JP2021146152A - Inspection room environment improving device in magnetic resonance imaging device - Google Patents
Inspection room environment improving device in magnetic resonance imaging device Download PDFInfo
- Publication number
- JP2021146152A JP2021146152A JP2020064699A JP2020064699A JP2021146152A JP 2021146152 A JP2021146152 A JP 2021146152A JP 2020064699 A JP2020064699 A JP 2020064699A JP 2020064699 A JP2020064699 A JP 2020064699A JP 2021146152 A JP2021146152 A JP 2021146152A
- Authority
- JP
- Japan
- Prior art keywords
- image
- magnetic resonance
- resonance imaging
- projected
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 11
- 238000002595 magnetic resonance imaging Methods 0.000 title claims description 29
- 230000007613 environmental effect Effects 0.000 claims abstract description 4
- 230000003287 optical effect Effects 0.000 claims description 13
- 230000006872 improvement Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 4
- 238000003672 processing method Methods 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims description 3
- 230000005236 sound signal Effects 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 abstract description 4
- 230000001976 improved effect Effects 0.000 abstract 1
- 230000003068 static effect Effects 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 206010040007 Sense of oppression Diseases 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Projection Apparatus (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
本発明は、磁気共鳴を利用して被検者の所望箇所を画像化する磁気共鳴イメージング装置(以下MRI装置)の検査室環境向上に関するものである。 The present invention relates to an improvement in the laboratory environment of a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) that uses magnetic resonance to image a desired portion of a subject.
MRI装置は、磁気共鳴現象を利用して被検者中の所望の検査部位における原子核スピンの密度分布,緩和時間分布等を計測して、その計測データから被検者の断面を画像表示するものである。均一で強力な静磁場発生装置内に置かれた被検者の原子核スピンは、静磁場の強さによって定まる周波数(ラーモア周波数)で静磁場の方向を軸として歳差運動を行なう。そこで、このラーモア周波数に等しい周波数の高周波パルスを外部より照射すると、スピンが励起され高いエネルギー状態に遷移する(磁気共鳴現象)。この照射を打ち切ると、スピンはそれぞれの状態に応じた時定数でもとの低いエネルギー状態にもどり、このときに外部に電磁波(NMR信号)を放出する。これをその周波数に同調した高周波受信コイルで検出する。このとき、空間内に位置情報を付加する目的で、三軸の傾斜磁場を静磁場空間に印加する。この結果、空間内の位置情報を周波数情報として捕えることが可能である。
上記構成のため、MRI装置は強い磁場形成を必要とし、広い範囲に大きな漏洩磁場を生じている。さらに、微弱な高周波信号を受信するために、信号周波数にて電磁波シールドされた検査室に設置される。The MRI apparatus uses a magnetic resonance phenomenon to measure the density distribution of nuclear spins, relaxation time distribution, etc. at a desired inspection site in a subject, and displays an image of the subject's cross section from the measurement data. Is. The nuclear spin of the subject placed in a uniform and strong static magnetic field generator performs a precession movement around the direction of the static magnetic field at a frequency (Larmor frequency) determined by the strength of the static magnetic field. Therefore, when a high-frequency pulse having a frequency equal to this Larmor frequency is irradiated from the outside, the spin is excited and transitions to a high energy state (magnetic resonance phenomenon). When this irradiation is stopped, the spin returns to the original low energy state with a time constant according to each state, and at this time, an electromagnetic wave (NMR signal) is emitted to the outside. This is detected by a high frequency receiving coil tuned to that frequency. At this time, a triaxial gradient magnetic field is applied to the static magnetic field space for the purpose of adding position information in the space. As a result, it is possible to capture the position information in the space as the frequency information.
Due to the above configuration, the MRI apparatus requires the formation of a strong magnetic field, and a large leakage magnetic field is generated in a wide range. Further, in order to receive a weak high frequency signal, it is installed in an electromagnetic wave shielded laboratory at the signal frequency.
MRI装置における検査は検査室内で行われ、電磁波シールドのために閉塞的な環境となり、被検者に苦痛を与えるものとなっている。
そこで、従来からこの検査室環境を改善する目的で壁面に風景写真を透過光表示などの手段で提供することが実施されている。しかし、この方法では動画の表示が不可能であり、表示画像を変更することもできない。
別の方法としては液晶モニタなどの映像表示デバイスを使用することも行われるが、この場合、使用する液晶モニタはMRI装置の近傍に配置されるため、強い磁性の影響を受けても破損しないように特別に設計された耐磁場性能を有することが必要である。また、この液晶モニタから生じる電磁波ノイズがMRI装置の撮像に影響を与えないように液晶モニタ自体にノイズシールドを施す必要がある。
以上述べたように、従来のMRI装置の検査室環境改善装置は特別に設計された映像表示装置が必要であり、このために高額となり、その環境改善効果が高いにもかかわらず、普及していないという問題を有していた。The examination in the MRI apparatus is performed in the examination room, and the electromagnetic wave shield creates a closed environment, which causes pain to the subject.
Therefore, conventionally, for the purpose of improving the examination room environment, it has been practiced to provide a landscape photograph on the wall surface by means such as transmitted light display. However, it is not possible to display a moving image by this method, and it is not possible to change the displayed image.
Alternatively, a video display device such as a liquid crystal monitor may be used, but in this case, the liquid crystal monitor to be used is placed near the MRI device so that it will not be damaged even if it is affected by strong magnetism. It is necessary to have a specially designed magnetic field resistance. Further, it is necessary to provide a noise shield on the liquid crystal monitor itself so that the electromagnetic wave noise generated from the liquid crystal monitor does not affect the imaging of the MRI apparatus.
As described above, the laboratory environment improvement device of the conventional MRI device requires a specially designed image display device, which is expensive, and despite its high environmental improvement effect, it is widely used. I had the problem of not having it.
上記の従来手法による問題点は検査室内の映像提供に透過光写真やシールドされた特別な液晶モニタを使用していたことに起因している。
そこで、本発明は、検査室内の壁面に光学的に映像を投影することで、この課題を解決するものである。
図1に示すようにMRI装置(1)の検査室壁面に映像投影装置(2)の映像を投影して閉塞感を改善する。MRI装置近傍は強い漏洩磁場があり、この影響の及ばない範囲まで映像投影装置を遠距離に設置する必要がある。また、MRI装置が高周波ノイズの影響を受けないように、映像投影装置はノイズシールドされた検査室の外部である機械室もしくは操作室に設置する。
この2部屋の境界面に導波管(3)を設け、これを介して映像を投影することで、光路を確保し、高周波ノイズの進入を阻止することが可能である。
さらに、投影映像の光路に被検者や操作者が入ると眩惑の問題が生じるため、映像投影をできるだけ壁面に沿わせて斜め方向から投影することで、この問題を解決する。投影映像内容は、このため、投影角度により生じる画像ひずみを相殺するように逆ひずみを与えておく。または、画像ひずみをレンズシフトなどの光学的手法またはデジタル画像処理手法により補正しても良い。この場合はリアルタイム補正が可能となる。The problem with the above conventional method is that a transmitted light photograph or a special shielded LCD monitor was used to provide the image in the examination room.
Therefore, the present invention solves this problem by optically projecting an image on the wall surface of the examination room.
As shown in FIG. 1, the image of the image projection device (2) is projected on the wall surface of the examination room of the MRI device (1) to improve the feeling of blockage. There is a strong leakage magnetic field in the vicinity of the MRI device, and it is necessary to install the image projection device at a long distance within a range not affected by this. Further, the image projection device is installed in a machine room or an operation room outside the noise-shielded inspection room so that the MRI device is not affected by high-frequency noise.
By providing a waveguide (3) on the interface between the two chambers and projecting an image through the waveguide (3), it is possible to secure an optical path and prevent the entry of high-frequency noise.
Further, when a subject or an operator enters the optical path of the projected image, a problem of dazzling occurs. Therefore, this problem is solved by projecting the image projection along the wall surface as much as possible from an oblique direction. Therefore, the projected image content is subjected to reverse distortion so as to cancel the image distortion caused by the projection angle. Alternatively, the image distortion may be corrected by an optical method such as lens shift or a digital image processing method. In this case, real-time correction is possible.
以上述べたように本発明によれば、MRI装置の閉塞的な検査室に静止画や動画による環境映像などを投影表示することで、被検者が感じる閉鎖感、圧迫感などを低減することができ、MRI検査室環境の改善が可能である。さらに、投影映像に同期した音声情報の併用提供により改善効果を高めることができる。 As described above, according to the present invention, the feeling of closure and oppression felt by the subject can be reduced by projecting and displaying an environmental image such as a still image or a moving image in the closed examination room of the MRI apparatus. It is possible to improve the MRI laboratory environment. Further, the improvement effect can be enhanced by providing the audio information synchronized with the projected image together.
本発明の実施例を添付図面に基づいて詳細に説明する。
図1は本発明に係るMRI装置における検査室環境改善装置の実施例である。本図において、映像投影装置(2)は一般的なプロジェクター装置を使用することが可能である。
プロジェクター装置はMRI装置(1)から生じる漏洩磁場に対して十分に離して設置する必要があり、このため、プロジェクター装置は検査室外部に設置する。
静磁場強度1.5テスラのMRI装置では信号周波数は約64MHzであり、この微弱な信号を受信するために検査室は電磁波シールドルームとなっている。この内部にプロジェクター装置などの映像投影装置を設置した場合、ここから生じる高周波ノイズがMRI画像劣化の原因となる。特に電源回路に用いられるスイッチング回路は大きなノイズ源である。そこで、検査室外から導波管(3)を使用して投影映像のみを室内に導くことで、ノイズ対策を実施する。この導波管は適切な形状とサイズを有する円形または角形の筒状の導電体にて、高周波ノイズの進入を防ぐ機構である。
一例としては導電体筒の内径(円筒の場合は直径、角形の場合は対角長)が50mmであった場合、この4倍の長さである200mm以上の長さであれば64MHzの高周波ノイズは十分に減衰する。計算例では4倍の長さでの減衰量は108dBであり、一般的なMRI装置における高周波シールド要求性能は減衰量80dB以上なので問題が無いことがわかる。
ここで、導波管に一般的な一定内径の筒を用いた場合、その奥行きが長いために映像投影装置の光路に干渉して映像に影(以下ケラレと記す)を生じる。
これは映像投影装置の設計が投影画角を拡大するように設計されているためで、一例では5mの投影距離において9:16画面比の100インチ(高さ1,245mm、幅2,214mm)の画像サイズが得られるプロジェクター装置の場合、レンズ前面から200mm位置でのケラレの生じない画面の上下方向の要求高さは50mmであり、想定した対角径50mmの方形導波管の高さ36mmよりも大きく、対角径は70mmが必要である。また、この開口部でケラレの生じない対角径70mmの方形導波管とした場合、長さは280mmが必要となり、開口部の要求高さも70mmに増加するため、この導波管であっても相対的な形状が変わらないために、同様にケラレが生じる。
そこで、本発明では導波管を図2に示すように、形状を一定対角径ではなく、ホーン状の広がり形状を有した方形導波管とすることで、平均対角径が全長の中央位置対角径となり、この4倍にてノイズ遮断の性能を達成することができる。すなわち、レンズ側の対角径(a)を30mm、投影側の対角径(b)を80mmに設定すると、平均対角径(d)は55mmとなり、この4倍の導波管長(c)は220mmであり、220mm位置の要求高さは55mmとなり開口部の対角径80mmにおける高さ57mm以下に収まるので、この形状であれば画像の上下方向にはケラレの生じない導波管とすることができる。もちろん、レンズ側の導波管対角径はプロジェクター装置のレンズ口径に応じて設定する必要がある。
これはつまり、導波管の形状をプロジェクター装置の光路の広がりに合わせて最適に設計するということであり、この導波管設計により、プロジェクター装置の投影画像を最大の大きさで利用することが可能となり、検査室壁面に効率良く大きな映像を投影しうる。
このホーン状の方形導波管においても映像の左右方向にはケラレを生じる。これは投影映像が左右方向に長い画角を有するからである。そこで、映像投影を投影壁面から横側の斜め方向にずらすことでこの問題に対応する。この斜め方向の投影は被検者や操作者の視界に投影光路が入ると眩惑するという問題を回避するためにも重要である。
斜め方向投影においては、その投影角度に応じて投影映像が引き伸ばされる。
この変形量は非線形であり、近距離側と遠距離側で異なり、さらに投影面距離でも異なってくる。
一例では30度投影においては、おおよそ2倍の横方向の引き伸び変形が生じる。
一般的な動画映像の画角は9:16であり、縦横比は2倍以下なので30度程度の角度で斜投影すれば、映像データの横方向サイズを2分1に縮めておくことで、ホーン状の方形導波管において左右方向の映像ケラレ無く投影可能であることがわかる。
さらに、この導波管形状は一般的なプロジェクター装置の光軸が上下方向にずれて設計されていることに対応できるように変形する。この光軸シフトはスクリーン位置がプロジェクター装置の設置位置よりも上下にずれて設置されるために設けられるものである。プロジェクター装置の天吊設置の場合は、スクリーンが天井に設置したプロジェクター装置から下方向にずれることになる。
また、導波管の内面に光反射が生じると画像の明瞭度が低下するので、黒マット塗装で処理する必要がある。
映像の投影位置に関しては、被検者が検査室に入室した際に、認識しうる最適なポジションに設定する。
さらに、被検者の移動導線に光路が無いように配慮して投影する。
投影映像は静止画映像だけでなく、動画映像も利用可能であり、再生内容も複数のコンテンツから選択ないしは自動的に再生できる。また、音声信号を同時に再生することで、別途用意したMRI検査室内の音響設備により、映像と音声が同期したコンテンツを提供することもできる。
この映像出力機器にパーソナルコンピューターなどのデバイスを使用することで、リアルタイム変更など、投影映像を多彩にアレンジすることもできる。
映像投影に使用する画像データは、あらかじめ計測した投影映像の画像変形ひずみ量に応じて、これを補正するように逆変形ひずみ処理を行っておく。
リアルタイム補正を行う場合は、レンズを横方向に移動して、光軸をずらして実施する横キーストン補正の手法が応用できる。またはデジタル画像処理手法にて補正対応することができる。Examples of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is an example of a laboratory environment improving device in the MRI device according to the present invention. In this figure, a general projector device can be used as the image projection device (2).
The projector device needs to be installed sufficiently separated from the leakage magnetic field generated from the MRI device (1), and therefore the projector device is installed outside the examination room.
In an MRI apparatus having a static magnetic field strength of 1.5 Tesla, the signal frequency is about 64 MHz, and the examination room is an electromagnetic wave shield room in order to receive this weak signal. When an image projection device such as a projector device is installed inside this, high-frequency noise generated from the image projection device causes deterioration of the MRI image. In particular, the switching circuit used in the power supply circuit is a large noise source. Therefore, noise countermeasures are taken by guiding only the projected image into the room from outside the inspection room using the waveguide (3). This waveguide is a circular or square cylindrical conductor with an appropriate shape and size, and is a mechanism that prevents the ingress of high-frequency noise.
As an example, when the inner diameter of the conductor cylinder (diameter in the case of a cylinder, diagonal length in the case of a square) is 50 mm, high frequency noise of 64 MHz if the length is 200 mm or more, which is four times this length. Decays sufficiently. In the calculation example, the attenuation amount at four times the length is 108 dB, and the high frequency shield required performance in a general MRI apparatus is the attenuation amount of 80 dB or more, so it can be seen that there is no problem.
Here, when a general cylinder having a constant inner diameter is used for the waveguide, it interferes with the optical path of the image projection device due to its long depth, and a shadow (hereinafter referred to as vignetting) is generated in the image.
This is because the design of the image projector is designed to expand the projected angle of view. In one example, a 9:16 screen ratio of 100 inches (height 1,245 mm, width 2,214 mm) at a projection distance of 5 m. In the case of a projector device that can obtain the same image size, the required height in the vertical direction of the screen that does not cause eclipse at a position 200 mm from the front of the lens is 50 mm, and the assumed height of a square waveguide with a diagonal diameter of 50 mm is 36 mm. Larger, and a diagonal diameter of 70 mm is required. Further, in the case of a rectangular waveguide having a diagonal diameter of 70 mm in which vignetting does not occur at this opening, a length of 280 mm is required and the required height of the opening also increases to 70 mm. However, since the relative shape does not change, vignetting also occurs.
Therefore, in the present invention, as shown in FIG. 2, the shape of the waveguide is not a constant diagonal diameter but a square waveguide having a horn-shaped spreading shape, so that the average diagonal diameter is the center of the total length. The diagonal diameter is 4 times this, and the noise blocking performance can be achieved. That is, when the diagonal diameter (a) on the lens side is set to 30 mm and the diagonal diameter (b) on the projection side is set to 80 mm, the average diagonal diameter (d) is 55 mm, which is four times the waveguide length (c). Is 220 mm, and the required height at the 220 mm position is 55 mm, which is within the height of 57 mm or less at the diagonal diameter of 80 mm of the opening. be able to. Of course, the diagonal diameter of the waveguide on the lens side needs to be set according to the lens aperture of the projector device.
This means that the shape of the waveguide is optimally designed according to the spread of the optical path of the projector device, and this waveguide design allows the projected image of the projector device to be used in the maximum size. This makes it possible to efficiently project a large image on the wall surface of the examination room.
Even in this horn-shaped rectangular waveguide, vignetting occurs in the left-right direction of the image. This is because the projected image has a long angle of view in the left-right direction. Therefore, this problem is dealt with by shifting the image projection from the projection wall surface in the diagonal direction on the horizontal side. This oblique projection is also important to avoid the problem of dazzling when the projected optical path enters the field of view of the subject or operator.
In oblique projection, the projected image is stretched according to the projection angle.
This amount of deformation is non-linear, and differs between the short-distance side and the long-distance side, and also differs depending on the projection plane distance.
In one example, in a 30 degree projection, approximately twice the lateral stretching deformation occurs.
The angle of view of a general video image is 9:16, and the aspect ratio is less than twice, so if you project it obliquely at an angle of about 30 degrees, you can reduce the horizontal size of the image data to half. It can be seen that the horn-shaped square waveguide can project images in the left-right direction without eclipse.
Further, this waveguide shape is deformed so as to correspond to the design in which the optical axis of a general projector device is shifted in the vertical direction. This optical axis shift is provided because the screen position is shifted up and down from the installation position of the projector device. In the case of the projector device being suspended from the ceiling, the screen will be displaced downward from the projector device installed on the ceiling.
Further, if light reflection occurs on the inner surface of the waveguide, the clarity of the image is lowered, so that it is necessary to treat with black matte coating.
The projection position of the image is set to the optimum position that can be recognized when the subject enters the examination room.
Furthermore, the projection is performed so that there is no optical path in the moving conductor of the subject.
As the projected image, not only a still image image but also a moving image image can be used, and the playback content can be selected from a plurality of contents or automatically played back. Further, by simultaneously reproducing the audio signal, it is possible to provide the content in which the video and the audio are synchronized by the audio equipment in the MRI examination room separately prepared.
By using a device such as a personal computer for this video output device, it is possible to arrange the projected video in various ways such as real-time changes.
The image data used for image projection is subjected to reverse deformation distortion processing so as to correct the amount of image deformation distortion of the projected image measured in advance.
When performing real-time correction, a method of horizontal keystone correction that is performed by moving the lens in the lateral direction and shifting the optical axis can be applied. Alternatively, correction can be performed by a digital image processing method.
1 MRI装置
2 映像投影装置
3 ホーン状導波管1
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020064699A JP7156595B2 (en) | 2020-03-13 | 2020-03-13 | Examination room environment improvement device for magnetic resonance imaging equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020064699A JP7156595B2 (en) | 2020-03-13 | 2020-03-13 | Examination room environment improvement device for magnetic resonance imaging equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021146152A true JP2021146152A (en) | 2021-09-27 |
JP7156595B2 JP7156595B2 (en) | 2022-10-19 |
Family
ID=77850141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020064699A Active JP7156595B2 (en) | 2020-03-13 | 2020-03-13 | Examination room environment improvement device for magnetic resonance imaging equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7156595B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5514833A (en) * | 1993-05-18 | 1996-05-07 | Siemens Aktiengesellschaft | Shielded chamber having a non-disruptive cathode ray display arrangement |
JP2004180834A (en) * | 2002-12-02 | 2004-07-02 | Ge Medical Systems Global Technology Co Llc | Display method of image for medical use in scan room |
US20050283068A1 (en) * | 2004-06-17 | 2005-12-22 | Psychology Software Tools, Inc. | Magnetic resonance imaging having patient video, microphone and motion tracking |
JP2013546024A (en) * | 2010-11-17 | 2013-12-26 | コーニンクレッカ フィリップス エヌ ヴェ | Image projection system for scanner room |
JP2014180834A (en) * | 2013-03-21 | 2014-09-29 | Seiko Epson Corp | Liquid jet head, and liquid jet apparatus |
WO2017221527A1 (en) * | 2016-06-20 | 2017-12-28 | パナソニックIpマネジメント株式会社 | Transparent screen and image display system |
US20190099144A1 (en) * | 2017-09-29 | 2019-04-04 | Varian Medical Systems, Inc. | Projection mapping of radiation suites |
-
2020
- 2020-03-13 JP JP2020064699A patent/JP7156595B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5514833A (en) * | 1993-05-18 | 1996-05-07 | Siemens Aktiengesellschaft | Shielded chamber having a non-disruptive cathode ray display arrangement |
JP2004180834A (en) * | 2002-12-02 | 2004-07-02 | Ge Medical Systems Global Technology Co Llc | Display method of image for medical use in scan room |
US20050283068A1 (en) * | 2004-06-17 | 2005-12-22 | Psychology Software Tools, Inc. | Magnetic resonance imaging having patient video, microphone and motion tracking |
JP2013546024A (en) * | 2010-11-17 | 2013-12-26 | コーニンクレッカ フィリップス エヌ ヴェ | Image projection system for scanner room |
JP2014180834A (en) * | 2013-03-21 | 2014-09-29 | Seiko Epson Corp | Liquid jet head, and liquid jet apparatus |
WO2017221527A1 (en) * | 2016-06-20 | 2017-12-28 | パナソニックIpマネジメント株式会社 | Transparent screen and image display system |
US20190099144A1 (en) * | 2017-09-29 | 2019-04-04 | Varian Medical Systems, Inc. | Projection mapping of radiation suites |
Also Published As
Publication number | Publication date |
---|---|
JP7156595B2 (en) | 2022-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106164694B (en) | Magnetic resonance imaging with RF noise measuring coil | |
US10132897B2 (en) | Correcting the magnetic field of a medical apparatus with a gantry | |
US4240439A (en) | Method of obtaining information of a specified or target area of a living body near its skin surface by the application of a nuclear magnetic resonance phenomenon | |
US4901141A (en) | Fiberoptic display for a video image | |
JP6670902B2 (en) | Medical imaging apparatus combining magnetic resonance imaging and radiation irradiation and method for determining mounting of shim unit | |
US5807254A (en) | Magnetic resonance device | |
Wu et al. | VLBI observations of seven BL Lacertae objects from RGB sample | |
CN110428710B (en) | Virtual simulation method of quantum entanglement source | |
JP7156595B2 (en) | Examination room environment improvement device for magnetic resonance imaging equipment | |
Bergsma et al. | Shielding Effectiveness of Cabinets using IEEE 299 and IEEE 299.1 and Effect of Loading | |
JP2021062178A (en) | Examination room environment improvement device in magnetic resonance imaging device | |
KR100930608B1 (en) | Fusion image acquisition device and driving method thereof | |
Duan et al. | Modified slanted-edge method for camera modulation transfer function measurement using nonuniform fast Fourier transform technique | |
CN207439372U (en) | Detection system | |
JPH02210744A (en) | X-ray image doubling tube equipped qith circuit for compensating effect of magnetic destartion | |
JP2021146153A (en) | Inspection environment improving device in magnetic resonance imaging device | |
JP2021041131A (en) | Inspection environment improvement device in magnetic resonance imaging apparatus | |
JP4392941B2 (en) | Magnetic resonance imaging system | |
JPH02500957A (en) | Imaging equipment using nuclear magnetic resonance | |
JP2008043725A (en) | Magnetic resonance imaging apparatus | |
US10746828B2 (en) | Method and apparatus image data generation in an examination chamber of a magnetic resonance apparatus | |
Ong et al. | LLNL flash X-ray radiography machine (FXR) double-pulse upgrade diagnostics | |
Boitan et al. | Electromagnetic vulnerabilities of LCD projectors | |
CN209372720U (en) | A kind of detection device | |
Li et al. | Development of the gas puffing imaging diagnostic on J-TEXT tokamak |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210506 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220419 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220921 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7156595 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |