[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021143995A - 光干渉計測装置 - Google Patents

光干渉計測装置 Download PDF

Info

Publication number
JP2021143995A
JP2021143995A JP2020044217A JP2020044217A JP2021143995A JP 2021143995 A JP2021143995 A JP 2021143995A JP 2020044217 A JP2020044217 A JP 2020044217A JP 2020044217 A JP2020044217 A JP 2020044217A JP 2021143995 A JP2021143995 A JP 2021143995A
Authority
JP
Japan
Prior art keywords
light
measurement
port
measuring device
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020044217A
Other languages
English (en)
Other versions
JP7363614B2 (ja
Inventor
和哉 木村
Kazuya Kimura
和哉 木村
雅之 早川
Masayuki Hayakawa
雅之 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=74591849&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2021143995(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2020044217A priority Critical patent/JP7363614B2/ja
Priority to CN202110178051.3A priority patent/CN113390333A/zh
Priority to EP21156552.8A priority patent/EP3879222A1/en
Priority to US17/174,377 priority patent/US11578963B2/en
Publication of JP2021143995A publication Critical patent/JP2021143995A/ja
Application granted granted Critical
Publication of JP7363614B2 publication Critical patent/JP7363614B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02003Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using beat frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】装置の大型化を招くことなく、低コストで光干渉計測装置のガイド光照射機能を提供する。【解決手段】光干渉計測装置が、赤外域の波長を有する計測光を出力する第1光源と、可視域の波長を有するガイド光を出力する第2光源と、少なくとも、前記計測光が入力される第1ポート、前記ガイド光が入力される第2ポート、及び、前記計測光と前記ガイド光が結合された結合光が出力される第3ポートを有するファイバカプラと、前記結合光を計測対象に照射し、前記計測対象で反射した戻り光を受光する計測部と、前記戻り光と参照光との干渉信号に基づいて、前記計測対象の距離、速度、又は、振動に関する情報を取得する処理部と、を有する。前記ファイバカプラは、カットオフ波長が前記計測光の波長より短く且つ前記ガイド光の波長より長いシングルモードファイバで構成されている。【選択図】図1

Description

本発明は、光干渉を利用した測距技術に関する。
コヒーレントな計測光を計測対象に照射し、その反射光(戻り光)と参照光の干渉信号に基づいて、距離、速度、振動などを計測する技術が知られている(特許文献1参照)。この種の光干渉計測装置では、赤外線レーザーなどの不可視光が計測光として用いられることが一般的である。
国際公開第2017/187510号
FA(ファクトリーオートメーション)用のセンサにおいては、計測位置、すなわち、計測光が計測対象のどこに照射されているか、を目視により確認したいというニーズが強い。それゆえ、本発明者らは、光干渉計測装置をFA用途に展開するにあたり、計測光とは別に、計測位置を視覚的に示すガイド光を照射する機能を付加することを検討している。
ガイド光照射機能の実装方法としては、計測光の照射光学系とは独立にガイド光の照射光学系を設ける構成と、計測光とガイド光を合波し共通の照射光学系から計測対象に照射する構成とが考えられる。しかし前者の構成は、2つの照射光学系の光軸合わせが困難であるとともに、計測ヘッドの大型化を招くという問題がある。一方、後者の構成の場合は、異なる波長の光を合波する手段として通常用いられているWDM(Wavelength Division Multiplexing)カプラは、高価であるため採用し難い。また、ダイクロイックミラーを用いる方法も考えられるが、部品点数の増加や装置本体の大型化を招くという問題がある。
本発明は上記実情に鑑みてなされたものであって、装置の大型化を招くことなく、低コストで光干渉計測装置のガイド光照射機能を提供することを目的とする。
本開示は、赤外域の波長を有する計測光を出力する第1光源と、可視域の波長を有するガイド光を出力する第2光源と、少なくとも、前記計測光が入力される第1ポート、前記ガイド光が入力される第2ポート、及び、前記計測光と前記ガイド光が結合された結合光が出力される第3ポートを有するファイバカプラと、前記結合光を計測対象に照射し、前記計測対象で反射した戻り光を受光する計測部と、前記戻り光と参照光との干渉信号に基づいて、前記計測対象の距離、速度、又は、振動に関する情報を取得する処理部と、を有し、前記ファイバカプラは、カットオフ波長が前記計測光の波長より短く且つ前記ガイド光の波長より長いシングルモードファイバで構成されていることを特徴とする光干渉計測装置を含む。
この構成によれば、計測光とガイド光が同じ位置に照射されるため、計測対象の表面に現れるスポット(光点)によって、計測位置(計測光が当たっている位置)を目視で確認することができるようになる。また、カットオフ波長が計測光の波長より短く且つガイド
光の波長より長いシングルモードファイバで構成されたファイバカプラを用いたことで、計測光とガイド光の合成手段を低コストに実現することができるとともに、装置本体や計測部の小型化が容易になる。
前記ファイバカプラは、前記第1ポートから前記第3ポートへの経路のカップリング比が50%以上であるとよい。計測部に導かれる計測光の割合を多くすることで、計測対象に投射される計測光のパワーを強くでき、計測精度の向上を図ることができる。
前記第1光源は、波長掃引光源であってもよい。これによりFMCWを利用した干渉計を簡易に実現することができる。
前記ガイド光は、赤色光であってもよい。計測光(赤外線)とガイド光の波長が近い方が、計測部の光学系における色収差の影響が小さいからである。
前記計測部は、色収差が補正された光学系を有してもよい。これにより、色収差による計測光とガイド光の投射位置のずれを可及的に小さくすることができる。
前記参照光は、前記ファイバカプラの前記第3ポートと前記計測部の間の光路に設けられた参照面にて、前記結合光の一部が反射した光であってもよい。これにより、参照光と計測光(戻り光)の光路を同じにできるため、温度変化や振動に対する頑健性を向上することができる。
前記参照面は、前記計測部に接続される光ファイバの端面であってもよい。これにより、構成の簡易化及び小型化を図ることができる。
前記参照光は、前記第1光源と前記ファイバカプラの前記第1ポートの間の光路に設けられた分岐器によって前記計測光の一部を分岐させた光であってもよい。又は、前記参照光は、前記ファイバカプラの前記第3ポートと前記計測部の間の光路に設けられた分岐器によって前記結合光の一部を分岐させた光であってもよい。又は、前記ファイバカプラは、前記結合光が出力される第4ポートをさらに有し、前記参照光は、前記第4ポートから出力される光であってもよい。
本発明は、上記構成の少なくとも一部を有する光干渉計測装置、距離計測装置、測距センサなどとして捉えることができる。なお、上記手段および処理の各々は可能な限り互いに組み合わせて本発明を構成することができる。
本発明によれば、装置の大型化を招くことなく、低コストで光干渉計測装置のガイド光照射機能を実現可能である。
図1は、光干渉計測装置の基本構成を模式的に示す図である。 図2は、光干渉計測装置の外観を模式的に示す図である。 図3は、第1実施形態の光干渉計測装置の構成を模式的に示す図である。 図4は、第2実施形態の光干渉計測装置の構成を模式的に示す図である。 図5は、第3実施形態の光干渉計測装置の構成を模式的に示す図である。 図6は、第3実施形態の光干渉計測装置の変形例を模式的に示す図である。 図7は、第3実施形態の光干渉計測装置の変形例を模式的に示す図である。 図8は、第4実施形態の光干渉計測装置の構成を模式的に示す図である。 図9は、第4実施形態の光干渉計測装置の変形例を模式的に示す図である。 図10は、第4実施形態の光干渉計測装置の変形例を模式的に示す図である。
<適用例>
図1を参照して、本発明を適用した光干渉計測装置の基本構成と動作の一例を説明する。
光干渉計測装置1は、光干渉を利用して計測対象Oの距離、速度、又は振動を計測するための装置である。光干渉計測装置1は、主な構成として、計測ヘッド(計測部)10、計測光L1を出力する計測光源11(第1光源)、ガイド光L2を出力するガイド光源12(第2光源)、ファイバカプラ13、サーキュレータ14、ディテクタ15、処理部16、AD変換器17、光ファイバF1〜F5を有している。ここでは、一例としてフィゾー型の干渉計を用いているが、マッハツェンダー型、マイケルソン型、その他の干渉計を用いてもよい。計測光L1には赤外域の波長を有する光が用いられ、ガイド光L2には可視域の波長を有する光が用いられる。
計測光L1が光ファイバF1を介してファイバカプラ13に入力されると共に、ガイド光L2が光ファイバF2を介してファイバカプラ13に入力されると、計測光L1とガイド光L2の結合光L3がファイバカプラ13から出力される。この結合光L3は、光ファイバF3、サーキュレータ14、及び、光ファイバF4を介して計測ヘッド10へと導かれ、計測ヘッド10から計測対象Oに投射される。この構成により、計測光L1とガイド光L2が同じ位置に照射されるため、計測対象Oの表面に現れるスポット(光点)Opによって、計測位置(計測光L1が当たっている位置)を目視で確認することができるようになる。
計測対象Oで反射し計測ヘッド10で受光された光は、戻り光L4として光ファイバF4に導かれる。一方、結合光L3の一部が、参照面RPで反射し、参照光L5として光ファイバF4に導かれる。そして、戻り光L4と参照光L5の干渉信号(ビート信号)L6が、サーキュレータ14を介してディテクタ15に導かれ、光電変換された後、AD変換器17を介して処理部16へと入力される。この干渉信号L6は、戻り光L4と参照光L5のあいだの光路長差、すなわち計測対象Oの距離に応じた周波数成分を含む。したがって、処理部16において干渉信号L6を周波数解析することによって、計測対象Oの距離、速度、振動などの情報を得ることができる。
ここで、ファイバカプラ13としては、カットオフ波長が計測光L1の波長より短く且つガイド光L2の波長より長いシングルモードファイバで構成された、シングルモードファイバカプラを用いることが好適である。これにより、計測光L1とガイド光L2の合成手段を低コストに実現できるからである。なお、ガイド光L2はマルチモードで伝播されることとなるが、距離等の計測には影響がないため、特に問題とならない。
以下、光干渉計測装置1の具体的な構成例を示す。各構成例の図面において、図1の基本構成と対応する部分には同じ符号を付すものとする。
<第1実施形態>
図2及び図3を参照して、第1実施形態に係る光干渉計測装置の構成を説明する。図2は、光干渉計測装置の外観を模式的に示す図であり、図3は、光干渉計測装置のハードウェア構成を模式的に示す図である。
本実施形態の光干渉計測装置1は、コヒーレントFMCW(Frequency Modulated Cont
inuous Wave)によって計測対象Oの測距を行う装置である。光干渉計測装置1は、概略
、コントローラ(装置本体)20と計測ヘッド10を有しており、計測ヘッド10の先端にて計測光の照射及び反射光の受光を行う。コントローラ20は、主な構成として、計測光L1を出力する計測光源11、ガイド光L2を出力するガイド光源12、ファイバカプラ13、サーキュレータ14、ディテクタ15、AD変換器17、処理部16、ファイバカプラ31、ファイバカプラ32、差分ディテクタ33、クロック発生器34、光ファイバF1〜F10を有している。
サーキュレータ14、計測ヘッド10、及び、光ファイバF3〜F5によってフィゾー型の主干渉計MIが構成され、また、ファイバカプラ31、32、及び、光ファイバF7、F8によって副干渉計SIが構成されている。主干渉計MIは計測用の干渉計であり、副干渉計SIは計測光源11の特性を補正するための干渉計である。
計測光源11は、コヒーレントな計測光L1を出力可能な光源であり、FMCWのために計測光L1の波長を時間的に掃引可能な波長掃引光源が用いられる。波長掃引光源には、例えば、電流変調方式のVCSEL、MEMS駆動方式のVCSEL、SSG−DBRなどがあり、いずれの方式の光源を用いてもよい。本実施形態では、低コストという利点から、電流変調方式のVCSELを用いる。計測光L1としては、例えば、波長1310nm〜1550nm程度の近赤外線レーザーが用いられる。また本実施形態では、三角波による波長掃引を行うが、正弦波、のこぎり波、その他の波形により波長掃引を行ってもよい。
ガイド光源12は、ガイド光L2を出力する光源である。可視光であればどのような波長の光を用いてもよいが、本実施形態では赤色レーザーを用いる。計測光L1とガイド光L2の波長が近い方が、計測ヘッド10の光学系における色収差の影響が小さいからである。また、他の色に比べて、赤色レーザー光源の方が低コストであるという利点もある。
ファイバカプラ13は、2入力×2出力のファイバカプラである。第1ポートには、光ファイバF1を介して計測光L1が入力され、第2ポートには、光ファイバF2を介してガイド光L2が入力される。そして、計測光L1とガイド光L2の結合光L3が第3ポート及び第4ポートから出力される。第3ポートは主干渉計MI側の光ファイバF3に接続され、第4ポートは副干渉計SI側の光ファイバF6に接続されている。
本実施形態では、カットオフ波長が計測光L1の波長より短く且つガイド光L2の波長より長いシングルモードファイバで構成された、シングルモードファイバカプラ13が用いられる。このとき、カップリング比(分岐比)は、第1ポートから第3ポートへの経路のカップリング比が50%以上となるように設定されているとよい。主干渉計MI側に分岐する計測光L1の割合を多くすることで、計測対象Oに投射される計測光L1のパワーを強くでき、計測精度の向上を図ることができるからである。
サーキュレータ14は、光ファイバF3から入力される光を光ファイバF4へ出力し、光ファイバF4から入力される光を光ファイバF5へ出力する機能をもつファイバ部品である。サーキュレータ14の代わりにファイバカプラを用いてもよい。
計測ヘッド10は、結合光L3の計測対象Oへの投射、及び、計測対象Oで反射した光の受光を行うユニットである。計測ヘッド10は、例えば、直径約1.5cm、長さ約3cmの円筒形又は角型の鏡筒内に光学系10aが設けられた構造を有する。光学系10aは、平行ビームを投射するためのコリメートレンズでもよいし、計測対象O上の計測位置にビームを収束させるための集光レンズでもよい。光学系10aとしては、色収差が補正されたレンズ(アクロマティックレンズ、色消しレンズとも呼ぶ)を用いるとよい。計測
光L1とガイド光L2は波長が異なるため、色収差が大きいレンズを用いると、2つの光線にずれが生じ、ガイド光L2のスポットが計測位置を正確に指し示せないおそれがある。これに対し、色収差が補正されたレンズを用いることにより、2つの光線のずれを可及的に小さくでき、ガイド光L2の投射位置の正確性を担保することができる。
サーキュレータ14と計測ヘッド10のあいだの経路には参照面RPが設けられている。参照面RPは、結合光L3の一部を反射して参照光L5を形成するための構造である。このような構成により、参照光L5と計測光(戻り光L4)の光路を同じ光ファイバで構成できるため、温度変化や振動の影響を相殺でき、頑健性を向上することができる。
参照光L5の光量が大きいと、ショットノイズなどのシグナル量と共に増加するノイズが原因により、SNが悪くなる。それゆえ、参照面RPの反射率は50%よりも小さい方が好ましく、10%以下であることがより好ましい。参照面RPの形成方法は特に限定されない。例えば、光ファイバF4の端面に部分反射ミラーを蒸着することによって参照面RPを形成してもよい。あるいは光ファイバF4の端面を光軸に垂直なフラット面とし、光ファイバF4と計測ヘッド10のあいだに空気層あるいは屈折率整合材を充填した領域を形成し、屈折率の界面で起きるフレネル反射を利用してもよい。あるいは、計測ヘッド10の光学系10aにおけるレンズ表面での反射を利用してもよい。
計測対象Oで反射し計測ヘッド10で受光された戻り光L4と、参照面RPで反射した参照光L5とは、参照面RPから計測対象Oまでの光路長の2倍に対応する位相差をもつ。そのため、参照面RPで戻り光L4と参照光L5とが干渉し、その位相差に応じた周波数成分をもつ干渉信号(ビート信号)L6が発生する。この干渉信号L6は、サーキュレータ14を介してディテクタ15に導かれる。
ディテクタ15は、光ファイバF5から入力される干渉信号L6を電気信号に変換する光電変換素子である。AD変換器17は、ディテクタ15で得られた電気信号をデジタル信号に変換する。AD変換器17のサンプリングは、クロック発生器34から与えられるクロック信号に従って行われる。
処理部16は、AD変換された干渉信号を周波数解析し、計測対象Oの距離、速度、振動などを計算するユニットである。処理部16は、例えば、プロセッサとメモリを備えた演算処理装置によって構成される。プロセッサには、CPU(central processing unit
)やMPU(micro processing unit)などの汎用プロセッサを用いてもよいし、FPG
A(field-programmable gate array)やASIC(application specific integrated circuit)などの専用プロセッサを用いてもよい。図示しないが、処理部16の演算結果である距離、速度、振動などの情報は外部装置(例えばPLC(programmable logic controller)、ロボット、検査装置、上位のコンピュータなど)に出力され、FA機器の制御
や各種検査などに利用される。
ファイバカプラ31及び32はともにカップリング比50%のシングルモードファイバカプラである。光ファイバF7と光ファイバF8とのあいだに所定の光路長差を設けることにより、副干渉計SIが構成されている。光ファイバF6から副干渉計SIに入力された結合光L3は、ファイバカプラ31で分岐した後、ファイバカプラ32で合流する。このとき光ファイバF7経由の光と光ファイバF8経由の光がファイバカプラ32内で干渉し、ファイバカプラ32の2つの出力ポートから、三角波に互いに逆位相の干渉信号が重畳された信号が出力される。差分ディテクタ33(バランスフォトディテクタとも呼ばれる)は、副干渉計SIから出力された信号をそれぞれ電気信号に変換し、2つの信号の差分を出力する。この操作により、2つの信号の間の三角波とレーザノイズが相殺され、且つ、干渉信号成分が増幅されるので、SNの良い干渉信号を得ることができる。クロック
発生器34は、差分ディテクタ33で得られた干渉信号のゼロクロス時間からクロック信号を発生する回路である。
計測光源11で計測光の波長を掃引する際に、時間的な波長の変化(傾き)を線形にすることが理想である。波長掃引が線形でないと、干渉信号のビート周波数が一定でなくなり、測距精度の低下につながるからである。しかし実際は、波長を線形に掃引することは難しい。また、線形からの乖離度合いは、計測光源の個体の特性に依存するため、事前に補正をかけることも難しい。
そこで、本実施形態では、計測光源11の波長掃引の非線形性を補正するために、上記のように、副干渉計SIを用いてAD変換器17のサンプリングクロックを生成する。このサンプリングクロックは、計測光源11から実際に出力された計測光から生成されているため、計測光の波長掃引の傾きに従った不等間隔のクロック信号となる。このサンプリングクロックを用いて主干渉計MIの干渉信号を不等間隔時間でサンプリングすることによって、等間隔位相でサンプリングしたのと等価な結果を得ることができる。これにより、周波数解析の信頼性の向上、並びに、測距精度の向上を図ることができる。
なお、波長掃引の非線形性の補正は他の手法を用いてもよい。例えば、処理部16が、副干渉計SIの干渉信号に基づいて波長掃引の傾き(非線形性)を推定し、AD変換器17で等間隔時間でサンプリングされた主干渉計MIの干渉信号を内挿して、等間隔位相の干渉信号を生成してもよい。あるいは、計測光源11の波長掃引用の制御信号にあらかじめ逆方向の歪みを与え、光源特性と相殺させることで、計測光源11から出力される計測光の線形性を担保してもよい。
以上述べた構成によれば、計測対象に投射されるガイド光によって計測位置を目視で確認することができるので、装置の利便性及び信頼性を向上することができる。また、計測光とガイド光をシングルモードファイバカプラ13で合流させ、その結合光を計測ヘッド10に導く構成としたので、コントローラ20及び計測ヘッド10の小型化が容易である。さらに、WDMカプラのような高価なファイバ部品を用いるのに比べて、低コストでガイド光照射機能を実装できるという利点もある。
<第2実施形態>
図4に第2実施形態の光干渉計測装置を示す。第2実施形態もフィゾー型の干渉計を利用した構成例であるが、第1実施形態とはガイド光源12の配置が異なっている。以下、第1実施形態との相違点を中心に説明する。
計測光源11は、ファイバカプラ40に接続されている。計測光L1はファイバカプラ40で分岐し、光ファイバF40を介して主干渉計MIへ、光ファイバF45を介して副干渉計SIへ、それぞれ導かれる。
ガイド光源12は、ファイバカプラ41に接続されている。ガイド光L2は光ファイバF44、ファイバカプラ41、及び光ファイバF42を介して、ファイバカプラ13へと導かれる。
ファイバカプラ13は、第4ポートが無い点を除けば、第1実施形態(図3)のファイバカプラ13と同じである。第1ポートには、光ファイバF40を介して計測光L1が入力され、第2ポートには、光ファイバF42を介してガイド光L2が入力される。そして、計測光L1とガイド光L2の結合光L3が第3ポートから出力される。この結合光L3は、光ファイバF41を介して計測ヘッド10へと導かれる。
戻り光L4と参照光L5の干渉信号L6は、ファイバカプラ13、光ファイバF42、ファイバカプラ41、及び光ファイバF43を介して、ディテクタ15へと導かれる。
以上の構成によっても第1実施形態と同等の作用効果を奏することができる。
<第3実施形態>
図5に第3実施形態の光干渉計測装置の要部を示す。第3実施形態では主干渉計MIにマイケルソン型の干渉計を用いている点が、前述の構成例とは異なる。図1〜図4に示した構成例では、計測ヘッド10に接続される光ファイバの端面に参照面RPが形成されていたのに対し、図5の構成例では、リフレクタ50によって参照面RPが形成されている。この構成の場合、ファイバカプラ13と計測ヘッド10の間の光路に設けられたファイバカプラ51(分岐器)で分岐し、リフレクタ50にて反射された結合光L3が、参照光L5として利用される。計測ヘッド10からの戻り光L4とリフレクタ50からの参照光L5がファイバカプラ51で干渉し、ファイバカプラ51から出力される干渉信号L6がディテクタ15へと導かれる。
図6及び図7は、第3実施形態の変形例である。図6の構成では、マイケルソン型の主干渉計MIにおいて、計測光源11とファイバカプラ13の間の光路に設けたファイバカプラ52(分岐器)によって計測光L1の一部を分岐させ、参照光L5として利用している。また、図7の構成では、ファイバカプラ13で結合された結合光L3が第3ポートと第4ポートから出力され、第3ポート側の結合光L3は計測用に利用され、第4ポート側の結合光は参照光L5として利用される。
このような構成によっても前述した実施形態と同等の作用効果を奏することができる。
<第4実施形態>
図8に第4実施形態の光干渉計測装置の要部を示す。第4実施形態では主干渉計MIにマッハツェンダー型の干渉計を用いている点が、前述の構成例とは異なる。
主干渉計MIは、ファイバカプラ60、61、62、及び、光ファイバF60〜F63を有している。また、前述の構成例におけるディテクタ15の代わりに差分ディテクタ63が設けられている。
光ファイバF3を介して入力された結合光L3は、ファイバカプラ60(分岐器)で分岐され、光ファイバF60とF63にそれぞれ導かれる。光ファイバF60側に分岐した結合光L3は、ファイバカプラ62及び光ファイバF61を介して計測ヘッド10へと導かれ、計測対象Oに投射される。計測対象Oで反射された戻り光L4は、計測ヘッド10から光ファイバF61、ファイバカプラ62、及び光ファイバF62を介して、ファイバカプラ61に入力される。他方、光ファイバF63側に分岐した結合光は、参照光L5として、ファイバカプラ61に入力される。そして、戻り光L4と参照光L5がファイバカプラ61内で干渉し、ファイバカプラ61の2つの出力ポートから、三角波に互いに逆位相の干渉信号が重畳された信号が出力される。差分ディテクタ63では、主干渉計MIから出力された信号をそれぞれ電気信号に変換し、2つの信号の差分を出力する。この操作により、SNの良い干渉信号を得ることができる。
図9は、第4実施形態の変形例である。図9の構成では、マッハツェンダー型の主干渉計MIにおいて、計測光源11とファイバカプラ13の間の光路に設けたファイバカプラ63(分岐器)によって計測光L1の一部を分岐させ、参照光L5として利用している。ガイド光源12はファイバカプラ64に接続されており、ガイド光L2はファイバカプラ64及び光ファイバF62を介してファイバカプラ13に入力され、計測光L1と結合す
る。
また、図10も第4実施形態の変形例である。図10の構成では、ファイバカプラ13で結合された結合光L3が第3ポートと第4ポートから出力され、第3ポート側の結合光L3は計測用に利用され、第4ポート側の結合光は参照光L5として利用される。
以上述べた構成によっても前述した実施形態と同等の作用効果を奏することができる。
<その他>
上記実施形態は、本発明の構成例を例示的に説明するものに過ぎない。本発明は上記の具体的な形態には限定されることはなく、その技術的思想の範囲内で種々の変形が可能である。例えば、図3及び図4に示した副干渉計SIの構成を図5〜図10の主干渉計MIと適宜組み合わせてもよい。
<付記1>
赤外域の波長を有する計測光(L1)を出力する第1光源(11)と、
可視域の波長を有するガイド光(L2)を出力する第2光源(12)と、
少なくとも、前記計測光(L1)が入力される第1ポート、前記ガイド光(L2)が入力される第2ポート、及び、前記計測光(L1)と前記ガイド光(L3)が結合された結合光(L3)が出力される第3ポートを有するファイバカプラ(13)と、
前記結合光(L3)を計測対象(O)に照射し、前記計測対象(O)で反射した戻り光(L4)を受光する計測部(10)と、
前記戻り光(L4)と参照光(L5)との干渉信号(L6)に基づいて、前記計測対象(O)の距離、速度、又は、振動に関する情報を取得する処理部(16)と、を有し、
前記ファイバカプラ(13)は、カットオフ波長が前記計測光(L1)の波長より短く且つ前記ガイド光(L2)の波長より長いシングルモードファイバで構成されている
ことを特徴とする光干渉計測装置(1)。
1:光干渉計測装置
10:計測ヘッド
10a:光学系
11:計測光源
12:ガイド光源
13:ファイバカプラ
14:サーキュレータ
15:ディテクタ
16:処理部
17:AD変換器
20:コントローラ
31,32,40,41,51〜53,60〜64:ファイバカプラ
33,63:差分ディテクタ
34:クロック発生器
50:リフレクタ
F1〜F10,F40〜F45,F60〜F63:光ファイバ
L1:計測光
L2:ガイド光
L3:結合光
L4:戻り光
L5:参照光
L6:干渉信号
MI:主干渉計
SI:副干渉計
O:計測対象
Op:スポット(光点)
RP:参照面

Claims (10)

  1. 赤外域の波長を有する計測光を出力する第1光源と、
    可視域の波長を有するガイド光を出力する第2光源と、
    少なくとも、前記計測光が入力される第1ポート、前記ガイド光が入力される第2ポート、及び、前記計測光と前記ガイド光が結合された結合光が出力される第3ポートを有するファイバカプラと、
    前記結合光を計測対象に照射し、前記計測対象で反射した戻り光を受光する計測部と、
    前記戻り光と参照光との干渉信号に基づいて、前記計測対象の距離、速度、又は、振動に関する情報を取得する処理部と、を有し、
    前記ファイバカプラは、カットオフ波長が前記計測光の波長より短く且つ前記ガイド光の波長より長いシングルモードファイバで構成されている
    ことを特徴とする光干渉計測装置。
  2. 前記ファイバカプラは、前記第1ポートから前記第3ポートへの経路のカップリング比が50%以上である
    ことを特徴とする請求項1に記載の光干渉計測装置。
  3. 前記第1光源は、波長掃引光源である
    ことを特徴とする請求項1又は2に記載の光干渉計測装置。
  4. 前記ガイド光は、赤色光である
    ことを特徴とする請求項1〜3のうちいずれか1項に記載の光干渉計測装置。
  5. 前記計測部は、色収差が補正された光学系を有する
    ことを特徴とする請求項1〜4のうちいずれか1項に記載の光干渉計測装置。
  6. 前記参照光は、前記ファイバカプラの前記第3ポートと前記計測部の間の光路に設けられた参照面にて、前記結合光の一部が反射した光である
    ことを特徴とする請求項1〜5のうちいずれか1項に記載の光干渉計測装置。
  7. 前記参照面は、前記計測部に接続される光ファイバの端面である
    ことを特徴とする請求項6に記載の光干渉計測装置。
  8. 前記参照光は、前記第1光源と前記ファイバカプラの前記第1ポートの間の光路に設けられた分岐器によって前記計測光の一部を分岐させた光である
    ことを特徴とする請求項1〜5のうちいずれか1項に記載の光干渉計測装置。
  9. 前記参照光は、前記ファイバカプラの前記第3ポートと前記計測部の間の光路に設けられた分岐器によって前記結合光の一部を分岐させた光である
    ことを特徴とする請求項1〜5のうちいずれか1項に記載の光干渉計測装置。
  10. 前記ファイバカプラは、前記結合光が出力される第4ポートをさらに有し、
    前記参照光は、前記第4ポートから出力される光である
    ことを特徴とする請求項1〜5のうちいずれか1項に記載の光干渉計測装置。
JP2020044217A 2020-03-13 2020-03-13 光干渉計測装置 Active JP7363614B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020044217A JP7363614B2 (ja) 2020-03-13 2020-03-13 光干渉計測装置
CN202110178051.3A CN113390333A (zh) 2020-03-13 2021-02-08 光干涉测量装置
EP21156552.8A EP3879222A1 (en) 2020-03-13 2021-02-11 Optical interference measurement apparatus
US17/174,377 US11578963B2 (en) 2020-03-13 2021-02-12 Optical interference measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020044217A JP7363614B2 (ja) 2020-03-13 2020-03-13 光干渉計測装置

Publications (2)

Publication Number Publication Date
JP2021143995A true JP2021143995A (ja) 2021-09-24
JP7363614B2 JP7363614B2 (ja) 2023-10-18

Family

ID=74591849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020044217A Active JP7363614B2 (ja) 2020-03-13 2020-03-13 光干渉計測装置

Country Status (4)

Country Link
US (1) US11578963B2 (ja)
EP (1) EP3879222A1 (ja)
JP (1) JP7363614B2 (ja)
CN (1) CN113390333A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070336A1 (ja) * 2022-09-28 2024-04-04 オムロン株式会社 光ファイバケーブル、それに接続されるコントローラ及びそれらを用いた光干渉測距センサ
WO2024070430A1 (ja) * 2022-09-28 2024-04-04 オムロン株式会社 コントローラ及び光干渉測距センサ
WO2024070443A1 (ja) * 2022-09-28 2024-04-04 オムロン株式会社 コントローラ及び光干渉測距センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528838A (ja) * 2000-03-24 2003-09-30 キャタリティック・ディスティレイション・テクノロジーズ 炭化水素流れからmapdを除去するための方法
US20140171807A1 (en) * 2004-05-24 2014-06-19 Board Of Regents, The University Of Texas System Measurement of neural functionality using phase sensitive optical coherence reflectometry
JP2016176827A (ja) * 2015-03-20 2016-10-06 株式会社小野測器 レーザ測定装置
JP2018084434A (ja) * 2016-11-21 2018-05-31 株式会社東京精密 測定装置及び測定方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485413B1 (en) * 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
WO1999057507A1 (en) * 1998-05-01 1999-11-11 Board Of Regents, The University Of Texas System Method and apparatus for subsurface imaging
US9784561B2 (en) * 2007-01-19 2017-10-10 Thorlabs, Inc. Optical coherence tomography imaging system and method
JP5939866B2 (ja) * 2012-04-05 2016-06-22 キヤノン株式会社 光干渉断層撮像装置及び撮像方法
US9243885B2 (en) * 2012-04-12 2016-01-26 Axsun Technologies, LLC Multi-speed OCT swept source with optimized k-clock
CN102840909B (zh) * 2012-08-21 2014-04-30 天津大学 光频域反射分布式振动频率传感与定位装置和解调方法
EP3310247A4 (en) * 2015-06-19 2019-04-24 Visunex Medical Systems Co. Ltd. OPTICAL COHERENCE TOMOGRAPHY IMAGING SYSTEM WITH BROAD FIELD OF VISION
US20180224548A1 (en) 2016-04-26 2018-08-09 Hitachi ,Ltd. Distance Measuring Apparatus, Distance Measuring Method, and Shape Measuring Apparatus
EP3401634A1 (de) * 2017-05-12 2018-11-14 Taylor Hobson Limited Abstandsmessanordnung zur bestimmung eines abstandes zu einem objekt
JP6826496B2 (ja) * 2017-06-07 2021-02-03 タツタ電線株式会社 光干渉ユニットおよび光干渉測定装置
CN107102173B (zh) * 2017-06-22 2020-01-24 北京航空航天大学 一种基于光频域反射原理的啁啾光栅的标定装置及方法
JP7164339B2 (ja) * 2018-07-11 2022-11-01 株式会社トプコン 光凝固装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528838A (ja) * 2000-03-24 2003-09-30 キャタリティック・ディスティレイション・テクノロジーズ 炭化水素流れからmapdを除去するための方法
US20140171807A1 (en) * 2004-05-24 2014-06-19 Board Of Regents, The University Of Texas System Measurement of neural functionality using phase sensitive optical coherence reflectometry
JP2016176827A (ja) * 2015-03-20 2016-10-06 株式会社小野測器 レーザ測定装置
JP2018084434A (ja) * 2016-11-21 2018-05-31 株式会社東京精密 測定装置及び測定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070336A1 (ja) * 2022-09-28 2024-04-04 オムロン株式会社 光ファイバケーブル、それに接続されるコントローラ及びそれらを用いた光干渉測距センサ
WO2024070430A1 (ja) * 2022-09-28 2024-04-04 オムロン株式会社 コントローラ及び光干渉測距センサ
WO2024070443A1 (ja) * 2022-09-28 2024-04-04 オムロン株式会社 コントローラ及び光干渉測距センサ

Also Published As

Publication number Publication date
CN113390333A (zh) 2021-09-14
US20210285755A1 (en) 2021-09-16
EP3879222A1 (en) 2021-09-15
US11578963B2 (en) 2023-02-14
JP7363614B2 (ja) 2023-10-18

Similar Documents

Publication Publication Date Title
JP2023160825A (ja) 固体スペクトル走査を備えたlidarシステム
EP3879222A1 (en) Optical interference measurement apparatus
JP6303026B2 (ja) 計測方法および装置
JP2012502301A (ja) 対チャープfmcwコヒーレントレーザレーダー用の小型の光ファイバ配置
JPH02236103A (ja) ロボット端部作動体および工具用の集積光ファイバ結合近接センサ
CN103940348A (zh) 一种工作台运动误差多自由度检测的装置及方法
KR102377583B1 (ko) 광 거리 측정 장치
CN102906535B (zh) 光谱仪
US9791259B2 (en) Interferometric distance sensing device and method with less dependency on environment disturbances on a fiber
JP5180594B2 (ja) 干渉計
KR20230128381A (ko) 광 측정 장치
JP2017078677A (ja) 距離測定装置及びその方法
JPH10332354A (ja) 干渉測定装置
JP7484249B2 (ja) 光干渉計測装置
JP6204272B2 (ja) 距離計測装置
US20230314122A1 (en) Optical interferometric range sensor
JP5542255B2 (ja) 光ファイバー長さ伸縮計測・補正方法および装置
US6064482A (en) Interferometric measuring device for form measurement on rough surfaces
JP2017044565A (ja) 距離測定装置及びその方法
US20230288562A1 (en) Optical interferometric range sensor
JP2002131139A (ja) 光ファイバセンサ並びに光ファイバの調節方法及び装置
US20230288561A1 (en) Optical interferometric range sensor
WO2024070336A1 (ja) 光ファイバケーブル、それに接続されるコントローラ及びそれらを用いた光干渉測距センサ
JP2023132668A (ja) 光干渉測距センサ
US9664502B2 (en) Interferential position-measuring device and method for operating an interferential position-measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R150 Certificate of patent or registration of utility model

Ref document number: 7363614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150