、第二開口部31の形状は、特定の形状に限定されない。例えば、第二開口部31は平面視で正方形状である。
誘電体層20は、例えば、80%以上の可視光透過率を有する。これにより、電波吸収体1aが高い透明性を有しやすい。本明細書において、可視光透過率とは、波長380nm〜780nmの範囲における分光透過率の平均値である。
誘電体層20は、例えば、2.0〜20.0の比誘電率を有する。この場合、誘電体層20の厚みを調整しやすく、電波吸収体1aの電波吸収性能の調整が容易である。誘電体層20の比誘電率は、例えば、空洞共振法に従って測定される10GHzにおける比誘電率である。
誘電体層20は、例えば、所定の高分子によって形成されている。誘電体層20は、例えば、エチレン酢酸ビニル共重合体、塩化ビニル樹脂、ウレタン樹脂、アクリル樹脂、アクリルウレタン樹脂、アクリル系エラストマー、ポリエチレン、ポリプロピレン、シリコーン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、及びシクロオレフィンポリマーからなる群より選ばれる少なくとも1つの高分子を含む。この場合、誘電体層20の厚みを調整しやすく、かつ、電波吸収体1aの製造コストを低く保つことができる。誘電体層20は、例えば、所定の樹脂組成物を熱プレスすることによって作製できる。
誘電体層20は、単一の層として形成されていてもよいし、同一又は異なる材料でできた複数の層によって形成されていてもよい。誘電体層20がn個の層(nは2以上の整数)を有する場合、誘電体層20の比誘電率は、例えば、以下の様にして決定される。各層の比誘電率εiを測定する(iは、1〜nの整数)。次に、測定された各層の比誘電率εiにその層の厚みtiの誘電体層20の全体Tに対する厚みの割合を乗じて、εi×(ti/T)を求める。すべての層に対するεi×(ti/T)を加算することによって、誘電体層20の比誘電率を決定できる。
図2Aに示す通り、誘電体層20は、例えば、第一層21、第二層22、及び第三層23を備えている。第一層21は、第二層22と第三層23との間に配置されている。第一層21は、例えば、エチレン酢酸ビニル共重合体、塩化ビニル樹脂、ウレタン樹脂、アクリル樹脂、アクリルウレタン樹脂、ポリエチレン、ポリプロピレン、シリコーン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、及びシクロオレフィンポリマーからなる群より選ばれる少なくとも1つを含む。
電波吸収体1aにおいて、第二層22は、例えば、抵抗層10にとっての基材としての役割を果たす。この場合、抵抗層10は、例えば、スパッタリング等の成膜法によって第二層22の一方の主面上に形成された無孔の膜にレーザー加工又はエッチング等によって複数の第一開口部11を形成することによって作製できる。場合によっては、イオンプレーティング又はコーティング(例えば、バーコーティング)等の成膜法によって抵抗層10のための無孔の膜が形成されてもよい。
第二層22は、例えば、抵抗層10よりも導電層30に近い位置に配置されている。図2Bに示す通り、第二層22は、抵抗層10よりも導電層30から遠い位置に配置されていてもよい。この場合、第一層21及び第三層23によって誘電体層20が構成される。この場合、第二層22によって、抵抗層10及び誘電体層20が保護され、電波吸収体1aが高い耐久性を有する。この場合、例えば、抵抗層10が第一層21に接触していてもよい。第二層22の材料は、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、アクリル樹脂(PMMA)、ポリカーボネート(PC)、ポリイミド(PI)、又はシクロオレフィンポリマー(COP)である。なかでも、良好な耐熱性と、寸法安定性と、製造コストとのバランスの観点から、第二層22の材料は、望ましくはPETである。
電波吸収体1aにおいて、第三層23は、例えば、導電層30にとっての基材としての役割を果たす。この場合、導電層30は、例えば、スパッタリング等の成膜法によって第三層23の一方の主面上に形成された無孔の膜にレーザー加工又はエッチング等によって複数の第二開口部31を形成することによって作製できる。場合によっては、イオンプレーティング又はコーティング(例えば、バーコーティング)等の成膜法によって導電層30のための無孔の膜が形成されてもよい。図2Aに示す通り、第三層23は、例えば、電波吸収体1aにおいて、導電層30よりも抵抗層10に近い位置に配置されている。なお、図2Cに示す通り、第三層23は、導電層30よりも抵抗層10から遠い位置に配置されていてもよい。この場合、例えば、導電層30が第一層21に接触している。
第三層23の材料として、例えば、第二層22の材料として例示された材料を使用できる。第三層23の材料は、第二層22の材料と同一であってもよいし、異なっていてもよい。良好な耐熱性と、寸法安定性と、製造コストとのバランスの観点から、第三層23の材料は、望ましくはPETである。
第三層23は、例えば10〜150μmの厚みを有し、望ましくは15〜100μmの厚みを有する。これにより、第三層23の曲げ剛性が低く、かつ、導電層30を形成する場合に第三層23において皺の発生又は変形を抑制できる。なお、第三層23は、場合によっては省略可能である。
第一層21は、複数の層によって構成されていてもよい。特に、図2B又は図2Cに示す通り、抵抗層10及び導電層30の少なくとも1つに第一層21が接触している場合に、第一層21は複数の層によって構成されうる。
第一層21は、粘着性を有していてもよいし、粘着性を有していなくてもよい。第一層21が粘着性を有する場合、第一層21の両主面の少なくとも一方に粘着層が接して配置されていてもよいし、その両主面に接するように粘着層が配置されていなくてもよい。第一層21が粘着性を有しない場合、望ましくは、第一層21の両主面に接して粘着層が配置される。なお、誘電体層20が第二層22を含む場合、第二層22が粘着性を有しなくても、第二層22の両主面に接するように粘着層が配置されなくてもよい。この場合、第二層22の一方の主面に接して粘着層が配置されうる。誘電体層20が第三層23を含む場合、第三層23が粘着性を有しなくても、第三層23の両主面に接して粘着層が配置されなくてもよい。この場合、第三層23の少なくとも一方の主面に接して粘着層が配置されうる。粘着層は、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、又はウレタン系粘着剤を含んでいる。粘着剤を含む粘着層の厚みは、特定の値に限定されないが、例えば3〜50μmであり、望ましくは5〜30μmである。
電波吸収体1aは、例えば、50%以上の可視光透過率を有する。
電波吸収体1aは、例えば、λ/4型の電波吸収体である。電波吸収体1aに吸収対象とする波長λOの電波が入射すると、抵抗層10の表面での反射(表面反射)による電波と、導電層30における反射(裏面反射)による電波とが干渉するように、電波吸収体1aが設計されている。λ/4型の電波吸収体においては、下記の式(1)に示す通り、誘電体層20の厚みt及び誘電体層20の比誘電率εrによって吸収対象の電波の波長λOが決定される。すなわち、誘電体層の比誘電率及び厚みを適宜調節することにより、吸収対象の波長の電波を設定できる。式(1)においてsqrt(εr)は、比誘電率εrの平方根を意味する。
λO=4t×sqrt(εr) 式(1)
電波吸収体1aは、誘電損失材料及び磁性損失材料の少なくとも1つを含んでいてもよい。換言すると、電波吸収体1aは、誘電損失型の電波吸収体であってもよいし、磁性損失型の電波吸収体であってもよい。誘電体層20が、誘電損失材料及び磁性損失材料の少なくとも1つを含んでいてもよい。抵抗層10をなす材料は磁性体であってもよい。
複数の第一開口部11の配置及び形状に関し、電波吸収体1aは、図3Aに示す電波吸収体1b、図3Bに示す電波吸収体1c、又は図3Cに示す電波吸収体1dのように変更されてもよい。電波吸収体1b、電波吸収体1c、及び電波吸収体1dのそれぞれは特に説明をする部分を除き電波吸収体1aと同様に構成されている。電波吸収体1aの構成要素と同一又は対応する、電波吸収体1b、電波吸収体1c、及び電波吸収体1dのそれぞれの構成要素には同一の符号を付し、詳細な説明を省略する。電波吸収体1aに関する説明は、技術的に矛盾しない限り、電波吸収体1b、電波吸収体1c、及び電波吸収体1dにも当てはまる。
図3Aに示す通り、電波吸収体1bにおいて、複数の第一開口部11は平面視で円状である。加えて、複数の第一開口部11は、その中心が第一主面12において平行四辺形格子をなすように配置されている。複数の第一開口部11は、正方格子をなすように配置されてもよい。なお、電波吸収体1aは、複数の第二開口部31が平面視で円状であり、その中心が第二主面32において平行四辺形格子又は正方格子をなすように変更されてもよい。
図3Bに示す通り、電波吸収体1cにおいて、複数の第一開口部11は平面視で正六角形状である。加えて、複数の開口部11は、その中心が第一主面12において平行四辺形格子をなすように配置されている。なお、電波吸収体1aは、複数の第二開口部31が平面視で正六角形状であり、その中心が第二主面32において平行四辺形格子をなすように変更されてもよい。
図3Cに示す通り、電波吸収体1dにおいて、複数の第一開口部11は平面視で正三角形状である。加えて、同じ向きの正三角形状の複数の第一開口部11は、その中心が第一主面12において平行四辺形格子をなすように配置されている。なお、電波吸収体1aは、複数の第二開口部31が平面視で正三角形状であり、同じ向きの正三角形状の複数の第二開口部31の中心が第二主面32において平行四辺形格子をなすように変更されてもよい。なお、本明細書では、平面図形の重心を平面図形状の開口部の中心とみなす。
第一開口部11及び第二開口部31のそれぞれは、平面視で、長方形等の他の多角形状又は楕円状であってもよい。複数の第一開口部11及び複数の第二開口部31のそれぞれは、その中心が第一主面12又は第二主面32において長方形格子等の他の平面格子をなすように配置されてもよい。なお、本明細書において平面格子とは、2つの独立な方向へのそれぞれ一定距離の平行移動で不変な平面上の点の配列を意味する。
電波吸収体1aは、例えば、図4に示す電波吸収体1eのように変更されてもよい。電波吸収体1eは、特に説明する部分を除き電波吸収体1aと同様に構成されている。
電波吸収体1eは、粘着層40をさらに備えている。電波吸収体1bにおいて、導電層30は、誘電体層20と粘着層40との間に配置されている。
例えば、所定の物品に粘着層40を接触させて電波吸収体1bを押し当てることによって、電波吸収体1bを物品に貼り付けることができる。これにより、電波吸収体付物品を得ることができる。
粘着層40は、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、又はウレタン系粘着剤を含んでいる。電波吸収体1bは、セパレータ(図示省略)をさらに備えていてもよい。この場合、セパレータは、粘着層40を覆っている。セパレータは、典型的には、粘着層40を覆っているときに粘着層40aの粘着力を保つことができ、かつ、粘着層40から容易に剥離できるフィルムである。セパレータは、例えば、PET等のポリエステル樹脂製のフィルムである。セパレータを剥離することによって粘着層40が露出し、電波吸収体1bを物品に貼り付けることができる。
以下、実施例により本発明をより詳細に説明する。ただし、本発明は、以下の実施例に限定されない。まず、実施例及び比較例に関する評価方法について説明する。
[D値]
光学顕微鏡を用いて、各実施例及び各比較例に係る抵抗層付フィルムを観察し、複数の開口部が等間隔で配置された方向における開口部の大きさWR及び最近接の開口部同士の距離GRを決定した。同様に、各実施例及び各比較例に係る導電層付フィルムを観察し、、複数の開口部が等間隔で配置された方向における開口部の大きさWC及び最近接の開口部同士の距離GCを決定した。各実施例及び各比較例において、比GR/WR及び比GC/WCのうちより大きい値をより小さい値で除してD値を決定した。結果を表1に示す。
[TEM観察]
集束イオンビーム加工観察装置(日立ハイテクノロジーズ社製、製品名:FB−2000A)を用いて、各実施例及び各比較例に係る抵抗層用無孔膜、各実施例及び各比較例に係る導電層用無孔膜、各実施例及び各比較例に係る抵抗層付フィルム、及び各実施例及び各比較例に係る導電層付フィルムにおける合金膜の断面観察用サンプルを作製した。その後、電界放射型透過電子顕微鏡(日立ハイテクノロジーズ社製、製品名:HF−2000)を用いて、断面観察用サンプルを観察し、各実施例及び各比較例に係る抵抗層用無孔膜及び各実施例及び各比較例に係る導電層用無孔膜の厚みを測定した。この無孔膜の厚みを、各実施例及び各比較例に係る抵抗層及び導電層の厚みとみなした。結果を表1に示す。
[外観の確認]
各実施例及び各比較例に係るサンプルを肉眼により観察し、モアレが視認できるか否かを判断した。モアレが視認できなかった場合を「A」と評価し、モアレが視認できた場合を「X」と評価した。
[電波吸収性能]
日本産業規格JIS R 1679:2007を参考に、アンリツ社製のベクトルネットワークアナライザーを用いて、サンプルホルダーに固定された各実施例及び各比較例に係るサンプルに対し、60〜90GHzの周波数の電波を0°の入射角度で入射させ、下記の式(2)に従って各周波数における反射減衰量|S|を特定した。式(2)において、P0は、測定対象に電波を所定の入射角度で入射させた場合における送信電波の電力であり、Piは、その場合における受信電波の電力である。なお、各実施例及び各比較例に係るサンプルの代わりに、アルミニウム製の板材をサンプルホルダーに固定してこの板材に電波を0°の入射角度で入射させた場合の反射減衰量|S|を0dBとみなして各サンプルの反射減衰量|S|を決定した。この板材は30cm平方の面寸法を有し、この板材の厚みは5mmであった。各サンプルに対し、反射減衰量|S|の最大値を決定した。結果を表1に示す。
S[dB]=10×log|Pi/P0| 式(2)
[可視光透過率]
日立製作所社製の分光光度計U-4100を用いて各サンプルの可視光透過率を測定した。結果を表1に示す。
[比抵抗及びシート抵抗]
ナプソン社製の非接触式抵抗測定装置NC-80LINEを用いて、JIS Z 2316に準拠して、渦電流法によって各実施例及び各比較例に係る抵抗層及び導電層のシート抵抗を測定した。一方、各実施例及び各比較例に係る抵抗層用無孔膜及び導電層用無孔膜のシート抵抗を同様にして測定した。上記のように測定した無孔膜の厚みと、上記のように測定した無孔膜のシート抵抗との積を求め、無孔膜をなす材料の比抵抗を決定した。抵抗層用無孔膜をなす材料の比抵抗を各実施例及び各比較例に係る抵抗層をなす材料の比抵抗とみなし、導電層用無孔膜をなす材料の比抵抗を各実施例及び各比較例に係る導電層をなす材料の比抵抗とみなした。結果を表1に示す。
<実施例1>
Al(アルミニウム)のターゲット材及びSi(ケイ素)のターゲット材を用い、かつ、プロセスガスとしてアルゴンガスを用いて、DCマグネトロンスパッタリングを行い、PETフィルムの上にAl−Si合金膜を形成した。DCマグネトロンスパッタリングにおいて、Al(アルミニウム)のターゲット材が関与する放電と、Si(ケイ素)のターゲット材が関与する放電とを同時に行った。このようにして、PETフィルムの上に実施例1に係る抵抗層用無孔膜を形成した。実施例1に係る抵抗層用無孔膜をなす材料の比抵抗は、5.0×10-5Ω・cmであった。この無孔膜は、35nmの厚みを有していた。次に、メタルレーザーパターン加工機を用いて、実施例1に係る抵抗層用無孔膜に正方格子をなすように正方形状の複数の開口部を等間隔で形成し、実施例1に係る抵抗層付フィルムを得た。実施例1に係る抵抗層付フィルムの平面視において、複数の開口部が等間隔で配置された方向における開口部の大きさは240μmであり、最近接の開口部同士の距離は10μmであった。
銅(Cu)のターゲット材を用い、プロセスガスとしてアルゴンガスを用いて、DCマグネトロンスパッタリングを行い、PETフィルムの上にCu膜を形成した。このようにして、PETフィルムの上に実施例1に係る導電層用無孔膜を形成した。実施例1に係る導電層用無孔膜をなす材料の比抵抗は、5.0×10-6Ω・cmであった。この無孔膜は、500nmの厚みを有していた。次に、メタルレーザーパターン加工機を用いて、実施例1に係る導電層用無孔膜に正方格子をなすように正方形状の複数の開口部を等間隔で形成し、実施例1に係る導電層付フィルムを得た。実施例1に係る導電層付フィルムの平面視において、複数の開口部が等間隔で配置された方向における開口部の大きさは490μmであり、最近接の開口部同士の距離は10μmであった。
次に、2.6の比誘電率を有するアクリル樹脂を480μmの厚みに成形して、アクリル樹脂層Aを得た。アクリル樹脂層Aの可視光透過率は85.7%であった。実施例1に係る抵抗層付フィルムの抵抗層がアクリル樹脂層Aに接触するように実施例1に係る抵抗層付フィルムをアクリル樹脂層Aに重ねた。次に、実施例1に係る導電層付フィルムにおける導電層がアクリル樹脂層Aに接触するように導電層付フィルムをアクリル樹脂層Aに重ねた。このようにして、実施例1に係るサンプルを得た。
<実施例2>
銅(Cu)のターゲット材を用い、プロセスガスとしてアルゴンガスを用いて、DCマグネトロンスパッタリングを行い、PETフィルムの上にCu膜を形成した。このようにして、PETフィルムの上に実施例2に係る導電層用無孔膜を形成した。実施例2に係る導電層用無孔膜をなす材料の比抵抗は、1.0×10-5Ω・cmであった。この無孔膜は、400nmの厚みを有していた。次に、メタルレーザーパターン加工機を用いて、実施例2に係る導電層用無孔膜に正方格子をなすように正方形状の複数の開口部を等間隔で形成し、実施例2に係る導電層付フィルムを得た。実施例2に係る導電層付フィルムの平面視において、複数の開口部が等間隔で配置された方向における開口部の大きさは450μmであり、最近接の開口部同士の距離は50μmであった。
2.6の比誘電率を有するアクリル樹脂を540μmの厚みに成形して、アクリル樹脂層Bを得た。アクリル樹脂層Aの代わりにアクリル樹脂層Bを用い、かつ、実施例1に係る導電層付フィルムの代わりに実施例2に係る導電層付フィルムを用いた以外は、実施例1と同様にして、実施例2に係るサンプルを作製した。
<実施例3>
無孔膜の厚みが50nmになるようにDCマグネトロンスパッタリングの条件を調整した以外は、実施例1と同様にして実施例3に係る抵抗層用無孔膜を形成した。次に、メタルレーザーパターン加工機を用いて、実施例3に係る抵抗層用無孔膜に正方格子をなすように正方形状の複数の開口部を等間隔で形成し、実施例3に係る抵抗層付フィルムを得た。実施例3に係る抵抗層付フィルムの平面視において、複数の開口部が等間隔で配置された方向における開口部の大きさは450μmであり、最近接の開口部同士の距離は50μmであった。
実施例1と同様にして、PETフィルムの上に実施例3に係る導電層用無孔膜を形成した。実施例3に係る導電層用無孔膜をなす材料の比抵抗は、5.0×10-6Ω・cmであった。この無孔膜は、1500nmの厚みを有していた。次に、メタルレーザーパターン加工機を用いて、実施例3に係る導電層用無孔膜に正方格子をなすように正方形状の複数の開口部を等間隔で形成し、実施例3に係る導電層付フィルムを得た。実施例3に係る導電層付フィルムの平面視において、複数の開口部が等間隔で配置された方向における開口部の大きさは490μmであり、最近接の開口部同士の距離は10μmであった。
次に、2.6の比誘電率を有するアクリル樹脂を550μmの厚みに成形して、アクリル樹脂層Cを得た。実施例3に係る抵抗層付フィルムの抵抗層がアクリル樹脂層Cに接触するように実施例3に係る抵抗層付フィルムをアクリル樹脂層Cに重ねた。次に、実施例3に係る導電層付フィルムにおける導電層がアクリル樹脂層Cに接触するように導電層付フィルムをアクリル樹脂層Cに重ねた。このようにして、実施例3に係るサンプルを得た。
<比較例1>
下記の点以外は、実施例1と同様にして、PETフィルムの上に比較例1に係る抵抗層用無孔膜を形成するとともに、比較例1に係る抵抗層付フィルムを得た。比較例1に係る抵抗層をなす材料の比抵抗が1.0×10-4Ω・cmとなるように、DCマグネトロンスパッタリングにおいて、Al(アルミニウム)のターゲット材が関与する放電の放電電力に対する、Si(ケイ素)のターゲット材が関与する放電の放電電力の比を調整した。加えて、比較例1に係る抵抗層付フィルムにおける合金膜の厚みが30nmになるようにDCマグネトロンスパッタリングの条件を調整した。次に、メタルレーザーパターン加工機を用いて、比較例1に係る抵抗層用無孔膜に正方格子をなすように正方形状の複数の開口部を等間隔で形成し、比較例1に係る抵抗層付フィルムを得た。比較例1に係る抵抗層付フィルムの平面視において、複数の開口部が等間隔で配置された方向における開口部の大きさは90μmであり、最近接の開口部同士の距離は10μmであった。
無孔膜の厚みを1000nmに調整した以外は、実施例2と同様にして、比較例1に係る導電層付フィルムを得た。2.6の比誘電率を有するアクリル樹脂を500μmの厚みに成形して、アクリル樹脂層Dを得た。アクリル樹脂層Bの代わりにアクリル樹脂層Dを用い、実施例1に係る抵抗層付フィルムの代わりに比較例1に係る抵抗層付フィルムを用い、実施例2に係る導電層付フィルムの代わりに比較例1に係る導電層付フィルムを用いて、実施例2と同様にして、比較例1に係るサンプルを得た。
<比較例2>
比較例1と同様にして、比較例2に係る抵抗層用無孔膜を形成した。メタルレーザーパターン加工機を用いて、比較例2に係る抵抗層用無孔膜に正方格子をなすように正方形状の複数の開口部を等間隔で形成し、比較例2に係る抵抗層付フィルムを得た。比較例2に係る抵抗層付フィルムの平面視において、複数の開口部が等間隔で配置された方向における開口部の大きさは91.6μmであり、最近接の開口部同士の距離は8.3μmであった。
無孔膜の厚みを1000nmに調整した以外は、実施例2と同様にして、比較例2に係る導電層用無孔膜を形成した。メタルレーザーパターン加工機を用いて、比較例2に係る導電層用無孔膜に正方格子をなすように正方形状の複数の開口部を等間隔で形成し、比較例2に係る導電層付フィルムを得た。比較例2に係る導電層付フィルムの平面視において、複数の開口部が等間隔で配置された方向における開口部の大きさは448.8μmであり、最近接の開口部同士の距離は51.2μmであった。
比較例1に係る抵抗層付フィルムの代わりに、比較例2に係る抵抗層付フィルムを用い、かつ、比較例1に係る導電層付フィルムの代わりに、比較例2に係る導電層付フィルムを用いた以外は、比較例1と同様にして、比較例2に係るサンプルを作製した。
<比較例3>
無孔膜の厚みを1000nmに調整した以外は、実施例2と同様にして、比較例3に係る導電層用無孔膜を形成した。メタルレーザーパターン加工機を用いて、比較例3に係る導電層用無孔膜に正方格子をなすように正方形状の複数の開口部を等間隔で形成し、比較例3に係る導電層付フィルムを得た。比較例3に係る導電層付フィルムの平面視において、複数の開口部が等間隔で配置された方向における開口部の大きさは90μmであり、最近接の開口部同士の距離は10μmであった。
2.6の比誘電率を有するアクリル樹脂を590μmの厚みに成形して、アクリル樹脂層Eを得た。アクリル樹脂層Dの代わりにアクリル樹脂層Eを用い、かつ、比較例1に係る導電層付フィルムの代わりに比較例3に係る導電層付フィルムを用いた以外は、比較例1と同様にして、比較例3に係るサンプルを作製した。
表1に示す通り、各実施例に係るサンプルにおける可視光透過率は高く、良好な電波吸収性能を有していた。加えて、各実施例に係るサンプルにおいてモアレは視認されなかった。一方、各比較例に係るサンプルにおいてモアレが視認された。実施例と比較例との対比より、D値が1.3以上であることは、モアレを視認させにくくするうえで有利であることが示唆された。
Figure 2021163794
1a、1b、1c、1d、1e 電波吸収体
10 抵抗層
11 第一開口部
12 第一主面
20 誘電体層
30 導電層
31 第二開口部
32 第二主面

Claims (7)

  1. 第一主面を有し、前記第一主面に沿って第一方向に等間隔で形成された複数の第一開口部を有する抵抗層と、
    第二主面を有し、前記第二主面に沿って第二方向に等間隔で形成された複数の第二開口部を有する導電層と、
    前記抵抗層の厚み方向において前記抵抗層と前記導電層との間に配置された誘電体層とを備え、
    最近接の前記第一開口部同士の距離に対する前記第一方向における前記第一開口部の大きさの比である第一比及び最近接の前記第二開口部同士の距離に対する前記第二方向における前記第二開口部の大きさの比である第二比のうちより大きい値を、前記第一比及び前記第二比のうちより小さい値で除して得られる値が1.3以上である、
    電波吸収体。
  2. 前記第一開口部同士の前記距離は、10μm以下である、請求項1に記載の電波吸収体。
  3. 前記第二開口部同士の前記距離は、10μm以下である、請求項1又は2のいずれか1項に記載の電波吸収体。
  4. 前記抵抗層は、65%以上の開口率を有する、請求項1〜3のいずれか1項に記載の電波吸収体。
  5. 前記導電層は、65%以上の開口率を有する、請求項1〜4のいずれか1項に記載の電波吸収体。
  6. 前記誘電体層は、80%以上の可視光透過率を有する、請求項1〜5のいずれか1項に記載の電波吸収体。
  7. 50%以上の可視光透過率を有する、請求項1〜6のいずれか1項に記載の電波吸収体。
JP2020061582A 2020-03-30 2020-03-30 電波吸収体 Pending JP2021163794A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020061582A JP2021163794A (ja) 2020-03-30 2020-03-30 電波吸収体
PCT/JP2021/008821 WO2021199921A1 (ja) 2020-03-30 2021-03-05 電波吸収体
US17/915,243 US20230144249A1 (en) 2020-03-30 2021-03-05 Radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020061582A JP2021163794A (ja) 2020-03-30 2020-03-30 電波吸収体

Publications (1)

Publication Number Publication Date
JP2021163794A true JP2021163794A (ja) 2021-10-11

Family

ID=77928543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020061582A Pending JP2021163794A (ja) 2020-03-30 2020-03-30 電波吸収体

Country Status (3)

Country Link
US (1) US20230144249A1 (ja)
JP (1) JP2021163794A (ja)
WO (1) WO2021199921A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12088008B2 (en) * 2020-02-18 2024-09-10 Rochester Institute Of Technology Laser cut carbon-based reflector and antenna system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076672A (ja) * 2000-08-31 2002-03-15 Takenaka Komuten Co Ltd 電磁波吸収体
JP4889180B2 (ja) * 2002-10-17 2012-03-07 学校法人五島育英会 多周波帯対応電波吸収体
JP4461970B2 (ja) * 2004-09-06 2010-05-12 三菱瓦斯化学株式会社 電波吸収体
JP2008270793A (ja) * 2007-03-27 2008-11-06 Nitta Ind Corp 電磁波吸収体および建材ならびに電磁波吸収方法
JP4948482B2 (ja) * 2008-06-27 2012-06-06 三菱電線工業株式会社 電波吸収体
UA93293C2 (en) * 2009-06-17 2011-01-25 Киевский Национальный Университет Имени Tapaca Шевченко Electromagnetic waves absorbing coatings
WO2018016522A1 (ja) * 2016-07-22 2018-01-25 マクセルホールディングス株式会社 電磁波吸収体
JP7058475B2 (ja) * 2017-06-13 2022-04-22 日東電工株式会社 電磁波吸収体及び電磁波吸収体付成形品
CN111837464B (zh) * 2018-06-07 2024-03-29 麦克赛尔株式会社 电磁波吸收片
JP2021044483A (ja) * 2019-09-13 2021-03-18 日東電工株式会社 インピーダンス整合膜及び電波吸収体
EP4084225A4 (en) * 2019-12-25 2023-05-17 FUJIFILM Corporation ELECTROMAGNETIC SHIELDING ELEMENT
JP2021164011A (ja) * 2020-03-30 2021-10-11 日東電工株式会社 インピーダンス整合膜及び電波吸収体
JP2021163793A (ja) * 2020-03-30 2021-10-11 日東電工株式会社 インピーダンス整合膜及び電波吸収体

Also Published As

Publication number Publication date
WO2021199921A1 (ja) 2021-10-07
US20230144249A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
WO2021199920A1 (ja) インピーダンス整合膜及び電波吸収体
US11351753B2 (en) Electromagnetic wave transmissive metal member, article using the same, and production method for electromagnetic wave transmissive metal film
WO2021199921A1 (ja) 電波吸収体
US20210059085A1 (en) Electromagnetic wave absorber, article with electromagnetic wave absorber, and method for manufacturing electromagnetic wave absorber
US20230062683A1 (en) Wiring board and method for manufacturing wiring board
US20220007553A1 (en) Conductive nonwoven fabric
KR20160007369A (ko) 전극 패턴 제작용 적층체, 그 제조 방법, 터치 패널용 기판 및 화상 표시 장치
WO2021199928A1 (ja) インピーダンス整合膜及び電波吸収体
KR102168863B1 (ko) 전자파 흡수 복합 시트
US12132254B2 (en) Impedance matching film for radio wave absorber, impedance matching film-attached film for radio wave absorber, radio wave absorber, and laminate for radio wave absorber
WO2021049284A1 (ja) インピーダンス整合膜及び電波吸収体
US5225284A (en) Absorbers
KR20190126418A (ko) 도전성 필름, 터치 패널 및 화상 표시 장치
WO2022209095A1 (ja) アンテナフィルム
US20220159884A1 (en) Radio wave absorber and kit for radio wave absorber
JP7550599B2 (ja) 金属層、導電性フィルム、および、金属層の製造方法
WO2024043308A1 (ja) 電磁波吸収部材
JP7559986B2 (ja) 高周波拡散シート
KR20240144895A (ko) 전파 반사체 및 건축 재료
EP3211982B1 (en) Near-field electromagnetic wave absorbing film
KR20240131343A (ko) 전파 반사체
KR101814950B1 (ko) 터치 센서
CN118675793A (zh) 导电性膜
KR20200097434A (ko) 방열시트 및 이를 포함하는 전자파 차폐-방열 복합시트
JP2010171028A (ja) プラズマディスプレイ用電磁波遮蔽体およびプラズマディスプレイ装置