[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021161165A - Thermoplastic polyester elastomer foam molding and its manufacturing method - Google Patents

Thermoplastic polyester elastomer foam molding and its manufacturing method Download PDF

Info

Publication number
JP2021161165A
JP2021161165A JP2020061993A JP2020061993A JP2021161165A JP 2021161165 A JP2021161165 A JP 2021161165A JP 2020061993 A JP2020061993 A JP 2020061993A JP 2020061993 A JP2020061993 A JP 2020061993A JP 2021161165 A JP2021161165 A JP 2021161165A
Authority
JP
Japan
Prior art keywords
melting point
polyester elastomer
parts
thermoplastic polyester
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020061993A
Other languages
Japanese (ja)
Inventor
剛士 嶋田
Takeshi Shimada
優一 中尾
Yuichi Nakao
裕司 植村
Yuji Uemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP2020061993A priority Critical patent/JP2021161165A/en
Publication of JP2021161165A publication Critical patent/JP2021161165A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

To easily provide a foamed thermoplastic polyester elastomer foam molding excellent in light-weight rate and high foaming property.SOLUTION: A foam molding comprises a thermoelastic polyester elastomer comprising (a-1) a high melting point crystalline segment mainly made of a crystalline aromatic polyester unit and (a-2) a low melting point polymer segment mainly made of an aliphatic polyether unit and/or an aliphatic polyester unit as a main constituent component, in which a content of the low melting point polymer segment is 10 to 44 pts.wt, in which a foam molding that is formed by foaming a composition containing a heat decomposition type foam agent is characterized in that the density (apparent density) is smaller than 0.4, and the foaming rate (density of non-foamed product/density of foamed product) exceeds 3.SELECTED DRAWING: None

Description

本発明は、熱可塑性ポリエステルエラストマー発泡成形体に関するものである。 The present invention relates to a thermoplastic polyester elastomer foam molded article.

熱可塑性ポリエステルエラストマーは、射出成形性、押出成形性に優れ、機械的強度が高く、弾性回復性、耐衝撃性、柔軟性などのゴム的性質、耐寒性に優れる材料として、自動車部品、電気・電子部品、繊維、フィルム、スポーツ部品などの用途に使用されている。 Thermoplastic polyester elastomer is excellent in injection moldability and extrusion moldability, has high mechanical strength, has rubber properties such as elastic recovery, impact resistance, and flexibility, and is a material with excellent cold resistance. It is used in applications such as electronic parts, textiles, films, and sports parts.

熱可塑性ポリエステルエラストマーは、耐熱老化性、耐光性、耐摩耗性に優れていることから、自動車部品、特に高温環境下で使用される部品や自動車内装部品に採用されている。さらに近年樹脂部品の軽量化が進められており、目的を達成する手段の一つとして発泡成形品の適用を挙げることができる。 Thermoplastic polyester elastomer is excellent in heat aging resistance, light resistance, and abrasion resistance, and is therefore used in automobile parts, particularly parts used in a high temperature environment and automobile interior parts. Further, in recent years, the weight of resin parts has been reduced, and the application of foam molded products can be mentioned as one of the means for achieving the purpose.

発泡成形体を得るための射出発泡成形方法には、DPT(N,N‘−ジニトロペンタメチレンテトラミン)や重曹などの化学発泡剤を樹脂材料に混ぜて使用する化学発泡成形と、窒素や二酸化炭素などの不活性ガス(物理発泡剤)をシリンダやノズルから注入する物理発泡成形とがある。 Injection molding methods for obtaining foam moldings include chemical foam molding using a chemical foaming agent such as DPT (N, N'-dinitropentamethylenetetramine) or baking soda mixed with a resin material, and nitrogen and carbon dioxide. There is a physical foam molding in which an inert gas (physical foaming agent) such as is injected from a cylinder or a nozzle.

従来、高発泡成形体を得る方法として物理発泡剤として超臨界状態の不活性ガスを用いる方法が提案されており、軽量に優れた高発泡成形体を得ることが可能になっている(例えば特許文献1、2)。特許文献1、2では低硬度なポリエステルエラストマーに超臨界状態の不活性ガスを含浸させることで、柔軟性、反発弾性率に優れた高発泡成形体が開示されている。 Conventionally, as a method for obtaining a highly foamed molded product, a method using an inert gas in a supercritical state as a physical foaming agent has been proposed, and it is possible to obtain a highly foamed molded product having excellent light weight (for example, a patent). Documents 1 and 2). Patent Documents 1 and 2 disclose a highly foamed molded product having excellent flexibility and elastic modulus by impregnating a low-hardness polyester elastomer with an inert gas in a supercritical state.

一方、化学発泡剤を用いる方法は成形装置の導入コストが安く、また取り扱いが簡易なため押出成形や射出成形と幅広く普及している(例えば特許文献3) On the other hand, the method using a chemical foaming agent is widely used in extrusion molding and injection molding because the introduction cost of the molding apparatus is low and the handling is easy (for example, Patent Document 3).

特許第6380638号Patent No. 6380638 特許第6380639号Patent No. 6380639 特許第3307670号Patent No. 3307670

しかしながら、特許文献1、2の組成物によれば低硬度のポリエステルエラストマーを使用する。そのため、例えば自動車部品の一部で要求されるような優れた耐熱性については、いまだ目標を達成出来ていない。また、超臨界流体のガスを使用するためには超臨界流体発生、供給装置と専用のスクリュ、シリンダが必要なため導入コストが高いといった課題があった。 However, according to the compositions of Patent Documents 1 and 2, a low hardness polyester elastomer is used. Therefore, for example, the excellent heat resistance required for some automobile parts has not yet been achieved. Further, in order to use the gas of the supercritical fluid, there are problems that the supercritical fluid is generated, the supply device and the dedicated screw, and the cylinder are required, so that the introduction cost is high.

一方、化学発泡剤を用いる方法は、化学発泡剤の中でも、熱分解発泡剤を用いる方法では、熱分解発泡剤成分が押出機、成形機内で分解し出すため、発泡倍率が3倍を超えるような高発泡成形体を得ることは困難であった。 On the other hand, in the method using a chemical foaming agent, among the chemical foaming agents, in the method using a thermal decomposition foaming agent, the thermal decomposition foaming agent component is decomposed in the extruder and the molding machine, so that the foaming ratio exceeds 3 times. It was difficult to obtain a highly foamed molded product.

本発明者らは、上記の目的を達成するために鋭意検討した結果、熱可塑性ポリエステルエラストマーにおける低融点重合体セグメントの含有量に着目し、これを少なくすることや、MFRを制御することで、熱分解発泡剤による射出発泡成形によっても、軽量性に優れる高発泡倍率の熱可塑性ポリエステルエラストマー発泡成形体を容易に得ることを達成した。低融点重合体セグメントの含有量を少なくすることで耐熱性の高い高発泡倍率の発泡成形体を得ることが出来た。 As a result of diligent studies to achieve the above object, the present inventors focused on the content of the low melting point polymer segment in the thermoplastic polyester elastomer, reduced it, and controlled the MFR. By injection foam molding with a pyrolysis foaming agent, it has been achieved that a thermoplastic polyester elastomer foam molded product having a high foaming ratio and excellent light weight can be easily obtained. By reducing the content of the low melting point polymer segment, a foam molded product having high heat resistance and a high foaming ratio could be obtained.

本発明は、結晶性芳香族ポリエステル単位からなる高融点結晶性重合体セグメント(a−1)と、脂肪族ポリエーテル単位および/または脂肪族ポリエステル単位からなる低融点重合体セグメント(a−2)とを主たる構成成分とし、低融点重合体セグメント(a−2)の含有量が10〜44重量部であり、230℃におけるMFRが5〜50g/10minである熱可塑性ポリエステルエラストマーからなり、密度(みかけ密度)が0.4未満であり、発泡倍率(非発泡品の密度/発泡品の密度)が3を超えることを特徴とする熱可塑性ポリエステルエラストマー発泡成形体である。 The present invention comprises a high melting point crystalline polymer segment (a-1) composed of a crystalline aromatic polyester unit and a low melting point polymer segment (a-2) consisting of an aliphatic polyether unit and / or an aliphatic polyester unit. The content of the low melting point polymer segment (a-2) is 10 to 44 parts by weight, and the MFR at 230 ° C. is 5 to 50 g / 10 min. It is a thermoplastic polyester elastomer foam molded product characterized in that the apparent density) is less than 0.4 and the foaming ratio (density of non-foamed product / density of foamed product) exceeds 3.

また、本発明は、結晶性芳香族ポリエステル単位からなる高融点結晶性セグメント(a−1)と、脂肪族ポリエーテル単位および/または脂肪族ポリエステル単位からなる低融点重合体セグメント(a−2)とを主たる構成成分とし、低融点重合体セグメント(a−2)の含有量が10〜44重量部であり、230℃におけるMFRが5〜50g/10minである熱可塑性ポリエステルエラストマー100重量部に対して、熱分解型発泡剤1.0〜5.0重量部を含有させ、射出成形機により発泡させて射出成形することを特徴とする熱可塑性ポリエステルエラストマー発泡成形体の製造方法である。 Further, the present invention comprises a high melting point crystalline segment (a-1) composed of a crystalline aromatic polyester unit and a low melting point polymer segment (a-2) composed of an aliphatic polyether unit and / or an aliphatic polyester unit. The content of the low melting point polymer segment (a-2) is 10 to 44 parts by weight, and the MFR at 230 ° C. is 5 to 50 g / 10 min with respect to 100 parts by weight of the thermoplastic polyester elastomer. This is a method for producing a thermoplastic polyester elastomer foam molded product, which comprises 1.0 to 5.0 parts by weight of a heat-decomposable foaming agent and is foamed by an injection molding machine for injection molding.

本発明によれば熱分解型発泡剤を使用する射出発泡成形によって、容易に軽量率、高発泡性に優れる熱可塑性ポリエステルエラストマー発泡成形体を得ることができる。 According to the present invention, a thermoplastic polyester elastomer foam molded product having excellent light weight and high foamability can be easily obtained by injection foam molding using a pyrolysis type foaming agent.

以下、本発明について記述する。 Hereinafter, the present invention will be described.

本発明の熱可塑性ポリエステルエラストマー発泡成形体は、結晶性芳香族ポリエステル単位からなる高融点結晶性セグメント(a−1)と、脂肪族ポリエーテル単位および/または脂肪族ポリエステル単位からなる低融点重合体セグメント(a−2)とを主たる構成成分とし、低融点重合体セグメント(a−2)の含有量が10〜44重量部であり、230℃におけるMFRが5〜50g/10minである熱可塑性ポリエステルエラストマーからなり、密度(みかけ密度)が0.4未満であり、発泡倍率(非発泡品の密度/発泡品の密度)が3を超えることを特徴とする熱可塑性ポリエステルエラストマー発泡成形体である。 The thermoplastic polyester elastomer foam molded product of the present invention is a low melting point polymer composed of a high melting point crystalline segment (a-1) composed of a crystalline aromatic polyester unit and an aliphatic polyether unit and / or an aliphatic polyester unit. A thermoplastic polyester containing the segment (a-2) as a main component, the content of the low melting point polymer segment (a-2) is 10 to 44 parts by weight, and the MFR at 230 ° C. is 5 to 50 g / 10 min. It is a thermoplastic polyester elastomer foam molded product made of an elastomer, having a density (apparent density) of less than 0.4 and a foaming ratio (density of non-foamed product / density of foamed product) of more than 3.

本発明に用いる熱可塑性ポリエステルエラストマーの高融点結晶性セグメント(a―1)は、芳香族ジカルボン酸またはそのエステル形成性誘導体と脂肪族ジオールから形成されるポリエステルが好ましく、テレフタル酸および/またはジメチルテレフタレートと1,4−ブタンジオールから誘導されるポリブチレンテレフタレートがより好ましい。さらに、この他に、イソフタル酸、フタル酸、ナフタレン−2,6−ジカルボン酸、ナフタレン−2,7−ジカルボン酸、ジフェニル−4,4’−ジカルボン酸、ジフェノキシエタンジカルボン酸、5−スルホイソフタル酸、あるいはこれらのエステル形成性誘導体等のジカルボン酸成分と、分子量300以下のジオール、例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコール等の脂肪族ジオール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメチロール等の脂環式ジオール、キシリレングリコール、ビス(p−ヒドロキシ)ジフェニル、ビス(p−ヒドロキシフェニル)プロパン、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン、ビス[4−(2−ヒドロキシ)フェニル]スルホン、1,1−ビス[4−(2−ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’−ジヒドロキシ−p−タ−フェニル、4,4’−ジヒドロキシ−p−クオーターフェニル等の芳香族ジオール等から誘導されるポリエステル、あるいはこれらのジカルボン酸成分およびジオール成分を2種以上併用した共重合ポリエステルを含んでいてもよい。 The refractory crystalline segment (a-1) of the thermoplastic polyester elastomer used in the present invention is preferably a polyester formed from an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol, and terephthalic acid and / or dimethylterephthalate. And polybutylene terephthalate derived from 1,4-butanediol is more preferred. Furthermore, in addition to this, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, diphenoxyetanedicarboxylic acid, 5-sulfoisophthal. Dicarboxylic acid components such as acids or their ester-forming derivatives and aliphatic diols having a molecular weight of 300 or less, such as ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, and decamethylene glycol. Didiol, alicyclic diol such as 1,4-cyclohexanedimethanol, tricyclodecanedimethylol, xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2-bis [4 -(2-Hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxy) phenyl] sulfone, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 4,4'-dihydroxy-p It contains polyester derived from aromatic diols such as −taphenyl and 4,4′-dihydroxy-p-quarterphenyl, or copolymerized polyester in which two or more of these dicarboxylic acid components and diol components are used in combination. May be good.

高融点結晶性セグメント(a―1)は、より好ましくは、ポリブチレンテレフタレート単位から形成される。 The melting point crystalline segment (a-1) is more preferably formed from polybutylene terephthalate units.

本発明に用いる熱可塑性ポリエステルエラストマーの低融点重合体セグメント(a―2)は、脂肪族ポリエーテル単位および/または脂肪族ポリエステル単位からなる低融点重合体セグメントである。前記脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランの共重合体等が挙げられる。前記脂肪族ポリエスエテルとしては、ポリ(ε−カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等が挙げられる。これらの脂肪族ポリエーテルおよび/または脂肪族ポリエステルのうち、得られるポリエステルブロック共重合体の弾性特性からポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε−カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペート等が好ましい。より好ましくは、ポリ(テトラメチレンオキシド)グリコールから形成される。また、これらの低融点重合体セグメントの数平均分子量としては共重合された状態において600以上4000以下程度であることが好ましい。 The low melting point polymer segment (a-2) of the thermoplastic polyester elastomer used in the present invention is a low melting point polymer segment composed of an aliphatic polyether unit and / or an aliphatic polyester unit. Examples of the aliphatic polyether include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, a copolymer of ethylene oxide and propylene oxide, and poly (propylene oxide). ) Glycol ethylene oxide addition polymer, ethylene oxide and tetrahydrofuran copolymer and the like can be mentioned. Examples of the aliphatic polyester are poly (ε-caprolactone), polyenant lactone, polycaprilolactone, polybutylene adipate, polyethylene adipate and the like. Among these aliphatic polyethers and / or aliphatic polyesters, poly (tetramethylene oxide) glycol, ethylene oxide adduct of poly (propylene oxide) glycol, and poly (ε-caprolactone) are obtained from the elastic properties of the obtained polyester block copolymer. ), Polybutylene adipate, polyethylene adipate and the like are preferable. More preferably, it is formed from poly (tetramethylene oxide) glycol. Further, the number average molecular weight of these low melting point polymer segments is preferably about 600 or more and 4000 or less in the copolymerized state.

低融点重合体セグメント(a―2)は、より好ましくは、ポリ(テトラメチレンオキシド)グリコールから形成される。 The low melting point polymer segment (a-2) is more preferably formed from poly (tetramethylene oxide) glycol.

本発明に用いられる熱可塑性ポリエステルエラストマーにおける低融点重合体セグメント(a―2)の含有量は、結晶性芳香族ポリエステル単位からなる高融点結晶性重合体セグメント(a−1)と、脂肪族ポリエーテル単位および/または脂肪族ポリエステル単位からなる低融点重合体セグメント(a―2)の総計を100重量%としたとき、10〜44重量%であり、15〜40重量%が好ましい。低融点重合体セグメント(a―2)の共重合量が10重量%未満であると、柔軟性、屈曲疲労性が悪くなる。一方、低融点重合体セグメント(a―2)の共重合量が44重量%を越えると、軽量且つ、高発泡性に優れた成形体が得られない。また、機械的物性、高温特性、耐油性、耐薬品性が十分に発現しない。 The content of the low melting point polymer segment (a-2) in the thermoplastic polyester elastomer used in the present invention is the high melting point crystalline polymer segment (a-1) composed of crystalline aromatic polyester units and the aliphatic poly. When the total of the low melting point polymer segment (a-2) composed of the ether unit and / or the aliphatic polyester unit is 100% by weight, it is 10 to 44% by weight, preferably 15 to 40% by weight. If the copolymerization amount of the low melting point polymer segment (a-2) is less than 10% by weight, the flexibility and bending fatigue property deteriorate. On the other hand, if the copolymerization amount of the low melting point polymer segment (a-2) exceeds 44% by weight, a molded product that is lightweight and has excellent foamability cannot be obtained. In addition, mechanical properties, high temperature characteristics, oil resistance, and chemical resistance are not sufficiently exhibited.

本発明に用いる熱可塑性ポリエステルエラストマーは公知の方法で製造することができ、いずれの方法をとってもよい。例えば、ジカルボン酸の低級アルコールジエステル、過剰量の低分子量グリコール、および低融点重合体セグメント成分を触媒の存在下にエステル交換反応せしめ、得られる反応生成物を重縮合する方法、あるいはジカルボン酸と過剰量のグリコールおよび低融点重合体セグメント成分を触媒の存在下にエステル化反応せしめ、得られる反応生成物を重縮合する方法、高融点結晶性セグメントと低融点重合体セグメントを鎖連結剤でつなぐ方法等が挙げられ、ポリ(ε−カプロラクトン)を低融点重合体セグメントに用いる場合は、高融点結晶性セグメントにε−カプロラクトンモノマを付加反応させる方法等が挙げられる。 The thermoplastic polyester elastomer used in the present invention can be produced by a known method, and any method may be used. For example, a method in which a lower alcohol diester of dicarboxylic acid, an excessive amount of low molecular weight glycol, and a low melting point polymer segment component are transesterified in the presence of a catalyst to polycondensate the obtained reaction product, or an excess with dicarboxylic acid. A method of transesterifying an amount of glycol and a low melting point polymer segment component in the presence of a catalyst and polycondensing the obtained reaction product, a method of connecting a high melting point crystalline segment and a low melting point polymer segment with a chain linking agent. When poly (ε-caprolactone) is used for the low melting point polymer segment, a method of adding ε-caprolactone monoma to the high melting point crystalline segment can be mentioned.

本発明の熱可塑性ポリエステルエラストマー発泡成形体は、結晶性芳香族ポリエステル単位からなる高融点結晶性セグメント(a−1)と、脂肪族ポリエーテル単位および/または脂肪族ポリエステル単位からなる低融点重合体セグメント(a−2)とを主たる構成成分とし、低融点重合体セグメント(a−2)の含有量が10〜44重量部であり、230℃におけるMFRが5〜50g/10minである熱可塑性ポリエステルエラストマー100重量部に対して、熱分解型発泡剤1.0〜5.0重量部を含有させ、射出成形機により発泡させて射出成形することを特徴とする熱可塑性ポリエステルエラストマー発泡成形体の製造方法で得られる。 The thermoplastic polyester elastomer foam molded product of the present invention is a low melting point polymer composed of a high melting point crystalline segment (a-1) composed of a crystalline aromatic polyester unit and an aliphatic polyether unit and / or an aliphatic polyester unit. A thermoplastic polyester containing the segment (a-2) as a main component, the content of the low melting point polymer segment (a-2) is 10 to 44 parts by weight, and the MFR at 230 ° C. is 5 to 50 g / 10 min. Manufacture of a thermoplastic polyester elastomer foam molded product, which comprises containing 1.0 to 5.0 parts by weight of a heat-decomposable foaming agent with respect to 100 parts by weight of an elastomer and foaming it by an injection molding machine for injection molding. Obtained by the method.

成形サイクル性やコスト、均質発泡を得られる成形方法として発泡剤と本発明の熱可塑性ポリエステルエラストマーを溶融混合して射出成形する際にキャビティの容積を拡張させて発泡成形体を得る方法が好ましい。具体的には、型締めされた複数の金型で形成されるキャビティ内に、溶融状態の熱可塑性ポリエステルエラストマーを熱分解型発泡剤とともに射出、充填し、表層に非発泡スキン層が形成された段階で少なくとも一つの金型を型開き方向へ移動してキャビティの容積を拡大させることにより、発泡成形体を得る方法である。すなわち、固定型および任意の位置に前進および後退が可能な可動型から構成される金型キャビティ内に熱可塑性ポリエステルエラストマーを射出、充填し、金型を型開き方向に移動してキャビティの容積を拡大させることにより、発泡成形体を得る方法である。 As a molding method capable of obtaining molding cycleability, cost, and uniform foaming, a method of obtaining a foamed molded product by expanding the volume of the cavity when the foaming agent and the thermoplastic polyester elastomer of the present invention are melt-mixed and injection-molded is preferable. Specifically, a molten thermoplastic polyester elastomer was injected and filled together with a pyrolyzable foaming agent in a cavity formed by a plurality of molded molds, and a non-foamed skin layer was formed on the surface layer. This is a method of obtaining a foamed molded product by moving at least one mold in the mold opening direction in a step to increase the volume of the cavity. That is, the thermoplastic polyester elastomer is injected and filled into a mold cavity composed of a fixed mold and a movable mold that can move forward and backward to an arbitrary position, and the mold is moved in the mold opening direction to increase the volume of the cavity. It is a method of obtaining a foamed molded product by expanding it.

型開き方向への移動距離をコアバック量とし、コアバック量を設定することで、目的とする発泡成形体の厚みを調整することが可能である。また、発泡成形をする際に、成形温度、冷却時間、熱可塑性ポリエステルエラストマーが金型キャビティに充填されてからコアバックするまでの時間、(コアバック遅延時間)、及びコアバックし始めてから完了するまでの時間(コアバック移行時間)を材料に応じて適宜調整することで、最適な発泡成形体を得ることができる。なお、発泡成形用熱可塑性ポリエステルエラストマーと発泡剤は、キャビティ内に充填する前に射出成形機の可塑化領域で混合しておくことができる。 By setting the core back amount as the moving distance in the mold opening direction and setting the core back amount, it is possible to adjust the thickness of the target foam molded product. In addition, when performing foam molding, the molding temperature, cooling time, time from filling the mold cavity with the thermoplastic polyester elastomer to core back, (core back delay time), and completion from the start of core back. The optimum foamed molded product can be obtained by appropriately adjusting the time until (core back transition time) according to the material. The thermoplastic polyester elastomer for foam molding and the foaming agent can be mixed in the plasticized region of the injection molding machine before being filled in the cavity.

本発明の発泡成形体を得る際に用いることのできる熱分解型発泡剤は、発泡核となるガス成分もしくはその発生源として成形機の樹脂溶融ゾーンで溶融している樹脂に添加するものである。具体的には、熱分解型発泡剤としては、炭酸アンモニウム及び重炭素酸ソーダ等の無機化合物、並びにアゾ化合物、スルホヒドラジド化合物、ニトロソ化合物、アジド化合物等の有機化合物等が使用できる。上記アゾ化合物としては、ジアゾカルボンアミド(ADCA)、2,2−アゾイソブチロニトリル、アゾヘキサヒドロベンゾニトリル、及びジアゾアミノベンゼン等が例示でき、中でもADCAが好まれて活用されている。上記スルホヒドラジド化合物としては、ベンゼンスルホヒドラジド、ベンゼン1,3−ジスルホヒドラジド、ジフェニルスルホン−3,3−ジスルホンヒドラジド及びジフェニルオキシド−4,4−ジスルホンヒドラジド−等が例示でき、上記ニトロソ化合物としては、N,N−ジニトロソペンタエチレンテトラミン(DNPT)等が例示でき、上記アジド化合物としては、テレフタルアジド及びP−第三ブチルベンズアジド等が例示できる。 The pyrolyzable foaming agent that can be used to obtain the foamed molded product of the present invention is added to the resin melted in the resin melting zone of the molding machine as a gas component serving as a foam core or a source thereof. .. Specifically, as the heat-decomposable foaming agent, inorganic compounds such as ammonium carbonate and sodium bicarbonate, and organic compounds such as azo compounds, sulfohydrazide compounds, nitroso compounds and azido compounds can be used. Examples of the azo compound include diazocarboxylic amide (ADCA), 2,2-azoisobutyronitrile, azohexahydrobenzonitrile, and diazoaminobenzene, and among them, ADCA is preferably used. Examples of the sulfohydrazide compound include benzenesulfohydrazide, benzene1,3-disulfohydrazide, diphenylsulfone-3,3-disulfone hydrazide, diphenyloxide-4,4-disulfone hydrazide-, and the like. , N, N-dinitrosopentaethylenetetramine (DNPT) and the like, and examples of the azide compound include terephthalazide and P-tertiary butylbenzazide.

熱分解型発泡剤から生成するガスは様々なものがあり、例えば、ジアゾカルボンアミド(ADCA)は熱分解生成物として主に窒素、一酸化炭素、二酸化炭素、またアンモニアガスを微量に発生する。また、分解残渣としてビウレア、シアヌール酸、ウラゾールが残存する場合がある。これらの熱分解生成物、分解残渣については熱分解ガスクロマトグラフィー、赤外分光分析、質量スペクトル分析によって確認することが出来る。 There are various gases generated from the pyrolysis type foaming agent. For example, diazocarbonamide (ADCA) mainly generates nitrogen, carbon monoxide, carbon dioxide, and ammonia gas as pyrolysis products in a small amount. In addition, biurea, cyanuric acid, and urazole may remain as decomposition residues. These pyrolysis products and decomposition residues can be confirmed by pyrolysis gas chromatography, infrared spectroscopic analysis, and mass spectroscopic analysis.

熱分解型発泡剤を用いる場合、熱分解型発泡剤は、本発明のポリエステルエラストマーに均一に分散させるために、当該熱分解型発泡剤の分解温度よりも融点が低い熱可塑性樹脂をベース材とした発泡剤マスターバッチとして使用することもできる。ベースとなる熱可塑性樹脂は、熱分解型発泡剤の分解温度より低い融点であれば特に制限なく、例えばポリスチレン(PS)、ポリエチレン(PE)、ポリプロピレン(PP)、等が挙げられる。この場合、熱分解型発泡剤と熱可塑性樹脂の配合比率は、熱可塑性樹脂100質量部に対して熱分解型発泡剤が10〜100質量部であるのが好ましい。熱分解型発泡剤が10質量部未満の場合は、本発明の熱可塑性ポリエステルエラストマーに対するマスターバッチの量が多くなりすぎて物性低下を起す可能性がある。100質量部を超えると、熱分解型発泡剤の分散性の問題よりマスターバッチ化が困難になる。 When a pyrolysis foaming agent is used, the pyrolysis foaming agent uses a thermoplastic resin having a melting point lower than the decomposition temperature of the pyrolysis foaming agent as a base material in order to uniformly disperse it in the polyester elastomer of the present invention. It can also be used as a foaming agent master batch. The base thermoplastic resin is not particularly limited as long as it has a melting point lower than the decomposition temperature of the pyrolytic foaming agent, and examples thereof include polystyrene (PS), polyethylene (PE), polypropylene (PP), and the like. In this case, the blending ratio of the pyrolytic foaming agent and the thermoplastic resin is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin. If the amount of the pyrolytic foaming agent is less than 10 parts by mass, the amount of the masterbatch with respect to the thermoplastic polyester elastomer of the present invention may become too large to cause deterioration of physical properties. If it exceeds 100 parts by mass, it becomes difficult to make a masterbatch due to the problem of dispersibility of the pyrolysis type foaming agent.

これらの熱分解型発泡剤には必要に応じて、他の添加剤を使用することができる。例えば、発泡成形体の気泡を安定的に均一微細にするなどのために、気体の発生を促すクエン酸の様な有機酸や、クエン酸ナトリウムの様な有機酸金属塩などを使用、併用添加することもでき、また、タルク、炭酸リチウムのような無機微粒子等の造核剤を添加することもできる。とりわけ好ましいものとして、重炭酸ナトリウム、重炭酸ナトリウムとクエン酸ナトリウムの組み合わせ、重炭酸ナトリウムとクエン酸の組み合わせが挙げられる。 Other additives can be used for these pyrolyzable foaming agents, if necessary. For example, organic acids such as citric acid that promote the generation of gas and organic acid metal salts such as sodium citrate are used and added together in order to make the bubbles of the foamed molded product stable and uniform. It is also possible to add a nucleating agent such as talc and inorganic fine particles such as lithium carbonate. Particularly preferred are sodium bicarbonate, a combination of sodium bicarbonate and sodium citrate, and a combination of sodium bicarbonate and citric acid.

本発明の熱可塑性エラストマーにおける熱分解型発泡剤の組成比は、熱可塑性ポリエステルエラストマー100重量部に対し、熱分解型発泡剤成分量が1.0〜5.0重量部であり、1.0〜3.5重量部が好ましい。す熱分解型発泡剤成分量が1.0重量部以下では十分な発泡性が劣り、5.0重量部を越えると発泡ガスが過剰となり、気泡同士が干渉することで連続泡を形成しやすくなり、不均一な発泡体となる。 The composition ratio of the pyrolytic foaming agent in the thermoplastic elastomer of the present invention is 1.0 to 5.0 parts by weight, with the amount of the pyrolyzing foaming agent component being 1.0 to 5.0 parts by weight with respect to 100 parts by weight of the thermoplastic polyester elastomer. ~ 3.5 parts by weight is preferable. When the amount of the pyrolyzable foaming agent component is 1.0 part by weight or less, sufficient foamability is inferior, and when it exceeds 5.0 parts by weight, the foaming gas becomes excessive and bubbles easily interfere with each other to form continuous bubbles. It becomes a non-uniform foam.

本発明の熱可塑性ポリエステルエラストマーには、本発明の熱可塑性ポリエステルエラストマーの性能を損なわない範囲で、公知のヒンダードフェノール系、ホスファイト系、チオエーテル系、芳香族アミン系等の酸化防止剤、ベンゾフェノン系、ベンゾトリアゾール系、ヒンダードアミン系等の耐光剤、エポキシ化合物、イソシアネート化合物等の増粘剤、染料や顔料等の着色剤、酸化チタン、カーボンブラック等の紫外線遮断剤、ガラス繊維、カーボンファイバー、チタン酸カリウムファイバー等の補強剤、シリカ、クレー、炭酸カルシウム、酸化亜鉛、酸化マグネシウム、硫酸カルシウム、ガラスビーズ等の充填剤、液状ポリイソブテン、液状ポリブテン、液状(水添)ポリイソプレン、液状(水添)ポリブタジエン、パラフィン系オイル、ナフテン系オイル、エポキシ可塑剤、リン酸エステル類、フタル酸エステル類、脂肪族2塩基酸エステル類またはグリコールエステル類等の可塑剤、タルク等の核剤、粘着付与剤、難燃剤、蛍光剤、架橋剤、界面活性剤等を任意に含有させてもよく、除いていてもよい。 The thermoplastic polyester elastomer of the present invention includes known antioxidants such as hindered phenol-based, phosphite-based, thioether-based, and aromatic amine-based, benzophenone, as long as the performance of the thermoplastic polyester elastomer of the present invention is not impaired. Light-resistant agents such as systems, benzotriazole-based and hindered amine-based, thickeners such as epoxy compounds and isocyanate compounds, colorants such as dyes and pigments, ultraviolet blocking agents such as titanium oxide and carbon black, glass fibers, carbon fibers and titanium. Reinforcing agents such as potassium acid fiber, fillers such as silica, clay, calcium carbonate, zinc oxide, magnesium oxide, calcium sulfate, glass beads, liquid polyisobutene, liquid polybutene, liquid (hydrogenated) polyisoprene, liquid (hydrogenated) Polybutadienes, paraffin oils, naphthenic oils, thermoplastics, phosphoric acid esters, phthalates, thermoplastics such as aliphatic dibasic acids or glycol esters, nucleating agents such as talc, tackifiers, A flame retardant, a fluorescent agent, a cross-linking agent, a surfactant and the like may be optionally contained or removed.

以下に実施例によって本発明の効果を説明する。なお、実施例中の%および部とは、ことわりのない場合すべて重量基準である。また、例中に示される物性は次のように測定した。 The effects of the present invention will be described below by way of examples. In addition,% and part in an Example are all based on weight unless otherwise specified. The physical properties shown in the examples were measured as follows.

[溶融粘度指数(MFR)]
ASTM D1238に従い、230℃の温度で、荷重2160gで下記実施例および比較例の熱可塑性エラストマーについて測定した。MELT INDEXER F−B01(商品名、東洋精機製作所社製)を用いて測定した。
[Melting Viscosity Index (MFR)]
According to ASTM D1238, the thermoplastic elastomers of the following Examples and Comparative Examples were measured at a temperature of 230 ° C. under a load of 2160 g. The measurement was performed using MELT INDEXER F-B01 (trade name, manufactured by Toyo Seiki Seisakusho Co., Ltd.).

[密度(見かけ密度)]
取得した発泡成形品サンプルを、寸法が直径19mmφの大きさに加工し、電子密度計を用いて密度を測定した。
[Density (apparent density)]
The obtained foam molded product sample was processed to a size of 19 mmφ in diameter, and the density was measured using an electron densitometer.

[発泡倍率]
発泡成形品サンプルの密度を原料である熱可塑性ポリエステルエラストマーの密度に対する割合を算出し、小数点以下第2位を四捨五入した値を発泡倍率とした。
[Expansion magnification]
The ratio of the density of the foam molded product sample to the density of the thermoplastic polyester elastomer as a raw material was calculated, and the value rounded to the second decimal place was taken as the foaming magnification.

[実施例に用いた化合物]
[熱可塑性ポリエステルエラストマー(A1−1、2、3、4)]
[熱可塑性ポリエステルエラストマー(A1−1)の製造]
高融点結晶性重合体セグメント(a1)としてテレフタル酸302部、1,4−ブタンジオール327部および数平均分子量約1400のポリ(テトラメチレンオキシド)グリコール216部を、チタンテトラブトキシド0.15部と共にヘリカルリボン型撹拌翼を備えた反応容器に仕込み、190〜225℃で3時間加熱して反応水を系外に留出しながらエステル化反応を行なった。反応混合物に”イルガノックス”1010(チバガイギー社製ヒンダードフェノール系酸化防止剤)0.75部を添加した後、245℃に昇温し、次いで50分かけて系内の圧力を0.2mmHgの減圧とし、その条件下で2時間45分重合を行わせた。得られたポリマを水中にストランド状で吐出し、カッティングを行ってペレットとした。取り出したペレットは次いで固相重合に供した。得られたポリエステルエラストマ(A1−1)のペレットのメルトフローレートは230℃、荷重2160gでの測定にて7.3g/10分であった。また、高融点結晶性重合体セグメント(a1)の重量%は65であり、低融点重合体セグメント(a2)の重量%は35であった。
[Compounds used in Examples]
[Thermoplastic polyester elastomer (A1-1, 2, 3, 4)]
[Manufacturing of Thermoplastic Polyester Elastomer (A1-1)]
302 parts of terephthalic acid, 327 parts of 1,4-butanediol and 216 parts of poly (tetramethylene oxide) glycol having a number average molecular weight of about 1400 as a refractory crystalline polymer segment (a1) together with 0.15 parts of titanium tetrabutoxide. The esterification reaction was carried out in a reaction vessel equipped with a helical ribbon-type stirring blade and heated at 190 to 225 ° C. for 3 hours while distilling the reaction water out of the system. After adding 0.75 parts of "Irganox" 1010 (Hindered phenolic antioxidant manufactured by Ciba Geigy) to the reaction mixture, the temperature was raised to 245 ° C., and then the pressure in the system was increased to 0.2 mmHg over 50 minutes. The pressure was reduced, and the polymerization was carried out under the conditions for 2 hours and 45 minutes. The obtained polymer was discharged into water in the form of strands and cut into pellets. The removed pellets were then subjected to solid phase polymerization. The melt flow rate of the pellets of the obtained polyester elastomer (A1-1) was 7.3 g / 10 minutes as measured at 230 ° C. and a load of 2160 g. The weight% of the high melting point crystalline polymer segment (a1) was 65, and the weight% of the low melting point polymer segment (a2) was 35.

[熱可塑性ポリエステルエラストマー(A1−2)の製造]
高融点結晶性重合体セグメント(a1)としてテレフタル酸302部、1,4−ブタンジオール327部および数平均分子量約1400のポリ(テトラメチレンオキシド)グリコール216部を、チタンテトラブトキシド0.15部と共にヘリカルリボン型撹拌翼を備えた反応容器に仕込み、190〜225℃で3時間加熱して反応水を系外に留出しながらエステル化反応を行なった。反応混合物に”イルガノックス”1010(チバガイギー社製ヒンダードフェノール系酸化防止剤)0.75部を添加した後、245℃に昇温し、次いで50分かけて系内の圧力を0.2mmHgの減圧とし、その条件下で2時間45分重合を行わせた。得られたポリマを水中にストランド状で吐出し、カッティングを行ってペレットとした。得られたポリエステルエラストマ(A1−2)のペレットのメルトフローレートは230℃、荷重2160gでの測定にて46.2g/10分であった。また、高融点結晶性重合体セグメント(a1)は65重量部であり、低融点重合体セグメント(a2)は35重量部であった。
[Manufacturing of thermoplastic polyester elastomer (A1-2)]
302 parts of terephthalic acid, 327 parts of 1,4-butanediol and 216 parts of poly (tetramethylene oxide) glycol having a number average molecular weight of about 1400 as a refractory crystalline polymer segment (a1) together with 0.15 parts of titanium tetrabutoxide. The esterification reaction was carried out in a reaction vessel equipped with a helical ribbon-type stirring blade and heated at 190 to 225 ° C. for 3 hours while distilling the reaction water out of the system. After adding 0.75 parts of "Irganox" 1010 (Hindered phenolic antioxidant manufactured by Ciba Geigy) to the reaction mixture, the temperature was raised to 245 ° C., and then the pressure in the system was increased to 0.2 mmHg over 50 minutes. The pressure was reduced, and the polymerization was carried out under the conditions for 2 hours and 45 minutes. The obtained polymer was discharged into water in the form of strands and cut into pellets. The melt flow rate of the pellets of the obtained polyester elastomer (A1-2) was 46.2 g / 10 minutes as measured at 230 ° C. and a load of 2160 g. The high melting point crystalline polymer segment (a1) was 65 parts by weight, and the low melting point polymer segment (a2) was 35 parts by weight.

[熱可塑性ポリエステルエラストマー(A1−3)の製造]
高融点結晶性重合体セグメント(a1)としてテレフタル酸505部、および1,4−ブタンジオール251部、低融点重合体セグメント(a2)として数平均分子量約1400のポリ(テトラメチレンオキシド)グリコール354部を、チタンテトラブトキシド0.3部とモノ−n−ブチル−モノヒドロキシスズオキサイド0.2部と共にヘリカルリボン型撹拌翼を備えた反応容器に仕込み、190〜225℃で3時間加熱して反応水を系外に留出しながらエステル化反応を行なった。反応混合物にチタンテトラブトキシド2.0部を追添加し、”イルガノックス”1098(チバガイギー社製ヒンダードフェノール系酸化防止剤)0.5部を添加した後、245℃に昇温し、次いで50分かけて系内の圧力を0.2mmHgの減圧とし、その条件下で2時間45分溶融重縮合を行わせた。得られたポリエステルエラストマーを水中にストランド状で吐出し、カッティングを行ってペレットとした。
[Manufacturing of thermoplastic polyester elastomer (A1-3)]
505 parts of terephthalic acid and 251 parts of 1,4-butanediol as the high melting point crystalline polymer segment (a1), and 354 parts of poly (tetramethylene oxide) glycol having a number average molecular weight of about 1400 as the low melting point polymer segment (a2). Was charged into a reaction vessel equipped with a helical ribbon-type stirring blade together with 0.3 part of titanium tetrabutoxide and 0.2 part of mono-n-butyl-monohydroxytin oxide, and heated at 190 to 225 ° C. for 3 hours to react water. Was distilled out of the system while the esterification reaction was carried out. 2.0 parts of titanium tetrabutoxide was added to the reaction mixture, 0.5 part of "Irganox" 1098 (Hindered phenolic antioxidant manufactured by Ciba Geigy Co., Ltd.) was added, and then the temperature was raised to 245 ° C., and then 50. The pressure in the system was reduced to 0.2 mmHg over a minute, and under that condition, melt polycondensation was carried out for 2 hours and 45 minutes. The obtained polyester elastomer was discharged into water in the form of strands and cut into pellets.

ポリエステルエラストマーのペレットを回転可能な反応容器に仕込み、系内の圧力を27Paの減圧とし、170から180℃で48時間回転させながら加熱して固相重縮合を行った。得られたポリエステルエラストマ(A1−4)のペレットのメルトフローレートは230℃、荷重2160gでの測定にて1.8g/10分であった。また、高融点結晶性重合体セグメント(a1)は65重量部であり、低融点重合体セグメント(a2)は35重量部であった。 Pellets of polyester elastomer were placed in a rotatable reaction vessel, the pressure in the system was reduced to 27 Pa, and the mixture was heated at 170 to 180 ° C. for 48 hours to carry out solid polycondensation. The melt flow rate of the pellets of the obtained polyester elastomer (A1-4) was 1.8 g / 10 minutes as measured at 230 ° C. and a load of 2160 g. The high melting point crystalline polymer segment (a1) was 65 parts by weight, and the low melting point polymer segment (a2) was 35 parts by weight.

[熱可塑性ポリエステルエラストマー(A1−4)の製造]
高融点結晶性重合体セグメント(a1)としてテレフタル酸505部、および1,4−ブタンジオール251部、低融点重合体セグメント(a2)として数平均分子量約1400のポリ(テトラメチレンオキシド)グリコール354部を、チタンテトラブトキシド0.3部とモノ−n−ブチル−モノヒドロキシスズオキサイド0.2部と共にヘリカルリボン型撹拌翼を備えた反応容器に仕込み、190〜225℃で3時間加熱して反応水を系外に留出しながらエステル化反応を行なった。反応混合物にチタンテトラブトキシド2.0部を追添加し、”イルガノックス”1098(チバガイギー社製ヒンダードフェノール系酸化防止剤)0.5部を添加した後、245℃に昇温し、次いで50分かけて系内の圧力を0.2mmHgの減圧とし、その条件下で2時間45分溶融重縮合を行わせた。得られたポリエステルエラストマを水中にストランド状で吐出し、カッティングを行ってペレットとした。
[Manufacturing of thermoplastic polyester elastomer (A1-4)]
505 parts of terephthalic acid and 251 parts of 1,4-butanediol as the high melting point crystalline polymer segment (a1), and 354 parts of poly (tetramethylene oxide) glycol having a number average molecular weight of about 1400 as the low melting point polymer segment (a2). Was charged into a reaction vessel equipped with a helical ribbon-type stirring blade together with 0.3 part of titanium tetrabutoxide and 0.2 part of mono-n-butyl-monohydroxytin oxide, and heated at 190 to 225 ° C. for 3 hours to react water. Was distilled out of the system while the esterification reaction was carried out. 2.0 parts of titanium tetrabutoxide was added to the reaction mixture, 0.5 part of "Irganox" 1098 (Hindered phenolic antioxidant manufactured by Ciba Geigy Co., Ltd.) was added, and then the temperature was raised to 245 ° C., and then 50. The pressure in the system was reduced to 0.2 mmHg over a minute, and under that condition, melt polycondensation was carried out for 2 hours and 45 minutes. The obtained polyester elastomer was discharged into water in a strand form and cut into pellets.

ポリエステルエラストマのペレットを回転可能な反応容器に仕込み、系内の圧力を27Paの減圧とし、170から180℃で48時間回転させながら加熱して固相重縮合を行った。得られたポリエステルエラストマ(A1−4)のペレットのメルトフローレートは230℃、荷重2160gでの測定にて1.8g/10分であった。また、高融点結晶性重合体セグメント(a1)は65重量部であり、低融点重合体セグメント(a2)のは35重量部であった。 Pellets of polyester elastoma were placed in a rotatable reaction vessel, the pressure in the system was reduced to 27 Pa, and the mixture was heated at 170 to 180 ° C. for 48 hours to carry out solid polycondensation. The melt flow rate of the pellets of the obtained polyester elastomer (A1-4) was 1.8 g / 10 minutes as measured at 230 ° C. and a load of 2160 g. The high melting point crystalline polymer segment (a1) was 65 parts by weight, and the low melting point polymer segment (a2) was 35 parts by weight.

[熱可塑性ポリエステルエラストマー(A2−1、2)]
[熱可塑性ポリエステルエラストマー(A2−1)の製造方法]
結晶性芳香族ポリエステル単位からなるハードセグメント(H1)48重量%と、脂肪族ポリエーテル単位からなるソフトセグメント(L1)52重量%とを構成成分とするポリエステルブロック共重合体(A3−1)を製造した。ハードセグメント(H1)がソフトセグメント(L1)より少ないため、ポリエステルブロック共重合体(A1)ではない。
[Thermoplastic polyester elastomer (A2-1, 2)]
[Manufacturing method of thermoplastic polyester elastomer (A2-1)]
A polyester block copolymer (A3-1) containing 48% by weight of a hard segment (H1) composed of a crystalline aromatic polyester unit and 52% by weight of a soft segment (L1) composed of an aliphatic polyether unit as constituent components. Manufactured. It is not a polyester block copolymer (A1) because it has fewer hard segments (H1) than soft segments (L1).

テレフタル酸45.0部、1,4−ブタンジオール44.0部および数平均分子量約1400のポリ(テトラメチレンオキシド)グリコール47.0部を、チタンテトラブトキシド0.04部とモノ−n−ブチル−モノヒドロキシスズオキサイド0.02部を共にヘリカルリボン型攪拌翼を備えた反応容器に仕込み、200〜235℃で3時間加熱し、反応水を系外に流出させながらエステル化反応を行った。反応混合物にテトラ−n−ブチルチタネート0.15部を追添加し、”イルガノックス”1098(チバガイギー社製ヒンダードフェノール系酸化防止剤)0.05部を添加した後、245℃に昇温し、次いで、50分かけて系内の圧力を27Paの減圧とし、その条件下で1時間50分重合を行った。得られたポリマを水中にストランド状で吐出し、カッティングによりペレットとした。取り出したペレットは次いで固相重合に供した。得られたポリエステルエラストマ(A2−1)のペレットのメルトフローレートは230℃、荷重2160gでの測定にて24.2g/10分であった。また、高融点結晶性重合体セグメント(a1)は53重量部であり、低融点重合体セグメント(a2)は47重量部であった。 45.0 parts of terephthalic acid, 44.0 parts of 1,4-butanediol and 47.0 parts of poly (tetramethylene oxide) glycol having a number average molecular weight of about 1400, 0.04 part of titanium tetrabutoxide and mono-n-butyl -0.02 parts of monohydroxytin oxide were both placed in a reaction vessel equipped with a helical ribbon-type stirring blade and heated at 200 to 235 ° C. for 3 hours to carry out an esterification reaction while allowing the reaction water to flow out of the system. 0.15 parts of tetra-n-butyl titanate was added to the reaction mixture, 0.05 part of "Irganox" 1098 (a hindered phenolic antioxidant manufactured by Ciba Geigy Co., Ltd.) was added, and then the temperature was raised to 245 ° C. Then, the pressure in the system was reduced to 27 Pa over 50 minutes, and the polymerization was carried out under that condition for 1 hour and 50 minutes. The obtained polymer was discharged into water in the form of strands and cut into pellets. The removed pellets were then subjected to solid phase polymerization. The melt flow rate of the pellets of the obtained polyester elastomer (A2-1) was 24.2 g / 10 minutes as measured at 230 ° C. and a load of 2160 g. The high melting point crystalline polymer segment (a1) was 53 parts by weight, and the low melting point polymer segment (a2) was 47 parts by weight.

[熱可塑性ポリエステルエラストマー(A2−2)の製造方法 結晶性芳香族ポリエステル単位からなるハードセグメント(H1)48重量%と、脂肪族ポリエーテル単位からなるソフトセグメント(L1)52重量%とを構成成分とするポリエステルブロック共重合体(A3−1)を製造した。ハードセグメント(H1)がソフトセグメント(L1)より少ないため、ポリエステルブロック共重合体(A1)ではない。 [Method for Producing Thermoplastic Polyester Elastomer (A2-2) Constituents include 48% by weight of hard segment (H1) composed of crystalline aromatic polyester unit and 52% by weight of soft segment (L1) composed of aliphatic polyether unit. A polyester block copolymer (A3-1) was produced. It is not a polyester block copolymer (A1) because it has fewer hard segments (H1) than soft segments (L1).

テレフタル酸45.0部、1,4−ブタンジオール44.0部および数平均分子量約1400のポリ(テトラメチレンオキシド)グリコール47.0部を、チタンテトラブトキシド0.04部とモノ−n−ブチル−モノヒドロキシスズオキサイド0.02部を共にヘリカルリボン型攪拌翼を備えた反応容器に仕込み、200〜235℃で3時間加熱し、反応水を系外に流出させながらエステル化反応を行った。反応混合物にテトラ−n−ブチルチタネート0.15部を追添加し、”イルガノックス”1098(チバガイギー社製ヒンダードフェノール系酸化防止剤)0.05部を添加した後、245℃に昇温し、次いで、50分かけて系内の圧力を27Paの減圧とし、その条件下で1時間50分重合を行った。得られたポリマを水中にストランド状で吐出し、カッティングによりペレットとした。取り出したペレットは次いで固相重合に供した。得られたポリエステルエラストマ(A2−1)のペレットのメルトフローレートは230℃、荷重2160gでの測定にて2.3g/10分であった。また、高融点結晶性重合体セグメント(a1)は53重量部であり、低融点重合体セグメント(a2)は47重量部であった。 45.0 parts of terephthalic acid, 44.0 parts of 1,4-butanediol and 47.0 parts of poly (tetramethylene oxide) glycol having a number average molecular weight of about 1400, 0.04 part of titanium tetrabutoxide and mono-n-butyl -0.02 parts of monohydroxytin oxide were both placed in a reaction vessel equipped with a helical ribbon-type stirring blade and heated at 200 to 235 ° C. for 3 hours to carry out an esterification reaction while allowing the reaction water to flow out of the system. 0.15 parts of tetra-n-butyl titanate was added to the reaction mixture, 0.05 part of "Irganox" 1098 (a hindered phenolic antioxidant manufactured by Ciba Geigy Co., Ltd.) was added, and then the temperature was raised to 245 ° C. Then, the pressure in the system was reduced to 27 Pa over 50 minutes, and the polymerization was carried out under that condition for 1 hour and 50 minutes. The obtained polymer was discharged into water in the form of strands and cut into pellets. The removed pellets were then subjected to solid phase polymerization. The melt flow rate of the pellets of the obtained polyester elastomer (A2-1) was 2.3 g / 10 minutes as measured at 230 ° C. and a load of 2160 g. The high melting point crystalline polymer segment (a1) was 53 parts by weight, and the low melting point polymer segment (a2) was 47 parts by weight.

[熱分解型発泡剤](B−1)
三協化成(株)製 セルマイクマスターバッチ1023(熱分解型発泡剤アゾジカルボンアミド(ADCA)30重量%含有)。
[Pyrolytic foaming agent] (B-1)
Cellmic Masterbatch 1023 manufactured by Sankyo Kasei Co., Ltd. (containing 30% by weight of thermal decomposition foaming agent azodicarbonamide (ADCA)).

実施例1〜5、比較例1〜4
熱可塑性ポリエステルエラストマーと熱分解型発泡剤を表1に示す配合割合(重量部)で混合し、成形温度220℃で上述した金型拡張法にて発泡成形体を作製した。金型としては、型締めすると幅150mm、長さ150mm、厚み2mmのキャビティを形成することができ、型開き方向へコアバックさせると同幅、同長さで厚みが2mm+コアバック量(mm)であるキャビティを形成することができる固定用金型および稼働用金型からなる平板作製用の金型を用いた。得られた発泡体について各特性を調べた結果を表1に示す。
Examples 1-5, Comparative Examples 1-4
The thermoplastic polyester elastomer and the pyrolyzable foaming agent were mixed at the blending ratio (parts by weight) shown in Table 1 to prepare a foamed molded product by the above-mentioned mold expansion method at a molding temperature of 220 ° C. As a mold, a cavity having a width of 150 mm, a length of 150 mm, and a thickness of 2 mm can be formed by tightening the mold, and when the mold is cored back in the mold opening direction, the width and length are the same and the thickness is 2 mm + the core back amount (mm). A mold for producing a flat plate consisting of a fixing mold and an operating mold capable of forming a cavity is used. Table 1 shows the results of examining each property of the obtained foam.

Figure 2021161165
Figure 2021161165

以上の結果より、実施例1〜5に示した熱可塑性ポリエステルエラストマーは、密度0.4未満と軽量性が高く、発泡倍率が3倍を超える高発泡性に優れることが確認できる。 From the above results, it can be confirmed that the thermoplastic polyester elastomers shown in Examples 1 to 5 are highly lightweight with a density of less than 0.4 and are excellent in high foamability having a foaming ratio of more than 3 times.

また、熱分解型発泡剤成分を0.5%添加しただけの比較例1では、発泡性が不足することから軽量率が低く、発泡倍率2.2倍と低発泡となる。 Further, in Comparative Example 1 in which only 0.5% of the pyrolyzable foaming agent component is added, the light weight rate is low due to insufficient foaming property, and the foaming ratio is 2.2 times, which is low foaming.

さらに、熱可塑性ポリエステルエラストマーのMFRが5g/10min未満となる比較例2では、発泡倍率が3倍を超える高発泡成形品を得ることが出来ない。流動性が低く、射出圧によって発泡核を消失している可能性が考えられる。また、熱可塑性ポリエステルエラストマーの低融点重合体セグメントが44重量部を超える比較例3、4では軽量且つ、高発泡性に優れた成形体を得ることが出来なかった。
Further, in Comparative Example 2 in which the MFR of the thermoplastic polyester elastomer is less than 5 g / 10 min, it is not possible to obtain a highly foamed molded product having a foaming ratio of more than 3 times. It is possible that the fluidity is low and the foam nuclei disappear due to the injection pressure. Further, in Comparative Examples 3 and 4 in which the low melting point polymer segment of the thermoplastic polyester elastomer exceeded 44 parts by weight, a molded product having a light weight and excellent high foamability could not be obtained.

Claims (5)

結晶性芳香族ポリエステル単位からなる高融点結晶性セグメント(a−1)と、脂肪族ポリエーテル単位および/または脂肪族ポリエステル単位からなる低融点重合体セグメント(a−2)とを主たる構成成分とし、低融点重合体セグメント(a−2)の含有量が10〜44重量部であり、230℃におけるMFRが5〜50g/10minである熱可塑性ポリエステルエラストマーからなり、密度(みかけ密度)が0.4未満、発泡倍率(非発泡品の密度/発泡品の密度)が3を超えることを特徴とする熱可塑性ポリエステルエラストマー発泡成形体。 The main constituents are a high melting point crystalline segment (a-1) composed of a crystalline aromatic polyester unit and a low melting point polymer segment (a-2) consisting of an aliphatic polyether unit and / or an aliphatic polyester unit. The low melting point polymer segment (a-2) is composed of a thermoplastic polyester elastomer having a content of 10 to 44 parts by weight and an MFR of 5 to 50 g / 10 min at 230 ° C., and has a density (apparent density) of 0. A thermoplastic polyester elastomer foam molded product having a foaming ratio (density of non-foamed product / density of foamed product) of less than 4 and more than 3. 結晶性芳香族ポリエステル単位からなる高融点結晶性セグメント(a−1)と、脂肪族ポリエーテル単位および/または脂肪族ポリエステル単位からなる低融点重合体セグメント(a−2)とを主たる構成成分とし、低融点重合体セグメント(a−2)の含有量が10〜44重量部であり、230℃におけるMFRが5〜50g/10minである熱可塑性ポリエステルエラストマー100重量部に対して、熱分解型発泡剤1.0〜5.0重量部を含有させ、射出成形機により発泡させて射出成形することを特徴とする熱可塑性ポリエステルエラストマー発泡成形体の製造方法。 The main constituents are a high melting point crystalline segment (a-1) composed of a crystalline aromatic polyester unit and a low melting point polymer segment (a-2) consisting of an aliphatic polyether unit and / or an aliphatic polyester unit. , The content of the low melting point polymer segment (a-2) is 10 to 44 parts by weight, and the MFR at 230 ° C. is 5 to 50 g / 10 min. A method for producing a thermoplastic polyester elastomer foam molded product, which comprises 1.0 to 5.0 parts by weight of an agent and is foamed by an injection molding machine for injection molding. 熱分解型発泡剤がアゾ化合物であることを特徴とする請求項2に記載の熱可塑性ポリエステルエラストマー発泡成形体の製造方法。 The method for producing a thermoplastic polyester elastomer foam molded product according to claim 2, wherein the pyrolysis foaming agent is an azo compound. 熱可塑性ポリエステルエラストマーに100重量部に対して、熱分解型発泡剤を1.0〜3.5重量部含有させることを特徴とする請求項2または3に記載の熱可塑性ポリエステルエラストマー発泡成形体の製造方法。 The thermoplastic polyester elastomer foam molded product according to claim 2 or 3, wherein the thermoplastic polyester elastomer contains 1.0 to 3.5 parts by weight of a pyrolysis foaming agent with respect to 100 parts by weight. Production method. 固定型および任意の位置に前進および後退が可能な可動型から構成される金型キャビティ内に熱可塑性ポリエステルエラストマーを射出、充填し、金型を型開き方向に移動してキャビティの容積を拡大させて発泡させることを特徴とする、請求項2〜4のいずれかに記載の熱可塑性ポリエステルエラストマー発泡成形体の製造方法。 A thermoplastic polyester elastomer is injected and filled into a mold cavity consisting of a fixed mold and a movable mold that can move forward and backward to any position, and the mold is moved in the mold opening direction to expand the volume of the cavity. The method for producing a thermoplastic polyester elastomer foam molded product according to any one of claims 2 to 4, which comprises foaming the product.
JP2020061993A 2020-03-31 2020-03-31 Thermoplastic polyester elastomer foam molding and its manufacturing method Pending JP2021161165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020061993A JP2021161165A (en) 2020-03-31 2020-03-31 Thermoplastic polyester elastomer foam molding and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020061993A JP2021161165A (en) 2020-03-31 2020-03-31 Thermoplastic polyester elastomer foam molding and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2021161165A true JP2021161165A (en) 2021-10-11

Family

ID=78002548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020061993A Pending JP2021161165A (en) 2020-03-31 2020-03-31 Thermoplastic polyester elastomer foam molding and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2021161165A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191355A (en) * 2000-01-17 2001-07-17 Asahi Kasei Corp Method for manufacturing steering wheel
JP2018172535A (en) * 2017-03-31 2018-11-08 積水化成品工業株式会社 Ester-based elastomer foam molding and method for producing the same
JP2019006927A (en) * 2017-06-27 2019-01-17 東洋紡株式会社 Thermoplastic polyester elastomer resin foam molding and method for producing the same
JP2020002192A (en) * 2018-06-25 2020-01-09 東洋紡株式会社 Thermoplastic polyester elastomer foam molded body and manufacturing method therefor
WO2020017450A1 (en) * 2018-07-17 2020-01-23 東洋紡株式会社 Thermoplastic polyester elastomer resin foam molded body and method for producing same
JP2020012040A (en) * 2018-07-17 2020-01-23 東洋紡株式会社 Thermoplastic polyester elastomer resin composition and foamed molding thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191355A (en) * 2000-01-17 2001-07-17 Asahi Kasei Corp Method for manufacturing steering wheel
JP2018172535A (en) * 2017-03-31 2018-11-08 積水化成品工業株式会社 Ester-based elastomer foam molding and method for producing the same
JP2019006927A (en) * 2017-06-27 2019-01-17 東洋紡株式会社 Thermoplastic polyester elastomer resin foam molding and method for producing the same
JP2020002192A (en) * 2018-06-25 2020-01-09 東洋紡株式会社 Thermoplastic polyester elastomer foam molded body and manufacturing method therefor
WO2020017450A1 (en) * 2018-07-17 2020-01-23 東洋紡株式会社 Thermoplastic polyester elastomer resin foam molded body and method for producing same
JP2020012040A (en) * 2018-07-17 2020-01-23 東洋紡株式会社 Thermoplastic polyester elastomer resin composition and foamed molding thereof

Similar Documents

Publication Publication Date Title
TWI713856B (en) Thermoplastic polyester elastomer resin foam molded body and its manufacturing method
JP5143489B2 (en) Polyester-based elastomer foam and sealing material for electrical and electronic equipment composed of the foam
JP5640740B2 (en) Thermoplastic polyester resin composition and foamed molded article
CN101501115B (en) Multi-segment expandable polymer compositions which expand in a controllable direction
JP6936788B2 (en) Injection foam molded product with good surface properties due to resin composition that can reduce weight and rib design
JP7103003B2 (en) Thermoplastic polyester elastomer resin composition and foam molded article thereof
JP6358368B1 (en) Thermoplastic polyester elastomer resin composition and foamed molded article thereof
KR20110036037A (en) Foamed polyesters and methods for their production
JPWO2020017450A1 (en) Thermoplastic polyester elastomer resin foam molded article and its manufacturing method
EP2586819B1 (en) Method for producing polycarbonate resin foam molded body
JP2004323554A (en) Polyester resin composition for extrusion expanding molding, its molded product and method for producing the same
EP0924243B1 (en) Flexible polyester foams
TWI770285B (en) Thermoplastic polyester elastomer resin composition and its foam molding
JP2021161165A (en) Thermoplastic polyester elastomer foam molding and its manufacturing method
JP2011213820A (en) Polylactic acid resin composition and polylactic acid resin foamed article formed from the same
KR102041305B1 (en) Biodegradable bead foam and the preparation method for the same
JP2021063176A (en) Thermoplastic polyester elastomer resin composition for foam molding, foam molding, and method for producing foam molding
JP2021063177A (en) Thermoplastic polyester elastomer resin composition for foam molding, foam molding, and method for producing foam molding
JPH1180411A (en) Production of polycarbonate resin foam
JPS6017420B2 (en) Method for manufacturing polyester elastomer foam
JPH11140210A (en) Production of thermoplastic polyester resin foam
JPH11130897A (en) Polycarbonate resin foam
JP2024144223A (en) Polycarbonate resin extruded foam particles, extruded foam particle molded body, and method for manufacturing the molded body
JPH0249039A (en) Production of polyester-based resin foam
CN116583395A (en) Polyester elastomer resin composition and foam molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240507