JP2021143350A - Aluminum alloy foil and method for producing the same - Google Patents
Aluminum alloy foil and method for producing the same Download PDFInfo
- Publication number
- JP2021143350A JP2021143350A JP2020040440A JP2020040440A JP2021143350A JP 2021143350 A JP2021143350 A JP 2021143350A JP 2020040440 A JP2020040440 A JP 2020040440A JP 2020040440 A JP2020040440 A JP 2020040440A JP 2021143350 A JP2021143350 A JP 2021143350A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- aluminum alloy
- alloy foil
- elongation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Metal Rolling (AREA)
Abstract
Description
本発明は、アルミニウム合金箔及びその製造方法に関する。 The present invention relates to an aluminum alloy foil and a method for producing the same.
近年、携帯電話やノートパソコン等の携帯型電子機器の電源として、リチウムイオン電池が用いられる。このリチウムイオン電池の電極材は、正極板、セパレータ及び負極板で構成され、正極板の材料として電気伝導性に優れるとともに、二次電池の電気効率に影響を与えず、かつ、発熱が少ない材料であるアルミニウム合金箔が用いられている。このようなアルミニウム合金箔として、特許文献1〜3に記載のアルミニウム合金箔が知られている。 In recent years, lithium-ion batteries have been used as power sources for portable electronic devices such as mobile phones and laptop computers. The electrode material of this lithium ion battery is composed of a positive electrode plate, a separator, and a negative electrode plate, and is a material that has excellent electrical conductivity as a material for the positive electrode plate, does not affect the electrical efficiency of the secondary battery, and generates little heat. Aluminum alloy foil is used. As such an aluminum alloy foil, the aluminum alloy foils described in Patent Documents 1 to 3 are known.
例えば、特許文献1のリチウムイオン電池電極用アルミニウム合金箔は、質量%で、Mn:1.0〜1.5%、Cu:0.05〜0.2%を含有し、残部Alおよび不可避不純物よりなり、マトリックス中に存在する粒径0.1〜1.0μmの金属間化合物の数が1.5×105〜6.0×105個/mm2であり、ダブルブリッジ法により液体窒素中で測定した電気抵抗値が1.6μΩcm以下とされている。 For example, the aluminum alloy foil for a lithium ion battery electrode of Patent Document 1 contains Mn: 1.0 to 1.5% and Cu: 0.05 to 0.2% in mass%, and the balance Al and unavoidable impurities. The number of intermetallic compounds with a particle size of 0.1 to 1.0 μm present in the matrix is 1.5 × 10 5 to 6.0 × 10 5 / mm 2 , and liquid nitrogen is obtained by the double bridge method. The electric resistance value measured in the inside is 1.6 μΩcm or less.
また、特許文献2のリチウムイオン二次電池用アルミニウム合金箔は、質量%で、Si0.01〜0.60%、Fe0.2〜1.0%、Cu0.05〜0.50%、Mn0.5〜1.5%を含有し、残部がAlと不可避不純物からなり、引張強さが240MPa以上であり、n値が0.1以上であるとされている。 Further, the aluminum alloy foil for a lithium ion secondary battery of Patent Document 2 has Si 0.01 to 0.60%, Fe 0.2 to 1.0%, Cu 0.05 to 0.50%, Mn 0. It contains 5 to 1.5%, the balance is composed of Al and unavoidable impurities, the tensile strength is 240 MPa or more, and the n value is 0.1 or more.
さらに、特許文献3のリチウムイオン二次電池用アルミニウム合金箔は、質量%で、Si0.01〜0.60%、Fe0.2〜1.0%、Cu0.05〜0.50%、Mn0.5〜1.5%を含有し、残部がAlと不可避不純物からなり、引張強さが240MPa以上であり、100℃で30分間の熱処理後の0.2%耐力が270MPa以下であり、かつ、180℃で30分間の熱処理後の引張強さが200MPa以上とされている。 Further, the aluminum alloy foil for a lithium ion secondary battery of Patent Document 3 has Si 0.01 to 0.60%, Fe 0.2 to 1.0%, Cu 0.05 to 0.50%, Mn 0. It contains 5 to 1.5%, the balance is composed of Al and unavoidable impurities, the tensile strength is 240 MPa or more, the 0.2% proof stress after heat treatment at 100 ° C. for 30 minutes is 270 MPa or less, and The tensile strength after heat treatment at 180 ° C. for 30 minutes is 200 MPa or more.
ところで、特許文献1〜3に記載のアルミニウム合金箔は、リチウムイオン二次電池の電極材として用いられるため、電池メーカー等において表面に活物質を塗布された後、プレス加工される。この場合、アルミニウム合金箔の伸びが低いとプレス加工により破断が生じる場合がある。このため、変形による転位吸収能が優れ、より伸びや変形能が高いアルミニウム合金箔が求められている。 By the way, since the aluminum alloy foils described in Patent Documents 1 to 3 are used as electrode materials for lithium ion secondary batteries, they are pressed after being coated with an active material on the surface by a battery maker or the like. In this case, if the elongation of the aluminum alloy foil is low, breakage may occur due to press working. Therefore, there is a demand for an aluminum alloy foil having excellent dislocation absorption ability due to deformation and higher elongation and deformation ability.
本発明は、上記事情に鑑みてなされたもので、製造時における破断を抑制できるアルミニウム合金箔及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an aluminum alloy foil capable of suppressing fracture during production and a method for producing the same.
本発明のアルミニウム合金箔は、Cu:0.05質量%以上0.2質量%以下、Mn:1.0質量%以上1.5質量%以下、を含有し、残部がAlおよび不可避不純物からなり、引張強さが240MPa以上280MPa未満であり、伸びが3%以上であり、かつ、厚さ方向の大角結晶粒界の間隔が0.5μm以下である。 The aluminum alloy foil of the present invention contains Cu: 0.05% by mass or more and 0.2% by mass or less, Mn: 1.0% by mass or more and 1.5% by mass or less, and the balance is composed of Al and unavoidable impurities. The tensile strength is 240 MPa or more and less than 280 MPa, the elongation is 3% or more, and the interval between the large-angle crystal grain boundaries in the thickness direction is 0.5 μm or less.
本発明では、引張強さを240MPa以上280MPa未満、伸びを3%以上としているので、製造時や加工時におけるアルミニウム合金箔の破断を抑制できる。この引張強さが240MPa未満であると、アルミニウム合金箔の引張強さが不足し、製造時の加工により破断が生じる可能性があり、280MPa以上であると、伸びが低下することにより破断が生じやすくなる。また、伸びが3%以上であるため、破断が生じにくくなる。。さらに、厚さ方向の大角結晶粒界の間隔を0.5μm以下とすることで、変形による転位吸収能が優れ、より伸びや変形能が高いアルミニウム合金箔を提供できる。この厚さ方向の大角結晶粒界の間隔が0.5μmを超えると、粒界破断が起きやすくなる。
なお、大角結晶粒界とは、EBSD法で測定した隣接する結晶の方位差が15°以上の粒界をいう。
In the present invention, since the tensile strength is 240 MPa or more and less than 280 MPa and the elongation is 3% or more, it is possible to suppress the breakage of the aluminum alloy foil during manufacturing or processing. If the tensile strength is less than 240 MPa, the tensile strength of the aluminum alloy foil is insufficient and breakage may occur due to processing during manufacturing, and if it is 280 MPa or more, breakage occurs due to a decrease in elongation. It will be easier. Further, since the elongation is 3% or more, breakage is less likely to occur. .. Further, by setting the interval between the large-angle crystal grain boundaries in the thickness direction to 0.5 μm or less, it is possible to provide an aluminum alloy foil having excellent dislocation absorption ability due to deformation and higher elongation and deformability. If the spacing between the large-angle crystal grain boundaries in the thickness direction exceeds 0.5 μm, grain boundary fracture is likely to occur.
The large-angle crystal grain boundary means a grain boundary with an orientation difference of 15 ° or more between adjacent crystals measured by the EBSD method.
Cuは、アルミニウム合金箔の引張強さ及び伸びの向上に寄与し、0.05質量%未満であると十分な引張強さが得られず、0.2質量%を超えると引張強さが高くなりすぎることにより、伸びが低下して破断が生じやすくなる。
Mnは、アルミニウム合金箔の引張強さ向上に寄与し、1.0質量%未満であると十分な引張強さが得られず、1.5質量%を超えると、金属化合物の割合が増加して、引張強さが高くなりすぎることにより、伸びが低下して破断が生じやすくなる。
Cu contributes to the improvement of the tensile strength and elongation of the aluminum alloy foil. If it is less than 0.05% by mass, sufficient tensile strength cannot be obtained, and if it exceeds 0.2% by mass, the tensile strength is high. If it becomes too large, the elongation is reduced and breakage is likely to occur.
Mn contributes to the improvement of the tensile strength of the aluminum alloy foil, and if it is less than 1.0% by mass, sufficient tensile strength cannot be obtained, and if it exceeds 1.5% by mass, the proportion of the metal compound increases. Therefore, when the tensile strength becomes too high, the elongation decreases and fracture is likely to occur.
本発明のアルミニウム合金箔の好ましい態様としては、Si:0.1質量%以上0.4質量%以下、Fe:0.2質量%以上0.8質量%以下をさらに含有するとよい。
Siは、アルミニウム合金箔の伸び向上に寄与し、0.1質量%未満であると十分な伸びが得られない可能性があり、0.4質量%を超えると金属化合物の割合が増加して、アルミニウム合金箔の製造工程における圧延時に破断する可能性がある。
Feは、アルミニウム合金箔の引張強さ及び伸びの向上に寄与し、0.2質量%未満であると十分な引張強さ及び伸びが得られず、0.8質量%を超えると金属化合物の割合が増加して、アルミニウム合金箔の製造工程の圧延時に破断する可能性がある。
As a preferred embodiment of the aluminum alloy foil of the present invention, Si: 0.1% by mass or more and 0.4% by mass or less and Fe: 0.2% by mass or more and 0.8% by mass or less may be further contained.
Si contributes to the improvement of elongation of the aluminum alloy foil, and if it is less than 0.1% by mass, sufficient elongation may not be obtained, and if it exceeds 0.4% by mass, the proportion of the metal compound increases. , May break during rolling in the manufacturing process of aluminum alloy foil.
Fe contributes to the improvement of the tensile strength and elongation of the aluminum alloy foil. If it is less than 0.2% by mass, sufficient tensile strength and elongation cannot be obtained, and if it exceeds 0.8% by mass, the metal compound The proportion may increase and break during rolling in the aluminum alloy foil manufacturing process.
本発明のアルミニウム合金箔の製造方法は、Cu:0.05質量%以上0.2質量%以下、Mn:1.0質量%以上1.5質量%以下、を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金を溶解鋳造した後、480℃以上550℃以下で5時間以上保持する均質化処理を施し、均熱処理を500℃以上540℃以下で1時間以上施した後、320℃以下で熱間圧延し、圧延率70%以上80%以下の冷間圧延を負荷して、連続焼鈍炉にて480℃以上の中間焼鈍を施し、箔圧延により最終圧延率を98%以上とする。 The method for producing an aluminum alloy foil of the present invention contains Cu: 0.05% by mass or more and 0.2% by mass or less, Mn: 1.0% by mass or more and 1.5% by mass or less, and the balance is Al and unavoidable. After melt-casting an aluminum alloy composed of impurities, homogenization treatment is performed to hold it at 480 ° C. or higher and 550 ° C. or lower for 5 hours or longer, and soaking heat treatment is performed at 500 ° C. or higher and 540 ° C. or lower for 1 hour or longer, and then at 320 ° C. or lower. Hot rolling is performed, cold rolling with a rolling ratio of 70% or more and 80% or less is applied, intermediate annealing is performed at 480 ° C. or higher in a continuous tanning furnace, and foil rolling is performed to bring the final rolling ratio to 98% or higher.
本発明では、溶解鋳造したアルミニウム合金に対して、均質化処理及び均熱処理を施した後、熱間圧延及び冷間圧延を施し、これに中間焼鈍を施して箔圧延を施すことで、Cu:0.05質量%以上0.2質量%以下、Mn:1.0質量%以上1.5質量%以下、を含有し、残部がAlおよび不可避不純物からなり、引張強さが240MPa以上280MPa未満であり、伸びが3%以上であり、かつ、厚さ方向の大角結晶粒界の間隔が0.5μm以下のアルミニウム合金箔を製造することができる。 In the present invention, a melt-cast aluminum alloy is subjected to homogenization treatment and soaking heat treatment, followed by hot rolling and cold rolling, which is then subjected to intermediate annealing and foil rolling. It contains 0.05% by mass or more and 0.2% by mass or less, Mn: 1.0% by mass or more and 1.5% by mass or less, the balance is composed of Al and unavoidable impurities, and the tensile strength is 240 MPa or more and less than 280 MPa. It is possible to produce an aluminum alloy foil having an elongation of 3% or more and an interval of large-angle crystal grain boundaries in the thickness direction of 0.5 μm or less.
均質化処理の保持温度が480℃未満であると、固溶している元素が多く析出してしまい、固溶元素の低下により箔の強度が240MPaより低くなる。一方、保持温度が550℃を超えると局部的な溶融を起こし、表面性状が悪化する可能性があるため好ましくない。また、保持時間が5時間未満であると、固溶している合金元素の析出が不均一であり、ロット毎のバラツキの要因となるため好ましくない。
均熱処理の温度が500℃未満であると、熱間圧延時の温度が低温となり、圧延中に固溶元素が析出してしまい固溶元素濃度が低下する。一方、540℃を超えると熱間圧延時に高温になり過ぎ、圧延後の温度が320℃を超える。また、均熱処理の時間が1時間未満であると熱間圧延に適切な温度に上がり切らずに低温となる、または板全体では不均一な状態となる。
熱間圧延の温度が320℃を超えると圧延後の結晶粒が粗大化し、箔における結晶粒が微細化せず強度及び伸びが低下する。また、冷間圧延の圧下率が70%未満では中間焼鈍後の圧延率が高くなり強度が上がりすぎ、伸びが低下する。逆に80%を超えると中間焼鈍後の圧延率が低いため強度を上昇させることができない。
また、中間焼鈍処理の温度が480℃未満であると、十分な添加元素の固溶がなされず、結晶粒が粗大となる。
さらに、箔圧延による最終圧延率が98%未満であると、圧延率が低く結晶粒の微細化が達成されない。
If the holding temperature of the homogenization treatment is less than 480 ° C., a large amount of solid-solved elements are precipitated, and the strength of the foil becomes lower than 240 MPa due to the decrease of the solid-solved elements. On the other hand, if the holding temperature exceeds 550 ° C., local melting may occur and the surface texture may deteriorate, which is not preferable. Further, if the holding time is less than 5 hours, the precipitation of the solid-solved alloying elements is non-uniform, which causes variation from lot to lot, which is not preferable.
If the temperature of the soaking heat treatment is less than 500 ° C., the temperature during hot rolling becomes low, and solid-dissolving elements are precipitated during rolling, so that the concentration of solid-dissolving elements decreases. On the other hand, if it exceeds 540 ° C., the temperature becomes too high during hot rolling, and the temperature after rolling exceeds 320 ° C. Further, if the soaking time is less than 1 hour, the temperature does not rise to a temperature suitable for hot rolling and becomes low, or the entire plate becomes non-uniform.
When the temperature of hot rolling exceeds 320 ° C., the crystal grains after rolling become coarse, and the crystal grains in the foil do not become fine and the strength and elongation decrease. Further, if the rolling reduction ratio of cold rolling is less than 70%, the rolling ratio after intermediate annealing becomes high, the strength increases too much, and the elongation decreases. On the contrary, if it exceeds 80%, the strength cannot be increased because the rolling ratio after intermediate annealing is low.
Further, if the temperature of the intermediate annealing treatment is less than 480 ° C., sufficient solid solution of the additive element is not made, and the crystal grains become coarse.
Further, if the final rolling ratio by foil rolling is less than 98%, the rolling ratio is low and the refinement of crystal grains cannot be achieved.
本発明のアルミニウム合金箔の好ましい態様としては、前記アルミニウム合金は、Si:0.1質量%以上0.4質量%以下、Fe:0.2質量%以上0.8質量%以下をさらに含有しているとよい。 As a preferred embodiment of the aluminum alloy foil of the present invention, the aluminum alloy further contains Si: 0.1% by mass or more and 0.4% by mass or less, and Fe: 0.2% by mass or more and 0.8% by mass or less. It is good to have.
本発明によれば、製造時における破断を抑制できるアルミニウム合金箔を提供できる。 According to the present invention, it is possible to provide an aluminum alloy foil capable of suppressing breakage during production.
以下、本発明に係るアルミニウム合金箔の実施形態について説明する。 Hereinafter, embodiments of the aluminum alloy foil according to the present invention will be described.
[アルミニウム合金箔の構成]
本実施形態のアルミニウム合金箔は、例えば、リチウムイオン電池の電極材を構成する正極板、セパレータ及び負極板のうち、正極板の材料として利用される。この正極板は、アルミニウム合金箔の表面に活物質が塗布され、プレス加工を施すことにより形成される。このため、正極板の材料として利用されるアルミニウム合金箔には、転位吸収能に加え、高い伸びや変形能が求められる。
このため、本実施形態のアルミニウム合金箔は、Cu:0.05質量%以上0.2質量%以下、Mn:1.0質量%以上1.5質量%以下、を含有し、残部がAlおよび不可避不純物からなる。また、アルミニウム合金箔は、上記Cu及びMnに加えて、Si:0.1質量%以上0.4質量%以下、Fe:0.2質量%以上0.8質量%以下をさらに含有することが好ましい。
[Composition of aluminum alloy foil]
The aluminum alloy foil of the present embodiment is used, for example, as a material for the positive electrode plate among the positive electrode plate, the separator and the negative electrode plate constituting the electrode material of the lithium ion battery. This positive electrode plate is formed by applying an active material to the surface of an aluminum alloy foil and pressing it. Therefore, the aluminum alloy foil used as a material for the positive electrode plate is required to have high elongation and deformability in addition to the dislocation absorbing ability.
Therefore, the aluminum alloy foil of the present embodiment contains Cu: 0.05% by mass or more and 0.2% by mass or less, Mn: 1.0% by mass or more and 1.5% by mass or less, and the balance is Al and It consists of unavoidable impurities. Further, the aluminum alloy foil may further contain Si: 0.1% by mass or more and 0.4% by mass or less and Fe: 0.2% by mass or more and 0.8% by mass or less in addition to the above Cu and Mn. preferable.
「Cu」0.05質量%以上0.2質量%以下
Cuは、アルミニウム合金箔の引張強さ及び伸びの向上に寄与する。具体的には、Cuは、圧延中の再結晶を防ぎ強度の低下を抑制する。
このCuの含有量が0.05質量%未満であると、再結晶時に結晶粒が粗大となり不均一な組織となるため、十分な引張強さが得られず、0.2質量%を超えると引張強さが高くなりすぎることにより、伸びが低下して破断が生じやすくなる。
"Cu" 0.05% by mass or more and 0.2% by mass or less Cu contributes to the improvement of the tensile strength and elongation of the aluminum alloy foil. Specifically, Cu prevents recrystallization during rolling and suppresses a decrease in strength.
If the Cu content is less than 0.05% by mass, the crystal grains become coarse during recrystallization and the structure becomes non-uniform, so that sufficient tensile strength cannot be obtained, and if it exceeds 0.2% by mass. If the tensile strength becomes too high, the elongation is reduced and breakage is likely to occur.
「Mn」1.0質量%以上1.5質量%以下
Mnは、アルミニウム合金箔の引張強さ向上に寄与する。具体的には、Mnは、Al−Mn−Fe系金属間化合物を形成し、晶出相及び分散相となることにより分散硬化作用を発揮し、これにより引張強さを向上させる。
このMnの含有量が1.0質量%未満であると、上記金属間化合物の析出量が少なくなり、十分な硬化特性が得られなくなることから十分な引張強さが得られず、1.5質量%を超えると、分散硬化作用及び析出硬化作用により金属化合物の割合が増加して、引張強さが高くなり過ぎるため、伸びが低下して破断が生じやすくなる。
"Mn" 1.0% by mass or more and 1.5% by mass or less Mn contributes to the improvement of the tensile strength of the aluminum alloy foil. Specifically, Mn forms an Al—Mn—Fe-based intermetallic compound and exhibits a dispersion curing action by forming a crystallization phase and a dispersed phase, thereby improving tensile strength.
If the Mn content is less than 1.0% by mass, the amount of the intermetallic compound precipitated is small, and sufficient hardening characteristics cannot be obtained. Therefore, sufficient tensile strength cannot be obtained, and 1.5 If it exceeds% by mass, the proportion of the metal compound increases due to the dispersion hardening action and the precipitation hardening action, and the tensile strength becomes too high, so that the elongation decreases and fracture is likely to occur.
「Si」0.1質量%以上0.4質量%以下
Siは、アルミニウム合金箔の伸び向上に寄与する。具体的には、Siは、第2相粒子の析出量を増加させ、箔圧延後の伸びを向上させる。
このSiの含有量が0.1質量%未満であると十分な伸びが得られない可能性があり、0.4質量%を超えると金属化合物の割合が増加して、アルミニウム合金箔の製造工程における圧延時に破断する可能性がある他、第2相粒子が粗大化して箔圧延後の伸びを低下させる。
“Si” 0.1% by mass or more and 0.4% by mass or less Si contributes to the improvement of elongation of the aluminum alloy foil. Specifically, Si increases the amount of precipitation of the second phase particles and improves the elongation after foil rolling.
If the Si content is less than 0.1% by mass, sufficient elongation may not be obtained, and if it exceeds 0.4% by mass, the proportion of the metal compound increases, and the aluminum alloy foil manufacturing process. In addition to the possibility of breakage during rolling in the above, the second phase particles are coarsened to reduce the elongation after foil rolling.
「Fe」0.2質量%以上0.8質量%以下
Feは、アルミニウム合金箔の引張強さ及び伸びの向上に寄与する。具体的には、Al−Mn−Fe系金属間化合物の析出量を増加させ、結晶を細分化させることにより、引張強さ及び伸びを向上させる。
このFeの含有量が0.2質量%未満であると十分な引張強さ及び伸びが得られず、0.8質量%を超えると金属化合物の割合が増加して、アルミニウム合金箔の製造工程の圧延時に破断する可能性がある。
"Fe" 0.2% by mass or more and 0.8% by mass or less Fe contributes to the improvement of the tensile strength and elongation of the aluminum alloy foil. Specifically, the tensile strength and elongation are improved by increasing the amount of precipitation of the Al-Mn-Fe-based intermetallic compound and subdividing the crystal.
If the Fe content is less than 0.2% by mass, sufficient tensile strength and elongation cannot be obtained, and if it exceeds 0.8% by mass, the proportion of the metal compound increases, and the manufacturing process of the aluminum alloy foil May break during rolling.
このような組成のアルミニウム合金箔は、例えば、厚さ10μm以上15μm以下とされ、引張強さが240MPa以上280MPa未満であり、伸びが3%以上であり、かつ、厚さ方向の大角結晶粒界の間隔が0.5μm以下である。
本実施形態では、引張強さを240MPa以上280MPa未満、伸びを3%以上としているので、製造時に破断することを抑制できる。この引張強さが240MPa未満であると、アルミニウム合金箔の引張強さが不足し、製造時の加工により破断が生じる可能性があり、280MPa以上であると、加工性が低下して伸びが低下することにより破断が生じやすくなる。また、伸びが3%以上であるため、破断が生じにくくなる。さらに、厚さ方向の大角結晶粒界の間隔を0.5μm以下とすることで、変形による転位吸収能が優れ、より伸びや変形能が高いアルミニウム合金箔を提供できる。
なお、厚さ方向の大角結晶粒界の間隔が0.5μmを超えると、粒界破断が生じる可能性がある。
An aluminum alloy foil having such a composition has, for example, a thickness of 10 μm or more and 15 μm or less, a tensile strength of 240 MPa or more and less than 280 MPa, an elongation of 3% or more, and a large-angle grain boundary in the thickness direction. The interval between the two is 0.5 μm or less.
In the present embodiment, the tensile strength is 240 MPa or more and less than 280 MPa, and the elongation is 3% or more, so that it is possible to suppress breakage during manufacturing. If this tensile strength is less than 240 MPa, the tensile strength of the aluminum alloy foil is insufficient, and fracture may occur due to processing during manufacturing. If it is 280 MPa or more, the processability is lowered and the elongation is lowered. By doing so, breakage is likely to occur. Further, since the elongation is 3% or more, breakage is less likely to occur. Further, by setting the interval between the large-angle crystal grain boundaries in the thickness direction to 0.5 μm or less, it is possible to provide an aluminum alloy foil having excellent dislocation absorption ability due to deformation and higher elongation and deformability.
If the spacing between the large-angle crystal grain boundaries in the thickness direction exceeds 0.5 μm, grain boundary fracture may occur.
[アルミニウム合金箔の製造方法]
アルミニウム合金箔は、以下の手順にて製造される。まず、上記組成のアルミニウム合金に対して、溶解鋳造、均質化処理、均熱処理、熱間圧延、冷間圧延、中間焼鈍処理、箔圧延をこの順で施すことにより製造する。以下、具体的に説明する。
[Manufacturing method of aluminum alloy foil]
The aluminum alloy foil is manufactured by the following procedure. First, the aluminum alloy having the above composition is produced by subjecting it to melt casting, homogenization treatment, soaking heat treatment, hot rolling, cold rolling, intermediate annealing treatment, and foil rolling in this order. Hereinafter, a specific description will be given.
[溶解鋳造]
Cu:0.05質量%以上0.2質量%以下、Mn:1.0質量%以上1.5質量%以下、を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金を溶解してアルミニウム合金溶湯を生成する。そして、アルミニウム合金溶湯を半連続鋳造法(DC鋳造)により鋳造する。
なお、鋳造法については、半連続鋳造法に限らず、連続鋳造法等、その他の常法を用いてもよい。また、アルミニウム合金鋳塊に対して、均質化処理の前後に面削加工を実施してもよい。
[Dissolution casting]
Cu: 0.05% by mass or more and 0.2% by mass or less, Mn: 1.0% by mass or more and 1.5% by mass or less, and the balance is an aluminum alloy by dissolving an aluminum alloy composed of Al and unavoidable impurities. Generates molten metal. Then, the molten aluminum alloy is cast by a semi-continuous casting method (DC casting).
The casting method is not limited to the semi-continuous casting method, and other conventional methods such as the continuous casting method may be used. Further, the aluminum alloy ingot may be surface-cut before and after the homogenization treatment.
[均質化処理]
半連続鋳造法により得られた鋳塊に対して、偏析など不均質な組織を除去する事を目的に均質化処理を実施する。高温の均質化処理により、鋳造時にマトリクスに過飽和に固溶した添加元素が金属間化合物として析出する。析出する金属間化合物のサイズや分散量は均質化処理の温度、時間に影響を及ぼされるため、添加元素の種類に応じた熱処理条件を選択する必要がある。
[Homogenization treatment]
The ingot obtained by the semi-continuous casting method is homogenized for the purpose of removing inhomogeneous structures such as segregation. Due to the high-temperature homogenization treatment, additive elements supersaturated and solid-solved in the matrix during casting are precipitated as intermetallic compounds. Since the size and the amount of dispersion of the precipitated intermetallic compound are affected by the temperature and time of the homogenization treatment, it is necessary to select the heat treatment conditions according to the type of the additive element.
例えば、アルミニウム合金が上記組成とされていることから、得られた鋳塊について均質化処理を480℃以上550℃以下の温度で5時間以上行う。この均質化処理は、500〜530℃の温度で5〜10時間保持することがより好ましい。
なお、均質化処理の保持温度が480℃未満であると、固溶している元素が多く析出してしまい、固溶元素の低下により箔の強度が240MPaより低くなる。その保持温度が550℃を超えると局部的な溶融を起こし、表面性状が悪化する可能性があるため好ましくない。また、保持時間が5時間未満であると、固溶している合金元素の析出が不均一であり、ロット毎のバラツキの要因となるため好ましくない。
For example, since the aluminum alloy has the above composition, the obtained ingot is homogenized at a temperature of 480 ° C. or higher and 550 ° C. or lower for 5 hours or longer. This homogenization treatment is more preferably held at a temperature of 500 to 530 ° C. for 5 to 10 hours.
If the holding temperature of the homogenization treatment is less than 480 ° C., a large amount of solid-solved elements are precipitated, and the strength of the foil becomes lower than 240 MPa due to the decrease of the solid-solved elements. If the holding temperature exceeds 550 ° C., local melting may occur and the surface texture may be deteriorated, which is not preferable. Further, if the holding time is less than 5 hours, the precipitation of the solid-solved alloying elements is non-uniform, which causes variation from lot to lot, which is not preferable.
[均熱処理]
均質化処理がなされた鋳塊に対して均熱処理を実施する。この均熱処理は、均質化処理を終えた鋳塊が室温(例えば、25℃)程度まで低下してから実施され、熱間圧延前に鋳塊を熱間圧延に適切な温度に上昇させるために実行される。
本実施形態では、熱間圧延仕上がり温度は320℃以下に設定されているため、例えば、500℃以上540℃以下の温度で1時間以上保持する均熱処理が実行される。
[Heat treatment]
A soaking heat treatment is performed on the ingot that has been homogenized. This soaking heat treatment is carried out after the ingot that has been homogenized has cooled to about room temperature (for example, 25 ° C.), and the ingot is raised to a temperature suitable for hot rolling before hot rolling. Will be executed.
In the present embodiment, since the hot rolling finish temperature is set to 320 ° C. or lower, for example, a soaking heat treatment that holds the temperature at 500 ° C. or higher and 540 ° C. or lower for 1 hour or longer is executed.
[熱間圧延]
均熱処理がなされた鋳塊に対して熱間圧延を実施する。この熱間圧延は、320℃以下にて圧延終了することが好ましい。具体的には、最終熱間圧延パス出側の温度が250℃〜300℃となるように、総パス数(圧延機を通過する回数)および各パスにおける圧下率を制御し、熱間圧延終了後の板材の厚さを3mm〜5mmとする。
[Hot rolling]
Hot rolling is performed on the ingot that has undergone soaking heat treatment. This hot rolling is preferably completed at 320 ° C. or lower. Specifically, the total number of passes (the number of passes through the rolling mill) and the rolling reduction rate in each pass are controlled so that the temperature on the exit side of the final hot rolling pass is 250 ° C to 300 ° C, and the hot rolling is completed. The thickness of the latter plate material is set to 3 mm to 5 mm.
[冷間圧延]
次に、熱間圧延後の板材に対して、冷間圧延を実施する。この冷間圧延の方法は、特に限定されないが、例えば、圧延機に板材を通過させることにより実施できる。この冷間圧延の圧延率は70%以上80%以下とされ、例えば、冷間圧延後の板材の厚さは、例えば、0.3mm〜1.0mmとされる。
[Cold rolling]
Next, cold rolling is performed on the plate material after hot rolling. This cold rolling method is not particularly limited, but can be carried out, for example, by passing a plate material through a rolling mill. The rolling ratio of this cold rolling is 70% or more and 80% or less, and for example, the thickness of the plate material after cold rolling is, for example, 0.3 mm to 1.0 mm.
[中間焼鈍処理]
冷間圧延後の板材に対して、中間焼鈍処理を実施する。この中間焼鈍処理では、連続焼鈍炉にて480℃以上の温度で実施される。具体的には、連続焼鈍炉において急速加熱及び急速冷却を実行することにより、添加元素の固溶度を高め、粗大な析出物の生成を抑制して、最終圧延後における結晶粒の微細化を促進する。
なお、中間焼鈍処理の温度が480℃未満であると、十分な添加元素の固溶がなされず、結晶粒が粗大となる。
[Intermediate annealing treatment]
An intermediate annealing treatment is performed on the plate material after cold rolling. This intermediate annealing treatment is carried out in a continuous annealing furnace at a temperature of 480 ° C. or higher. Specifically, by executing rapid heating and rapid cooling in a continuous annealing furnace, the solid solubility of the added elements is increased, the formation of coarse precipitates is suppressed, and the crystal grains are refined after the final rolling. Facilitate.
If the temperature of the intermediate annealing treatment is less than 480 ° C., the additive elements are not sufficiently solid-solved, and the crystal grains become coarse.
[箔圧延]
最後に、中間焼鈍処理が施された板材に対して、箔圧延を実行する。この箔圧延の方法は、特に限定されないが、例えば圧延機に板材を通過させることにより実施できる。この箔圧延では、最終圧延率を98%以上として、アルミニウム合金箔の厚さを10μm以上15μm以下とする。
[Foil rolling]
Finally, foil rolling is performed on the plate material that has been subjected to the intermediate annealing treatment. This method of foil rolling is not particularly limited, but can be carried out, for example, by passing a plate material through a rolling mill. In this foil rolling, the final rolling ratio is 98% or more, and the thickness of the aluminum alloy foil is 10 μm or more and 15 μm or less.
このようにして製造されたアルミニウム合金箔は、引張強さが240MPa以上280MPa以下であり、伸びが3%以上であり、かつ、厚さ方向の大角結晶粒界の間隔が0.5μm以下となる。 The aluminum alloy foil produced in this manner has a tensile strength of 240 MPa or more and 280 MPa or less, an elongation of 3% or more, and an interval of large angle grain boundaries in the thickness direction of 0.5 μm or less. ..
本実施形態のアルミニウム合金箔では、引張強さが240MPa以上280MPa以下に設定されているので、製造時に破断が生じることを抑制できる。また、アルミニウム合金箔の伸びが3%以上であるため破断が生じにくくなる。さらに、大角結晶粒界の間隔を0.5μm以下とすることで、変形による転位吸収能が優れ、より伸びや変形能を高めることができる。このため、アルミニウム合金箔に活物質を塗布した後プレス加工を施しても、アルミニウム合金箔が破断することがないので、リチウムイオン二次電池の正極板の材料として利用でき、リチウムイオン二次電池の製造効率を向上できる。 In the aluminum alloy foil of the present embodiment, since the tensile strength is set to 240 MPa or more and 280 MPa or less, it is possible to suppress the occurrence of breakage during manufacturing. Further, since the elongation of the aluminum alloy foil is 3% or more, breakage is less likely to occur. Further, by setting the interval between the large-angle crystal grain boundaries to 0.5 μm or less, the dislocation absorbing ability due to deformation is excellent, and the elongation and deformability can be further enhanced. Therefore, even if the aluminum alloy foil is coated with the active material and then pressed, the aluminum alloy foil does not break, so that it can be used as a material for the positive electrode plate of the lithium ion secondary battery. Manufacturing efficiency can be improved.
なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
実施例1〜5及び比較例1〜10のアルミニウム合金を以下に示す方法で製造し、得られた各試料の厚さ方向の大角結晶粒界の間隔、引張強さ及び伸びを測定した。以下に詳しく説明する。
実施例1〜5及び比較例1〜10の原料となるアルミニウム合金の組成(成分)は、表1に示す通りとした。これら各アルミニウム合金の組成は、表1に示す各成分を含有し、残部がAlおよび不可避不純物である。
The aluminum alloys of Examples 1 to 5 and Comparative Examples 1 to 10 were produced by the methods shown below, and the spacing, tensile strength and elongation of the large-angle grain boundaries in the thickness direction of each of the obtained samples were measured. This will be described in detail below.
The compositions (components) of the aluminum alloys used as the raw materials of Examples 1 to 5 and Comparative Examples 1 to 10 were as shown in Table 1. The composition of each of these aluminum alloys contains each component shown in Table 1, and the balance is Al and unavoidable impurities.
これら実施例1〜5及び比較例1〜10のアルミニウム合金を溶解しアルミニウム合金溶湯を生成し、半連続鋳造により鋳造した。半連続鋳造法により得られた鋳塊に対して、表2に示す温度及び時間の均質化処理を施した後、表2に示す温度及び時間の均熱処理を施し、仕上温度250℃〜300℃で熱間圧延し、圧延率76%の冷間圧延を施した。そして、表2に示す炉内において、表2に示す炉及び温度で中間焼鈍を施した後、最終圧延率98.2%の箔圧延を実施し、厚さ13μmのアルミニウム合金箔を製造し、これらを各試料とした。
なお、表2の中間焼鈍におけるCALとの記載は、連続焼鈍炉による焼鈍を意味しており、Batchとの記載は、バッチ炉による焼鈍を意味している。
The aluminum alloys of Examples 1 to 5 and Comparative Examples 1 to 10 were melted to form a molten aluminum alloy, which was cast by semi-continuous casting. The ingot obtained by the semi-continuous casting method was subjected to a homogenization treatment of the temperature and time shown in Table 2, and then subjected to a soaking heat treatment at the temperature and time shown in Table 2, and the finishing temperature was 250 ° C to 300 ° C. It was hot-rolled in and cold-rolled with a rolling ratio of 76%. Then, in the furnace shown in Table 2, after intermediate annealing at the furnace and temperature shown in Table 2, foil rolling with a final rolling ratio of 98.2% was carried out to produce an aluminum alloy foil having a thickness of 13 μm. These were used as each sample.
The description of CAL in the intermediate annealing in Table 2 means annealing in a continuous annealing furnace, and the description of Batch means annealing in a batch furnace.
(厚さ方向の大角結晶粒界の間隔の測定)
アルミニウム合金箔のRD―ND面をCP(cross section polisher)にて切断し、この切断面をSEM(Scanning Electron Microscope)−EBSDにて解析を行った。倍率×4000倍で箔の厚さ全体を、実際に粒径を測定する際は×10000倍で観察を行った。得られた方位マッピング像において、方位差が15°以上の粒界を表示したgrain mapより、線分法で箔の厚み方向の結晶粒間隔を算出した。尚、×10000倍の観察は一つの試料で3視野行い、間隔はその平均値とした。
SEM−EBSDにおける結晶方位解析は、結晶粒間の方位差が15°以上の結晶粒界をHAGBs(大傾角粒界)と規定し、HAGBsの間隔を測定した。倍率×10000で視野サイズ15×40μmを3視野測定し、厚さ方向の粒界間隔を算出した。算出にはEBSDのArea法(Average by Area Fraction Method)を用いた。尚、解析にはTSL Solutions社のOIM Analysisを使用した。
(Measurement of spacing between large-angle grain boundaries in the thickness direction)
The RD-ND surface of the aluminum alloy foil was cut by CP (cross section microscope), and this cut surface was analyzed by SEM (Scanning Electron Microscope) -EBSD. The entire thickness of the foil was observed at a magnification of × 4000 times, and when the particle size was actually measured, it was observed at × 10000 times. In the obtained orientation mapping image, the crystal grain spacing in the thickness direction of the foil was calculated by the line segment method from the grain map displaying the grain boundaries having an orientation difference of 15 ° or more. In addition, the observation of × 10000 times was performed in 3 fields of view with one sample, and the interval was taken as the average value.
In the crystal orientation analysis in SEM-EBSD, the crystal grain boundaries having an orientation difference of 15 ° or more between the crystal grains were defined as HAGBs (large tilt angle grain boundaries), and the intervals of HAGBs were measured. The visual field size of 15 × 40 μm was measured in three visual fields at a magnification of × 10000, and the grain boundary spacing in the thickness direction was calculated. For the calculation, the Area method (Average by Area Fraction Method) of EBSD was used. OIM Analysis of TSL Solutions was used for the analysis.
(引張強さ及び伸びの測定)
引張強さ及び伸びについては、JISZ2241に準ずる方法により測定した。具体的には、得られた各試料から圧延方向と平行にサンプルを切り出して、万能引張試験機(島津製作所製)で引張速度2mm/秒にて測定を行った。
(Measurement of tensile strength and elongation)
The tensile strength and elongation were measured by a method according to JISZ2241. Specifically, a sample was cut out from each of the obtained samples in parallel with the rolling direction, and measurement was performed with a universal tensile tester (manufactured by Shimadzu Corporation) at a tensile speed of 2 mm / sec.
(引裂強さの測定)
引裂強さについては、ゴム等に用いられる引裂試験(JIS K―6252)を参考に、図1に示すような切り込みなしのアングル型試験片形状を打抜き加工にて切り出し、万能引張試験機(島津製作所製)で引張速度800mm/秒、チャック間距離70mm、予荷重0.8Nにて測定を行った。なお、引裂試験におけるアングル型試験片の各部の寸法等は、図1の下部に示した表の通りである。
計測した最大荷重を試料厚みで除した値を引裂強さ(kN/mm)として評価を行った。なお、引裂強さ105kN/mm以上のものを「合格」として評価し、105kN/mm未満のものを「不合格」と評価した。
(Measurement of tear strength)
Regarding the tear strength, referring to the tear test (JIS K-6252) used for rubber, etc., an angle-type test piece shape without a notch as shown in FIG. 1 was cut out by punching, and a universal tensile tester (Shimadzu). The measurement was carried out at a tensile speed of 800 mm / sec, a distance between chucks of 70 mm, and a preload of 0.8 N. The dimensions and the like of each part of the angle type test piece in the tear test are as shown in the table at the bottom of FIG.
The value obtained by dividing the measured maximum load by the sample thickness was evaluated as the tear strength (kN / mm). A tear strength of 105 kN / mm or more was evaluated as "pass", and a tear strength of less than 105 kN / mm was evaluated as "fail".
表1に示したように、Cu:0.05質量%以上0.2質量%以下、Mn:1.0質量%以上1.5質量%以下、を含有しているA1、B1、C1、D1、E1の合金に480℃以上550℃以下で5時間以上保持する均質化処理を施し、均熱処理を500℃以上540℃以下で1時間以上施した後、320℃以下で熱間圧延し、圧延率70%以上80%以下の冷間圧延を負荷して、連続焼鈍炉にて480℃以上の中間焼鈍を施した実施例1〜5の試料は、引張強さが240MPa以上280MPa未満であり、伸びが3%以上であり、かつ、厚さ方向の大角結晶粒界の間隔が0.5μm以下となり、引裂強さも合格の評価であった。
一方、比較例1〜4では、合金F1、G1、H1、I1のCu成分又はMn成分が上記範囲外であったため、上記実施例1〜5と同様の処理を行っても引張強さ、伸び及び大角結晶粒界の間隔の少なくとも1つが上記範囲外となり、比較例1及び3では引裂き強度が不足し、不合格の評価であった。比較例5は、合金A1を用いているため、合金組成は満たすものの、均質化保持時間が不足したため、伸びが低下し、引裂強さも不合格の評価であった。また、比較例6〜8は、合金A1を用いているものの、均熱処理の温度や時間が上記範囲外であったため、引張強さがいずれも低く、比較例7では伸びが低下、比較例8では伸びが低下し、引裂強さも不合格の評価であった。さらに、比較例9及び10では、合金A1を用いているものの、中間焼鈍の温度が低いことから、大角結晶粒径の間隔が0.5μmを超え、かつ、伸びが2.5〜2.6%と小さかった。このため、引裂強さの評価も不合格であった。
As shown in Table 1, A1, B1, C1, D1 containing Cu: 0.05% by mass or more and 0.2% by mass or less and Mn: 1.0% by mass or more and 1.5% by mass or less. , E1 alloy is subjected to homogenization treatment for holding at 480 ° C. or higher and 550 ° C. or lower for 5 hours or longer, soaking heat treatment is applied at 500 ° C. or higher and 540 ° C. or lower for 1 hour or longer, and then hot-rolled at 320 ° C. or lower and rolled. The samples of Examples 1 to 5 subjected to cold rolling at a rate of 70% or more and 80% or less and subjected to intermediate annealing at 480 ° C. or higher in a continuous annealing furnace had a tensile strength of 240 MPa or more and less than 280 MPa. The elongation was 3% or more, the spacing between the large-angle grain boundaries in the thickness direction was 0.5 μm or less, and the tear strength was also evaluated as acceptable.
On the other hand, in Comparative Examples 1 to 4, since the Cu component or Mn component of the alloys F1, G1, H1 and I1 was out of the above range, the tensile strength and elongation were obtained even if the same treatment as in Examples 1 to 5 was performed. And at least one of the intervals between the large-angle grain boundaries was out of the above range, and in Comparative Examples 1 and 3, the tear strength was insufficient, and the evaluation was rejected. In Comparative Example 5, since the alloy A1 was used, the alloy composition was satisfied, but the homogenization holding time was insufficient, so that the elongation was lowered and the tear strength was also evaluated as unacceptable. Further, although the alloys A1 were used in Comparative Examples 6 to 8, the tensile strength was low in all of them because the temperature and time of the soaking heat treatment were out of the above range, and the elongation was lowered in Comparative Example 7, and Comparative Example 8 Then, the elongation decreased and the tear strength was also evaluated as unacceptable. Further, in Comparative Examples 9 and 10, although the alloy A1 is used, since the intermediate annealing temperature is low, the interval between the large-angle crystal grain sizes exceeds 0.5 μm and the elongation is 2.5 to 2.6. It was as small as%. Therefore, the evaluation of tear strength also failed.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020040440A JP2021143350A (en) | 2020-03-10 | 2020-03-10 | Aluminum alloy foil and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020040440A JP2021143350A (en) | 2020-03-10 | 2020-03-10 | Aluminum alloy foil and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021143350A true JP2021143350A (en) | 2021-09-24 |
Family
ID=77767091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020040440A Pending JP2021143350A (en) | 2020-03-10 | 2020-03-10 | Aluminum alloy foil and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021143350A (en) |
-
2020
- 2020-03-10 JP JP2020040440A patent/JP2021143350A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5309272B1 (en) | Copper alloy plate and method for producing copper alloy plate | |
JP5309271B1 (en) | Copper alloy plate and method for producing copper alloy plate | |
JP6674826B2 (en) | Aluminum alloy foil for battery current collector and method for producing the same | |
JP6736630B2 (en) | Titanium copper, method for producing titanium copper, and electronic component | |
JP2008081833A (en) | Copper alloy foil | |
JP6246456B2 (en) | Titanium copper | |
JP6545779B2 (en) | Aluminum alloy foil for battery current collector | |
JP6699993B2 (en) | Aluminum foil and manufacturing method thereof | |
JP6080822B2 (en) | Titanium copper for electronic parts and manufacturing method thereof | |
JP6694265B2 (en) | Aluminum alloy foil for electrode current collector and method for manufacturing aluminum alloy foil for electrode current collector | |
CN111254324A (en) | Al-Mg-Si alloy plate and manufacturing method thereof | |
JP6730784B2 (en) | Cu-Ni-Co-Si alloy for electronic parts | |
JP2004027253A (en) | Aluminum alloy sheet for molding, and method of producing the same | |
JP7178454B2 (en) | Copper alloy sheet material, its manufacturing method, and members for electrical and electronic parts | |
JP6902821B2 (en) | Manufacturing method of aluminum alloy foil and aluminum alloy foil | |
JP6679462B2 (en) | Aluminum alloy foil for battery current collector and method for producing the same | |
JP2017226886A (en) | Aluminum alloy foil for electrode collector and manufacturing method of aluminum alloy foil for electrode collector | |
JP2021143350A (en) | Aluminum alloy foil and method for producing the same | |
JP7046032B2 (en) | Copper alloys for electronic materials, manufacturing methods and electronic parts for copper alloys for electronic materials | |
JP2016211077A (en) | Titanium copper | |
TW201714185A (en) | Cu-Co-Ni-Si Alloy for Electronic Components | |
JP2020066757A (en) | Titanium copper, manufacturing method of titanium copper, and electronic component | |
JP2020026560A (en) | Aluminum foil for battery collector and method for manufacturing the same | |
JP7311651B1 (en) | Copper alloys for electronic materials and electronic parts | |
RU2795584C2 (en) | Titanium-copper material, titanium-copper material production method and electronic component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20220602 |