[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021009958A - Solar cell, laminate, multi-junction solar cell, solar cell module and photovoltaic power generation system - Google Patents

Solar cell, laminate, multi-junction solar cell, solar cell module and photovoltaic power generation system Download PDF

Info

Publication number
JP2021009958A
JP2021009958A JP2019123900A JP2019123900A JP2021009958A JP 2021009958 A JP2021009958 A JP 2021009958A JP 2019123900 A JP2019123900 A JP 2019123900A JP 2019123900 A JP2019123900 A JP 2019123900A JP 2021009958 A JP2021009958 A JP 2021009958A
Authority
JP
Japan
Prior art keywords
solar cell
semiconductor layer
electrode
grooves
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019123900A
Other languages
Japanese (ja)
Other versions
JP7362317B2 (en
Inventor
祐弥 保西
Yuya Honishi
祐弥 保西
聡一郎 芝崎
Soichiro Shibazaki
聡一郎 芝崎
中川 直之
Naoyuki Nakagawa
直之 中川
山崎 六月
Mutsuki Yamazaki
六月 山崎
平岡 佳子
Yoshiko Hiraoka
佳子 平岡
山本 和重
Kazue Yamamoto
和重 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019123900A priority Critical patent/JP7362317B2/en
Priority to CN202080037621.0A priority patent/CN113853687B/en
Priority to PCT/JP2020/010296 priority patent/WO2021002058A1/en
Priority to EP20714710.9A priority patent/EP3994732A1/en
Publication of JP2021009958A publication Critical patent/JP2021009958A/en
Priority to US17/184,642 priority patent/US20210184066A1/en
Application granted granted Critical
Publication of JP7362317B2 publication Critical patent/JP7362317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

To provide a solar cell, a laminate, a multi-junction solar cell, a solar cell module and a photovoltaic power generation system, having improved conversion efficiency.SOLUTION: A solar cell 100 of an embodiment includes: a transparent first electrode 1; a first semiconductor layer 2 on the first electrode 1; a second semiconductor layer 3 on the first semiconductor layer 2; and a transparent second electrode 4 on the second semiconductor layer 3. Regular grooves 5 are formed on the surface of the first semiconductor layer 2 facing a second semiconductor layer 3 side.SELECTED DRAWING: Figure 1

Description

実施形態は太陽電池、積層体、多接合型太陽電池、太陽電池モジュール及び太陽光発電システムに関する。 Embodiments relate to solar cells, laminates, multijunction solar cells, solar cell modules and photovoltaic systems.

高効率な太陽電池として多接合型(タンデム)太陽電池がある。タンデム太陽電池は、波長帯毎に分光感度が高いセルを用いることができるため、単接合よりも高効率化できる。またタンデム太陽電池のトップセルとして、安価な材料でかつバンドギャップが広い亜酸化銅化合物などが期待されている。 There is a multi-junction (tandem) solar cell as a highly efficient solar cell. Since a tandem solar cell can use a cell having high spectral sensitivity for each wavelength band, it can be made more efficient than a single junction. Further, as a top cell of a tandem solar cell, a cuprous oxide compound which is an inexpensive material and has a wide bandgap is expected.

Yun Seog Lee et al. Energy Environ. Sci., 2013, 6, 2112Yun Seog Lee et al. Energy Environ. Sci., 2013, 6, 2112

実施形態は、変換効率を向上させた太陽電池、積層体、多接合型太陽電池、太陽電池モジュール及び太陽光発電システムを提供する。 The embodiment provides a solar cell, a laminate, a multi-junction solar cell, a solar cell module, and a photovoltaic power generation system with improved conversion efficiency.

実施形態の太陽電池は、透明な第1電極と、第1電極上に第1半導体層と、第1半導体層上に第2半導体層と、第2半導体層上に透明な第2電極とを有し、第1半導体層の第2半導体層側を向く面には、規則的な溝が形成されている。 The solar cell of the embodiment has a transparent first electrode, a first semiconductor layer on the first electrode, a second semiconductor layer on the first semiconductor layer, and a transparent second electrode on the second semiconductor layer. A regular groove is formed on the surface of the first semiconductor layer facing the second semiconductor layer.

実施形態の太陽電池の断面概念図。The cross-sectional conceptual diagram of the solar cell of an embodiment. 実施形態の太陽電池の一部の模式図。The schematic diagram of a part of the solar cell of an embodiment. 実施形態の太陽電池の断面TEM画像。Cross-sectional TEM image of the solar cell of the embodiment. 実施形態の太陽電池の断面概念図。The cross-sectional conceptual diagram of the solar cell of an embodiment. 実施形態の積層体の断面概念図。The cross-sectional conceptual diagram of the laminated body of an embodiment. 実施形態の多接合太陽電池の断面概念図。Sectional sectional view of the multi-junction solar cell of an embodiment. 実施形態の太陽電池モジュールの概念図。The conceptual diagram of the solar cell module of an embodiment. 実施形態の太陽電池モジュールの断面概念図。The cross-sectional conceptual diagram of the solar cell module of an embodiment. 実施形態の太陽光発電システムの概念図。The conceptual diagram of the photovoltaic power generation system of an embodiment. 実施形態の車両の概念図。The conceptual diagram of the vehicle of an embodiment.

(第1実施形態)
第1実施形態は、太陽電池に関する。図1に、第1実施形態の太陽電池100の概念図を示す。図1に示すように、本実施形態に係る太陽電池100は、第1電極1と、第1電極1上に第1半導体層2と、第1半導体層2上に第2半導体層3と、第2半導体層3上に第2電極4と、を備える。第1電極1と第1半導体層2との間や第2半導体層3と第2電極4との間には、図示しない中間層が含まれていてもよい。光は第1電極1側から入射しても第2電極4側から入射してもよい。光が太陽電池100に入射して発電することができる。
(First Embodiment)
The first embodiment relates to a solar cell. FIG. 1 shows a conceptual diagram of the solar cell 100 of the first embodiment. As shown in FIG. 1, the solar cell 100 according to the present embodiment includes a first electrode 1, a first semiconductor layer 2 on the first electrode 1, and a second semiconductor layer 3 on the first semiconductor layer 2. A second electrode 4 is provided on the second semiconductor layer 3. An intermediate layer (not shown) may be included between the first electrode 1 and the first semiconductor layer 2 or between the second semiconductor layer 3 and the second electrode 4. The light may be incident from the first electrode 1 side or the second electrode 4 side. Light can enter the solar cell 100 to generate electricity.

(第1電極)
実施形態の第1電極1は、第1半導体層2側に設けられた透明な導電層である。図1では、第1電極1は、第1半導体層2と直接接している。第1電極1としては、透明導電膜、金属膜と透明導電膜と金属膜を積層したものが好ましい。透明導電膜としては、酸化インジウムスズ(Indium Tin Oxide;ITO)、アルミニウムドープ酸化亜鉛(Al-doped Zinc Oxide;AZO)、ボロンドープ酸化亜鉛(Boron-doped Zinc Oxide;BZO)、ガリウムドープ酸化亜鉛(Gallium-doped Zinc Oxide;GZO)、フッ素ドープ酸化スズ(Fluorine-doped Tin Oxide;FTO)、アンチモンドープ酸化スズ(Antimony-doped Tin Oxide;ATO)、チタンドープ酸化インジウム(Titanium-doped Indium Oxide;ITiO)、酸化インジウム酸化亜鉛(Indium Zinc Oxide;IZO)や酸化インジウムガリウム亜鉛(Indium Gallium Zinc Oxide;IGZO)、タンタルドープ酸化スズ(Ta-doped Tin Oxide;SnO:Ta)、ニオブドープ酸化スズ(Nb-doped Tin Oxide;SnO:Nb)、タングステンドープ酸化スズ(W-doped Tin Oxide;SnO:W)、モリブデンドープ酸化スズ(Mo-doped Tin Oxide;SnO:Mo)、フッ素ドープ酸化スズ(F-doped Tin Oxide;SnO:F)、水素ドープ酸化インジウム(Hydrogen-doped Indium Oxide;IOH)など特に限定されない。透明導電膜は、複数の膜を持つ積層膜であってもよく、上記酸化物の他に酸化スズなどの膜が積層膜に含まれていてもよい。酸化スズなどの膜へのドーパントとしては、In、Si、Ge、Ti、Cu、Sb、Nb、F、Ta、W、Mo、F、Clなど特に限定されない。金属膜としては、Mo、Au、Cu、Ag、Al、TaやWの膜など特に限定されない。また、第1電極1は、透明導電膜上にドット状、ライン状もしくはメッシュ状の金属を設けた電極でもよい。このとき、ドット状、ライン状もしくはメッシュ状の金属は、透明導電膜と第1半導体層2の間や透明導電膜の第1半導体層2とは反対側に配置される。ドット状、ライン状もしくはメッシュ状の金属は、透明導電膜に対して開口率が50%以上であることが好ましい。ドット状、ライン状もしくはメッシュ状の金属は、Mo、Au、Cu、Ag、Al、TaやWなど特に限定されない。第1電極1に金属膜を用いる場合、透過性の観点から5nm以下程度の膜厚とすることが好ましい。ライン状やメッシュ状の金属膜を用いる場合、透過性は開口部で確保されるため、金属膜の膜厚に関してはこの限りではない。
(1st electrode)
The first electrode 1 of the embodiment is a transparent conductive layer provided on the side of the first semiconductor layer 2. In FIG. 1, the first electrode 1 is in direct contact with the first semiconductor layer 2. As the first electrode 1, a transparent conductive film, a metal film, a transparent conductive film, and a metal film laminated is preferable. Examples of the transparent conductive film include Indium Tin Oxide (ITO), Al-doped Zinc Oxide (AZO), Boron-doped Zinc Oxide (BZO), and Gallium-doped Zinc Oxide (Gallium). -doped Zinc Oxide (GZO), Fluorine-doped Tin Oxide (FTO), Antimony-doped Tin Oxide (ATO), Titanium-doped Indium Oxide (ITIO), Indium Zinc Oxide (IZO), Indium Gallium Zinc Oxide (IGZO), Tantal-doped Tin Oxide (SnO 2 : Ta), Niob-doped Tin (Nb-doped Tin) Oxide; SnO 2 : Nb), Tungsten-doped Tin Oxide (SnO 2 : W), Mo-doped Tin Oxide (SnO 2 : Mo), Fluorodoped Tin Oxide (F-doped) Tin Oxide; SnO 2 : F), Hydrogen-doped Indium Oxide (IOH), and the like are not particularly limited. The transparent conductive film may be a laminated film having a plurality of films, and a film such as tin oxide may be contained in the laminated film in addition to the above oxide. The dopant on the film such as tin oxide is not particularly limited to In, Si, Ge, Ti, Cu, Sb, Nb, F, Ta, W, Mo, F, Cl and the like. The metal film is not particularly limited, such as a film of Mo, Au, Cu, Ag, Al, Ta or W. Further, the first electrode 1 may be an electrode in which a dot-shaped, line-shaped or mesh-shaped metal is provided on a transparent conductive film. At this time, the dot-shaped, line-shaped or mesh-shaped metal is arranged between the transparent conductive film and the first semiconductor layer 2 or on the side opposite to the first semiconductor layer 2 of the transparent conductive film. The dot-shaped, line-shaped or mesh-shaped metal preferably has an aperture ratio of 50% or more with respect to the transparent conductive film. The dot-shaped, line-shaped or mesh-shaped metal is not particularly limited to Mo, Au, Cu, Ag, Al, Ta and W. When a metal film is used for the first electrode 1, the film thickness is preferably about 5 nm or less from the viewpoint of permeability. When a line-shaped or mesh-shaped metal film is used, the film thickness of the metal film is not limited to this because the permeability is ensured at the opening.

(第1半導体層)
実施形態の第1半導体層2は、第1電極1と第2半導体層3の間に配置された半導体層である。第1半導体層2としては、化合物半導体層が好ましい。第1半導体層2は、p型の光電変換層とも言う。第1半導体層2としては、亜酸化銅(CuO)、カルコパイライト型半導体、ケステライト型半導体、スタナイト型半導体及びペロブスカイト半導体からなる群より選ばれる1種を主体(90wt%以上)とする半導体層が挙げられる。第1半導体層2は、より具体的には、p型の光電変換層である。第1半導体層2が厚くなると透過率が低下し、また、スパッタでの成膜を考慮すると10μm以下が実用的であり、化合物半導体層としては、亜酸化銅(CuO)を主体とする半導体層が好ましい。第1半導体層2の厚さは、500nm以上10μm以下であることが好ましい。化合物半導体層としては、亜酸化銅等を主体とする半導体層には、添加物を含んでもよい。第1半導体層2の第2半導体層3側には、一部n型の領域が含まれてもよい。
(First semiconductor layer)
The first semiconductor layer 2 of the embodiment is a semiconductor layer arranged between the first electrode 1 and the second semiconductor layer 3. As the first semiconductor layer 2, a compound semiconductor layer is preferable. The first semiconductor layer 2 is also referred to as a p-type photoelectric conversion layer. The first semiconductor layer 2 is a semiconductor mainly composed of one type (90 wt% or more) selected from the group consisting of cuprous oxide (Cu 2 O), calcium pyrite type semiconductor, kesterite type semiconductor, stanite type semiconductor and perovskite semiconductor. Layers are mentioned. More specifically, the first semiconductor layer 2 is a p-type photoelectric conversion layer. When the first semiconductor layer 2 becomes thicker, the transmittance decreases, and considering film formation by sputtering, it is practical to have a thickness of 10 μm or less, and the compound semiconductor layer is mainly composed of cuprous oxide (Cu 2 O). A semiconductor layer is preferred. The thickness of the first semiconductor layer 2 is preferably 500 nm or more and 10 μm or less. As the compound semiconductor layer, an additive may be contained in the semiconductor layer mainly composed of cuprous oxide or the like. The second semiconductor layer 3 side of the first semiconductor layer 2 may partially include an n-type region.

化合物半導体層は、透過率を考慮すると大粒径の多結晶体であることが好ましい。粒径(外接円直径)は、第1半導体層2の厚さの90%以上であることが好ましい。さらに好ましくは第1半導体層2の厚さの95%以上である。粒径がこのような範囲であることで、粒界での光の反射を抑制することができ、効率的に光を透過することができるからである。また、同じく透過率の観点から第1半導体層2の第2半導体層3側を向く表面において、結晶粒の面積(粒界を境界とする面積で、溝5及び凹凸を考慮しない)が1.0μm以上を満たす結晶の比率(数)が全体の80%以上であることが好ましい。これらの条件を満たす場合、第1半導体層2は、大部分が大粒径の結晶で構成されているため、透過率に優れる。 The compound semiconductor layer is preferably a polycrystalline material having a large particle size in consideration of transmittance. The particle size (circumscribed circle diameter) is preferably 90% or more of the thickness of the first semiconductor layer 2. More preferably, it is 95% or more of the thickness of the first semiconductor layer 2. This is because when the particle size is in such a range, the reflection of light at the grain boundary can be suppressed and the light can be efficiently transmitted. Similarly, from the viewpoint of transmittance, on the surface of the first semiconductor layer 2 facing the second semiconductor layer 3, the area of crystal grains (the area with the grain boundary as the boundary, without considering the grooves 5 and unevenness) is 1. The ratio (number) of crystals satisfying 0 μm 2 or more is preferably 80% or more of the total. When these conditions are satisfied, the first semiconductor layer 2 is excellent in transmittance because most of the first semiconductor layer 2 is composed of crystals having a large particle size.

第1半導体層2の第2半導体層3側の第2電極4を向く表面には、規則的な溝5が形成されている。図2に第1半導体層2の表面の模式図を示す。図2に示すように、規則的な溝5は、第1半導体層2の結晶粒の粒界方向(いずれかの粒界の方向)に延びている。第1半導体層2の第2半導体層3側の表面には、粒界6の小さな凹みと結晶粒の表面の小さな溝5が存在する。溝5のピッチ(溝の下端間の距離)は、1nm以上50nm以下であることが好ましく、1nm以上10nm以下がより好ましい。溝の下端とは、一つの溝の最も第1電極1側の部分のことである。下端間とはある溝と他の溝の最も第1電極1側の部分どうしを繋げた線の距離のことである。また、溝5の深さ(溝の下端を挟む上端間を結ぶ線分から下端までの最短距離)は、1nm以上10nm以下である。上端とはある溝の下端と、ある溝の隣の溝の下端の間に存在し、下端間を結ぶ線分から第2半導体層3側に垂線を下した際に、その垂線が第1半導体層2と第2半導体層3との界面と交差する点と線分までの距離が最長距離となる部分のことである。溝5の深さの平均値は、溝5のピッチの平均値の半値以下であることが好ましい。ピッチも深さも非常に小さな値の溝5が複数規則的に第1半導体層2の表面に形成されていることで、変換効率と透過率が向上する。変換効率が向上することで、太陽電池単体の変換効率が向上するが、透過率が低下すると透過型の太陽電池としては好ましくない。透過率が高いことで、太陽電池100の設置用途が増え、また、多接合型太陽電池のトップセル側に用いた際に、ボトムセル側での発電量を増やし、全体の発電量を増やすことができる。 Regular grooves 5 are formed on the surface of the first semiconductor layer 2 facing the second electrode 4 on the second semiconductor layer 3 side. FIG. 2 shows a schematic view of the surface of the first semiconductor layer 2. As shown in FIG. 2, the regular groove 5 extends in the grain boundary direction (direction of any grain boundary) of the crystal grains of the first semiconductor layer 2. On the surface of the first semiconductor layer 2 on the side of the second semiconductor layer 3, there are small dents at grain boundaries 6 and small grooves 5 on the surface of crystal grains. The pitch of the grooves 5 (distance between the lower ends of the grooves) is preferably 1 nm or more and 50 nm or less, and more preferably 1 nm or more and 10 nm or less. The lower end of the groove is the portion of one groove on the 1st electrode 1 side. The distance between the lower ends is the distance of a line connecting a groove and the portion of the other groove on the first electrode 1 side. Further, the depth of the groove 5 (the shortest distance from the line connecting the upper ends sandwiching the lower end of the groove to the lower end) is 1 nm or more and 10 nm or less. The upper end exists between the lower end of a certain groove and the lower end of the groove next to a certain groove, and when a perpendicular line is drawn from the line segment connecting the lower ends to the second semiconductor layer 3 side, the perpendicular line is the first semiconductor layer. This is the portion where the distance between the point where the interface between 2 and the second semiconductor layer 3 intersects with the line segment and the line segment is the longest distance. The average value of the depths of the grooves 5 is preferably not more than half the average value of the pitches of the grooves 5. Since a plurality of grooves 5 having a very small pitch and depth are regularly formed on the surface of the first semiconductor layer 2, the conversion efficiency and the transmittance are improved. By improving the conversion efficiency, the conversion efficiency of the solar cell alone is improved, but when the transmittance is lowered, it is not preferable as a transmissive solar cell. Due to the high transmittance, the installation application of the solar cell 100 increases, and when it is used on the top cell side of the multi-junction solar cell, the amount of power generation on the bottom cell side can be increased to increase the total amount of power generation. it can.

発明者らの研究によって、第1半導体層2の表面の溝5が規則的であるとき、より好ましくは、溝5が微細で粒界方向に延びる場合に透過率と変換効率が向上することを見いだした。 According to the research by the inventors, when the grooves 5 on the surface of the first semiconductor layer 2 are regular, more preferably, the transmittance and the conversion efficiency are improved when the grooves 5 are fine and extend in the grain boundary direction. I found it.

ピッチが1nm以上50nm以下で深さが1nm以上10nm以下の溝が第1半導体層2の表面のごく一部にあったり、溝5がランダムに配置したりしている場合は、好ましくない。光電変換層の表面は、平坦であるほど透過率が高まるという考えは知られていた。しかし、表面のナノスケールの溝が無い場合やナノスケールの溝がランダムな場合などは、実施形態の規則的な溝5が形成された第1半導体層2を有する太陽電池と比べて、透過率だけでなく、変換効率も低下することが本発明により明らかになった。例えば、高さが数百nm程度(結晶粒の上端から隣接する結晶粒との粒界までの高さ)の凹凸が第1半導体層2の表面にあると、第1半導体層2の表面で入射した光が散乱するため、透過率が低下してしまう。第1半導体層2の表面の凹凸の高さが第1半導体層2の厚さの10%以下であって、ナノスケールの溝5が規則的な溝が形成された表面を有することが高い透過率と高い変換効率の太陽電池を得る観点から好ましい。ドット状の凹みは、粒界方向に延びていないことから実施形態の溝5には含まれない。 It is not preferable when the grooves having a pitch of 1 nm or more and 50 nm or less and a depth of 1 nm or more and 10 nm or less are present in a small part of the surface of the first semiconductor layer 2 or the grooves 5 are randomly arranged. It has been known that the flatter the surface of the photoelectric conversion layer, the higher the transmittance. However, when there are no nanoscale grooves on the surface or when the nanoscale grooves are random, the transmittance is higher than that of the solar cell having the first semiconductor layer 2 in which the regular grooves 5 of the embodiment are formed. Not only that, it has been clarified by the present invention that the conversion efficiency is also reduced. For example, if the surface of the first semiconductor layer 2 has irregularities having a height of about several hundred nm (the height from the upper end of the crystal grains to the grain boundaries with the adjacent crystal grains), the surface of the first semiconductor layer 2 Since the incident light is scattered, the transmittance is lowered. It is highly transparent that the height of the unevenness on the surface of the first semiconductor layer 2 is 10% or less of the thickness of the first semiconductor layer 2 and the nanoscale grooves 5 have a surface on which regular grooves are formed. It is preferable from the viewpoint of obtaining a solar cell having a high rate and high conversion efficiency. The dot-shaped dents are not included in the groove 5 of the embodiment because they do not extend in the grain boundary direction.

溝5のピッチと溝5の深さの求め方について詳細に説明する。図3に透過型電子顕微鏡(Transmission Electron Microscope;TEM)を用いて200万倍で第1半導体層2と第2半導体層3の境界部分を観察した画像を示す。図3の画像は、得られた画像(グレースケール)をレベル補正(シャドウ入力レベル60、ハイライト入力レベル70、中間調入力レベル1.00)した画像である。図3の破線は、第1半導体層2と第2半導体層3の界面の位置を示している。観察位置は、結晶粒の中央であることが好ましい。TEMには、日立ハイテクノロジーズのH−9500を用い、加速電圧は200kVで倍率精度は±10%以下である。 How to obtain the pitch of the groove 5 and the depth of the groove 5 will be described in detail. FIG. 3 shows an image obtained by observing the boundary portion between the first semiconductor layer 2 and the second semiconductor layer 3 at a magnification of 2 million using a transmission electron microscope (TEM). The image of FIG. 3 is an image obtained by level-correcting the obtained image (grayscale) (shadow input level 60, highlight input level 70, halftone input level 1.00). The broken line in FIG. 3 indicates the position of the interface between the first semiconductor layer 2 and the second semiconductor layer 3. The observation position is preferably the center of the crystal grains. Hitachi High-Technologies H-9500 is used as the TEM, the acceleration voltage is 200 kV, and the magnification accuracy is ± 10% or less.

規則的な溝5と規則的ではない溝、言い換えると、ランダムな溝とは、以下のように区別できる。例えば、図2で示されるような第1半導体層2までを作製した部材(第1半導体層2の第1電極1側とは反対側の面が露出している部材)の第1半導体層2の表面をTEMで1μm×1μmの範囲を10万倍で観察し、筋状の溝5を確認する。そして、1つの溝(第1の溝)に対する当該溝を挟む溝(第2の溝と第3の溝)の角度(測定部位の第1の溝の接線に対する測定部位の第2の溝の接線の角度、測定部位の第1の溝の接線に対する測定部位の第3の溝の接線の角度)がそれぞれ±10度以内である部分を有することを満たす溝の数が観察領域、つまり粒界に囲まれた部分に確認できる溝の数の90%以上であるとき、第1半導体層2の表面に形成された溝5が規則的とする。なお、溝5の角度は、溝5が粒界に向かって延びる方向であり、角度を求める際に、端部の溝は除外する。また、ランダムな溝の場合は、溝のピッチのばらつきが10nm以内にならないため、TEMによる断面観察から、溝5が規則的であるかランダムであるかを区別することができる。また、規則的な溝5は、第1半導体層2全体の表面面積の80%以上に形成されていることが、透過率と変換効率の観点から好ましい。なお、溝5が存在する面積は、上記条件を満たす溝5で挟まれた領域の面積である。図2の模式図のような溝であれば、ほぼ100%以下の領域が溝の面積に相当する。なお、面積は、溝5の凹み部分を含まない面積であり、結晶粒の面積と同様の概念に基づく面積である。第1半導体層2の表面を溝5の長さは、100nm以上が好ましく、500nm以上がより好ましい。なお、実施形態の溝5は実質的に交差しない。第1半導体層2の表面には交差する溝5がわずかに含まれる場合もあるが、交差する溝5の数は、多くても全体の10%以下である。 Regular grooves 5 and non-regular grooves, in other words, random grooves, can be distinguished as follows. For example, the first semiconductor layer 2 of a member (a member whose surface opposite to the first electrode 1 side of the first semiconductor layer 2 is exposed) produced up to the first semiconductor layer 2 as shown in FIG. The surface of the surface is observed with a TEM in a range of 1 μm × 1 μm at a magnification of 100,000, and the streaky groove 5 is confirmed. Then, the angle of the groove (second groove and third groove) sandwiching the groove with respect to one groove (first groove) (tangent of the second groove of the measurement site with respect to the tangent of the first groove of the measurement site). The number of grooves satisfying that each of the angle and the angle of the tangent of the third groove of the measurement site to the tangent of the first groove of the measurement site is within ± 10 degrees is in the observation region, that is, the grain boundary. When the number of grooves that can be confirmed in the enclosed portion is 90% or more, the grooves 5 formed on the surface of the first semiconductor layer 2 are regular. The angle of the groove 5 is the direction in which the groove 5 extends toward the grain boundary, and the groove at the end is excluded when determining the angle. Further, in the case of a random groove, since the variation in the pitch of the groove is not within 10 nm, it is possible to distinguish whether the groove 5 is regular or random from the cross-sectional observation by TEM. Further, it is preferable that the regular grooves 5 are formed in 80% or more of the surface area of the entire first semiconductor layer 2 from the viewpoint of transmittance and conversion efficiency. The area where the groove 5 exists is the area of the region sandwiched by the grooves 5 satisfying the above conditions. In the case of a groove as shown in the schematic view of FIG. 2, a region of about 100% or less corresponds to the area of the groove. The area is an area that does not include the recessed portion of the groove 5, and is an area based on the same concept as the area of crystal grains. The length of the groove 5 on the surface of the first semiconductor layer 2 is preferably 100 nm or more, more preferably 500 nm or more. The grooves 5 of the embodiment do not substantially intersect. The surface of the first semiconductor layer 2 may include a small number of intersecting grooves 5, but the number of intersecting grooves 5 is at most 10% or less of the total.

実施形態の太陽電池100は、700nm以上1000nm以下の波長帯の光の透過率が高いことが好ましい。この波長帯の光の透過率が高いと、実施形態の太陽電池100を多接合型太陽電池のトップセル側に用いた際に、ボトムセル側にSiの太陽電池を用いた際に、ボトムセル側での発電量が高くなる。太陽電池100の700nm以上1000nm以下の波長帯の光の透過率は、70%以上が好ましく、80%以上であることがより好ましい。 The solar cell 100 of the embodiment preferably has high light transmittance in the wavelength band of 700 nm or more and 1000 nm or less. When the light transmittance in this wavelength band is high, when the solar cell 100 of the embodiment is used on the top cell side of the multi-junction solar cell, and when a Si solar cell is used on the bottom cell side, the bottom cell side The amount of power generation will be high. The transmittance of light in the wavelength band of 700 nm or more and 1000 nm or less of the solar cell 100 is preferably 70% or more, and more preferably 80% or more.

ここで、本実施形態にかかる太陽電池の備える第1半導体層2の作製方法について説明する。以下は、一例として亜酸化銅を主体とする半導体層を作製する方法について説明する。 Here, a method for manufacturing the first semiconductor layer 2 included in the solar cell according to the present embodiment will be described. The method for producing a semiconductor layer mainly composed of cuprous oxide will be described below as an example.

第1半導体層2はスパッタリングによって作製する。スパッタ中の雰囲気は、Arなどの不活性ガスと酸素ガスとの混合ガス雰囲気とすることが好ましい。太陽電池100を保持する基板の種類にもよるが、基板温度を100℃以上600℃以下に加熱して、Cuを含むターゲットを用いてスパッタする。例えば、スパッタリングの温度や酸素分圧を調整することによって大粒径で微細な溝5を有する半導体層を得ることができる。100℃以上の高温状態の成膜した部材を大気中で急冷するなどすると、第1半導体層2の表面の溝5が無くなり平坦化してしまうので、真空中で急冷することが好ましい。また、第1半導体層2の成膜後に真空であってもアニールすることによっても溝5は平坦化し易い。太陽電池100を作製するために用いる基板としては、アクリル、ポリイミド、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、フッ素系樹脂(ポリテトラフルオロエチレン(PTFE)、パーフルオロエチレンプロペンコポリマー(FEP)、エチレンテトラフルオロエチレンコポリマー(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、パーフルオロアルコキシアルカン(PFA)など)、ポリアリレート、ポリサルフォン、ポリエーテルサルフォンやポリエーテルイミドなどの有機系の基板やソーダライムガラス、白板ガラス、化学強化ガラスや石英などの無機系の基板を用いることができる。 The first semiconductor layer 2 is manufactured by sputtering. The atmosphere during sputtering is preferably a mixed gas atmosphere of an inert gas such as Ar and oxygen gas. Although it depends on the type of the substrate that holds the solar cell 100, the substrate temperature is heated to 100 ° C. or higher and 600 ° C. or lower, and sputtering is performed using a target containing Cu. For example, a semiconductor layer having a large particle size and fine grooves 5 can be obtained by adjusting the sputtering temperature and oxygen partial pressure. When a member formed with a film formed at a high temperature of 100 ° C. or higher is rapidly cooled in the atmosphere, the groove 5 on the surface of the first semiconductor layer 2 disappears and becomes flat, so that it is preferable to rapidly cool in a vacuum. Further, the groove 5 can be easily flattened by annealing even in a vacuum after the film formation of the first semiconductor layer 2. As the substrate used for manufacturing the solar cell 100, acrylic, polyimide, polycarbonate, polyethylene terephthalate (PET), polypropylene (PP), fluororesin (polytetrafluoroethylene (PTFE), perfluoroethylene propene copolymer (FEP)) , Ethylene tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), perfluoroalkoxyalkane (PFA), etc.), polyallylate, polysulfone, organic substrates and sodas such as polyether sulfone and polyetherimide. Inorganic substrates such as lime glass, white plate glass, chemically strengthened glass, and quartz can be used.

第1半導体層2の95%以上は亜酸化銅で構成されていることが好ましい。第1半導体層2の98%以上が亜酸化銅で構成されていることがより好ましい。つまり、第1半導体層2は、CuOやCu等の異相をほとんど(実質的に)含まないことが好ましい。第1半導体層2には、CuOやCuなどの異相が含まれず、実質的にCuO単相の薄膜であると、非常に高い透光性となるため好ましい。第1半導体層2が実質的にCuOの単相であることは、フォトルミネッセンス法(Photo Luminescence;PL法)又はX線回折法(X-ray Diffraction;XRD)により測定することで確認できる。 It is preferable that 95% or more of the first semiconductor layer 2 is composed of cuprous oxide. It is more preferable that 98% or more of the first semiconductor layer 2 is composed of cuprous oxide. That is, it is preferable that the first semiconductor layer 2 contains almost (substantially) no different phases such as CuO and Cu. The first semiconductor layer 2, does not contain heterogeneous phases such as CuO and Cu, the substantially is a thin film of Cu 2 O single phase is preferable because a very high light-transmitting property. It can be confirmed by measuring by the photoluminescence method (PL method) or the X-ray diffraction method (X-ray Diffraction; XRD) that the first semiconductor layer 2 is substantially a single phase of Cu 2 O. ..

(第2半導体層)
第2半導体層3は、第1半導体層2と第2電極4の間に配置された半導体層である。第2半導体層3の第1半導体層2を向く面は、第1半導体層2の第2半導体層3を向く面と直接的に接していることが好ましい。第2半導体層3は、n型層又はバッファー層とも言う。第2半導体層3としては、酸化物又は硫化物のn型の半導体層であることが好ましい。第2半導体層3はアモルファスの薄膜であることが好ましい。第2半導体層3に用いられる酸化物としては、特に限定されるものではないが、Zn(AはSi、Ge及びSnからなる群より選ばれる1種以上の元素、Mは、B、Al、Ga、In及びGeからなる群から選ばれる1種以上の元素、0.90≦x+y≦1.00、0.00≦z≦0.30、0.90≦w≦1.10)、Cu(2−x)O(M=Mn、Mg、Ca、Zn、Sr、Ba、Al、Ga、In、Nb、ランタノイド)、CuO:F、CuO:N、CuO:B、CuO:Cl、CuO:Br及びCuO:I、Al(2−x)Gaからなる群から選ばれる酸化物が好ましい。第2半導体層3に用いる硫化物としては、特に限定されるものではないが、ZnIn(2−2x)(3−2x)、ZnS及びInGa(1−x)Sからなる群から選ばれる1種以上の硫化物が好ましい。xの範囲は0≦x≦1、yの範囲は0≦y≦2である。
(Second semiconductor layer)
The second semiconductor layer 3 is a semiconductor layer arranged between the first semiconductor layer 2 and the second electrode 4. It is preferable that the surface of the second semiconductor layer 3 facing the first semiconductor layer 2 is in direct contact with the surface of the first semiconductor layer 2 facing the second semiconductor layer 3. The second semiconductor layer 3 is also referred to as an n-type layer or a buffer layer. The second semiconductor layer 3 is preferably an oxide or sulfide n-type semiconductor layer. The second semiconductor layer 3 is preferably an amorphous thin film. The oxide used in the second semiconductor layer 3 is not particularly limited, but one or more elements selected from the group consisting of Zn x A y X z Ow (A is Si, Ge and Sn). M is one or more elements selected from the group consisting of B, Al, Ga, In and Ge, 0.90 ≦ x + y ≦ 1.00, 0.00 ≦ z ≦ 0.30, 0.90 ≦ w ≦ 1.10), Cu (2-x) M x O (M = Mn, Mg, Ca, Zn, Sr, Ba, Al, Ga, In, Nb, lanthanoid), Cu 2 O: F, Cu 2 O: Oxides selected from the group consisting of N, Cu 2 O: B, Cu 2 O: Cl, Cu 2 O: Br and Cu 2 O: I, Al (2-x) Ga x O 3 are preferable. The sulfide used for the second semiconductor layer 3 is not particularly limited, but is a group consisting of Zn x In (2-2x) S (3-2x) , ZnS and In x Ga (1-x) S. One or more sulfides selected from the above are preferable. The range of x is 0 ≦ x ≦ 1, and the range of y is 0 ≦ y ≦ 2.

第2半導体層3の膜厚は、典型的には、3nm以上100nm以下である。第2半導体層3の厚さが5nm以下であると第2半導体層3のカバレッジが悪い場合にリーク電流が発生し、特性を低下させてしまう場合がある。カバレッジが良い場合は上記膜厚に限定されない。第2半導体層3の厚さが100nmを超えると第2半導体層3の過度の高抵抗化による特性低下や、透過率低下による短絡電流低下が起こる場合がある。従って、第2半導体層3の厚さは5nm以上50nm以下がより好ましく、5nm以上10nm以下がさらにより好ましい。また、カバレッジの良い膜を実現するために第2半導体層3の表面粗さは5nm以下が好ましい。第2半導体層3の質が高い場合は200nm程度の膜厚でも動作する太陽電池100が構成できる。 The film thickness of the second semiconductor layer 3 is typically 3 nm or more and 100 nm or less. If the thickness of the second semiconductor layer 3 is 5 nm or less, a leak current may occur when the coverage of the second semiconductor layer 3 is poor, and the characteristics may be deteriorated. When the coverage is good, the film thickness is not limited to the above. If the thickness of the second semiconductor layer 3 exceeds 100 nm, the characteristics of the second semiconductor layer 3 may be lowered due to excessively high resistance, or the short-circuit current may be lowered due to the decrease in transmittance. Therefore, the thickness of the second semiconductor layer 3 is more preferably 5 nm or more and 50 nm or less, and even more preferably 5 nm or more and 10 nm or less. Further, in order to realize a film having good coverage, the surface roughness of the second semiconductor layer 3 is preferably 5 nm or less. When the quality of the second semiconductor layer 3 is high, the solar cell 100 that operates even with a film thickness of about 200 nm can be configured.

第1半導体層2と界面を形成する第2半導体層3の第1半導体層2側を向く面には、第1半導体層2の表面の溝5に対応する凹凸がある。第2半導体層3の凹凸も溝5と同様に規則的に形成されている。第2半導体層3の凹凸のピッチは、1nm以上10nm以下であり、凹凸の高さは、1nm以上10nm以下であることが好ましく、どちらも溝5のピッチと深さの範囲と同様である。 The surface of the second semiconductor layer 3 forming an interface with the first semiconductor layer 2 facing the first semiconductor layer 2 has irregularities corresponding to the grooves 5 on the surface of the first semiconductor layer 2. The unevenness of the second semiconductor layer 3 is also regularly formed like the groove 5. The pitch of the unevenness of the second semiconductor layer 3 is preferably 1 nm or more and 10 nm or less, and the height of the unevenness is preferably 1 nm or more and 10 nm or less, both of which are the same as the pitch and depth range of the groove 5.

第2半導体層3は、例えば、原子層堆積法(Atomic Layer Deposition;ALD)、スパッタや化学気相成長法(Chemical Vapor Deposition;CVD)で成膜することができる。 The second semiconductor layer 3 can be formed by, for example, an atomic layer deposition method (ALD), a sputtering method, or a chemical vapor deposition method (CVD).

第1半導体層2の伝導帯下端(Conduction Band Minimum:CBM)の位置(Ecp(eV))と第2半導体層3の伝導帯下の位置(Ecn(eV))の差である伝導帯オフセット(ΔE=Ecp−Ecn)は、−0.2eV以上0.6eV以下(−0.2eV≦ΔE≦+0.6eV)であることが好ましい。伝導帯オフセットが0より大きいとpn接合界面の伝導帯が不連続となりスパイクが生じる。伝導帯オフセットが0より小さいとpn接合界面の伝導帯が不連続となりクリフが生じる。スパイク及びクリフはどちらも光生成電子の障壁となるため小さい方が好ましい。従って、伝導帯オフセットは、0.0eV以上0.4eV以下(0.0eV≦ΔE≦+0.4eV)であることがより好ましい。ただし、ギャップ内準位を利用して伝導する場合はこの限りではない。CBMの位置は、以下の手法を用いて見積もることができる。電子占有準位の評価法である光電子分光により価電子帯上端(Valence Band Maximum:VBM)を実測し、続いて測定対象の材料のバンドギャップを仮定してCBMを算出する。しかしながら、実際のpn接合界面では、相互拡散や陽イオンの空孔発生など理想的な界面を維持していないため、バンドギャップが変化する可能性が高い。このため、CBMも直接的に光電子放出の逆過程を利用する逆光電子分光により評価することが好ましい。具体的には、太陽電池表面を低エネルギーイオンエッチングと正・逆光電子分光測定の繰り返しにより、pn接合界面の電子状態を評価できる。 The conduction band offset (Ecn (eV)), which is the difference between the position (Ecp (eV)) of the lower end of the conduction band (CBM) of the first semiconductor layer 2 and the position (Ecn (eV)) below the conduction band of the second semiconductor layer 3. ΔE = Ecp-Ecn) is preferably −0.2 eV or more and 0.6 eV or less (−0.2 eV ≦ ΔE ≦ + 0.6 eV). If the conduction band offset is larger than 0, the conduction band at the pn junction interface becomes discontinuous and spikes occur. If the conduction band offset is less than 0, the conduction band at the pn junction interface becomes discontinuous and cliffs occur. Both spikes and cliffs serve as barriers for photogenerated electrons, so smaller ones are preferable. Therefore, the conduction band offset is more preferably 0.0 eV or more and 0.4 eV or less (0.0 eV ≦ ΔE ≦ + 0.4 eV). However, this does not apply when conducting using the level in the gap. The position of the CBM can be estimated using the following method. The upper end of the valence band (VBM) is actually measured by photoelectron spectroscopy, which is an evaluation method of the electron occupancy level, and then the CBM is calculated assuming the band gap of the material to be measured. However, since the actual pn junction interface does not maintain an ideal interface such as mutual diffusion and generation of cation vacancies, there is a high possibility that the band gap will change. Therefore, it is preferable to evaluate CBM by back photoelectron spectroscopy that directly utilizes the reverse process of photoelectron emission. Specifically, the electronic state of the pn junction interface can be evaluated by repeating low-energy ion etching and forward / reverse photoelectron spectroscopy measurement on the surface of the solar cell.

第2電極4は、第1電極1で挙げた電極と同様の透明電極を用いることが好ましい。第2電極4としては他にも金属ワイヤーを含む取出電極が設けられた多層グラフェン等の他の透明電極を採用することもできる。 As the second electrode 4, it is preferable to use a transparent electrode similar to the electrode mentioned in the first electrode 1. As the second electrode 4, another transparent electrode such as multilayer graphene provided with an extraction electrode containing a metal wire can also be adopted.

(反射防止膜)
実施形態の反射防止膜は、第1半導体層2へ光を導入しやすくするための膜であって、第1電極1上又は第2電極4上の第1半導体層2側とは反対側に形成されていることが好ましい。反射防止膜としては、例えば、MgFやSiOを用いることが望ましい。なお、実施形態において、反射防止膜を省くことができる。各層の屈折率に応じて膜厚を調整する必要があるが、70〜130nm(好ましくは、80〜120nm)程度の厚さの薄膜を蒸着することが好ましい。
(Anti-reflective coating)
The antireflection film of the embodiment is a film for facilitating the introduction of light into the first semiconductor layer 2, and is on the first electrode 1 or on the side opposite to the first semiconductor layer 2 side on the second electrode 4. It is preferably formed. As the antireflection film, for example, MgF 2 or SiO 2 is preferably used. In the embodiment, the antireflection film can be omitted. It is necessary to adjust the film thickness according to the refractive index of each layer, but it is preferable to deposit a thin film having a thickness of about 70 to 130 nm (preferably 80 to 120 nm).

(第2実施形態)
第2実施形態は、太陽電池に関する。図4に、第2実施形態の太陽電池101の概念図を示す。図4に示すように、本実施形態に係る太陽電池101は、第1電極1と、第1電極1上に第1半導体層2と、第1半導体層2上に第2電極4と、を備える。第1電極1と第1半導体層2との間などには、図示しない中間層が含まれていてもよい。
(Second Embodiment)
The second embodiment relates to a solar cell. FIG. 4 shows a conceptual diagram of the solar cell 101 of the second embodiment. As shown in FIG. 4, the solar cell 101 according to the present embodiment has a first electrode 1, a first semiconductor layer 2 on the first electrode 1, and a second electrode 4 on the first semiconductor layer 2. Be prepared. An intermediate layer (not shown) may be included between the first electrode 1 and the first semiconductor layer 2.

第1実施形態の太陽電池100と第2実施形態の太陽電池101との違いは、第2実施形態の太陽電池101には、第2半導体層3が含まれず、第1半導体層2の第2電極4側には、n型の領域が含まれ、第1半導体層2がホモ接合していることである。このこと以外は第1実施形態と第2実施形態は共通する。 The difference between the solar cell 100 of the first embodiment and the solar cell 101 of the second embodiment is that the solar cell 101 of the second embodiment does not include the second semiconductor layer 3 and is the second of the first semiconductor layer 2. The electrode 4 side includes an n-type region, and the first semiconductor layer 2 is homobonded. Other than this, the first embodiment and the second embodiment are common.

第1半導体層2のn型の領域には、Mn、Mg、Ca、Zn、Sr、Ba、Al、Ga、In、Nbとランタノイドからなる群より選ばれる1種以上の元素が含まれることが好ましい。n型の領域の厚さは、典型的には、5nm以上100nm以下である。 The n-type region of the first semiconductor layer 2 may contain one or more elements selected from the group consisting of Mn, Mg, Ca, Zn, Sr, Ba, Al, Ga, In, Nb and lanthanoids. preferable. The thickness of the n-type region is typically 5 nm or more and 100 nm or less.

第1半導体層2のn型の領域側の表面で第2電極4を向く面に上記の規則的な溝5が形成されている。溝5については、第1実施形態と同様であるためその説明を省略する。 The regular groove 5 is formed on the surface of the first semiconductor layer 2 on the n-type region side facing the second electrode 4. Since the groove 5 is the same as that of the first embodiment, the description thereof will be omitted.

(第3実施形態)
第3実施形態は、積層体に関する。図5に第3実施形態の積層体102の概念図を示す。図5に示すように、本実施形態に係る積層体102は、第1電極1と、第1電極1上に第1半導体層2を備える。第1半導体層2の第1電極1側とは反対側の面には、溝5が形成されている。第2半導体層3及び第2電極4が含まれないこと以外は、第3実施形態と第1実施形態と共通する。
(Third Embodiment)
The third embodiment relates to a laminated body. FIG. 5 shows a conceptual diagram of the laminated body 102 of the third embodiment. As shown in FIG. 5, the laminate 102 according to the present embodiment includes a first electrode 1 and a first semiconductor layer 2 on the first electrode 1. A groove 5 is formed on the surface of the first semiconductor layer 2 opposite to the first electrode 1 side. It is common to the third embodiment and the first embodiment except that the second semiconductor layer 3 and the second electrode 4 are not included.

(第4実施形態)
第4実施形態は、多接合型太陽電池に関する。図6に第3実施形態の多接合型太陽電池200の断面概念図を示す。図6の多接合型太陽電池200は、光入射側に第1実施形態の太陽電池(第1太陽電池)100と、第2太陽電池201を有する。第2太陽電池101の光電変換層のバンドギャップは、第1実施形態の太陽電池100の第1半導体層2よりも小さいバンドギャップを有する。なお、実施形態の多接合型太陽電池は、3以上の太陽電池を接合させた太陽電池も含まれる。なお、第1実施形態の太陽電池100の代わりに第2実施形態の太陽電池101を使用することができる。
(Fourth Embodiment)
A fourth embodiment relates to a multi-junction solar cell. FIG. 6 shows a conceptual cross-sectional view of the multi-junction solar cell 200 of the third embodiment. The multi-junction solar cell 200 of FIG. 6 has the solar cell (first solar cell) 100 of the first embodiment and the second solar cell 201 on the light incident side. The bandgap of the photoelectric conversion layer of the second solar cell 101 has a bandgap smaller than that of the first semiconductor layer 2 of the solar cell 100 of the first embodiment. The multi-junction solar cell of the embodiment also includes a solar cell in which three or more solar cells are joined. The solar cell 101 of the second embodiment can be used instead of the solar cell 100 of the first embodiment.

第1実施形態の太陽電池101の第1半導体層2のバンドギャップが約2.0eVであるため、第2太陽電池101の光電変換層のバンドギャップは、1.0eV以上1.4eV以下であることが好ましい。第2太陽電池201の光電変換層としては、Inの含有比率が高いCIGS系、CIT系及びCdTe系、酸化銅系のうちのいずれか1種以上の化合物半導体層又は結晶シリコンであることが好ましい。 Since the band gap of the first semiconductor layer 2 of the solar cell 101 of the first embodiment is about 2.0 eV, the band gap of the photoelectric conversion layer of the second solar cell 101 is 1.0 eV or more and 1.4 eV or less. Is preferable. The photoelectric conversion layer of the second solar cell 201 is preferably a compound semiconductor layer or crystalline silicon of any one or more of CIGS-based, CIT-based and CdTe-based, and copper oxide-based having a high In content ratio. ..

第1実施形態に係る太陽電池100を第1太陽電池とすることで、第1太陽電池での意図しない波長域の光を吸収してしまうことによりボトムセル(第2太陽電池)の変換効率を低下させることを防ぐことができるので、効率の良い多接合型太陽電池とすることができる。 By using the solar cell 100 according to the first embodiment as the first solar cell, the conversion efficiency of the bottom cell (second solar cell) is lowered by absorbing light in an unintended wavelength range of the first solar cell. Since it can be prevented from being caused, an efficient multi-junction solar cell can be obtained.

(第5実施形態)
第5実施形態は、太陽電池モジュールに関する。図7に第5実施形態の太陽電池モジュール300の斜視概念図を示す。図7の太陽電池モジュール300は、第1太陽電池モジュール301と第2太陽電池モジュール302を積層した太陽電池モジュールである。第1太陽電池モジュール301は、光入射側であり、第1実施形態の太陽電池100又は第2実施形態の太陽電池101を用いている。第2太陽電池モジュール302には、第2太陽電池201を用いることが好ましい。
(Fifth Embodiment)
A fifth embodiment relates to a solar cell module. FIG. 7 shows a perspective conceptual diagram of the solar cell module 300 of the fifth embodiment. The solar cell module 300 of FIG. 7 is a solar cell module in which the first solar cell module 301 and the second solar cell module 302 are laminated. The first solar cell module 301 is on the light incident side, and uses the solar cell 100 of the first embodiment or the solar cell 101 of the second embodiment. It is preferable to use the second solar cell 201 for the second solar cell module 302.

図8に太陽電池モジュール300の断面概念図を示す。図8では、第1太陽電池モジュール301の構造を詳細に示し、第2太陽電池モジュール302の構造は示していない。第2太陽電池モジュール302では、用いる太陽電池の光電変換層などに応じて適宜、太陽電池モジュールの構造を選択する。図8の太陽電池モジュールは、複数の太陽電池100(太陽電池セル)が横方向に並んで電気的に直列に接続した破線で囲われたサブモジュール303が複数含まれ、複数のサブモジュール303が電気的に並列もしくは直列に接続している。 FIG. 8 shows a conceptual cross-sectional view of the solar cell module 300. In FIG. 8, the structure of the first solar cell module 301 is shown in detail, and the structure of the second solar cell module 302 is not shown. In the second solar cell module 302, the structure of the solar cell module is appropriately selected according to the photoelectric conversion layer of the solar cell to be used and the like. The solar cell module of FIG. 8 includes a plurality of submodules 303 surrounded by broken lines in which a plurality of solar cells 100 (solar cell cells) are arranged side by side and electrically connected in series, and the plurality of submodules 303 are included. They are electrically connected in parallel or in series.

太陽電池100は、スクライブされていて、隣り合う太陽電池100は、上部側の第2電極4と下部側の第1電極1が接続している。第5実施形態の太陽電池100も第1実施形態の太陽電池100と同様に、基板10、第1電極1、第1半導体層2、第2半導体層3と第2電極4を有する。 The solar cell 100 is scribed, and the adjacent solar cells 100 are connected to the second electrode 4 on the upper side and the first electrode 1 on the lower side. Like the solar cell 100 of the first embodiment, the solar cell 100 of the fifth embodiment also has a substrate 10, a first electrode 1, a first semiconductor layer 2, a second semiconductor layer 3, and a second electrode 4.

モジュール毎に出力電圧が異なると電圧の低い部分に電流が逆流したり、余計な熱を発生させたりすることがあるためモジュールの出力低下につながる。 If the output voltage is different for each module, the current may flow back to the low voltage part or extra heat may be generated, which leads to a decrease in the output of the module.

また、本願の太陽電池を用いると各波長帯に適した太陽電池を用いることができるため、トップセルやボトムセルの太陽電池を単体で用いたときと比較して効率良く発電できるようになり、モジュールの全体の出力が増大するため望ましい。 Further, when the solar cell of the present application is used, a solar cell suitable for each wavelength band can be used, so that it becomes possible to generate electricity more efficiently than when a top cell or bottom cell solar cell is used alone, and the module. This is desirable because it increases the overall output of.

モジュール全体の変換効率が高いと、照射された光エネルギーのうち、熱になるエネルギー割合を低くすることができる。そのためモジュール全体の温度が上昇による効率の低下を抑制することができる。 When the conversion efficiency of the entire module is high, the ratio of energy that becomes heat to the irradiated light energy can be reduced. Therefore, it is possible to suppress a decrease in efficiency due to an increase in the temperature of the entire module.

(第6実施形態)
第6実施形態は太陽光発電システムに関する。第5実施形態の太陽電池モジュール300は、第6実施形態の太陽光発電システムにおいて、発電を行う発電機として用いることができる。実施形態の太陽光発電システムは、太陽電池モジュールを用いて発電を行うものであって、具体的には、発電を行う太陽電池モジュールと、発電した電気を電力変換する手段と、発電した電気をためる蓄電手段又は発電した電気を消費する負荷とを有する。図9に実施形態の太陽光発電システム400の構成概念図を示す。図9の太陽光発電システムは、太陽電池モジュール401(300)と、電力変換装置402と、蓄電池403と、負荷404とを有する。蓄電池403と負荷404は、どちらか一方を省略しても良い。負荷404は、蓄電池403に蓄えられた電気エネルギーを利用することもできる構成にしてもよい。電力変換装置402は、変圧や直流交流変換などの電力変換を行う回路又は素子を含む装置である。電力変換装置402の構成は、発電電圧、蓄電池403や負荷404の構成に応じて好適な構成を採用すればよい。
(Sixth Embodiment)
The sixth embodiment relates to a photovoltaic power generation system. The solar cell module 300 of the fifth embodiment can be used as a generator for generating electricity in the photovoltaic power generation system of the sixth embodiment. The photovoltaic power generation system of the embodiment uses a solar cell module to generate electricity. Specifically, the photovoltaic cell module that generates electricity, a means for converting the generated electricity into electric power, and the generated electricity are used. It has a storage means for storing electricity or a load for consuming the generated electricity. FIG. 9 shows a conceptual diagram of the configuration of the photovoltaic power generation system 400 of the embodiment. The photovoltaic power generation system of FIG. 9 includes a solar cell module 401 (300), a power conversion device 402, a storage battery 403, and a load 404. Either one of the storage battery 403 and the load 404 may be omitted. The load 404 may be configured so that the electric energy stored in the storage battery 403 can be used. The power conversion device 402 is a device including a circuit or element that performs power conversion such as transformation or DC / AC conversion. As the configuration of the power conversion device 402, a suitable configuration may be adopted according to the configuration of the generated voltage, the storage battery 403, and the load 404.

太陽電池モジュール300に含まれる受光したサブモジュール301に含まれる太陽電池セルが発電し、その電気エネルギーは、コンバーター402で変換され、蓄電池403で蓄えられるか、負荷404で消費される。太陽電池モジュール401には、太陽電池モジュール401を常に太陽に向けるための太陽光追尾駆動装置を設けたり、太陽光を集光する集光体を設けたり、発電効率を向上させるための装置等を付加することが好ましい。 The solar cell included in the received submodule 301 included in the solar cell module 300 generates electricity, and the electric energy is converted by the converter 402 and stored in the storage battery 403 or consumed by the load 404. The solar cell module 401 is provided with a solar tracking drive device for always directing the solar cell module 401 toward the sun, a condenser for condensing sunlight, a device for improving power generation efficiency, and the like. It is preferable to add it.

太陽光発電システム400は、住居、商業施設や工場などの不動産に用いられたり、車両、航空機や電子機器などの動産に用いられたりすることが好ましい。実施形態の変換効率に優れた太陽電池を太陽電池モジュール401に用いることで、発電量の増加が期待される。 The photovoltaic power generation system 400 is preferably used for real estate such as houses, commercial facilities and factories, and is preferably used for movables such as vehicles, aircraft and electronic devices. It is expected that the amount of power generation will be increased by using the solar cell having excellent conversion efficiency of the embodiment for the solar cell module 401.

太陽光発電システム400の利用例として車両を示す。図10に車両500の構成概念図を示す。図10の車両500は、車体501、太陽電池モジュール502、電力変換装置503、蓄電池504、モーター505とタイヤ(ホイール)506を有する。車体501の上部に設けられた太陽電池モジュール501で発電した電力は、電力変換装置503変換されて、蓄電池504にて充電されるか、モーター505等の負荷で電力が消費される。太陽電池モジュール501又は蓄電池504から供給される電力を用いてモーター505によってタイヤ(ホイール)506を回転させることにより車両500を動かすことができる。太陽電池モジュール501としては、多接合型ではなく、第1実施形態又は第2実施形態の太陽電池100、101を備えた第1太陽電池モジュールだけで構成されていてもよい。透過性のある太陽電池モジュール501を採用する場合は、車体501の上部に加え、車体501の側面に発電する窓として太陽電池モジュール501を使用することも好ましい。 A vehicle is shown as an example of use of the photovoltaic power generation system 400. FIG. 10 shows a conceptual diagram of the configuration of the vehicle 500. The vehicle 500 of FIG. 10 has a vehicle body 501, a solar cell module 502, a power conversion device 503, a storage battery 504, a motor 505, and a tire (wheel) 506. The electric power generated by the solar cell module 501 provided on the upper part of the vehicle body 501 is converted by the electric power conversion device 503 and charged by the storage battery 504, or the electric power is consumed by a load such as a motor 505. The vehicle 500 can be moved by rotating the tire (wheel) 506 by the motor 505 using the electric power supplied from the solar cell module 501 or the storage battery 504. The solar cell module 501 may be composed of only the first solar cell module including the solar cells 100 and 101 of the first embodiment or the second embodiment, instead of the multi-junction type. When a transmissive solar cell module 501 is adopted, it is also preferable to use the solar cell module 501 as a window for generating electricity on the side surface of the vehicle body 501 in addition to the upper part of the vehicle body 501.

以下、実施例に基づき本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples.

(実施例1)
白板ガラス基板上に、裏面側の第1電極としてITO透明導電膜、その上にSbドープしたSnO透明導電膜を堆積する。透明な第1電極上に酸素とアルゴンガスの混合ガス雰囲気中でスパッタリング法により基板を450℃で加熱して亜酸化銅化合物を成膜し、穏やかな条件で冷却する。その後、電子堆積法によりp−亜酸化銅層上にn型のZn0.8Ge0.2を堆積する。その後表面側の第2電極としてAZO透明導電膜を堆積する。その上に反射防止膜としてMgFを堆積して太陽電池を得る。
(Example 1)
An ITO transparent conductive film is deposited on a white plate glass substrate as a first electrode on the back surface side, and an Sb-doped SnO 2 transparent conductive film is deposited therein. A substrate is heated at 450 ° C. by a sputtering method in a mixed gas atmosphere of oxygen and argon gas on a transparent first electrode to form a cuprous oxide compound, and the substrate is cooled under mild conditions. Then, n-type Zn 0.8 Ge 0.2 Ox is deposited on the p-copper oxide layer by an electron deposition method. After that, an AZO transparent conductive film is deposited as a second electrode on the surface side. MgF 2 is deposited on it as an antireflection film to obtain a solar cell.

(実施例2)
白板ガラス基板上に、裏面側の第1電極としてITO透明導電膜、その上にSbドープしたSnO透明導電膜を堆積する。透明な第1電極上に酸素とアルゴンガスの混合ガス雰囲気中でスパッタリング法により基板を600℃で加熱して亜酸化銅化合物を成膜し、穏やかな条件で冷却する。その後、電子堆積法によりp−亜酸化銅層上にn型のZn0.8Ge0.2を堆積する。その後表面側の第2電極としてAZO透明導電膜を堆積する。その上に反射防止膜としてMgFを堆積して太陽電池を得る。
(Example 2)
An ITO transparent conductive film is deposited on a white plate glass substrate as a first electrode on the back surface side, and an Sb-doped SnO 2 transparent conductive film is deposited therein. A substrate is heated at 600 ° C. by a sputtering method in a mixed gas atmosphere of oxygen and argon gas on a transparent first electrode to form a cuprous oxide compound, and the substrate is cooled under mild conditions. Then, n-type Zn 0.8 Ge 0.2 Ox is deposited on the p-copper oxide layer by an electron deposition method. After that, an AZO transparent conductive film is deposited as a second electrode on the surface side. MgF 2 is deposited on it as an antireflection film to obtain a solar cell.

(実施例3)
白板ガラス基板上に、裏面側の第1電極としてITO透明導電膜、その上にSbドープしたSnO透明導電膜を堆積する。透明な第1電極上に酸素とアルゴンガスの混合ガス雰囲気中でスパッタリング法により基板を300℃で加熱して亜酸化銅化合物を成膜し、穏やかな条件で冷却する。その後、電子堆積法によりp−亜酸化銅層上にn型のZn0.8Ge0.2を堆積する。その後表面側の第2電極としてAZO透明導電膜を堆積する。その上に反射防止膜としてMgFを堆積して太陽電池を得る。
(Example 3)
An ITO transparent conductive film is deposited on a white plate glass substrate as a first electrode on the back surface side, and an Sb-doped SnO 2 transparent conductive film is deposited therein. A substrate is heated at 300 ° C. by a sputtering method in a mixed gas atmosphere of oxygen and argon gas on a transparent first electrode to form a cuprous oxide compound, and the substrate is cooled under mild conditions. Then, by the electron deposition method, n-type Zn 0.8 Ge0 was applied on the p-copper oxide layer . 2 Ox is deposited. After that, an AZO transparent conductive film is deposited as a second electrode on the surface side. MgF 2 is deposited on it as an antireflection film to obtain a solar cell.

(比較例1)
亜酸化銅化合物の成膜後、大気中で急冷したこと以外は、実施例1と同条件で太陽電池を得る。
(Comparative Example 1)
After forming the cuprous oxide compound, a solar cell is obtained under the same conditions as in Example 1 except that it is rapidly cooled in the atmosphere.

(比較例2)
亜酸化銅化合物の成膜後、大気中で急冷したこと以外は、実施例2と同条件で太陽電池を得る。
(Comparative Example 2)
After forming the cuprous oxide compound, a solar cell is obtained under the same conditions as in Example 2 except that it is rapidly cooled in the atmosphere.

(比較例3)
亜酸化銅化合物の成膜後、大気中で急冷したこと以外は、実施例3と同条件で太陽電池を得る。
(Comparative Example 3)
After forming the cuprous oxide compound, a solar cell is obtained under the same conditions as in Example 3 except that it is rapidly cooled in the atmosphere.

(比較例4)
亜酸化銅化合物の成膜後、真空アニールを実施したこと以外は、実施例1と同条件で太陽電池を得る。
(Comparative Example 4)
A solar cell is obtained under the same conditions as in Example 1 except that vacuum annealing is performed after forming the cuprous oxide compound.

実施例の太陽電池には規則的な溝が形成されるが、比較例の太陽電池には規則的な溝が形成されない。より具体的には、比較例1−3の太陽電池は、溝がほとんど確認できず、比較例4の太陽電池は、規則的ではない溝が一部形成され、その溝のピッチや深さは好適な範囲内ではない。規則的な溝が形成されていない比較例4の太陽電池は、実施例の太陽電池と比べて透過率及び変換効率が劣る。実施例の太陽電池の溝は、溝のピッチ及び深さがいずれも好適な範囲内であり、規則的な溝が太陽電池の特性向上に寄与する。第1半導体層の表面に規則的な溝を形成することによって、規則的な溝を有しない同構成の太陽電池よりも透過率及び変換効率が高い太陽電池を得ることができる。規則的な溝ができるように、亜酸化銅膜の成膜後は穏やかな条件で冷却することが好ましい。亜酸化銅を用いた太陽電池は透過率に優れるため、亜酸化銅を用いた太陽電池をトップセルに用いた多接合型太陽電池において、太陽電池全体の発電量向上にも寄与する。
明細書中、一部の元素は元素記号のみで表している。
The solar cells of Examples form regular grooves, but the solar cells of Comparative Examples do not form regular grooves. More specifically, in the solar cell of Comparative Example 1-3, grooves could hardly be confirmed, and in the solar cell of Comparative Example 4, some irregular grooves were formed, and the pitch and depth of the grooves were different. Not within a suitable range. The solar cell of Comparative Example 4 in which regular grooves are not formed is inferior in transmittance and conversion efficiency to the solar cell of Example. In the grooves of the solar cell of the embodiment, the pitch and the depth of the grooves are both within a suitable range, and the regular grooves contribute to the improvement of the characteristics of the solar cell. By forming regular grooves on the surface of the first semiconductor layer, it is possible to obtain a solar cell having higher transmittance and conversion efficiency than a solar cell having the same configuration without regular grooves. After forming the cuprous oxide film, it is preferable to cool it under mild conditions so that regular grooves are formed. Since a solar cell using cuprous oxide has excellent transmittance, it also contributes to an improvement in the power generation amount of the entire solar cell in a multijunction type solar cell using a solar cell using cuprous oxide as a top cell.
In the specification, some elements are represented only by element symbols.

以上、本発明の実施形態を説明したが、本発明は上記実施形態そのままに限定解釈されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成することができる。例えば、変形例の様に異なる実施形態にわたる構成要素を適宜組み合わせても良い。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments as they are, and at the implementation stage, the components can be modified and embodied without departing from the gist thereof. In addition, various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, components over different embodiments may be appropriately combined as in the modified example.

100、101…太陽電池(第1太陽電池、トップセル)、1…第1電極、2…第1半導体層、3…第2半導体層、4…第2電極、5…溝、102…積層体、200…多接合型太陽電池、201…第2太陽電池(ボトムセル)、300…太陽電池モジュール、301第1太陽電池モジュール、302…第2太陽電池モジュール、10…基板、303…サブモジュール、400…太陽光発電システム、401…太陽電池モジュール、402…電力変換装置、403…蓄電池、404…負荷、500…車両、501…車体、502…太陽電池モジュール、503…電力変換装置、504…蓄電池、505…モーター、506…タイヤ(ホイール)
100, 101 ... Solar cell (first solar cell, top cell), 1 ... 1st electrode, 2 ... 1st semiconductor layer, 3 ... 2nd semiconductor layer, 4 ... 2nd electrode, 5 ... groove, 102 ... Laminate , 200 ... Multi-junction solar cell, 201 ... Second solar cell (bottom cell), 300 ... Solar cell module, 301 First solar cell module, 302 ... Second solar cell module, 10 ... Board, 303 ... Submodule, 400 ... Solar power generation system, 401 ... Solar cell module, 402 ... Power converter, 403 ... Storage battery, 404 ... Load, 500 ... Vehicle, 501 ... Body, 502 ... Solar cell module, 503 ... Power converter, 504 ... Storage battery, 505 ... motor, 506 ... tire (wheel)

Claims (11)

透明な第1電極と、
前記第1電極上に第1半導体層と、
前記第1半導体層上に第2半導体層と、
前記第2半導体層上に透明な第2電極とを有し、
前記第1半導体層の第2半導体層側を向く面には、規則的な溝が形成されている太陽電池。
With a transparent first electrode
A first semiconductor layer on the first electrode,
On the first semiconductor layer, a second semiconductor layer and
It has a transparent second electrode on the second semiconductor layer.
A solar cell in which regular grooves are formed on the surface of the first semiconductor layer facing the second semiconductor layer.
前記溝は、1nm以上50nm以下のピッチである請求項1に記載の太陽電池。 The solar cell according to claim 1, wherein the grooves have a pitch of 1 nm or more and 50 nm or less. 前記溝は、1nm以上10nm以下の深さである請求項1又は2に記載の太陽電池。 The solar cell according to claim 1 or 2, wherein the groove has a depth of 1 nm or more and 10 nm or less. 前記第1半導体層の膜厚は、10μm以下である請求項1ないし3のいずれか1項に記載の太陽電池。 The solar cell according to any one of claims 1 to 3, wherein the film thickness of the first semiconductor layer is 10 μm or less. 前記第1半導体層は、Cu2Oを主体とする半導体層である請求項1ないし4のいずれか1項に記載の太陽電池。 The solar cell according to any one of claims 1 to 4, wherein the first semiconductor layer is a semiconductor layer mainly composed of Cu 2 O. 前記第1半導体層は、Cu2Oを主体とする結晶粒を含む半導体層であり、
前記溝は、第1半導体層の結晶粒の粒界方向に延びる請求項1ないし5のいずれか1項に記載の太陽電池。
The first semiconductor layer is a semiconductor layer containing crystal grains mainly composed of Cu 2 O.
The solar cell according to any one of claims 1 to 5, wherein the groove extends in the grain boundary direction of the crystal grains of the first semiconductor layer.
700nm以上1000nm以下の波長帯の光の透過率が70%以上である請求項1ないし6のいずれか1項に記載の太陽電池。 The solar cell according to any one of claims 1 to 6, wherein the light transmittance in the wavelength band of 700 nm or more and 1000 nm or less is 70% or more. 透明な第1電極と、
前記第1電極上に第1半導体層とを有し、
前記第1半導体層の前記第1電極側とは反対側を向く面には、規則的な溝が形成されている積層体。
With a transparent first electrode
It has a first semiconductor layer on the first electrode.
A laminate in which regular grooves are formed on the surface of the first semiconductor layer facing the side opposite to the first electrode side.
請求項1ないし7のいずれか1項に記載の太陽電池を用いた多接合型太陽電池。 A multi-junction solar cell using the solar cell according to any one of claims 1 to 7. 請求項1ないし7のいずれか1項に記載の太陽電池を用いた太陽電池モジュール。 A solar cell module using the solar cell according to any one of claims 1 to 7. 請求項10に記載の太陽電池モジュールを用いて発電する太陽光発電システム。



A photovoltaic power generation system that generates electricity using the solar cell module according to claim 10.



JP2019123900A 2019-07-02 2019-07-02 Solar cells, laminates, multijunction solar cells, solar cell modules, and solar power generation systems Active JP7362317B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019123900A JP7362317B2 (en) 2019-07-02 2019-07-02 Solar cells, laminates, multijunction solar cells, solar cell modules, and solar power generation systems
CN202080037621.0A CN113853687B (en) 2019-07-02 2020-03-10 Solar cell, laminate, multi-junction solar cell, solar cell module, and solar power generation system
PCT/JP2020/010296 WO2021002058A1 (en) 2019-07-02 2020-03-10 Solar cell, laminated body, multi-junction solar cell, solar cell module, and solar power generation system
EP20714710.9A EP3994732A1 (en) 2019-07-02 2020-03-10 Solar cell, laminated body, multi-junction solar cell, solar cell module, and solar power generation system
US17/184,642 US20210184066A1 (en) 2019-07-02 2021-02-25 Solar cell, laminated body, multi-junction solar cell, solar cell module, and solar power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019123900A JP7362317B2 (en) 2019-07-02 2019-07-02 Solar cells, laminates, multijunction solar cells, solar cell modules, and solar power generation systems

Publications (2)

Publication Number Publication Date
JP2021009958A true JP2021009958A (en) 2021-01-28
JP7362317B2 JP7362317B2 (en) 2023-10-17

Family

ID=70009342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019123900A Active JP7362317B2 (en) 2019-07-02 2019-07-02 Solar cells, laminates, multijunction solar cells, solar cell modules, and solar power generation systems

Country Status (5)

Country Link
US (1) US20210184066A1 (en)
EP (1) EP3994732A1 (en)
JP (1) JP7362317B2 (en)
CN (1) CN113853687B (en)
WO (1) WO2021002058A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11908970B2 (en) 2020-03-23 2024-02-20 Kabushiki Kaisha Toshiba Process for manufacturing multilayered thin film, method of manufacturing solar cell, and method for manufacturing solar cell module
WO2024090555A1 (en) * 2022-10-28 2024-05-02 三菱マテリアル株式会社 Method for producing cuprous oxide, and cuprous oxide film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281761A1 (en) * 2021-07-09 2023-01-12 株式会社 東芝 Solar cell, method for manufacturing solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
JP2024135402A (en) * 2023-03-22 2024-10-04 株式会社東芝 Solar cells, multi-junction solar cells, solar cell modules and photovoltaic power generation systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031892A1 (en) * 2000-10-06 2002-04-18 Shin-Etsu Handotai Co., Ltd. Solar cell and method of manufacture thereof
JP2002319688A (en) * 2001-04-20 2002-10-31 Sharp Corp Laminated solar battery
WO2011001735A1 (en) * 2009-07-01 2011-01-06 三菱電機株式会社 Thin-film solar battery and method for producing the same
KR20130013773A (en) * 2011-07-29 2013-02-06 한국전자통신연구원 Manufacturing method for solar cell
US20140238479A1 (en) * 2013-02-27 2014-08-28 Electronics And Telecommunications Research Institute Thin film solar cell
KR101848319B1 (en) * 2016-12-15 2018-04-13 인천대학교 산학협력단 Transparent Photoelectric Element and Method for fabricating the same
JP2019057536A (en) * 2017-09-19 2019-04-11 株式会社東芝 Solar cell, multi-junction type solar cell, solar cell module and photovoltaic power generation system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH262407A (en) * 1942-07-20 1949-06-30 Adam Veszi Gabor Photoelectric cell battery and method of manufacturing this battery.
US20110017298A1 (en) * 2007-11-14 2011-01-27 Stion Corporation Multi-junction solar cell devices
CN102214734A (en) * 2011-06-07 2011-10-12 济南大学 Method for manufacturing zinc oxide/cuprous oxide thin film solar cell
CN106299131B (en) * 2016-09-21 2019-08-23 淮海工学院 SPPs film heterojunction and the solar cell of perovskite lamination and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031892A1 (en) * 2000-10-06 2002-04-18 Shin-Etsu Handotai Co., Ltd. Solar cell and method of manufacture thereof
JP2002319688A (en) * 2001-04-20 2002-10-31 Sharp Corp Laminated solar battery
WO2011001735A1 (en) * 2009-07-01 2011-01-06 三菱電機株式会社 Thin-film solar battery and method for producing the same
KR20130013773A (en) * 2011-07-29 2013-02-06 한국전자통신연구원 Manufacturing method for solar cell
US20140238479A1 (en) * 2013-02-27 2014-08-28 Electronics And Telecommunications Research Institute Thin film solar cell
KR101848319B1 (en) * 2016-12-15 2018-04-13 인천대학교 산학협력단 Transparent Photoelectric Element and Method for fabricating the same
JP2019057536A (en) * 2017-09-19 2019-04-11 株式会社東芝 Solar cell, multi-junction type solar cell, solar cell module and photovoltaic power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11908970B2 (en) 2020-03-23 2024-02-20 Kabushiki Kaisha Toshiba Process for manufacturing multilayered thin film, method of manufacturing solar cell, and method for manufacturing solar cell module
WO2024090555A1 (en) * 2022-10-28 2024-05-02 三菱マテリアル株式会社 Method for producing cuprous oxide, and cuprous oxide film

Also Published As

Publication number Publication date
JP7362317B2 (en) 2023-10-17
CN113853687A (en) 2021-12-28
CN113853687B (en) 2024-05-28
US20210184066A1 (en) 2021-06-17
EP3994732A1 (en) 2022-05-11
WO2021002058A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
US20210184066A1 (en) Solar cell, laminated body, multi-junction solar cell, solar cell module, and solar power generation system
JP2019057536A (en) Solar cell, multi-junction type solar cell, solar cell module and photovoltaic power generation system
JP6834007B2 (en) Solar cells, multi-junction solar cells, solar cell modules and photovoltaic power generation systems
JP2021150603A (en) Manufacturing method of multilayer thin film, manufacturing method of solar cell, and manufacturing method of solar cell module
US20230017543A1 (en) Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
WO2022074852A1 (en) Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
US11626528B2 (en) Photoelectric conversion layer, solar cell, multi-junction solar cell, solar cell module, and photovoltaic power system
US11901474B2 (en) Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
US11581444B2 (en) Solar cell, multi-junction solar cell, solar cell module, and solar photovoltaic power generation system
JP2020053668A (en) Solar cell, multi-junction type solar cell, solar cell module and photovoltaic power generation system
US20200091365A1 (en) Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
CN114041209B (en) Photoelectric conversion layer, solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
JP7551892B2 (en) Solar cell, solar cell manufacturing method, multi-junction solar cell, solar cell module, and solar power generation system
JP7581363B2 (en) Solar cells, multi-junction solar cells, solar cell modules and photovoltaic power generation systems
US12094994B2 (en) Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
JP2013026415A (en) Compound thin film and solar cell
US20230215965A1 (en) Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
JP2020205398A (en) Solar cell, multi-junction solar cell, solar cell module, and photovoltaic system
WO2020250521A1 (en) Solar cell, multi-junction solar cell, solar cell module, and solar power generation system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231004

R150 Certificate of patent or registration of utility model

Ref document number: 7362317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150