JP2021146302A - Filter medium, filter element, and filter medium manufacturing method - Google Patents
Filter medium, filter element, and filter medium manufacturing method Download PDFInfo
- Publication number
- JP2021146302A JP2021146302A JP2020050348A JP2020050348A JP2021146302A JP 2021146302 A JP2021146302 A JP 2021146302A JP 2020050348 A JP2020050348 A JP 2020050348A JP 2020050348 A JP2020050348 A JP 2020050348A JP 2021146302 A JP2021146302 A JP 2021146302A
- Authority
- JP
- Japan
- Prior art keywords
- filter medium
- fiber aggregate
- apparent density
- precursor
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000000835 fiber Substances 0.000 claims abstract description 247
- 239000002245 particle Substances 0.000 claims abstract description 113
- 239000002243 precursor Substances 0.000 claims abstract description 96
- 229920005989 resin Polymers 0.000 claims description 78
- 239000011347 resin Substances 0.000 claims description 78
- 230000001877 deodorizing effect Effects 0.000 claims description 70
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 238000004332 deodorization Methods 0.000 abstract 4
- 238000000034 method Methods 0.000 description 40
- 239000004745 nonwoven fabric Substances 0.000 description 26
- -1 polyethylene Polymers 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 238000001914 filtration Methods 0.000 description 12
- 239000000470 constituent Substances 0.000 description 8
- 239000004744 fabric Substances 0.000 description 8
- 239000000428 dust Substances 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 239000012855 volatile organic compound Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000012943 hotmelt Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000003463 adsorbent Substances 0.000 description 4
- 238000000635 electron micrograph Methods 0.000 description 4
- 239000004750 melt-blown nonwoven Substances 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 239000002759 woven fabric Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- 239000004831 Hot glue Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920002978 Vinylon Polymers 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010036 direct spinning Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000002648 laminated material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- WBHAUHHMPXBZCQ-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound COC1=CC=CC(C)=C1O WBHAUHHMPXBZCQ-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 241001455273 Tetrapoda Species 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 238000010041 electrostatic spinning Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910052736 halogen Chemical group 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920006350 polyacrylonitrile resin Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
Images
Landscapes
- Filtering Materials (AREA)
- Laminated Bodies (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
Abstract
Description
本発明は、脱臭機能を有する濾材、前記濾材からなるフィルタエレメント、及び濾材の製造方法に関する。 The present invention relates to a filter medium having a deodorizing function, a filter element made of the filter medium, and a method for manufacturing the filter medium.
従来から、濾材によって空気中に存在する塵埃だけでなく、においやアレルギーの原因になる揮発性有機化合物(VOC)を除去して、空気を浄化することが求められている。 Conventionally, it has been required to purify the air by removing not only dust existing in the air but also volatile organic compounds (VOCs) that cause odors and allergies with a filter medium.
このようなVOCを除去できる濾材として、例えば特開2018−167155号公報(特許文献1)のエアフィルター用濾材のように、2つの不織布により形成される層間に吸着剤が配置され、吸着剤に活性炭及び無機多孔質体を使用した濾材が知られている。なお、特許文献1のエアフィルター用濾材は吸着剤(活性炭、無機多孔質体)とホットメルト接着剤をシェーカーで攪拌し、不織布の上に均一に散布し、加熱してホットメルト接着剤を溶かした状態で別の不織布をかぶせ、熱プレスすることでエアフィルター用濾材を製造している。
As a filter medium capable of removing such VOC, for example, as in the filter medium for an air filter of JP-A-2018-167155 (Patent Document 1), an adsorbent is arranged between layers formed by two non-woven fabrics, and the adsorbent can be used as an adsorbent. Filter media using activated carbon and inorganic porous materials are known. In the filter medium for an air filter of
しかし、特許文献1に開示された濾材は、熱プレスにより圧縮されていることから、2つの不織布が緻密で、圧力損失が大きいものであった。
However, since the filter medium disclosed in
本発明はこのような状況下においてなされたものであり、圧力損失が小さい、脱臭機能を有する濾材、前記濾材からなるフィルタエレメント、及び濾材の製造方法を提供することを目的とする。 The present invention has been made under such circumstances, and an object of the present invention is to provide a filter medium having a deodorizing function, which has a small pressure loss, a filter element made of the filter medium, and a method for manufacturing the filter medium.
本発明の請求項1にかかる発明は、「2つの繊維集合体A、Bの間に脱臭粒子が配置された濾材であって、濾材の厚さ方向の断面において、少なくとも一方の繊維集合体Aに見掛密度が高い部分と見掛密度が低い部分が存在し、前記一方の繊維集合体Aにおける最も見掛密度の高い部分の見掛密度と、最も見掛密度の低い部分の見掛密度の差が0.030g/cm3以上である、濾材。」である。
The invention according to
本発明の請求項2にかかる発明は、「繊維集合体Bと脱臭粒子とが有機樹脂を介して接着しており、前記有機樹脂がシート状である、請求項1に記載の濾材。」である。
The invention according to
本発明の請求項3にかかる発明は、「繊維集合体Bと脱臭粒子とが有機樹脂を介して接着しており、前記有機樹脂の量が10g/m2以下である、請求項1又は2に記載の濾材。」である。 The invention according to claim 3 of the present invention states that "the fiber aggregate B and the deodorizing particles are adhered to each other via an organic resin, and the amount of the organic resin is 10 g / m 2 or less, claim 1 or 2. The filter medium described in. ”.
本発明の請求項4にかかる発明は、「脱臭粒子の含有量が100g/m2以下である、請求項1〜3のいずれか1項に記載の濾材。」である。
The invention according to claim 4 of the present invention is "the filter medium according to any one of
本発明の請求項5にかかる発明は、「濾材の厚さが0.70mm以下である、請求項1〜4のいずれか1項に記載の濾材。」である。
The invention according to claim 5 of the present invention is "the filter medium according to any one of
本発明の請求項6にかかる発明は、「請求項1〜5のいずれか1項に記載の濾材がプリーツ加工されたものと、前記濾材がプリーツ加工されたものの周縁部に外枠を備えてなる、フィルタエレメント。」である。
The invention according to claim 6 of the present invention includes "a pleated filter medium according to any one of
本発明の請求項7にかかる発明は、「(1)繊維集合体B前駆体を用意し、繊維集合体B前駆体の一方の主面上に脱臭粒子を配置する工程、(2)繊維集合体B前駆体の脱臭粒子を有する主面上に別の繊維集合体A前駆体を積層するとともに加圧し、少なくとも繊維集合体A前駆体を厚さ方向に部分的に変形させて、繊維集合体A前駆体に由来する繊維集合体Aと、繊維集合体B前駆体に由来する繊維集合体Bの間に脱臭粒子が配置された濾材を形成する工程、とを有する、請求項1に記載の濾材の製造方法。」である。
The invention according to claim 7 of the present invention describes "(1) a step of preparing a fiber aggregate B precursor and arranging deodorizing particles on one main surface of the fiber aggregate B precursor, (2) fiber assembly. Another fiber aggregate A precursor is laminated and pressurized on the main surface having the deodorized particles of the body B precursor, and at least the fiber aggregate A precursor is partially deformed in the thickness direction to form the fiber aggregate. The first aspect of
本発明の請求項1にかかる濾材は、一方の繊維集合体Aの厚さ方向の断面における最も見掛密度の高い部分の見掛密度と、最も見掛密度の低い部分の見掛密度の差が0.030g/cm3以上と、繊維集合体Aに見掛密度が低い部分と、見掛密度が高い部分が存在し、見掛密度が低い部分は空気が通りやすいことから、圧力損失が小さい、脱臭機能を有する濾材が実現できる。
The filter medium according to
本発明の請求項2にかかる濾材は、繊維集合体Bと脱臭粒子とが有機樹脂を介して接着しており、前記有機樹脂がシート状であることから、有機樹脂が粒子状である場合よりも有機樹脂の分布が均一であり、繊維集合体B上に脱臭粒子が均一に分布し、脱臭性能の良い濾材が実現しやすい。
In the filter medium according to
本発明の請求項3にかかる濾材は、繊維集合体Bと脱臭粒子とが有機樹脂を介して接着しており、前記有機樹脂の量が10g/m2以下と少ないことから、濾材をプリーツ加工する際に脱臭粒子と有機樹脂との接着がはずれ、プリーツ加工の際にかける力が小さくてもプリーツ加工が可能であることから、プリーツ加工が施しやすく加工性が優れる濾材である。 In the filter medium according to claim 3 of the present invention, the fiber aggregate B and the deodorizing particles are adhered to each other via an organic resin, and the amount of the organic resin is as small as 10 g / m 2 or less. Therefore, the filter medium is pleated. It is a filter medium that is easy to pleate and has excellent workability because the deodorizing particles and the organic resin are not adhered to each other and pleating is possible even if the force applied during pleating is small.
本発明の請求項4にかかる濾材は、脱臭粒子の含有量が100g/m2以下と少ないことから、脱臭粒子が2つの繊維集合体A、Bの間に点在している。そのため、脱臭粒子の存在していない部分に一方の繊維集合体Aの見掛密度が小さい部分が存在しやすいため、圧力損失の小さい濾材が実現しやすい。 In the filter medium according to claim 4 of the present invention, since the content of the deodorizing particles is as small as 100 g / m 2 or less, the deodorizing particles are scattered between the two fiber aggregates A and B. Therefore, a portion having a small apparent density of one of the fiber aggregates A tends to exist in a portion where the deodorizing particles do not exist, so that a filter medium having a small pressure loss can be easily realized.
本発明の請求項5にかかる濾材は、濾材の厚さが0.70mm以下と薄い濾材であることから、小さいスペースにも濾材を設置することができ、また、プリーツ加工が施しやすく加工性が優れる濾材である。 Since the filter medium according to claim 5 of the present invention is a thin filter medium having a thickness of 0.70 mm or less, the filter medium can be installed even in a small space, and pleating is easy to perform and workability is improved. It is an excellent filter medium.
本発明の請求項6にかかるフィルタエレメントは、プリーツ加工されているので、濾材の濾過面積が広く、塵埃及びVOCの捕集効率が優れるフィルタエレメントである。 Since the filter element according to claim 6 of the present invention is pleated, the filter element has a wide filtration area of the filter medium and is excellent in dust and VOC collection efficiency.
本発明の請求項7にかかる濾材の製造方法は、繊維集合体B前駆体の一方の主面上に脱臭粒子を配置してから、繊維集合体B前駆体の脱臭粒子を有する主面上に別の繊維集合体A前駆体を積層するとともに加圧し、少なくとも繊維集合体A前駆体を厚さ方向に部分的に変形させて、繊維集合体A前駆体に由来する繊維集合体Aと、繊維集合体B前駆体に由来する繊維集合体Bの間に脱臭粒子が配置された濾材を形成することで、圧力損失が小さい、脱臭機能を有する濾材を製造できる方法である。 In the method for producing a filter medium according to claim 7 of the present invention, deodorized particles are arranged on one main surface of the fiber aggregate B precursor, and then on the main surface having the deodorized particles of the fiber aggregate B precursor. Another fiber aggregate A precursor is laminated and pressurized to at least partially deform the fiber aggregate A precursor in the thickness direction to obtain the fiber aggregate A derived from the fiber aggregate A precursor and the fibers. This is a method capable of producing a filter medium having a deodorizing function with a small pressure loss by forming a filter medium in which deodorizing particles are arranged between fiber aggregates B derived from the aggregate B precursor.
本発明の濾材を構成する繊維集合体A(1)は、濾材の厚さ方向の断面において見掛密度の高い部分と見掛密度が低い部分が存在し、前記一方の繊維集合体A(1)における最も見掛密度の高い部分の見掛密度と、最も見掛密度が低い部分の見掛密度の差が0.030g/cm3以上である。 The fiber aggregate A (1) constituting the filter medium of the present invention has a portion having a high apparent density and a portion having a low apparent density in the cross section in the thickness direction of the filter medium, and one of the fiber aggregates A (1) is described above. ), The difference between the apparent density of the portion having the highest apparent density and the apparent density of the portion having the lowest apparent density is 0.030 g / cm 3 or more.
なお、本発明の濾材は、繊維集合体A(1)及び繊維集合体B(2)を含むが、濾材の厚さ方向の断面において見掛密度の差が大きい方を繊維集合体A(1)とする。 The filter medium of the present invention includes the fiber aggregate A (1) and the fiber aggregate B (2), and the fiber aggregate A (1) having a larger difference in apparent density in the cross section in the thickness direction of the filter medium is used. ).
濾材の厚さ方向の断面において繊維集合体A(1)に見掛密度の高い部分と見掛密度が低い部分が存在する濾材の厚さ方向の断面の一例を、図1に例示する。図1に示した濾材は、濾材を構成する繊維集合体A(1)が脱臭粒子(3)の形状に追従し繊維集合体Aの厚さ方向の長さが一定でない。なお、図1において、繊維集合体A(1)における最も見掛密度の高い部分は繊維集合体A(1)における最も厚さ方向の長さが短い部分(5)であり、繊維集合体A(1)における最も見掛密度の低い部分は繊維集合体A(1)における最も厚さ方向の長さが長い部分(6)である。一方で、従来技術の濾材は、濾材の厚さ方向の断面を図2に例示するように、繊維集合体A(1)の厚さ方向の長さが一定であり、繊維集合体A(1)の見掛密度も一定である。 FIG. 1 illustrates an example of a cross section in the thickness direction of the filter medium in which a portion having a high apparent density and a portion having a low apparent density exist in the fiber aggregate A (1) in the cross section in the thickness direction of the filter medium. In the filter medium shown in FIG. 1, the fiber aggregate A (1) constituting the filter medium follows the shape of the deodorizing particles (3), and the length of the fiber aggregate A in the thickness direction is not constant. In FIG. 1, the portion having the highest apparent density in the fiber aggregate A (1) is the portion (5) having the shortest length in the thickness direction in the fiber aggregate A (1), and the fiber aggregate A The portion having the lowest apparent density in (1) is the portion (6) having the longest length in the thickness direction in the fiber aggregate A (1). On the other hand, in the filter medium of the prior art, the length of the fiber aggregate A (1) in the thickness direction is constant and the length of the fiber aggregate A (1) in the thickness direction is constant, as illustrated in FIG. ) Is also constant.
図1に示した濾材の厚さ方向の断面における、繊維集合体A及びBにおける最も見掛密度の高い部分の見掛密度及び最も見掛密度の低い部分の見掛密度は、以下の方法により算出することができる。
(1)繊維集合体AまたはBの目付を算出する。なお、目付とは、最も広い面における面積1m2あたりの質量をいう。
(2)濾材を、濾材の主面に対して垂直方向に切断する。
(3)(2)で切断した濾材の切断面を顕微鏡で観察し、濾材の断面写真を3枚撮る。このとき、濾材の切断面の長辺が1cm以上となるように断面写真を撮る。
(4)(3)で得られた3枚の濾材の断面写真から、濾材の主面に対して垂直である繊維集合体AまたはBの最も長い厚さ方向の長さ(mm)を断面写真ごとに測定し、3枚の断面写真における測定値を算術平均し、小数点第4位を四捨五入する。また、繊維集合体AまたはBの最も短い厚さ方向の長さ(mm)も同様に求める。なお、本発明でいう「主面」とは、最も広い面のことをいう。
(5)以下の式で繊維集合体A及びBにおける最も短い厚さ方向の長さを有する部分(最も見掛密度の高い部分)の見掛密度及び最も長い厚さ方向の長さを有する部分(最も見掛密度の低い部分)の見掛密度を算出する。
d={a/b}/103
d:見掛密度(g/cm3)
a:繊維集合体の目付(g/m2)
b:繊維集合体の最も長い又は最も短い厚さ方向の長さの算術平均値(mm)
In the cross section of the filter medium shown in FIG. 1 in the thickness direction, the apparent density of the portion having the highest apparent density and the apparent density of the portion having the lowest apparent density in the fiber aggregates A and B are determined by the following methods. Can be calculated.
(1) Calculate the basis weight of the fiber aggregate A or B. The basis weight refers to the mass per 1 m 2 of area on the widest surface.
(2) The filter medium is cut in the direction perpendicular to the main surface of the filter medium.
(3) Observe the cut surface of the filter medium cut in (2) with a microscope, and take three cross-sectional photographs of the filter medium. At this time, a cross-sectional photograph is taken so that the long side of the cut surface of the filter medium is 1 cm or more.
(4) From the cross-sectional photographs of the three filter media obtained in (3), a cross-sectional photograph of the length (mm) in the longest thickness direction of the fiber aggregate A or B perpendicular to the main surface of the filter media. Measure each, arithmetically average the measured values in the three cross-sectional photographs, and round off the fourth digit. Further, the length (mm) in the shortest thickness direction of the fiber aggregate A or B is also obtained in the same manner. The "main surface" in the present invention means the widest surface.
(5) The portion having the shortest thickness direction length (the part having the highest apparent density) and the longest thickness direction portion in the fiber aggregates A and B according to the following formula. Calculate the apparent density of (the part with the lowest apparent density).
d = {a / b} / 10 3
d: Apparent density (g / cm 3 )
a: Metsuke of fiber aggregate (g / m 2 )
b: Arithmetic mean value (mm) of the longest or shortest thickness direction of the fiber aggregate
本発明の濾材を構成する繊維集合体A(1)における最も見掛密度の高い部分の見掛密度と、最も見掛密度が低い部分の見掛密度の差が0.030g/cm3以上であるが、見掛密度の差が大きいほど見掛密度の低い部分により空気が通りやすいことから、最も見掛密度の高い部分の見掛密度と、最も見掛密度が低い部分の見掛密度の差が0.035g/cm3以上がより好ましく、0.040g/cm3以上が更に好ましい。最も見掛密度の高い部分の見掛密度と、最も見掛密度が低い部分の見掛密度の差が大きすぎると、見掛密度の高い部分の通気度が低すぎて圧力損失の増加の原因になることから、0.080g/cm3以下が好ましい。 When the difference between the apparent density of the portion having the highest apparent density and the apparent density of the portion having the lowest apparent density in the fiber aggregate A (1) constituting the filter medium of the present invention is 0.030 g / cm 3 or more. However, the larger the difference in apparent density, the easier it is for air to pass through the part with the lower apparent density. Therefore, the apparent density of the part with the highest apparent density and the apparent density of the part with the lowest apparent density more preferably 0.035 g / cm 3 or more, 0.040 g / cm 3 or more is more preferable. If the difference between the apparent density of the highest apparent density part and the apparent density of the lowest apparent density part is too large, the air permeability of the high apparent density part is too low, which causes an increase in pressure loss. Therefore, it is preferably 0.080 g / cm 3 or less.
また、繊維集合体A(1)における最も見掛密度の高い部分の厚さ方向の長さは、長ければ長いほどより通気度が高く圧力損失の低い濾材を実現できることから、0.070mm以上が好ましく、0.090mm以上がより好ましく、0.110mm以上が更に好ましい。上限については、厚さ方向の長さが長すぎると濾材の濾過性能が低下するおそれがあることから、0.250mm以下が現実的である。繊維集合体A(1)における最も見掛密度の低い部分の厚さ方向の長さは、長すぎると濾材の濾過性能が低下するおそれがあることから、1.00mm以下が好ましく、0.700mm以下が好ましく、0.550mm以下が更に好ましい。下限については、短すぎると通気度が低下し圧力損失が高い濾材となるおそれがあることから、0.100mm以上が現実的である。 Further, the length in the thickness direction of the portion having the highest apparent density in the fiber aggregate A (1) is 0.070 mm or more because the longer the length is, the higher the air permeability and the lower the pressure loss can be realized. Preferably, 0.090 mm or more is more preferable, and 0.110 mm or more is further preferable. As for the upper limit, if the length in the thickness direction is too long, the filtration performance of the filter medium may deteriorate, so that it is realistically 0.250 mm or less. The length of the portion of the fiber aggregate A (1) having the lowest apparent density in the thickness direction is preferably 1.00 mm or less, preferably 0.700 mm, because if it is too long, the filtration performance of the filter medium may deteriorate. The following is preferable, and 0.550 mm or less is more preferable. As for the lower limit, if it is too short, the air permeability may decrease and the filter medium may have a high pressure loss. Therefore, 0.100 mm or more is realistic.
更に、繊維集合体A(1)における最も見掛密度の高い部分の見掛密度は、低ければ低いほどより通気度が高く圧力損失の低い濾材を実現できることから、0.200g/cm3以下が好ましく、0.150g/cm3以下がより好ましく、0.130g/cm3以下が更に好ましい。下限については、濾材の濾過性能が低下するおそれがあることから、0.100g/cm3以上が現実的である。繊維集合体A(1)における最も見掛密度の低い部分の見掛密度は、低すぎると、濾材の濾過性能が低下するおそれがあることから、0.020g/cm3以上が好ましく、0.030g/cm3以上がより好ましく、0.040g/cm3以上が更に好ましい。上限については、見掛密度が高すぎると通気度が低下し圧力損失が高い濾材となるおそれがあることから、0.100g/cm3以下が現実的である。 Further, the apparent density of the portion having the highest apparent density in the fiber aggregate A (1) is 0.200 g / cm 3 or less because the lower the apparent density, the higher the air permeability and the lower the pressure loss can be realized. more preferably from 0.150 g / cm 3 or less, more preferably 0.130 g / cm 3 or less. As for the lower limit, 0.100 g / cm 3 or more is realistic because the filtration performance of the filter medium may deteriorate. If the apparent density of the portion having the lowest apparent density in the fiber aggregate A (1) is too low, the filtration performance of the filter medium may deteriorate. Therefore, 0.020 g / cm 3 or more is preferable, and 0. 030 g / cm 3 or more is more preferable, and 0.040 g / cm 3 or more is further preferable. As for the upper limit, if the apparent density is too high, the air permeability may decrease and the filter medium may have a high pressure loss. Therefore, 0.100 g / cm 3 or less is realistic.
本発明の濾材を構成する繊維集合体A(1)は、例えば、不織布や織物あるいは編物などから構成することができる。 The fiber aggregate A (1) constituting the filter medium of the present invention can be made of, for example, a non-woven fabric, a woven fabric, or a knitted fabric.
繊維集合体A(1)を構成する成分としては、例えば、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレン、ポリメチルペンテン、炭化水素の一部をシアノ基またはフッ素あるいは塩素といったハロゲンで置換した構造のポリオレフィン系樹脂など)、スチレン系樹脂、ポリエーテル系樹脂(ポリエーテルエーテルケトン、ポリアセタール、フェノール系樹脂、メラミン系樹脂、ユリア系樹脂、エポキシ系樹脂、変性ポリフェニレンエーテル、芳香族ポリエーテルケトンなど)、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリカーボネート、ポリアリレート、全芳香族ポリエステル樹脂、不飽和ポリエステル樹脂など)、ポリイミド系樹脂、ポリアミドイミド樹脂、ポリアミド系樹脂(例えば、芳香族ポリアミド樹脂、芳香族ポリエーテルアミド樹脂、ナイロン樹脂など)、ニトリル基を有する樹脂(例えば、ポリアクリロニトリルなど)、ウレタン系樹脂、エポキシ系樹脂、ポリスルホン系樹脂(ポリスルホン、ポリエーテルスルホンなど)、フッ素系樹脂(ポリテトラフルオロエチレン、ポリフッ化ビニリデンなど)、セルロース系樹脂、ポリベンゾイミダゾール樹脂、アクリル系樹脂(例えば、アクリル酸エステルあるいはメタクリル酸エステルなどを共重合したポリアクリロニトリル系樹脂、アクリロニトリルと塩化ビニルまたは塩化ビニリデンを共重合したモダアクリル系樹脂など)、ビニロン繊維など、公知の有機樹脂からなることができる。 The components constituting the fiber aggregate A (1) include, for example, a polyolefin resin (polyethylene, polypropylene, polymethylpentene, a polyolefin resin having a structure in which a part of hydrocarbon is replaced with a cyano group or a halogen such as fluorine or chlorine. Etc.), styrene resin, polyether resin (polyetheretherketone, polyacetal, phenol resin, melamine resin, urea resin, epoxy resin, modified polyphenylene ether, aromatic polyetherketone, etc.), polyester resin (Polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycarbonate, polyarylate, total aromatic polyester resin, unsaturated polyester resin, etc.), polyimide resin, polyamideimide resin, polyamide resin Resins (eg, aromatic polyamide resin, aromatic polyetheramide resin, nylon resin, etc.), resins having a nitrile group (eg, polyacrylonitrile, etc.), urethane-based resins, epoxy-based resins, polysulfone-based resins (polysulfone, polyether). Polyacrylonitrile resin obtained by copolymerizing a fluororesin (such as sulfone), a fluororesin (polytetrafluoroethylene, polyvinylidene fluoride, etc.), a cellulose resin, a polybenzoimidazole resin, and an acrylic resin (for example, an acrylic acid ester or a methacrylate ester). , Modaacrylic resin obtained by copolymerizing acrylonitrile with vinyl chloride or vinylidene chloride), vinylon fiber, and other known organic resins.
なお、これらの有機樹脂は、直鎖状のポリマー構造または分岐状のポリマー構造のいずれからなるものでも構わず、また有機樹脂がブロック共重合体やランダム共重合体でも構わず、また有機樹脂の立体構造や結晶性の有無がいかなるものでも、特に限定されるものではない。更には、有機樹脂を混ぜ合わせたものでも良く、特に限定されるものではない。 These organic resins may have either a linear polymer structure or a branched polymer structure, and the organic resin may be a block copolymer or a random copolymer, or the organic resin. The three-dimensional structure and the presence or absence of crystallinity are not particularly limited. Further, it may be a mixture of organic resins, and is not particularly limited.
繊維集合体A(1)を構成する繊維は、例えば、溶融紡糸法、乾式紡糸法、湿式紡糸法、直接紡糸法(メルトブロー法、スパンボンド法、静電紡糸法など)、複合繊維から一種類以上の有機樹脂を除去することで繊維径が細い繊維を抽出する方法、繊維を叩解して分割された繊維を得る方法など公知の方法により得ることができる。 One type of fiber constituting the fiber assembly A (1) is, for example, a melt spinning method, a dry spinning method, a wet spinning method, a direct spinning method (melt blow method, spun bond method, electrostatic spinning method, etc.), and a composite fiber. It can be obtained by a known method such as a method of extracting fibers having a small fiber diameter by removing the above organic resin and a method of beating the fibers to obtain divided fibers.
繊維集合体A(1)を構成する繊維は、一種類あるいは複数種類の有機樹脂から構成されてなるものでも構わない。複数種類の有機樹脂を含んでなる繊維として、一般的に複合繊維と称される、例えば、芯鞘型、海島型、サイドバイサイド型、オレンジ型などの複合繊維を使用することができる。 The fibers constituting the fiber aggregate A (1) may be composed of one type or a plurality of types of organic resins. As the fiber containing a plurality of types of organic resins, a composite fiber generally called a composite fiber, for example, a core-sheath type, a sea-island type, a side-by-side type, an orange type, or the like can be used.
繊維集合体A(1)を構成する繊維の繊維径については特に限定するものではないが、繊維径は、1.0〜30μmが好ましく、1.5〜20μmがより好ましく、2.0〜15μmが更に好ましい。繊維集合体Aを構成する繊維の繊維長は、長ければ長いほど、繊維集合体Aの形態安定性が優れることから、5mm以上が好ましく、10mm以上がより好ましく、20mm以上が更に好ましく、連続繊維であってもよい。 The fiber diameter of the fibers constituting the fiber aggregate A (1) is not particularly limited, but the fiber diameter is preferably 1.0 to 30 μm, more preferably 1.5 to 20 μm, and 2.0 to 15 μm. Is more preferable. The longer the fiber length of the fibers constituting the fiber aggregate A, the more excellent the morphological stability of the fiber aggregate A. Therefore, 5 mm or more is preferable, 10 mm or more is more preferable, 20 mm or more is further preferable, and continuous fibers. It may be.
本発明の濾材を構成する繊維集合体B(2)は、繊維集合体A(1)と同様の構成成分、構成繊維であることができる。 The fiber aggregate B (2) constituting the filter medium of the present invention can be the same constituent component and constituent fiber as the fiber aggregate A (1).
繊維集合体B(2)を構成する繊維の繊維径、及び繊維長については特に限定するものではないが、繊維径は、1.0〜50μmが好ましく、3.0〜40μmがより好ましく、5.0〜30μmが更に好ましい。繊維長は、3mm以上が好ましく、4mm以上がより好ましく、5mm以上が更に好ましい。繊維長の上限については、25mm以下が現実的である。 The fiber diameter and fiber length of the fibers constituting the fiber aggregate B (2) are not particularly limited, but the fiber diameter is preferably 1.0 to 50 μm, more preferably 3.0 to 40 μm, and 5 .0 to 30 μm is more preferable. The fiber length is preferably 3 mm or more, more preferably 4 mm or more, still more preferably 5 mm or more. It is realistic that the upper limit of the fiber length is 25 mm or less.
本発明の濾材を構成する脱臭粒子(3)は、脱臭作用を有する粒子をいい、例えば、活性炭や、シリカゲルや酸化チタンなどの無機粒子などが挙げられる。本発明の濾材を構成する脱臭粒子は、1種類であっても2種類以上であってもよい。この中でも、活性炭とシリカゲルの2種類を脱臭粒子に含んでいると、効率よく脱臭できる濾材であることから、好ましい。 The deodorizing particles (3) constituting the filter medium of the present invention refer to particles having a deodorizing action, and examples thereof include activated carbon and inorganic particles such as silica gel and titanium oxide. The deodorizing particles constituting the filter medium of the present invention may be one type or two or more types. Among these, it is preferable that the deodorizing particles contain two types of activated carbon and silica gel because the filter medium can efficiently deodorize.
脱臭粒子(3)の形状や大きさは適宜調整するが、脱臭粒子として、例えば、球状(略球状や真球状)、繊維状、針状、平板状、不定形形状や多面体形状あるいは羽毛状やテトラポッド形状などから適宜選択することができる。また、脱臭粒子の平均粒子径としては、0.10〜1.5mmであるのが好ましく、0.11〜1.2mmであるのがより好ましく、0.12〜1.0mmであるのが最も好ましい。 The shape and size of the deodorizing particles (3) are appropriately adjusted, and the deodorizing particles include, for example, spherical (substantially spherical or true spherical), fibrous, needle-shaped, flat plate-shaped, amorphous-shaped, polyhedral-shaped, or feather-shaped. It can be appropriately selected from the shape of the tetrapod and the like. The average particle size of the deodorized particles is preferably 0.10 to 1.5 mm, more preferably 0.11 to 1.2 mm, and most preferably 0.12 to 1.0 mm. preferable.
なお、本発明でいう脱臭粒子(3)の粒子径とは、脱臭粒子の電子顕微鏡写真または脱臭粒子を有する濾材の主面の電子顕微鏡写真を撮影して測定できる脱臭粒子の直径のことであり、平均粒子径とは、脱臭粒子10個の平均の粒子径を意味する。なお、電子顕微鏡写真に写る脱臭粒子の形状が非円形である場合には、電子顕微鏡写真に写る前記形状の脱臭粒子と同じ面積を有する円の直径を、脱臭粒子の直径とみなす。 The particle size of the deodorized particles (3) in the present invention is the diameter of the deodorized particles that can be measured by taking an electron micrograph of the deodorized particles or an electron micrograph of the main surface of the filter medium having the deodorized particles. The average particle size means the average particle size of 10 deodorized particles. When the shape of the deodorizing particles shown in the electron micrograph is non-circular, the diameter of a circle having the same area as the deodorizing particles having the same shape shown in the electron micrograph is regarded as the diameter of the deodorizing particles.
また、脱臭粒子(3)に、脱臭効率の向上を目的として、アミン系化合物、酸ヒドラジド化合物などの、臭気成分と反応する化合物、及び臭気成分を吸着する化合物を含有していてもよい。 Further, the deodorizing particles (3) may contain a compound that reacts with an odorous component, such as an amine compound or an acid hydrazide compound, and a compound that adsorbs the odorous component, for the purpose of improving the deodorizing efficiency.
本発明の濾材に含まれる脱臭粒子(3)の含有量は、少ない程、濾材において脱臭粒子が存在していない部分に繊維集合体A(1)の構成繊維が入り込んだ状態にあり、繊維集合体A(1)の見掛密度が小さい部分が存在しやすいため、圧力損失の小さい濾材が実現しやすいことから、100g/m2以下が好ましく、90g/m2以下がより好ましく、80g/m2以下が更に好ましい。一方で、脱臭粒子の含有量が少なすぎると、濾材がVOCを十分に捕集できず、濾材の脱臭作用が不十分になるおそれがあることから、5g/m2以上が現実的である。 The smaller the content of the deodorizing particles (3) contained in the filter medium of the present invention, the more the constituent fibers of the fiber aggregate A (1) are contained in the portion of the filter medium in which the deodorizing particles do not exist, and the fiber assembly Since a portion of the body A (1) having a small apparent density is likely to exist, a filter medium having a small pressure loss can be easily realized. Therefore, 100 g / m 2 or less is preferable, 90 g / m 2 or less is more preferable, and 80 g / m. 2 or less is more preferable. On the other hand, if the content of the deodorizing particles is too small, the filter medium may not be able to sufficiently collect VOCs, and the deodorizing action of the filter medium may be insufficient. Therefore, 5 g / m 2 or more is realistic.
本発明の濾材は、脱臭粒子(3)が濾材から脱落しにくいように、繊維集合体B(2)と脱臭粒子(3)とが有機樹脂(4)を介して接着しているのが好ましい。繊維集合体B(2)と脱臭粒子(3)とが有機樹脂(4)を介して接着しているときの有機樹脂(4)の形状は、例えば粒子状、シート状などが挙げられるが、有機樹脂(4)の形状がシート状であると、有機樹脂(4)が粒子状である場合よりも有機樹脂(4)の分布が均一であり、繊維集合体B(2)上に脱臭粒子が均一に分布し、脱臭性能の良い濾材が実現しやすいことから好ましい。 In the filter medium of the present invention, it is preferable that the fiber aggregate B (2) and the deodorizing particles (3) are adhered to each other via the organic resin (4) so that the deodorizing particles (3) do not easily fall off from the filter medium. .. The shape of the organic resin (4) when the fiber aggregate B (2) and the deodorizing particles (3) are adhered to each other via the organic resin (4) may be, for example, a particle shape or a sheet shape. When the shape of the organic resin (4) is sheet-like, the distribution of the organic resin (4) is more uniform than when the organic resin (4) is in the form of particles, and the deodorized particles are placed on the fiber aggregate B (2). Is preferable because the particles are uniformly distributed and it is easy to realize a filter medium having good deodorizing performance.
本発明に用いる、接着に用いる有機樹脂(4)の種類は適宜選択するものであり、特に限定されるものではなく、繊維集合体A、Bを構成する成分として挙げた、公知の有機樹脂を使用することができる。 The type of the organic resin (4) used for adhesion used in the present invention is appropriately selected and is not particularly limited, and known organic resins listed as components constituting the fiber aggregates A and B are used. Can be used.
濾材における、繊維集合体B(2)と脱臭粒子(3)を接着している有機樹脂(4)の量が10g/m2以下であると、濾材をプリーツ加工する際に脱臭粒子(3)と有機樹脂(4)との接着がはずれ、プリーツ加工の際にかける力が少なくてもプリーツ加工が可能であることから、プリーツ加工が施しやすく加工性が優れる上、濾材の通気度が有機樹脂(4)により低下しにくく圧力損失が小さい濾材であり好ましい。繊維集合体B(2)と脱臭粒子(3)を接着している有機樹脂(4)の量が少なければ少ない程、前記効果がより得られることから、9g/m2以下が好ましく、8g/m2以下がより好ましい。一方、有機樹脂(4)の量が少なすぎると、脱臭粒子(3)が濾材から脱落しやすくなるおそれがあることから、1g/m2以上が好ましく、2g/m2以上がより好ましく、3g/m2以上が更に好ましい。 When the amount of the organic resin (4) adhering the fiber aggregate B (2) and the deodorizing particles (3) in the filter medium is 10 g / m 2 or less, the deodorizing particles (3) are pleated when the filter medium is pleated. And the organic resin (4) are loosened, and pleating is possible even if the force applied during pleating is small. Therefore, pleating is easy and the workability is excellent, and the air permeability of the filter medium is organic resin. A filter medium that is less likely to decrease due to (4) and has a small pressure loss is preferable. The smaller the amount of the organic resin (4) adhering the fiber aggregate B (2) and the deodorizing particles (3), the more the effect can be obtained. Therefore, 9 g / m 2 or less is preferable, and 8 g / m / More preferably m 2 or less. On the other hand, if the amount of the organic resin (4) is too small, the deodorizing particles (3) may easily fall off from the filter medium. Therefore, 1 g / m 2 or more is preferable, 2 g / m 2 or more is more preferable, and 3 g. / M 2 or more is more preferable.
なお、脱臭粒子(3)の脱落防止、及び、濾材の取り扱い性向上を目的として、繊維集合体A(1)と脱臭粒子(3)とが有機樹脂を介して接着していてもよく、そのときの有機樹脂の形状は特に限定するものではない。濾材における、繊維集合体A(1)及びB(2)と脱臭粒子を接着している有機樹脂の総量は、多ければ多いほど脱臭粒子が脱落しにくい一方、多すぎると濾材の空隙をふさぎ、濾材の通気度が低下し圧力損失が増大するおそれがある上、濾材の加工性が悪化するおそれがあることから、2〜20g/m2が好ましく、4〜18g/m2がより好ましく、6〜16g/m2が更に好ましい。
The fiber aggregate A (1) and the deodorizing particles (3) may be adhered to each other via an organic resin for the purpose of preventing the deodorizing particles (3) from falling off and improving the handleability of the filter medium. The shape of the organic resin is not particularly limited. The total amount of the organic resin adhering the deodorizing particles to the fiber aggregates A (1) and B (2) in the filter medium is such that the deodorizing particles are less likely to fall off when the amount is large, while the amount is too large to block the voids in the filter medium. Since the air permeability of the filter medium may decrease and the pressure loss may increase, and the workability of the filter medium may deteriorate, 2 to 20 g /
本発明の濾材の目付は、適宜調整するものであるが、50〜200g/m2が好ましく、80〜170g/m2がより好ましく、100〜150g/m2が更に好ましい。 Basis weight of the filter medium of the present invention is intended to suitably adjusted, preferably 50 to 200 g / m 2, more preferably 80~170g / m 2, more preferably 100 to 150 g / m 2.
また、本発明の濾材の厚さは、小さいスペースにも濾材を設置することができ、また、加工性(プリーツ加工等)が優れる濾材であるように、0.70mm以下が好ましい。厚さが薄ければ薄い程前記効果がより得られることから、0.68mm以下がより好ましく、0.66mm以下が更に好ましい。一方、濾材が薄すぎると、形態保持性が劣るおそれがあることから、0.30mm以上が好ましく、0.40mm以上がより好ましく、0.50mm以上が更に好ましい。なお、濾材、及び後述の繊維集合体A前駆体及び繊維集合体B前駆体の「厚さ」は、高精度デジタル測定機(登録商標:ライトマチック(VL−50A)(株)ミツトヨ)により計測した、主面間方向に100gの荷重をかけた際の、5点で測定された各主面間の距離の算術平均値をいい、前述の繊維集合体A及びBの厚さ方向の長さとは定義が異なる。 Further, the thickness of the filter medium of the present invention is preferably 0.70 mm or less so that the filter medium can be installed even in a small space and the filter medium has excellent workability (pleating, etc.). The thinner the thickness, the more the effect can be obtained. Therefore, 0.68 mm or less is more preferable, and 0.66 mm or less is further preferable. On the other hand, if the filter medium is too thin, the shape retention may be inferior. Therefore, 0.30 mm or more is preferable, 0.40 mm or more is more preferable, and 0.50 mm or more is further preferable. The "thickness" of the filter medium and the fiber aggregate A precursor and fiber aggregate B precursor described later is measured by a high-precision digital measuring machine (registered trademark: Lightmatic (VL-50A) Mitutoyo Co., Ltd.). The arithmetic mean value of the distance between each main surface measured at five points when a load of 100 g is applied in the direction between the main surfaces, and the length in the thickness direction of the fiber aggregates A and B described above. Has a different definition.
濾材を構成する繊維集合体A(1)、B(2)の少なくとも1つはエレクトレット処理されているのが好ましい。エレクトレット処理がされていることにより、通常では除去しにくいサブミクロンサイズやナノサイズの微細塵を静電気力により捕集することができる。 It is preferable that at least one of the fiber aggregates A (1) and B (2) constituting the filter medium is electret-treated. Due to the electret treatment, submicron size and nano size fine dust, which is normally difficult to remove, can be collected by electrostatic force.
本発明の濾材は、2つの繊維集合体A(1)、B(2)及び脱臭粒子(3)を有するものであるが、繊維集合体A、B以外のほかの繊維集合体、及び通気性多孔フィルムや通気性発泡体などの通気性の素材を有していても良い。 The filter medium of the present invention has two fiber aggregates A (1), B (2) and deodorizing particles (3), but other fiber aggregates other than the fiber aggregates A and B, and breathability. It may have a breathable material such as a porous film or a breathable foam.
また、本発明の濾材は、繊維集合体A(1)が上流側になるように空気を通過させても、繊維集合体B(2)が上流側になるように空気を通過させても良いが、繊維集合体の内部の見掛密度の差が小さい繊維集合体B(2)が上流側になるように空気を通過させた方が濾材内において空気流が偏りにくく、効率的に塵埃及びVOCを捕集できることから、濾材を使用する際は繊維集合体B側が上流側になるように空気を通過させるよう使用するのが好ましい。 Further, in the filter medium of the present invention, air may be passed so that the fiber aggregate A (1) is on the upstream side, or air may be passed so that the fiber aggregate B (2) is on the upstream side. However, if the air is passed so that the fiber aggregate B (2), which has a small difference in apparent density inside the fiber aggregate, is on the upstream side, the air flow is less likely to be biased in the filter medium, and dust and dust are efficiently generated. Since VOC can be collected, when using a filter medium, it is preferable to use it so that air is passed so that the fiber aggregate B side is on the upstream side.
なお、本発明の濾材の厚さ方向の断面構造は、図1に例示したものに限定されるものではなく、他にも、例えば、繊維集合体Aにおいて厚さが一定であっても繊維密度が異なり、見掛密度差を有する場合も、図1に例示した断面構造を有する濾材と同様の作用効果を奏する。 The cross-sectional structure of the filter medium of the present invention in the thickness direction is not limited to that illustrated in FIG. 1, and in addition, for example, the fiber density in the fiber aggregate A even if the thickness is constant. However, even when there is an apparent density difference, the same action and effect as those of the filter medium having the cross-sectional structure illustrated in FIG. 1 can be obtained.
更に、本発明の濾材は特に加工していない平板形状のものであってもよいが、本発明の濾材をプリーツ加工したものと、前記濾材がプリーツ加工されたものの周縁部に外枠を備えてなるフィルタエレメントは、濾過面積が広く、塵埃及びVOCの捕集効率が優れることから好ましい。本発明のフィルタエレメントのプリーツ高さは、5〜50mmが好ましく、10〜45mmがより好ましく、15〜30mmが更に好ましい。フィルタエレメントのプリーツ間隔は、2〜20mmが好ましく、3〜15mmがより好ましく、3〜10mmが更に好ましい。フィルタエレメントにおける外枠は、濾材がプリーツ加工されたものの周縁部の全体(例えば濾材がプリーツ加工されたものの平面形状が長方形の場合、プリーツの折り目方向に直交する方向の周縁部、及びプリーツの折り目方向に平行する方向の周縁部)にあってもよいし、濾材がプリーツ加工されたものの周縁部の一部のみ(例えば濾材がプリーツ加工されたものの平面形状が長方形の場合、プリーツ形状を固定し保持することを目的としてプリーツの折り目方向に直交する方向の周縁部のみなど)にあってもよい。 Further, the filter medium of the present invention may have a flat plate shape that has not been particularly processed, but the filter medium of the present invention is pleated and the filter medium is pleated, and an outer frame is provided on the peripheral edge portion. The filter element is preferable because it has a large filtration area and is excellent in collecting dust and VOC. The pleated height of the filter element of the present invention is preferably 5 to 50 mm, more preferably 10 to 45 mm, still more preferably 15 to 30 mm. The pleating interval of the filter element is preferably 2 to 20 mm, more preferably 3 to 15 mm, and even more preferably 3 to 10 mm. The outer frame of the filter element is the entire peripheral edge of the pleated filter medium (for example, when the filter medium is pleated and the plane shape is rectangular, the peripheral edge in the direction orthogonal to the pleated crease direction and the pleated crease. It may be on the peripheral edge in the direction parallel to the direction, or if the filter medium is pleated but only a part of the peripheral edge (for example, if the filter medium is pleated but the plane shape is rectangular, the pleated shape is fixed. For the purpose of holding, it may be located only at the peripheral edge in the direction orthogonal to the fold direction of the pleats).
また、プリーツ加工した濾材と外枠の接着は、例えば、ポリ酢酸ビニルなどのホットメルト樹脂を外枠と濾材との間に介在させることにより行うことができる。更に、外枠としては、例えば、アルミニウム、アルミニウム合金、ステンレス、各種樹脂、紙、あるいは不織布からなる外枠を使用することができる。 Further, the pleated filter medium and the outer frame can be adhered by, for example, interposing a hot melt resin such as polyvinyl acetate between the outer frame and the filter medium. Further, as the outer frame, for example, an outer frame made of aluminum, aluminum alloy, stainless steel, various resins, paper, or non-woven fabric can be used.
なお、上述のような濾材及びフィルタエレメントは、例えば、額縁状のフィルタフレームに収納するなどして、フィルタユニットとして使用することができる。 The filter medium and the filter element as described above can be used as a filter unit by, for example, being housed in a frame-shaped filter frame.
更に本発明の濾材は、プリーツ加工以外の加工に供してもよい。本発明の濾材を加工したものとしては、例えば、濾材を巻回するように加工し、濾材を巻出して使用するロールフィルタ装置用のロールフィルタなどが挙げられる。 Further, the filter medium of the present invention may be subjected to processing other than pleating. Examples of the processed filter medium of the present invention include a roll filter for a roll filter device in which the filter medium is processed so as to be wound and the filter medium is unwound and used.
次に、本発明の濾材の製造方法について説明する。 Next, the method for producing the filter medium of the present invention will be described.
まず、繊維集合体B前駆体を用意し、繊維集合体B前駆体の一方の主面上に脱臭粒子を配置する。 First, a fiber aggregate B precursor is prepared, and deodorized particles are arranged on one main surface of the fiber aggregate B precursor.
繊維集合体B前駆体は、例えば、不織布や織物あるいは編物などから構成することができる。繊維集合体B前駆体が織物や編物である場合、前述のようにして調製した繊維を、織るあるいは編むことで調製して繊維集合体B前駆体を構成することができる。繊維集合体B前駆体が不織布である場合、例えば、乾式法による乾式不織布、湿式法による湿式不織布、直接紡糸法によるスパンボンド不織布、メルトブロー不織布、静電紡糸不織布などを用いることができる。これらの中でも、濾材の加工性(プリーツ加工等)が優れることから、不織布であるのが好ましく、不織布の中でも構成繊維の繊維長が短く、よりプリーツ加工性が優れる湿式不織布であるのがより好ましい。 The fiber assembly B precursor can be composed of, for example, a non-woven fabric, a woven fabric, or a knitted fabric. When the fiber aggregate B precursor is a woven fabric or a knitted fabric, the fibers prepared as described above can be prepared by weaving or knitting to form a fiber aggregate B precursor. When the fiber aggregate B precursor is a non-woven fabric, for example, a dry non-woven fabric by a dry method, a wet non-woven fabric by a wet method, a spunbonded non-woven fabric by a direct spinning method, a melt blow non-woven fabric, an electrostatically spun non-woven fabric, or the like can be used. Among these, a non-woven fabric is preferable because the filter medium is excellent in processability (pleating, etc.), and among the non-woven fabrics, a wet non-woven fabric having a short fiber length and more excellent pleating workability is more preferable. ..
繊維集合体B前駆体が不織布である場合、不織布の構成繊維を結合する方法として、例えば、ニードルや水流によって絡合する方法、繊維同士をバインダで一体化する方法、あるいは、不織布の構成繊維を結合する前の繊維ウエブが熱可塑性樹脂を備える繊維を含んでいる場合には、繊維ウエブを加熱処理することで前記熱可塑性樹脂を溶融して、繊維同士を一体化する方法を挙げることができる。なお、繊維ウエブを加熱処理する方法として、例えば、カレンダーロールにより加熱加圧する方法、熱風乾燥機により加熱する方法、無圧下で赤外線を照射して熱可塑性樹脂繊維を溶融させる方法などを用いることができる。 When the fiber aggregate B precursor is a non-woven fabric, as a method of binding the constituent fibers of the non-woven fabric, for example, a method of entwining with a needle or a water stream, a method of integrating the fibers with a binder, or a method of integrating the constituent fibers of the non-woven fabric with a binder. When the fiber web before binding contains fibers containing a thermoplastic resin, a method of melting the thermoplastic resin by heat-treating the fiber web to integrate the fibers with each other can be mentioned. .. As a method for heat-treating the fiber web, for example, a method of heating and pressurizing with a calendar roll, a method of heating with a hot air dryer, a method of irradiating infrared rays under no pressure to melt the thermoplastic resin fiber, and the like can be used. can.
繊維集合体B前駆体の見掛密度は、濾過性能の優れる濾材、また加工性の優れる濾材を製造できるように、0.060〜0.400g/cm3であるのが好ましく、0.080〜0.300g/cm3であるのがより好ましく、0.100〜0.200g/cm3であるのが更に好ましい。また、繊維集合体B前駆体の目付は、濾過性能の優れる濾材、また加工性の優れる濾材を製造できるように、10.0〜100g/m2であるのが好ましく、20.0〜80.0g/m2であるのがより好ましく、30.0〜60.0g/m2であるのが更に好ましい。更に、繊維集合体B前駆体の厚さは、濾過性能の優れる濾材、また加工性の優れる濾材を製造できるように、0.100〜0.600mmであるのが好ましく、0.150〜0.500mmであるのがより好ましく、0.200〜0.400mmであるのが更に好ましい。 The apparent density of the fiber aggregate B precursor is preferably 0.060 to 0.400 g / cm 3 , preferably 0.080 to 0.080, so that a filter medium having excellent filtration performance and a filter medium having excellent processability can be produced. more preferably from 0.300 g / cm 3, and even more preferably 0.100~0.200g / cm 3. The basis weight of the fiber aggregate B precursor is preferably 10.0 to 100 g / m 2 so that a filter medium having excellent filtration performance and a filter medium having excellent processability can be produced. more preferably from 0 g / m 2, and even more preferably 30.0~60.0g / m 2. Further, the thickness of the fiber aggregate B precursor is preferably 0.1000 to 0.600 mm, preferably 0.150 to 0.600 mm, so that a filter medium having excellent filtration performance and a filter medium having excellent processability can be produced. It is more preferably 500 mm, and even more preferably 0.200 to 0.400 mm.
更に、脱臭粒子(3)の配置量は、脱臭粒子(3)の存在していない部分に繊維集合体A前駆体が入り込み、濾材を構成する繊維集合体A(1)の厚さ方向の断面において、見掛密度が高い部分と見掛密度が低い部分が存在するように、100g/m2以下が好ましく、90g/m2以下がより好ましく、80g/m2以下が更に好ましい。 Further, the amount of the deodorized particles (3) arranged is such that the fiber aggregate A precursor enters the portion where the deodorized particles (3) do not exist, and the cross section of the fiber aggregate A (1) constituting the filter medium in the thickness direction. In the above, 100 g / m 2 or less is preferable, 90 g / m 2 or less is more preferable, and 80 g / m 2 or less is further preferable, so that there are a portion having a high apparent density and a portion having a low apparent density.
また、脱臭粒子(3)を配置する方法としては特に限定するものではない。また、脱臭粒子(3)の脱落防止を目的として、脱臭粒子(3)を配置する前に繊維集合体B前駆体の一方の主面上に有機樹脂(4)を配置し、繊維集合体B前駆体と脱臭粒子(3)を接着するのが好ましい。有機樹脂(4)を配置し、繊維集合体B前駆体と脱臭粒子(3)を接着する方法としては、例えば、シート状の有機樹脂(4)を積層、又は粒子状の有機樹脂(4)を散布することで繊維集合体B前駆体の一方の主面上に有機樹脂(4)を配置し、その後、熱や高温の水蒸気などにより有機樹脂(4)を溶解させ、有機樹脂(4)が溶解している間に脱臭粒子(3)を配置し、冷却して脱臭粒子(3)を接着する方法や、熱で溶解させた有機樹脂(4)を繊維集合体B前駆体の一方の主面上に配置し、有機樹脂(4)が溶解している間に脱臭粒子(3)を配置し、冷却して脱臭粒子(3)を接着する方法、液体または溶媒に溶けた有機樹脂(4)を塗布することで繊維集合体B前駆体の一方の主面上に有機樹脂(4)を配置し、次いで有機樹脂(4)が乾燥し、固化する前に脱臭粒子(3)を配置した後、有機樹脂(4)を乾燥させて脱臭粒子(3)を接着する方法などが挙げられる。 Further, the method of arranging the deodorizing particles (3) is not particularly limited. Further, for the purpose of preventing the deodorized particles (3) from falling off, the organic resin (4) is arranged on one main surface of the fiber aggregate B precursor before the deodorized particles (3) are arranged, and the fiber aggregate B is arranged. It is preferable to bond the precursor and the deodorizing particles (3). As a method of arranging the organic resin (4) and adhering the fiber aggregate B precursor and the deodorizing particles (3), for example, a sheet-shaped organic resin (4) is laminated or a particle-shaped organic resin (4) is laminated. The organic resin (4) is placed on one main surface of the fiber aggregate B precursor by spraying the particles, and then the organic resin (4) is dissolved by heat or high-temperature steam to dissolve the organic resin (4). The deodorizing particles (3) are arranged while the deodorizing particles (3) are being melted, and the deodorizing particles (3) are adhered by cooling, or the organic resin (4) melted by heat is attached to one of the fiber aggregate B precursors. A method of arranging on the main surface, arranging the deodorizing particles (3) while the organic resin (4) is dissolved, cooling and adhering the deodorizing particles (3), an organic resin dissolved in a liquid or a solvent ( By applying 4), the organic resin (4) is placed on one main surface of the fiber aggregate B precursor, and then the deodorizing particles (3) are placed before the organic resin (4) dries and solidifies. After that, a method of drying the organic resin (4) and adhering the deodorizing particles (3) can be mentioned.
次に、繊維集合体B前駆体の脱臭粒子(3)を有する主面上に別の繊維集合体A前駆体を積層するとともに加圧し、少なくとも繊維集合体A前駆体を厚さ方向に部分的に変形させて、繊維集合体A前駆体に由来する繊維集合体A(1)と、繊維集合体B前駆体に由来する繊維集合体B(2)の間に脱臭粒子(3)が配置された、本発明の濾材を製造する。 Next, another fiber aggregate A precursor is laminated and pressurized on the main surface having the deodorized particles (3) of the fiber aggregate B precursor, and at least the fiber aggregate A precursor is partially partially formed in the thickness direction. The deodorized particles (3) are arranged between the fiber aggregate A (1) derived from the fiber aggregate A precursor and the fiber aggregate B (2) derived from the fiber aggregate B precursor. In addition, the filter medium of the present invention is produced.
繊維集合体A前駆体は、繊維集合体B前駆体と同様に、不織布や織物あるいは編物などから構成することができるが、これらの中でも厚さが変化しやすく、繊維集合体A前駆体由来の繊維集合体A(1)における最も見掛密度の高い部分の見掛密度と最も見掛密度の低い部分の見掛密度の差が0.030g/m2以上となりやすい不織布が好ましく、不織布の中でもより見掛密度の差が0.030g/m2以上となりやすい上、ある程度の厚さを有する乾式不織布又はメルトブロー不織布がより好ましく、容易にエレクトレット処理でき、塵埃の捕集性能の高い濾材が実現できることからメルトブロー不織布が更に好ましい。 Like the fiber aggregate B precursor, the fiber aggregate A precursor can be composed of a non-woven fabric, a woven fabric, a knitted fabric, or the like, but the thickness is easily changed among these, and the fiber aggregate A precursor is derived from the fiber aggregate A precursor. A non-woven fabric in which the difference between the apparent density of the portion having the highest apparent density and the apparent density of the portion having the lowest apparent density in the fiber aggregate A (1) tends to be 0.030 g / m 2 or more is preferable, and among the non-woven fabrics, The difference in apparent density tends to be 0.030 g / m 2 or more, and a dry non-woven fabric or melt-blown non-woven fabric having a certain thickness is more preferable, and an electlet treatment can be easily performed, and a filter medium having high dust collection performance can be realized. Therefore, melt blown non-woven fabric is more preferable.
このとき、脱臭粒子(3)の存在していない部分に繊維集合体A前駆体の構成繊維が入り込み、繊維集合体A(1)の厚さ方向の断面において、見掛密度が高い部分と見掛密度が低い濾材が製造しやすいように、また、濾過性能の優れる濾材を製造しやすいように、繊維集合体A前駆体の見掛密度は、0.020〜0.200g/cm3であるのが好ましく、0.025〜0.100g/cm3であるのがより好ましく、0.030〜0.050g/cm3であるのが更に好ましい。また、繊維集合体A前駆体の厚さは、繊維集合体A(1)の厚さ方向の断面において、見掛密度が高い部分と見掛密度が低い濾材が製造しやすいように、また、濾過性能の優れる濾材を製造しやすいように、0.050〜0.800mmであるのが好ましく、0.070〜0.500mmであるのがより好ましく、0.100〜0.400mmであるのが更に好ましい。更に、繊維集合体A前駆体の目付は、濾材の濾過性能に優れるように、また、濾材の加工性に優れるように、5.0〜30.0g/m2であるのが好ましく、7.0〜25.0g/m2であるのがより好ましく、10.0〜20.0g/m2であるのが更に好ましい。 At this time, the constituent fibers of the fiber aggregate A precursor enter into the portion where the deodorized particles (3) do not exist, and it is considered that the portion has a high apparent density in the cross section of the fiber aggregate A (1) in the thickness direction. The apparent density of the fiber aggregate A precursor is 0.020 to 0.200 g / cm 3 so that a filter medium having a low hanging density can be easily manufactured and a filter medium having an excellent filtering performance can be easily manufactured. it is preferably, more preferably from 0.025~0.100g / cm 3, and even more preferably 0.030~0.050g / cm 3. Further, the thickness of the fiber aggregate A precursor is set so that a portion having a high apparent density and a filter medium having a low apparent density can be easily manufactured in the cross section of the fiber aggregate A (1) in the thickness direction. It is preferably 0.050 to 0.800 mm, more preferably 0.070 to 0.500 mm, and 0.100 to 0.400 mm so that a filter medium having excellent filtration performance can be easily produced. More preferred. Further, the basis weight of the fiber aggregate A precursor is preferably 5.0 to 30.0 g / m 2 so as to have excellent filtration performance of the filter medium and excellent processability of the filter medium. more preferably from 0~25.0g / m 2, and even more preferably 10.0~20.0g / m 2.
繊維集合体B前駆体の脱臭粒子を有する主面上に別の繊維集合体A前駆体を積層するとともに加圧する際の加圧方法は特に限定するものではないが、例えば2本のロールの間に通して加圧する方法、積層したものの上からプレスして加圧する方法などが挙げられる。2本のロールの間に通して加圧する方法を採用する場合、少なくとも繊維集合体A前駆体を厚さ方向に部分的に変形させられるように、繊維集合体B前駆体、脱臭粒子、繊維集合体A前駆体を積層した積層体の厚さよりも2本のロール間隔を狭くするのが好ましく、繊維集合体B前駆体と繊維集合体A前駆体の厚さの合計よりも2本のロール間隔を狭くするのがより好ましい。なお、加圧する際の温度は、特に加温しなくても加温しても良いが、温度が高すぎると繊維集合体前駆体A、Bの構成繊維を溶解させて繊維集合体前駆体A、Bの空隙をふさぎ、圧力損失が増大するおそれがあることから、繊維集合体A、B前駆体の構成繊維のうち、最も低い融点よりも低い温度で加圧するのが好ましい。 The pressurization method when another fiber aggregate A precursor is laminated and pressurized on the main surface having the deodorized particles of the fiber aggregate B precursor is not particularly limited, but for example, between two rolls. Examples thereof include a method of pressurizing through a laminated material and a method of pressing and pressurizing the laminated material. When the method of applying pressure by passing it between two rolls is adopted, at least the fiber aggregate A precursor, the deodorized particles, and the fiber aggregate are partially deformed in the thickness direction. It is preferable that the distance between the two rolls is narrower than the thickness of the laminate in which the body A precursors are laminated, and the distance between the two rolls is smaller than the total thickness of the fiber aggregate B precursor and the fiber aggregate A precursor. Is more preferable. The temperature at the time of pressurization may be heated without particularly heating, but if the temperature is too high, the constituent fibers of the fiber aggregate precursors A and B are dissolved to dissolve the fiber aggregate precursor A. , B may be blocked and the pressure loss may increase. Therefore, it is preferable to pressurize at a temperature lower than the lowest melting point among the constituent fibers of the fiber aggregates A and B precursors.
また、脱臭粒子(3)の脱落防止、及び、濾材の取り扱い性向上を目的として、繊維集合体B前駆体の脱臭粒子を有する主面上に別の繊維集合体A前駆体を積層する前に、繊維集合体B前駆体の脱臭粒子を有する主面上、もしくは繊維集合体A前駆体の一方の主面上に有機樹脂を配置し、繊維集合体B前駆体及び/又は脱臭粒子(3)と繊維集合体A前駆体とを接着するのが好ましい。有機樹脂を配置し、繊維集合体B前駆体及び/又は脱臭粒子(3)と繊維集合体A前駆体とを接着する方法としては、前述の有機樹脂を配置し、繊維集合体B前駆体と脱臭粒子(3)とを接着する方法と同様の方法が採用できる。なお、繊維集合体B前駆体と脱臭粒子(3)との接着と、繊維集合体B前駆体及び/又は脱臭粒子(3)と繊維集合体A前駆体との接着は、同時に行っても、別々に行ってもよい。 Further, for the purpose of preventing the deodorized particles (3) from falling off and improving the handleability of the filter medium, before stacking another fiber aggregate A precursor on the main surface having the deodorized particles of the fiber aggregate B precursor. , The organic resin is placed on the main surface having the deodorized particles of the fiber aggregate B precursor or on one main surface of the fiber aggregate A precursor, and the fiber aggregate B precursor and / or the deodorized particles (3). And the fiber aggregate A precursor are preferably adhered to each other. As a method of arranging the organic resin and adhering the fiber aggregate B precursor and / or the deodorized particles (3) to the fiber aggregate A precursor, the above-mentioned organic resin is arranged and the fiber aggregate B precursor and the fiber aggregate B precursor are bonded. A method similar to the method of adhering the deodorizing particles (3) can be adopted. Even if the adhesion between the fiber aggregate B precursor and the deodorizing particles (3) and the adhesion between the fiber assembly B precursor and / or the deodorizing particles (3) and the fiber assembly A precursor are performed at the same time, It may be done separately.
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but these do not limit the scope of the present invention.
(実施例1)
(繊維集合体A前駆体)
熱可塑性樹脂として、融点160℃のポリプロピレン樹脂を用い、押出機およびギヤポンプ、メルトブロー口金、圧縮空気発生装置および空気加熱機、捕集コンベア、および巻取機からなる装置を用いて、目付15.0g/m2、厚さ0.350mm、見掛密度0.043g/cm3、繊維径2.0〜5.0μm、連続繊維のメルトブロー不織布を製造した。その後、前記メルトブロー不織布にエレクトレット処理を施し、繊維集合体A前駆体を作製した。
(繊維集合体B前駆体)
傾斜ワイヤー方式の湿式法により、繊維径25μm、繊維長20mmのポリエチレンテレフタレート繊維を60mass%、繊維径15μm、繊維長20mmのビニロン繊維を40mass%から構成された目付35.0g/m2の繊維ウエブを作製した。その後、該繊維ウエブにアクリルバインダを含浸し、乾燥熱処理して目付45.0g/m2、厚さ0.300mm、見掛密度0.150g/cm3の湿式不織布からなる繊維集合体B前駆体を作製した。
(脱臭粒子)
平均粒子径0.30μm、比表面積1100m2/gの活性炭、及び平均粒子径0.15μm、比表面積480m2/g、球状のシリカゲルを準備した。
次に、前記活性炭と前記シリカゲルを3:1の質量比で混合し、本発明の脱臭粒子とした。
(濾材の製造)
繊維集合体B前駆体の一方の主面上に、目付5g/m2の共重合ポリアミドから構成された融点110℃の熱可塑性有機樹脂シートを積層した。
次に、繊維集合体B前駆体の共重合ポリアミドから構成された熱可塑性有機樹脂シートを有する主面上に、脱臭粒子を総量が63g/m2になるように均一に散布した。
その後、圧力5kg/cm2、温度120℃の水蒸気処理を7秒間行って熱可塑性有機樹脂シートを溶融させて、繊維集合体B前駆体と脱臭粒子を接着させた。
さらに、繊維集合体B前駆体の脱臭粒子を有する主面上に、目付5g/m2のポリプロピレンから構成され、溶融されたホットメルト樹脂のスプレーを施し、ホットメルト樹脂が溶融している間に繊維集合体A前駆体を積層させて、ロール間距離0.65mmの常温の2本のロールの間に通し、繊維集合体A前駆体と脱臭粒子を接着させ、目付133g/m2、厚さ0.65mmの濾材を得た。実施例1の濾材において、繊維集合体Aにおける最も長い厚さ方向の長さが0.238mm、最も短い厚さ方向の長さが0.120mm、繊維集合体Aにおける最も見掛密度の高い部分の見掛密度は0.125g/cm3、最も見掛密度の低い部分の見掛密度は0.063g/cm3、差が0.062g/cm3であった。なお、繊維集合体Bにおける最も長い厚さ方向の長さが0.290mm、最も短い厚さ方向の長さが0.276mm、最も見掛密度の高い部分の見掛密度は0.163g/cm3、最も見掛密度の低い部分の見掛密度は0.155g/cm3、差が0.008g/cm3であった。
(フィルタエレメントの製造)
前記濾材をプリーツ加工機に供し、また、ホットメルト樹脂を用いて不織布から構成された外枠を濾材の周縁部全体に貼り付け、200mm角、プリーツ高さ19mm、プリーツ間隔3mmのフィルタエレメントを製造した。
(Example 1)
(Fiber assembly A precursor)
As the thermoplastic resin, polypropylene resin having a melting point of 160 ° C. is used, and a device consisting of an extruder, a gear pump, a melt blow mouthpiece, a compressed air generator and an air heater, a collecting conveyor, and a winder is used, and the grain size is 15.0 g. / m 2, a thickness of 0.350 mm, apparent density 0.043 g / cm 3, the fiber diameter 2.0~5.0Myuemu, to produce a melt-blown nonwoven fabric of continuous fibers. Then, the melt blown nonwoven fabric was subjected to an electret treatment to prepare a fiber aggregate A precursor.
(Fiber assembly B precursor)
A fiber web with a grain size of 35.0 g / m 2 composed of 60 mass% of polyethylene terephthalate fibers having a fiber diameter of 25 μm and a fiber length of 20 mm and 40 mass% of vinylon fibers having a fiber diameter of 15 μm and a fiber length of 20 mm by a wet method using an inclined wire method. Was produced. Then, the fiber web is impregnated with an acrylic binder and heat-treated by drying to form a fiber aggregate B precursor composed of a wet non-woven fabric having a grain size of 45.0 g / m 2 , a thickness of 0.300 mm, and an apparent density of 0.150 g / cm 3. Was produced.
(Deodorizing particles)
The average particle diameter of 0.30 .mu.m, activated carbon having a specific surface area of 1100 m 2 / g, and an average particle diameter of 0.15 [mu] m, a specific surface area of 480m 2 / g, was prepared spherical silica gel.
Next, the activated carbon and the silica gel were mixed at a mass ratio of 3: 1 to obtain deodorized particles of the present invention.
(Manufacturing of filter media)
A thermoplastic organic resin sheet having a melting point of 110 ° C. and made of a copolymerized polyamide having a grain size of 5 g / m 2 was laminated on one main surface of the fiber aggregate B precursor.
Next, the deodorized particles were uniformly sprayed on the main surface having the thermoplastic organic resin sheet composed of the copolymerized polyamide of the fiber aggregate B precursor so that the total amount was 63 g / m 2.
Then, a steam treatment at a pressure of 5 kg / cm 2 and a temperature of 120 ° C. was performed for 7 seconds to melt the thermoplastic organic resin sheet, and the fiber aggregate B precursor and the deodorized particles were adhered to each other.
Further, a melted hot melt resin composed of polypropylene having a grain size of 5 g / m 2 is sprayed on the main surface of the fiber aggregate B precursor having deodorized particles, and while the hot melt resin is melted. The fiber aggregate A precursor is laminated and passed between two rolls at room temperature with a distance between rolls of 0.65 mm to bond the fiber aggregate A precursor and deodorized particles, with a grain size of 133 g / m 2 and a thickness of 133 g /
(Manufacturing of filter element)
The filter medium is used in a pleating machine, and an outer frame made of a non-woven fabric is attached to the entire peripheral edge of the filter medium using a hot melt resin to manufacture a filter element of 200 mm square, pleated height 19 mm, and pleated interval 3 mm. bottom.
(比較例1)
(濾材の製造)
実施例1と同じ繊維集合体B前駆体の一方の主面上に、実施例1と同じ脱臭粒子63g/m2と融点98℃の低密度ポリエチレン粒子10g/m2の混合物を散布し、その後、圧力5kg/cm2、温度120℃の水蒸気処理を7秒間行って低密度ポリエチレン粒子を溶融させて、繊維集合体B前駆体と脱臭粒子を接着させた。
さらに、低密度ポリエチレン粒子が溶融している間に繊維集合体B前駆体の脱臭粒子を有する主面上に、実施例1と同じ繊維集合体A前駆体を積層させてロール間距離0.65mmの常温の2本のロールの間に通し、繊維集合体A前駆体と脱臭粒子を接着させ、目付133g/m2、厚さ0.65mmの濾材を得た。比較例1の濾材において、繊維集合体Aにおける最も長い厚さ方向の長さが0.188mm、最も短い厚さ方向の長さが0.142mm、繊維集合体Aにおける最も見掛密度の高い部分の見掛密度は0.106g/cm3、最も見掛密度の低い部分の見掛密度が0.080g/cm3、差が0.026g/cm3であった。なお、繊維集合体Bにおける最も長い厚さ方向の長さが0.283mm、最も短い厚さ方向の長さが0.271mm、最も見掛密度の高い部分の見掛密度は0.166g/cm3、最も見掛密度の低い部分の見掛密度は0.159g/cm3、差が0.007g/cm3であった。
(フィルタエレメントの製造)
前記濾材をプリーツ加工機に供し、また、ホットメルト樹脂を用いて不織布から構成された外枠を濾材の周縁部全体に貼り付け、200mm角、プリーツ高さ19mm、プリーツ間隔3mmのフィルタエレメントを製造した。
(Comparative Example 1)
(Manufacturing of filter media)
A mixture of 63 g / m 2 of the same deodorized particles as in Example 1 and 10 g / m 2 of low-density polyethylene particles having a melting point of 98 ° C., which is the same as in Example 1, is sprayed on one main surface of the same fiber assembly B precursor as in Example 1, and then sprayed. The low-density polyethylene particles were melted by steam treatment at a pressure of 5 kg / cm 2 and a temperature of 120 ° C. for 7 seconds to bond the fiber aggregate B precursor and the deodorized particles.
Further, the same fiber aggregate A precursor as in Example 1 is laminated on the main surface having the deodorized particles of the fiber aggregate B precursor while the low-density polyethylene particles are melted, and the distance between rolls is 0.65 mm. The fiber aggregate A precursor and the deodorizing particles were adhered to each other by passing them between two rolls at room temperature to obtain a filter medium having a grain size of 133 g / m 2 and a thickness of 0.65 mm. In the filter medium of Comparative Example 1, the length in the longest thickness direction in the fiber aggregate A is 0.188 mm, the length in the shortest thickness direction is 0.142 mm, and the portion having the highest apparent density in the fiber aggregate A. the apparent density 0.106 g / cm 3, the apparent density of the lower portion of the most apparent density 0.080 g / cm 3, the difference was 0.026 g / cm 3. The length of the fiber aggregate B in the longest thickness direction is 0.283 mm, the length in the shortest thickness direction is 0.271 mm, and the apparent density of the portion having the highest apparent density is 0.166 g / cm. 3. The apparent density of the portion having the lowest apparent density was 0.159 g / cm 3 , and the difference was 0.007 g / cm 3 .
(Manufacturing of filter element)
The filter medium is used in a pleating machine, and an outer frame made of a non-woven fabric is attached to the entire peripheral edge of the filter medium using a hot melt resin to manufacture a filter element of 200 mm square, pleated height 19 mm, and pleated interval 3 mm. bottom.
次の圧力損失試験で、実施例及び比較例の濾材及びフィルタエレメントを評価した。 In the next pressure drop test, the filter media and filter elements of Examples and Comparative Examples were evaluated.
(圧力損失試験)
実施例及び比較例の濾材及びフィルタエレメントを、有効間口面積0.1m2のホルダーにセットし、面風速3m/minで繊維集合体B側から繊維集合体A側に向けて鉛直方向に空気を通過させ、濾材及びフィルタエレメントの上下流の圧力差をMODUS社製デジタルマノメータMA2−04P差圧計で測定した。測定は1つの濾材またはフィルタエレメントから任意に5箇所をサンプリングして行い、その平均値を濾材及びフィルタエレメントの圧力損失(単位:Pa)とした。
(Pressure loss test)
The filter media and filter elements of Examples and Comparative Examples are set in a holder having an effective frontage area of 0.1 m 2 , and air is blown vertically from the fiber aggregate B side to the fiber aggregate A side at a surface wind speed of 3 m / min. The pressure difference between the upstream and downstream of the filter medium and the filter element was measured with a digital manometer MA2-04P differential pressure gauge manufactured by MODUS. The measurement was performed by arbitrarily sampling 5 points from one filter medium or filter element, and the average value was taken as the pressure loss (unit: Pa) of the filter medium and the filter element.
圧力損失試験の結果を、以下の表1に示す。 The results of the pressure loss test are shown in Table 1 below.
表1の結果から、本発明の構成を有する実施例1の濾材及びフィルタエレメントは、本発明の構成を有しない比較例1の濾材及びフィルタエレメントと比較して、同じ繊維集合体A前駆体及び繊維集合体B前駆体によって製造され、同量の脱臭粒子、及び同量の脱臭粒子と繊維集合体を接着する有機樹脂から構成されているにも関わらず、圧力損失の低い濾材及びフィルタエレメントであることが分かった。 From the results in Table 1, the filter medium and filter element of Example 1 having the configuration of the present invention have the same fiber aggregate A precursor and the same fiber aggregate A precursor as compared with the filter medium and filter element of Comparative Example 1 having the configuration of the present invention. A filter medium and filter element with low pressure loss, which is produced by a fiber aggregate B precursor and is composed of the same amount of deodorized particles and an organic resin that adheres the same amount of deodorized particles and the fiber aggregate. It turned out that there was.
本発明による濾材及びフィルタエレメントは、室内などの空気を清浄化するためのフィルターに使用できるが、特に自動車や鉄道車両などの車室内の空気を清浄化するためのエアフィルターとして好ましく使用される。 The filter medium and filter element according to the present invention can be used as a filter for purifying the air in the interior of the vehicle, but are particularly preferably used as an air filter for purifying the air in the interior of a vehicle such as an automobile or a railroad vehicle.
1・・・繊維集合体A
2・・・繊維集合体B
3・・・脱臭粒子
4・・・有機樹脂
5・・・繊維集合体Aにおける最も厚さ方向の長さが短い部分
6・・・繊維集合体Aにおける最も厚さ方向の長さが長い部分
1 ... Fiber aggregate A
2 ... Fiber aggregate B
3 ... Deodorizing particles 4 ... Organic resin 5 ... The part having the shortest length in the thickness direction in the fiber aggregate A 6 ... The part having the longest length in the thickness direction in the fiber aggregate A
Claims (7)
濾材の厚さ方向の断面において、少なくとも一方の繊維集合体Aに見掛密度が高い部分と見掛密度が低い部分が存在し、
前記一方の繊維集合体Aにおける最も見掛密度の高い部分の見掛密度と、最も見掛密度の低い部分の見掛密度の差が0.030g/cm3以上である、濾材。 A filter medium in which deodorizing particles are arranged between two fiber aggregates A and B.
In the cross section in the thickness direction of the filter medium, at least one of the fiber aggregates A has a portion having a high apparent density and a portion having a low apparent density.
A filter medium in which the difference between the apparent density of the portion having the highest apparent density and the apparent density of the portion having the lowest apparent density in one of the fiber aggregates A is 0.030 g / cm 3 or more.
(2)繊維集合体B前駆体の脱臭粒子を有する主面上に別の繊維集合体A前駆体を積層するとともに加圧し、少なくとも繊維集合体A前駆体を厚さ方向に部分的に変形させて、繊維集合体A前駆体に由来する繊維集合体Aと、繊維集合体B前駆体に由来する繊維集合体Bの間に脱臭粒子が配置された濾材を形成する工程、
とを有する、請求項1に記載の濾材の製造方法。 (1) A step of preparing a fiber aggregate B precursor and arranging deodorizing particles on one main surface of the fiber aggregate B precursor.
(2) Another fiber aggregate A precursor is laminated and pressurized on the main surface having the deodorized particles of the fiber aggregate B precursor, and at least the fiber aggregate A precursor is partially deformed in the thickness direction. A step of forming a filter medium in which deodorizing particles are arranged between the fiber aggregate A derived from the fiber aggregate A precursor and the fiber aggregate B derived from the fiber aggregate B precursor.
The method for producing a filter medium according to claim 1, wherein the filter medium has the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020050348A JP7422576B2 (en) | 2020-03-20 | 2020-03-20 | Filter medium, filter element, and method for manufacturing filter medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020050348A JP7422576B2 (en) | 2020-03-20 | 2020-03-20 | Filter medium, filter element, and method for manufacturing filter medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021146302A true JP2021146302A (en) | 2021-09-27 |
JP7422576B2 JP7422576B2 (en) | 2024-01-26 |
Family
ID=77850307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020050348A Active JP7422576B2 (en) | 2020-03-20 | 2020-03-20 | Filter medium, filter element, and method for manufacturing filter medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7422576B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005152432A (en) * | 2003-11-27 | 2005-06-16 | Calsonic Kansei Corp | Deodorizing filter |
JP2007301434A (en) * | 2006-05-08 | 2007-11-22 | Toyobo Co Ltd | Adsorbing sheet |
JP2008043885A (en) * | 2006-08-17 | 2008-02-28 | Japan Vilene Co Ltd | Filter element, its manufacturing method, and method of application |
JP2008264522A (en) * | 2007-03-29 | 2008-11-06 | Japan Vilene Co Ltd | Functional particle carried sheet, and method for manufacturing the same |
JP2013220375A (en) * | 2012-04-16 | 2013-10-28 | Toyobo Co Ltd | Filter medium |
JP2018167155A (en) * | 2017-03-29 | 2018-11-01 | 東レ株式会社 | Adsorbent |
-
2020
- 2020-03-20 JP JP2020050348A patent/JP7422576B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005152432A (en) * | 2003-11-27 | 2005-06-16 | Calsonic Kansei Corp | Deodorizing filter |
JP2007301434A (en) * | 2006-05-08 | 2007-11-22 | Toyobo Co Ltd | Adsorbing sheet |
JP2008043885A (en) * | 2006-08-17 | 2008-02-28 | Japan Vilene Co Ltd | Filter element, its manufacturing method, and method of application |
JP2008264522A (en) * | 2007-03-29 | 2008-11-06 | Japan Vilene Co Ltd | Functional particle carried sheet, and method for manufacturing the same |
JP2013220375A (en) * | 2012-04-16 | 2013-10-28 | Toyobo Co Ltd | Filter medium |
JP2018167155A (en) * | 2017-03-29 | 2018-11-01 | 東レ株式会社 | Adsorbent |
Also Published As
Publication number | Publication date |
---|---|
JP7422576B2 (en) | 2024-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4871883B2 (en) | Filtration media for filtering particulate matter from a gas stream | |
JP6141836B2 (en) | Non-woven electret fiber web and method for producing the same | |
JP6109334B2 (en) | Non-woven electret fiber web and method for producing the same | |
AU2023251005A1 (en) | Dual-layer gas filters and systems and methods for making the same | |
JP2017113670A (en) | Filter medium for air filter and air filter | |
JP6099330B2 (en) | filter | |
JPH067620A (en) | Cassette type multistage filter | |
US20230321584A1 (en) | Filtration media and filters including nanoparticles | |
US20230321568A1 (en) | Filtration media and filters | |
JP7422576B2 (en) | Filter medium, filter element, and method for manufacturing filter medium | |
JP6627525B2 (en) | Mixed non-woven fabric | |
AU2023249359A1 (en) | Systems and methods for continuous production of fibrous materials and nanoparticles | |
KR102621800B1 (en) | Nanofiber filter and preparation method thereof | |
JP7117174B2 (en) | glass filter | |
JP7112228B2 (en) | Air filter media and air filters | |
US20230321575A1 (en) | Filtration media incorporating nanoparticles and large linear density fibers | |
US20230323062A1 (en) | Apertured polymer sheets incorporating nanoparticles | |
US20230323575A1 (en) | Nonwoven materials and products containing nonwoven materials | |
US20230321569A1 (en) | Filters with mechanical and eletrostatic filtering capabilities | |
US20230323055A1 (en) | Systems and methods for retaining nanoparticles within nonwoven material | |
AU2023249363A1 (en) | Systems and methods for making products containing fibrous material | |
AU2023248421A1 (en) | Systems and methods for making fibrous materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230725 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7422576 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |