JP2021001839A - Adhesive strength sensor, multipoint adhesive strength sensor, and manufacturing method of multipoint adhesive strength sensor - Google Patents
Adhesive strength sensor, multipoint adhesive strength sensor, and manufacturing method of multipoint adhesive strength sensor Download PDFInfo
- Publication number
- JP2021001839A JP2021001839A JP2019116408A JP2019116408A JP2021001839A JP 2021001839 A JP2021001839 A JP 2021001839A JP 2019116408 A JP2019116408 A JP 2019116408A JP 2019116408 A JP2019116408 A JP 2019116408A JP 2021001839 A JP2021001839 A JP 2021001839A
- Authority
- JP
- Japan
- Prior art keywords
- adhesive
- pressure
- sensitive body
- force sensor
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000853 adhesive Substances 0.000 title claims abstract description 228
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 228
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 52
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 238000003466 welding Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000003825 pressing Methods 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 238000007639 printing Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 19
- 238000009826 distribution Methods 0.000 abstract description 18
- 239000011159 matrix material Substances 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 86
- 239000010410 layer Substances 0.000 description 39
- 238000002474 experimental method Methods 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 229920001971 elastomer Polymers 0.000 description 8
- 239000005060 rubber Substances 0.000 description 8
- 229920000800 acrylic rubber Polymers 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 229920000058 polyacrylate Polymers 0.000 description 7
- 238000004154 testing of material Methods 0.000 description 7
- 230000005611 electricity Effects 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 230000000873 masking effect Effects 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000015541 sensory perception of touch Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
【課題】圧縮力の検出だけではなく引張力の検出にも対応可能な接着力センサと、当該接着力センサを用いて圧縮力及び引張力の分布測定をすることが可能な多点接着力センサおよびその製造方法を提供する。【解決手段】接着力センサ30では接着剤38a等がベースフィルム39の端部周囲に電極36を囲むように吐出されている。この状態で、感圧体34と両電極32及び36に全体として被さるようにして、両ベースフィルム31及び39の端部を接着剤38a等で貼り合わせた構造となっている。つまり、接着剤38a等は電極36、感圧体34及び電極32から構成される測定点の周囲を囲むように、両ベースフィルム31及び39の端部を密着させている。下部電極形成工程、接着剤塗布工程、感圧体載置工程、基材圧接工程により、ベースフィルム39上に接着力センサ30に対応する検出点をマトリックス状に配置した多点接着力センサ40を製造する。【選択図】図2PROBLEM TO BE SOLVED: To provide an adhesive force sensor capable of detecting not only compressive force but also tensile force, and a multipoint adhesive force sensor capable of measuring distribution of compressive force and tensile force using the adhesive force sensor. And its manufacturing method. SOLUTION: In an adhesive force sensor 30, an adhesive 38a or the like is discharged so as to surround an electrode 36 around an end portion of a base film 39. In this state, the pressure-sensitive body 34 and both electrodes 32 and 36 are covered as a whole, and the ends of both base films 31 and 39 are bonded with an adhesive 38a or the like. That is, the adhesive 38a or the like brings the ends of both base films 31 and 39 into close contact with each other so as to surround the measurement point composed of the electrode 36, the pressure sensitive body 34, and the electrode 32. A multi-point adhesive force sensor 40 in which detection points corresponding to the adhesive force sensor 30 are arranged in a matrix on the base film 39 by a lower electrode forming step, an adhesive application step, a pressure sensitive body mounting step, and a base material pressure welding step. To manufacture. [Selection diagram] Fig. 2
Description
本発明は、基材上に形成された電極と別の基材上に形成された別の電極との間に感圧体を配置した圧縮力又は引張力を検出する接着力センサに関し、特に、感圧体及び両電極に被さるように両基材の端部を所定の接着剤で接合した構造を有する接着力センサ等に関する。 The present invention relates to an adhesive force sensor for detecting a compressive force or a tensile force in which a pressure sensitive body is arranged between an electrode formed on a base material and another electrode formed on another base material. The present invention relates to an adhesive force sensor having a structure in which the end portions of both base materials are joined with a predetermined adhesive so as to cover the pressure sensitive body and both electrodes.
従来の圧力センサシートは、例えば電極対(上側電極および下側電極)の間に感圧層とスペーサとを重ねた構造をしている。このような従来の圧力センサシートは、感圧層自身の電気抵抗変化に加え、スペーサで分離された下側電極と感圧層との接触面積が押し圧に応じて増加し、これにより接触電気抵抗が変化することにより、押し圧力の検出感度をあげている。しかし、このような構造であると、押し圧力がほとんどかからない場合、もしくは引張り方向の力(引張力)がかかった場合、電極対と感圧層とは接触していないため、それらの力(押し圧力、引張力)を検出することができないという問題があった。 The conventional pressure sensor sheet has a structure in which a pressure sensitive layer and a spacer are laminated between, for example, a pair of electrodes (upper electrode and lower electrode). In such a conventional pressure sensor sheet, in addition to the change in the electric resistance of the pressure-sensitive layer itself, the contact area between the lower electrode separated by the spacer and the pressure-sensitive layer increases according to the pressing pressure, and thereby the contact electricity. By changing the resistance, the detection sensitivity of the pressing pressure is increased. However, with such a structure, when a pressing force is hardly applied or a force in the tensile direction (tensile force) is applied, the electrode pair and the pressure sensitive layer are not in contact with each other, so those forces (pushing) There was a problem that pressure (pressure, tensile force) could not be detected.
特許文献1には、薄膜トランジスタ、センサ部材および共通電極が積層されたセンサシートが開示されている。本センサシートの用途として、衣服の裏側に設置して人肌に与える圧力の計測が挙げられている。特許文献1には押圧力に関して記載されているが、引張力についての記載または示唆は見当たらない。 Patent Document 1 discloses a sensor sheet in which a thin film transistor, a sensor member, and a common electrode are laminated. One of the uses of this sensor sheet is to measure the pressure applied to human skin by installing it on the back side of clothes. Patent Document 1 describes the pressing force, but there is no description or suggestion about the tensile force.
特許文献2には、2つの帯状電極間に感圧層が形成された圧力検出装置が開示されている。本圧力検出装置の制御方法については、人の足裏によって圧力が掛けられている場合を例に説明されている。特許文献2には圧力が掛けられる場合に関して記載されているが、引張力についての記載または示唆は見当たらない。 Patent Document 2 discloses a pressure detecting device in which a pressure-sensitive layer is formed between two band-shaped electrodes. The control method of this pressure detection device is described by taking the case where pressure is applied by the sole of a person's foot as an example. Patent Document 2 describes the case where pressure is applied, but there is no description or suggestion regarding tensile force.
上述したように、従来の圧力センサシート、圧力検出装置等は押圧力または圧縮力の検出に着目しているものの、それとは逆方向に働く引張力の検出には対応していないという問題があった。 As described above, conventional pressure sensor sheets, pressure detectors, etc. focus on the detection of pressing force or compressive force, but there is a problem that they do not support the detection of tensile force acting in the opposite direction. It was.
そこで、本発明の目的は上記問題を解決するためになされたものであり、圧縮力の検出だけではなく引張力の検出にも対応可能な接着力センサを提供することにある。 Therefore, an object of the present invention has been made to solve the above problems, and an object of the present invention is to provide an adhesive force sensor capable of detecting not only compressive force but also tensile force.
本発明の第2の目的は、本発明の接着力センサを用いて、圧縮力および引張力の分布測定をすることが可能な多点接着力センサおよびその製造方法を提供することにある。 A second object of the present invention is to provide a multi-point adhesive force sensor capable of measuring the distribution of compressive force and tensile force by using the adhesive force sensor of the present invention, and a method for manufacturing the same.
この発明の接着力センサは、基材上に形成された電極と別の基材上に形成された別の電極との間に感圧体を配置し、該感圧体及び両電極に被さるように両基材の端部を所定の接着剤で接合した構造を有することを特徴とする圧縮力又は引張力を検出する接着力センサである。 In the adhesive force sensor of the present invention, a pressure sensitive body is arranged between an electrode formed on a base material and another electrode formed on another base material, and the pressure sensitive body and both electrodes are covered with the pressure sensitive body. It is an adhesive force sensor for detecting a compressive force or a tensile force, which has a structure in which the ends of both base materials are joined with a predetermined adhesive.
ここで、この発明の接着力センサにおいて、前記所定の接着剤は紫外線硬化タイプの接着剤を用いることができる。 Here, in the adhesive force sensor of the present invention, an ultraviolet curable type adhesive can be used as the predetermined adhesive.
この発明の多点接着力センサは、本発明の接着力センサを集積化したことを特徴とする。 The multi-point adhesive force sensor of the present invention is characterized by integrating the adhesive force sensor of the present invention.
この発明の多点接着力センサの製造方法は、基材上に所定形の棒状電極(下部電極)を所定数形成する下部電極形成工程と、前記下部電極形成工程で形成された各下部電極上において、圧縮力又は引張力を検出する検出点をマスクで覆った後、前記基材上及び前記各下部電極上に接着剤を塗布する接着剤塗布工程と、前記接着剤塗布工程で用いられたマスクを除去した後の各孔内の下部電極上に感圧体を載置する感圧体載置工程と、所定形の棒状電極(上部電極)が所定数形成された別の基材を、前記感圧体載置工程で感圧体が載置された側の基材に対し各上部電極が前記各下部電極に相互に直交するように対向させた後、該別の基材と該基材とを圧接する基材圧接工程とを備えたことを特徴とする。 The method for manufacturing a multi-point adhesive force sensor of the present invention includes a lower electrode forming step of forming a predetermined number of rod-shaped electrodes (lower electrodes) on a base material, and a lower electrode forming step on each lower electrode formed in the lower electrode forming step. Used in the adhesive coating step of applying the adhesive on the base material and the lower electrodes after covering the detection points for detecting the compressive force or the tensile force with a mask, and in the adhesive coating step. A pressure sensitive body mounting step of mounting the pressure sensitive body on the lower electrode in each hole after removing the mask, and another base material on which a predetermined number of rod-shaped electrodes (upper electrodes) of a predetermined shape are formed are used. In the pressure-sensitive body mounting step, each upper electrode faces the base material on the side on which the pressure-sensitive body is mounted so as to be orthogonal to each of the lower electrodes, and then the other base material and the base are opposed to each other. It is characterized by including a base material pressure welding process for pressure welding with a material.
ここで、この発明の多点接着力センサの製造方法において、前記接着剤塗布工程及び前記感圧体載置工程に替えて、前記下部電極形成工程後の前記下部電極上に所定径の液状感圧体を所定数印刷し、各液状感圧体をマスクした後、前記基材及び前記下部電極上に接着剤を塗布する印刷・塗布工程を備えることができる。 Here, in the method for manufacturing a multi-point adhesive force sensor of the present invention, instead of the adhesive coating step and the pressure sensitive body mounting step, a liquid feeling of a predetermined diameter is placed on the lower electrode after the lower electrode forming step. A printing / coating step can be provided in which a predetermined number of pressure members are printed, each liquid pressure sensitive body is masked, and then an adhesive is applied onto the base material and the lower electrode.
この発明の接着力センサは、基材上に形成された電極と別の基材上に形成された別の電極との間に感圧体を配置し、該感圧体と両電極との界面を所定の導電性接着剤で接合した構造を有する圧縮力又は引張力を検出する接着力センサであって、該界面は該感圧体と各電極との間で対向する平面形状の面であることを特徴とする圧縮力又は引張力を検出する接着力センサである。 In the adhesive force sensor of the present invention, a pressure sensitive body is arranged between an electrode formed on a base material and another electrode formed on another base material, and the interface between the pressure sensitive body and both electrodes is provided. It is an adhesive force sensor that detects a compressive force or a tensile force having a structure in which the above is bonded with a predetermined conductive adhesive, and the interface is a plane-shaped surface facing between the pressure sensitive body and each electrode. It is an adhesive force sensor that detects a compressive force or a tensile force.
ここで、この発明の接着力センサにおいて、前記所定の導電性接着剤は銀ペースト又は異方性導電フィルムを用いることができる。 Here, in the adhesive force sensor of the present invention, a silver paste or an anisotropic conductive film can be used as the predetermined conductive adhesive.
本発明の(一点)接着力センサでは接着剤がベースフィルムの端部周囲に電極を囲むように吐出されている。この状態で、感圧体と両電極とに全体として被さるようにして、両ベースフィルムの端部を接着剤で貼り合わせた構造となっている。つまり、接着剤は電極、感圧体および電極から構成される測定点の周囲を囲むように、両ベースフィルムの端部を密着させている。この結果、本発明の接着力センサによればベースフィルムの一部のみを接着させた場合よりも、大きな引張力を測定することができるという効果がある。以上のようにして、圧縮力の検出だけではなく大きな引張力の検出にも対応可能な接着力センサを提供することができる。 In the (one point) adhesive force sensor of the present invention, the adhesive is discharged so as to surround the electrodes around the edges of the base film. In this state, the pressure-sensitive body and both electrodes are covered as a whole, and the ends of both base films are bonded with an adhesive. That is, the adhesive adheres the ends of both base films so as to surround the measurement point composed of the electrode, the pressure sensitive body, and the electrode. As a result, according to the adhesive force sensor of the present invention, there is an effect that a larger tensile force can be measured than when only a part of the base film is adhered. As described above, it is possible to provide an adhesive force sensor capable of not only detecting a compressive force but also detecting a large tensile force.
本発明の多点接着力センサの製造方法は、まず、ベースフィルム上に下部電極を所定数形成する(下部電極形成工程)。続いて、下部電極形成工程で形成された各下部電極上を、圧縮力または引張力を検出する検出点(一点接着力センサの場合における測定点とほぼ同義)の平面形状に合わせた所定数のマスクで覆う。この後、ベースフィルムおよび各下部電極上に接着剤を塗布する(接着剤塗布工程)。次に、接着剤塗布工程で用いられたマスクを除去した後の各孔内の下部電極上に、感圧体を載置する(感圧体載置工程)。上部電極を感圧体載置工程で感圧体が載置された側のベースフィルムに対し、各上部電極が各下部電極に交差するように対向させる。以上の後、両ベースフィルムを圧接する(基材圧接工程)。以上により、本発明の多点接着力センサの製造方法によれば、本発明の(一点)接着力センサの構造に基づき、圧縮力および引張力の分布測定をすることが可能な多点接着力センサおよびその製造方法を提供することができる。本発明の(一点)接着力センサではベースフィルムの接着面積割合が高いため、大きな引張力が加わった場合でも剥離強度が高い。このような(一点)接着力センサの構造を利用することにより、測定点を小型化・高集積化させても安定的に大きな引張力を測定できるという顕著な効果を奏することができる。 In the method for manufacturing a multipoint adhesive force sensor of the present invention, first, a predetermined number of lower electrodes are formed on a base film (lower electrode forming step). Subsequently, a predetermined number of detection points (almost synonymous with measurement points in the case of a one-point adhesive force sensor) for detecting compressive force or tensile force are placed on each lower electrode formed in the lower electrode forming step. Cover with a mask. After that, an adhesive is applied onto the base film and each lower electrode (adhesive application step). Next, the pressure-sensitive body is placed on the lower electrode in each hole after the mask used in the adhesive application step is removed (pressure-sensitive body mounting step). The upper electrode is opposed to the base film on the side on which the pressure sensitive body is mounted in the pressure sensitive body mounting step so that each upper electrode intersects each lower electrode. After the above, both base films are pressure-welded (base material pressure-welding step). Based on the above, according to the method for manufacturing a multipoint adhesive force sensor of the present invention, it is possible to measure the distribution of compressive force and tensile force based on the structure of the (single point) adhesive force sensor of the present invention. A sensor and a method for manufacturing the sensor can be provided. In the (one point) adhesive force sensor of the present invention, since the adhesive area ratio of the base film is high, the peel strength is high even when a large tensile force is applied. By utilizing the structure of such a (single point) adhesive force sensor, it is possible to achieve a remarkable effect that a large tensile force can be stably measured even if the measurement points are miniaturized and highly integrated.
以下、実施例について図面を参照して詳細に説明する。 Hereinafter, examples will be described in detail with reference to the drawings.
まず、一般的な力(圧力、応力、触覚等)センサと本発明の接着力センサとの異同について説明する。図1(A)は一般的な力センサ10を示す。図1(A)において、符号12は上部電極、16は下部電極、Fpは圧縮力、14は圧縮力Fpが加わることによって電気抵抗が変化する物質である感圧体、Cpは感圧体14に電気を流すための導電経路である。図1(A)では2層からなる電極対(上部電極12および下部電極16)を示したが、電極対とは感圧体14に電気を流すための導電経路Cpであるため、後述するように別の導電経路もあり得る。図1(A)に示されるように、力センサ10の上部電極12に圧縮力Fpが加わると感圧体14が圧縮力Fp方向に変形する。この結果、力センサ10では上部電極12と下部電極16との間の圧縮力Fp方向の距離が減少するため、導電経路Cpにおける電気抵抗が減少する。従って、予め実験により圧縮力Fpとそれに対する力センサ10からの出力電圧との関係を得ておけば、その後は出力電圧を測定することにより当該関係から圧縮力Fpを得る(検出する)ことができる。以上は本発明の接着力センサにおいても同様である。 First, the difference between a general force (pressure, stress, tactile sensation, etc.) sensor and the adhesive force sensor of the present invention will be described. FIG. 1A shows a general force sensor 10. In FIG. 1 (A), reference numeral 12 is an upper electrode, 16 is a lower electrode, Fp is a compressive force, 14 is a pressure sensitive body which is a substance whose electrical resistance changes when a compressive force Fp is applied, and Cp is a pressure sensitive body 14. It is a conductive path for passing electricity through. In FIG. 1A, an electrode pair composed of two layers (upper electrode 12 and lower electrode 16) is shown, but since the electrode pair is a conductive path Cp for passing electricity through the pressure sensitive body 14, it will be described later. There may be another conductive path. As shown in FIG. 1A, when the compressive force Fp is applied to the upper electrode 12 of the force sensor 10, the pressure sensitive body 14 is deformed in the compressive force Fp direction. As a result, in the force sensor 10, the distance between the upper electrode 12 and the lower electrode 16 in the compressive force Fp direction decreases, so that the electrical resistance in the conductive path Cp decreases. Therefore, if the relationship between the compressive force Fp and the output voltage from the force sensor 10 with respect to the compressive force Fp is obtained in advance by an experiment, then the compressive force Fp can be obtained (detected) from the relationship by measuring the output voltage. it can. The above is the same for the adhesive force sensor of the present invention.
図1(B)は力センサ10の上部電極12に引張力Fdが加わった場合を示す。図1(B)で、図1(A)と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図1(B)に示されるように、引張力Fdが加わった場合、上部電極12と感圧体14との間、感圧体14と下部電極16との間は分離するため、上部電極12−感圧体14−下部電極16(導電経路Cp)間は絶縁状態となる。この結果、引張力Fdを検出することはできない。図1(C)は本発明の接着力センサ20を示す。図1(C)で、図1(A)と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図1(C)に示されるように、接着力センサ20では上部電極12と感圧体14との間と、感圧体14と下部電極16との間とは各々接着剤Adにより密着されている。従って、図1(C)に示されるように引張力Fdが加わった場合でも、上部電極12と感圧体14との間、感圧体14と下部電極16との間の各層間は分離しないため、上部電極12−感圧体14−下部電極16(導電経路Cp)間は導通状態を保ったままとなる。図1(C)に示されるように、接着力センサ20の上部電極12に引張力Fdが加わると感圧体14が引張力Fd方向に変形する。この結果、接着力センサ20では上部電極12と下部電極16との間の引張力Fd方向の距離が増加するため、導電経路Cpにおける電気抵抗が増加する。従って、予め実験により引張力Fdとそれに対する接着力センサ20からの出力電圧との関係を得ておけば、その後は出力電圧を測定することにより当該関係から引張力Fdを得る(検出する)ことができる。 FIG. 1B shows a case where a tensile force Fd is applied to the upper electrode 12 of the force sensor 10. In FIG. 1 (B), the parts having the same reference numerals as those in FIG. 1 (A) indicate the same elements, and thus the description thereof will be omitted. As shown in FIG. 1 (B), when the tensile force Fd is applied, the upper electrode 12 and the pressure sensitive body 14 are separated from each other, and the pressure sensitive body 14 and the lower electrode 16 are separated from each other. -The pressure sensitive body 14-the lower electrode 16 (conductive path Cp) is in an insulated state. As a result, the tensile force Fd cannot be detected. FIG. 1C shows the adhesive force sensor 20 of the present invention. In FIG. 1 (C), the parts having the same reference numerals as those in FIG. 1 (A) indicate the same elements, and thus the description thereof will be omitted. As shown in FIG. 1C, in the adhesive force sensor 20, the upper electrode 12 and the pressure sensitive body 14 and the pressure sensitive body 14 and the lower electrode 16 are in close contact with each other by the adhesive Ad. There is. Therefore, even when a tensile force Fd is applied as shown in FIG. 1C, the layers between the upper electrode 12 and the pressure sensitive body 14 and between the pressure sensitive body 14 and the lower electrode 16 are not separated. Therefore, the conduction state is maintained between the upper electrode 12-the pressure sensitive body 14-the lower electrode 16 (conductive path Cp). As shown in FIG. 1C, when the tensile force Fd is applied to the upper electrode 12 of the adhesive force sensor 20, the pressure sensitive body 14 is deformed in the tensile force Fd direction. As a result, in the adhesive force sensor 20, the distance between the upper electrode 12 and the lower electrode 16 in the tensile force Fd direction increases, so that the electrical resistance in the conductive path Cp increases. Therefore, if the relationship between the tensile force Fd and the output voltage from the adhesive force sensor 20 with respect to the tensile force Fd is obtained in advance by an experiment, then the tensile force Fd can be obtained (detected) from the relationship by measuring the output voltage. Can be done.
上述した接着力センサ20の製造方法等については後述することとし、まず先に別のタイプの接着力センサについて説明する。図2は、本発明の接着力センサ30およびその製造方法を示す。図2(A)で、符号31はベースフィルム(基材)、32はベースフィルム31上に形成された電極(図2(A)ではベースフィルム31下に形成された電極とも言える。)、39はベースフィルム(ベースフィルム31とは別の基材)、36はベースフィルム39上に形成された電極(電極32とは別の電極)、34は電極32と電極36との間に配置された感圧体、38aおよび38bはベースフィルム39の端部に吐出された所定の接着剤である。図2(B)で、図2(A)と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図2(B)に示されるように、感圧体34と両電極32および36とに全体として被さるようにして、両ベースフィルム31および39の端部を接着剤38aおよび38bで接合する(貼り合わせる)。図2(B)では接着剤38aおよび38bはベースフィルム39の左右端部に吐出されている状態が示されているが、これは断面図であるためであり、実際は接着剤38aおよび38b(以下、「接着剤38a等」と言う。)がベースフィルム39の端部周囲に電極36を囲むように吐出されている。続いて、適宜力Pをかけて接着力センサ30を圧縮し、圧縮状態を接着剤38a等が乾燥・固化するまで保った。図2(B)における電極36、感圧体34および電極32から構成される部分を測定点と言う。 The method of manufacturing the adhesive force sensor 20 described above will be described later, and another type of adhesive force sensor will be described first. FIG. 2 shows the adhesive force sensor 30 of the present invention and a method for manufacturing the same. In FIG. 2A, reference numeral 31 is a base film (base material), 32 is an electrode formed on the base film 31 (in FIG. 2A, it can be said that the electrode is formed under the base film 31), 39. Is a base film (a base material different from the base film 31), 36 is an electrode formed on the base film 39 (an electrode different from the electrode 32), and 34 is arranged between the electrode 32 and the electrode 36. The pressure sensitive bodies 38a and 38b are predetermined adhesives discharged to the end portion of the base film 39. In FIG. 2B, the parts having the same reference numerals as those in FIG. 2A indicate the same elements, and thus the description thereof will be omitted. As shown in FIG. 2B, the end portions of both base films 31 and 39 are joined (pasted) with adhesives 38a and 38b so as to cover the pressure sensitive body 34 and both electrodes 32 and 36 as a whole. match). FIG. 2B shows a state in which the adhesives 38a and 38b are discharged to the left and right ends of the base film 39, but this is because it is a cross-sectional view, and the adhesives 38a and 38b (hereinafter, hereinafter) are actually shown. , "Adhesive 38a, etc.") is discharged so as to surround the electrode 36 around the end portion of the base film 39. Subsequently, a force P was appropriately applied to compress the adhesive force sensor 30, and the compressed state was maintained until the adhesive 38a or the like dried and solidified. The portion composed of the electrode 36, the pressure sensitive body 34, and the electrode 32 in FIG. 2B is referred to as a measurement point.
ベースフィルム31および電極32(ベースフィルム39および電極36)として、今回、銅−ポリイミド積層フィルムを用いた。つまり、ベースフィルム31および39はポリイミドであり、電極32および36は銅を用いた。他にも、電極32および36として酸化インジウムスズ(ITO)、ベースフィルム31および39としてポリエチレンテレフタレート(PET)を用いてもよく、透明な電極フィルムを利用してもよい。電極32および36は以上の材料に限定されるものではなく、他にもアルミニウム、銀、金、白金、カーボンナノチューブ(CNT)等を用いてもよい。ベースフィルム31および39も以上の材料に限定されるものではなく、他にもポリエチレン(PE)、ガラス等を用いてもよい。以上のようにベースフィルム31等と電極32等とは、様々な絶縁体と導体との組合せが選択可能である。 As the base film 31 and the electrode 32 (base film 39 and electrode 36), a copper-polyimide laminated film was used this time. That is, the base films 31 and 39 were made of polyimide, and the electrodes 32 and 36 were made of copper. In addition, indium tin oxide (ITO) may be used as the electrodes 32 and 36, polyethylene terephthalate (PET) may be used as the base films 31 and 39, and transparent electrode films may be used. The electrodes 32 and 36 are not limited to the above materials, and aluminum, silver, gold, platinum, carbon nanotubes (CNT) and the like may be used. The base films 31 and 39 are not limited to the above materials, and polyethylene (PE), glass, and the like may also be used. As described above, various combinations of insulators and conductors can be selected for the base film 31 and the like and the electrodes 32 and the like.
感圧体34として、今回、導電ゴムを用いた。他にも、導電性高分子のポリチオフェンまたはポリピロールを使用してもよい。高分子の側鎖の電子が比較的移動し易く、感圧性を示すと言われている。感圧体34としては上記の材料に限定されるものではなく、導電インク・樹脂等の高分子材料、電気抵抗が変化しやすい半導体材料等、それらの混合物等を用いてもよい。例えば、上記導電ゴムには絶縁体に導電体粉末、カーボンナノチューブ等の導電フィラーを混ぜたタイプがあり、他にも材料自身が多孔質または繊維質のような複雑な構造をしており外力に応じてその構造が変化し電気抵抗が変化するタイプもある。多岐に渡る感圧体に対して本発明の接着力センサ30は適応できると考えられる。 As the pressure sensitive body 34, conductive rubber was used this time. Alternatively, the conductive polymer polythiophene or polypyrrole may be used. It is said that the electrons in the side chains of the polymer are relatively easy to move and exhibit pressure sensitivity. The pressure-sensitive body 34 is not limited to the above-mentioned materials, and a mixture thereof such as a polymer material such as conductive ink / resin and a semiconductor material whose electric resistance is easily changed may be used. For example, there is a type of conductive rubber in which a conductive filler such as conductive powder or carbon nanotube is mixed with an insulator, and the material itself has a complicated structure such as porous or fibrous and is subjected to external force. There is also a type in which the structure changes and the electrical resistance changes accordingly. It is considered that the adhesive force sensor 30 of the present invention can be applied to a wide variety of pressure sensitive bodies.
図2(B)に示される両ベースフィルム31および39の左右端部の接合(貼り合わせ)は、まず電極39をマスクした後に接着剤38aおよび38bを吐出し、次にマスクを剥がした後に感圧体34、もう一方の電極32およびベースフィルム31をこの順に載せてベースフィルム31とベースフィルム39とを貼合わせ、力Pによる圧縮状態を接着剤38aおよび38bが乾燥・固化するまで保った。接着剤38aおよび38bとしては、今回、スプレー糊を用いた。例えば、3M(登録商標)社のスプレーのり77を用いた。他にも一般的な接着剤は使用可能である。例えばヘンケル社のロックタイト(登録商標)638は剥離強度が高い接着剤として好適である。あるいは、接着剤38aおよび38bとして硬化のタイミングを任意に指定できる紫外線硬化タイプの接着剤(スリーボンド(登録商標)社の嫌気性封着剤高強度タイプ等)を用いてもよい。上記マスクとしては、今回は付箋紙を用い、付箋紙の粘着剤がついている部分を適宜マスクする部分(電極36)の形状に合わせて打ち抜き、マスクする部分に張り付けた。マスクとしては他にも、マスキングテープ(登録商標)、ドラフティングテープ等、貼って剥がせる程度の強さの接着テープなら使用可能である。上述した接着剤38aおよび38bが乾燥・固化するまで保った時間としては、スプレー糊の吐出量にもよるが、吐出後約1分以内に貼り合わせて、3−5分程度重しを載せた。但し、上述のような紫外線硬化タイプの接着剤等を用いれば、固化時間は自在に設定できる。 In the bonding (bonding) of the left and right ends of both base films 31 and 39 shown in FIG. 2B, the adhesives 38a and 38b are first discharged after masking the electrode 39, and then the feeling is felt after the mask is peeled off. The pressure body 34, the other electrode 32, and the base film 31 were placed in this order, and the base film 31 and the base film 39 were bonded to each other, and the compressed state by the force P was maintained until the adhesives 38a and 38b were dried and solidified. As the adhesives 38a and 38b, spray glue was used this time. For example, 3M (registered trademark) spray glue 77 was used. Other common adhesives can be used. For example, Henkel's Loctite® 638 is suitable as an adhesive with high peel strength. Alternatively, as the adhesives 38a and 38b, ultraviolet curable type adhesives (anaerobic sealing agent high-strength type manufactured by ThreeBond Co., Ltd., etc.) in which the curing timing can be arbitrarily specified may be used. As the mask, a sticky note was used this time, and the portion of the sticky note to which the adhesive was attached was punched out according to the shape of the portion to be masked (electrode 36) and attached to the masked portion. Other masks such as masking tape (registered trademark) and drafting tape can be used as long as they are strong enough to be stuck and peeled off. The time required for the above-mentioned adhesives 38a and 38b to dry and solidify depends on the amount of spray glue discharged, but the adhesives were bonded within about 1 minute after discharge, and a weight was placed for about 3-5 minutes. .. However, the solidification time can be freely set by using the above-mentioned ultraviolet curable type adhesive or the like.
接着力センサ30は、図1を用いて説明した接着力センサ20と同様に、予め実験により圧縮力Fpまたは引張力Fd(圧縮力Fp、引張力Fdは図1(C)参照)とそれに対する接着力センサ30からの出力電圧との関係を得ておけば、その後は出力電圧を測定することにより当該関係から圧縮力Fpまたは引張力Fdを検出することができる。以下では、接着力センサ30が引張力Fdを検出できる点について詳しく説明する。図2(B)に示されるように、接着剤38a等がベースフィルム39の端部周囲に電極36を囲むように吐出されている。この状態で、感圧体34と両電極32および36とに全体として被さるようにして、両ベースフィルム31および39の端部を接着剤38a等で貼り合わせた。つまり、接着剤38a等は電極36、感圧体34および電極32から構成される測定点の周囲を囲むように、両ベースフィルム31および39の端部を密着させている。この結果、ベースフィルム39等の一部のみを接着させた場合よりも、接着力センサ30は大きな引張力Fdを測定することができる。即ち、接着力センサ30ではベースフィルム39等の接着面積割合が高いため、大きな引張力Fdが加わった場合でも剥離強度が高いという効果がある。引張力Fd=引張圧力(単位面積当たり)×接着面積であるため、引張力Fdが接着力センサ30に加わる場合を考慮すると、ベースフィルム39等の接着面積を大きくしておくことにより、同じ引張圧力だけ耐えられる他の接合方法よりも大きな引張力Fdに耐えることができる。そのため、接着面積の割合が高ければ剥離強度も高くなり、両者は上式の通り比例関係にある。従って、大きな引張力Fdが加わった場合でも両ベースフィルム31および39は剥離(分離)しないため、上部電極32−感圧体34−下部電極36(導電経路Cp。図1(C)参照)間は導通状態を保っている。この結果、接着力センサ30は大きな引張力Fdを検出することができる。 Similar to the adhesive force sensor 20 described with reference to FIG. 1, the adhesive force sensor 30 has a compressive force Fp or a tensile force Fd (for compressive force Fp and tensile force Fd, refer to FIG. Once the relationship with the output voltage from the adhesive force sensor 30 is obtained, the compressive force Fp or the tensile force Fd can be detected from the relationship by measuring the output voltage thereafter. Hereinafter, the point that the adhesive force sensor 30 can detect the tensile force Fd will be described in detail. As shown in FIG. 2B, the adhesive 38a or the like is discharged so as to surround the electrode 36 around the end portion of the base film 39. In this state, the end portions of both base films 31 and 39 were bonded with an adhesive 38a or the like so as to cover the pressure sensitive body 34 and both electrodes 32 and 36 as a whole. That is, the adhesive 38a and the like bring the ends of both base films 31 and 39 into close contact with each other so as to surround the measurement point composed of the electrode 36, the pressure sensitive body 34, and the electrode 32. As a result, the adhesive force sensor 30 can measure a larger tensile force Fd than when only a part of the base film 39 or the like is adhered. That is, since the adhesive force sensor 30 has a high adhesive area ratio of the base film 39 and the like, there is an effect that the peel strength is high even when a large tensile force Fd is applied. Since the tensile force Fd = tensile pressure (per unit area) x adhesive area, the same tension can be obtained by increasing the adhesive area of the base film 39 or the like in consideration of the case where the tensile force Fd is applied to the adhesive force sensor 30. It can withstand a larger tensile force Fd than other joining methods that can withstand only pressure. Therefore, the higher the ratio of the adhesive area, the higher the peel strength, and the two are in a proportional relationship as shown in the above equation. Therefore, both base films 31 and 39 do not peel off (separate) even when a large tensile force Fd is applied, so that between the upper electrode 32-the pressure sensitive body 34-the lower electrode 36 (conductive path Cp, see FIG. 1 (C)). Maintains a conductive state. As a result, the adhesive force sensor 30 can detect a large tensile force Fd.
以上より、本発明の実施例1によれば、接着力センサ30では接着剤38a等がベースフィルム39の端部周囲に電極36を囲むように吐出されている。この状態で、感圧体34と両電極32および36とに全体として被さるようにして、両ベースフィルム31および39の端部を接着剤38a等で貼り合わせた構造となっている。つまり、接着剤38a等は電極36、感圧体34および電極32から構成される上述した測定点の周囲を囲むように、両ベースフィルム31および39の端部を密着させている。この結果、ベースフィルム39等の一部のみを接着させた場合よりも、接着力センサ30は大きな引張力Fdを測定することができるという効果がある。以上のようにして、圧縮力Fpの検出だけではなく大きな引張力Fdの検出にも対応可能な接着力センサ30を提供することができる。 From the above, according to the first embodiment of the present invention, in the adhesive force sensor 30, the adhesive 38a or the like is discharged so as to surround the electrode 36 around the end portion of the base film 39. In this state, the pressure-sensitive body 34 and both electrodes 32 and 36 are covered as a whole, and the ends of both base films 31 and 39 are bonded with an adhesive 38a or the like. That is, the adhesive 38a and the like are in close contact with the ends of both the base films 31 and 39 so as to surround the periphery of the above-mentioned measurement point composed of the electrode 36, the pressure sensitive body 34, and the electrode 32. As a result, the adhesive force sensor 30 has the effect of being able to measure a larger tensile force Fd than when only a part of the base film 39 or the like is adhered. As described above, it is possible to provide the adhesive force sensor 30 capable of not only detecting the compressive force Fp but also detecting a large tensile force Fd.
両ベースフィルム31および39は測定点に全体として被されるように、言い換えれば測定点の周囲を覆って被さっている。このため、滑り方向の力がかかった場合でも感圧体34がずれにくく、このため引張力Fdおよび圧縮力Fpを測定する際の安定性が良いという効果もある。 Both base films 31 and 39 cover the measurement point as a whole, in other words, cover the circumference of the measurement point. Therefore, the pressure sensitive body 34 is less likely to shift even when a force in the sliding direction is applied, and therefore, there is also an effect that the stability when measuring the tensile force Fd and the compressive force Fp is good.
発明者らは実施例1で説明した接着力センサ30の構造に基づき、引張力および圧縮力の分布を観察することができる多点接着力センサを開発した(接着力センサ30は一点接着力センサとも言える)。以下では、実施例1の接着力センサ30を集積化した多点接着力センサについて説明する。 Based on the structure of the adhesive force sensor 30 described in Example 1, the inventors have developed a multi-point adhesive force sensor capable of observing the distribution of tensile force and compressive force (the adhesive force sensor 30 is a one-point adhesive force sensor). It can be said that). Hereinafter, the multipoint adhesive force sensor in which the adhesive force sensor 30 of the first embodiment is integrated will be described.
図3は、本発明の多点接着力センサの製造方法を示す。図3で図2と同じ符号を付した個所は同じ要素を示すため、説明は省略する。以下で、ベースフィルム、上部電極、下部電極、感圧体および接着剤の材質は実施例1と同様である。図3(A)に示されるように、まず、ベースフィルム(基材)39上に下部電極(所定形の棒状電極)36−i(i=1〜5)を所定数形成する(下部電極形成工程)。図3(A)では所定形として長方形の場合を例示し、所定数=5本の場合を例示している。しかし、所定形は長方形に限定されるものではなく、所定数は5本に限定されるものではない。 FIG. 3 shows a method for manufacturing the multipoint adhesive force sensor of the present invention. In FIG. 3, the parts having the same reference numerals as those in FIG. 2 indicate the same elements, and thus the description thereof will be omitted. Below, the materials of the base film, the upper electrode, the lower electrode, the pressure sensitive body, and the adhesive are the same as those in Example 1. As shown in FIG. 3A, first, a predetermined number of lower electrodes (rod-shaped electrodes of a predetermined shape) 36-i (i = 1 to 5) are formed on the base film (base material) 39 (lower electrode formation). Process). In FIG. 3A, the case of a rectangle as a predetermined shape is illustrated, and the case of a predetermined number = 5 is illustrated. However, the predetermined shape is not limited to a rectangle, and the predetermined number is not limited to five.
続いて、上述した下部電極形成工程で形成された各下部電極36−i(i=1〜5)上において、圧縮力または引張力を検出する検出点(上述した一点接着力センサ30の場合における測定点とほぼ同義であるが、一点と多点とを区別するため検出点と言う。)を所望の数のマスクMij(j=1〜5)で覆う。この後、ベースフィルム39上および各下部電極36−i(i=1〜5)上に接着剤を塗布する(接着剤塗布工程)。図3(B)は接着剤塗布工程後の状態を示し、符号38は塗布された接着剤、孔Hij(i=1〜5、j=1〜5)はマスクMij(i=1〜5、j=1〜5)を除去した後の孔である。上記検出点は位置(i、j)を用いて検出点D(i、j)と表す。図3(B)では検出点数として5×5=25個とした。つまり、各下部電極36−i(i=1〜5)上に5個のマスクMij(j=1〜5)を使用したが、5個に限定されるものではない。例えばマスクMij(j=1〜5)に予め糸を置いておき、マスクMij(j=1〜5)をひと繋ぎにしておくことにより、接着剤塗布後、迅速にマスクMij(j=1〜5)を剥がすことができる。ひと繋ぎの方法はj方向に限定されるものではなく、i方向でもよい。 Subsequently, on each of the lower electrodes 36-i (i = 1 to 5) formed in the lower electrode forming step described above, a detection point for detecting a compressive force or a tensile force (in the case of the one-point adhesive force sensor 30 described above). It is almost synonymous with the measurement point, but it is called a detection point to distinguish one point from multiple points), and is covered with a desired number of masks Mij (j = 1 to 5). After that, an adhesive is applied onto the base film 39 and each lower electrode 36-i (i = 1 to 5) (adhesive application step). FIG. 3B shows the state after the adhesive application step, reference numeral 38 is the applied adhesive, and holes Hij (i = 1 to 5, j = 1 to 5) are masks Mij (i = 1 to 5, It is a hole after removing j = 1-5). The detection point is represented as a detection point D (i, j) using the position (i, j). In FIG. 3B, the number of detected points was set to 5 × 5 = 25. That is, five masks Mij (j = 1 to 5) were used on each lower electrode 36-i (i = 1 to 5), but the number is not limited to five. For example, by placing a thread on the mask Mij (j = 1 to 5) in advance and connecting the mask Mij (j = 1 to 5) together, the mask Mij (j = 1 to 5) can be quickly applied after the adhesive is applied. 5) can be peeled off. The method of connecting is not limited to the j direction, but may be the i direction.
次に、接着剤塗布工程で用いられたマスクMij(i=1〜5、j=1〜5)を除去した後の各孔Hij(i=1〜5、j=1〜5)内の下部電極36−i(i=1〜5)上に、感圧体34(i、j)(i=1〜5、j=1〜5)を載置する(感圧体載置工程)。図3(C)は載置する感圧体34(i、j)(i=1〜5、j=1〜5)をマトリックス状に示す。この感圧体34(i、j)(i=1〜5、j=1〜5)を図3(B)に示される孔Hij(i=1〜5、j=1〜5)内に各々のi、jを対応させて載置する。感圧体34(i,j)は孔Hijに1つずつ載置してもよく、あるいは感圧体34(i、j)(i=1〜5、j=1〜5)を予め行列方向に(縦横に)糸で繋いでおき、一体として孔Hij(i=1〜5、j=1〜5)内に載置してもよい。 Next, the lower part in each hole Hij (i = 1-5, j = 1-5) after removing the mask Mij (i = 1-5, j = 1-5) used in the adhesive coating step. The pressure sensitive body 34 (i, j) (i = 1 to 5, j = 1 to 5) is placed on the electrodes 36-i (i = 1 to 5) (pressure sensitive body mounting step). FIG. 3C shows the pressure sensitive bodies 34 (i, j) (i = 1 to 5, j = 1 to 5) to be placed in a matrix. The pressure sensitive bodies 34 (i, j) (i = 1 to 5, j = 1 to 5) are placed in the holes Hij (i = 1 to 5, j = 1 to 5) shown in FIG. 3 (B), respectively. I and j are placed in correspondence with each other. The pressure sensitive bodies 34 (i, j) may be placed one by one in the holes Hij, or the pressure sensitive bodies 34 (i, j) (i = 1 to 5, j = 1 to 5) may be placed in advance in the matrix direction. It may be connected with a thread (vertically and horizontally) and placed integrally in the holes Hij (i = 1 to 5, j = 1 to 5).
図3(D)は所定形の棒状電極(上部電極)32−j(j=1〜5)が所定数形成された別のベースフィルム(基材)31を示す。図3(D)では所定形として長方形の場合を例示し、所定数=5本の場合を例示している。しかし、所定形は長方形に限定されるものではなく、所定数は5本に限定されるものではない。図3(E)に示されるように、当該上部電極32−j(j=1〜5)を感圧体載置工程で感圧体34(i、j)が載置された側のベースフィルム39に対し、各上部電極32−i(j=1〜5)が各下部電極36−i(i=1〜5)に楚洲語に直交するように対向させる。即ち、図3(D)に示されるベースフィルム31を裏返して図3(A)に示されるベースフィルム39(但し、感圧体載置工程後のベースフィルム39)に対向させると、図3(E)に示されるように各上部電極32−j(j=1〜5)が各下部電極36−i(i=1〜5)に相互に直交(または交差)するように対向することになる。相互に直交(または交差)するようにとは、各上部電極32−j(j=1〜5)と各下部電極36−i(i=1〜5)とが平面視上、重なってグリッド状になるようにという意味である。以上の後、ベースフィルム31(別の基材)とベースフィルム39とを圧接する(基材圧接工程)。圧接は柔らかい布を敷いて本等を重しとしてベースフィルム31上に載せることにより圧力をかけた。図3(E)は多点接着力センサ40を示し、ベースフィルム31の下に、上部電極32−j(j=1〜5)、感圧体(i、j)(i=1〜5、j=1〜5)、接着剤38および下部電極36−i(i=1〜5)が積層されている状態(透けて見える状態)を示している。 FIG. 3D shows another base film (base material) 31 on which a predetermined number of rod-shaped electrodes (upper electrodes) 32-j (j = 1 to 5) having a predetermined shape are formed. In FIG. 3D, the case of a rectangle as a predetermined shape is illustrated, and the case of a predetermined number = 5 is illustrated. However, the predetermined shape is not limited to a rectangle, and the predetermined number is not limited to five. As shown in FIG. 3 (E), the base film on the side where the pressure sensitive body 34 (i, j) is placed on the upper electrode 32-j (j = 1 to 5) in the pressure sensitive body mounting step. With respect to 39, each upper electrode 32-i (j = 1 to 5) faces each lower electrode 36-i (i = 1 to 5) so as to be orthogonal to Sosu. That is, when the base film 31 shown in FIG. 3 (D) is turned over and faced with the base film 39 (however, the base film 39 after the pressure sensitive body mounting step) shown in FIG. 3 (A), FIG. As shown in E), each upper electrode 32-j (j = 1-5) faces each lower electrode 36-i (i = 1-5) so as to be orthogonal (or intersecting) with each other. .. To be orthogonal (or intersect) with each other, the upper electrodes 32-j (j = 1 to 5) and the lower electrodes 36-i (i = 1 to 5) overlap each other in a grid shape in a plan view. It means to become. After the above, the base film 31 (another base material) and the base film 39 are pressure-welded (base material pressure-welding step). For pressure welding, a soft cloth was laid and a book or the like was placed as a weight on the base film 31 to apply pressure. FIG. 3 (E) shows the multi-point adhesive force sensor 40, under which the upper electrode 32-j (j = 1 to 5) and the pressure sensitive body (i, j) (i = 1 to 5) are under the base film 31. It shows a state in which j = 1 to 5), the adhesive 38, and the lower electrode 36-i (i = 1 to 5) are laminated (a state in which they can be seen through).
図4は、図3(E)に示される多点接着力センサ40のAA’断面図を示す。AA’は検出点D(2、j)(j=1〜5)上の線を例として用いる。図4で図3と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図4に示されるように、検出点D(2、j)(j=1〜5)の各々は、図2(B)で説明した測定点と同じ形状となっている。 FIG. 4 shows a cross-sectional view taken along the line AA'of the multipoint adhesive force sensor 40 shown in FIG. 3 (E). For AA', the line on the detection point D (2, j) (j = 1 to 5) is used as an example. In FIG. 4, the parts having the same reference numerals as those in FIG. 3 indicate the same elements, and thus the description thereof will be omitted. As shown in FIG. 4, each of the detection points D (2, j) (j = 1 to 5) has the same shape as the measurement point described in FIG. 2 (B).
図5は、多点接着力センサ40(図3(E)の状態)を撮影した写真である。図5で、符号36Cは下部電極36−i(i=1〜5)からの電線(コード)、32Cは上部電極32−j(j=1〜5)からのコードであり、検出点D(2、2)を例示的に示す。図5で図3(E)と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図5に示されるように、検出点間ピッチ:1cm、検出点数:5×5点(サイズ約5×5cm)、厚さ:0.6mmである。今回の作製では、感圧体34(i、j)として導電ゴムを個別に置いたため、検出点間ピッチは数mm程度が好適である。 FIG. 5 is a photograph of the multipoint adhesive force sensor 40 (state of FIG. 3E). In FIG. 5, reference numeral 36C is an electric wire (cord) from the lower electrode 36-i (i = 1 to 5), 32C is a code from the upper electrode 32-j (j = 1 to 5), and detection point D ( 2 and 2) are shown exemplary. In FIG. 5, the parts having the same reference numerals as those in FIG. 3 (E) indicate the same elements, and thus the description thereof will be omitted. As shown in FIG. 5, the pitch between detection points is 1 cm, the number of detection points is 5 × 5 points (size is about 5 × 5 cm), and the thickness is 0.6 mm. In this production, since the conductive rubbers are individually placed as the pressure sensitive bodies 34 (i, j), the pitch between the detection points is preferably about several mm.
以上より、本発明の実施例2(多点接着力センサ40の製造方法)によれば、まず、ベースフィルム(基材)39上に下部電極(所定形の棒状電極)36−i(i=1〜5)を所定数形成する(下部電極形成工程)。続いて、上述した下部電極形成工程で形成された各下部電極36−i(i=1〜5)上を、圧縮力または引張力を検出する検出点(上述した一点接着力センサ30の場合における測定点とほぼ同義)の平面形状(略円形状)に合わせた所定数のマスクで覆う。この後、ベースフィルム39上および各下部電極36−i(i=1〜5)上に接着剤を塗布する(接着剤塗布工程)。次に、接着剤塗布工程で用いられたマスクMij(i=1〜5、j=1〜5)を除去した後の各孔Hij(i=1〜5、j=1〜5)内の下部電極36−i(i=1〜5)上に、感圧体34(i、j)(i=1〜5、j=1〜5)を載置する(感圧体載置工程)。上部電極32−j(j=1〜5)を感圧体載置工程で感圧体34(i、j)が載置された側のベースフィルム39に対し、各上部電極32−j(j=1〜5)が各下部電極36−i(i=1〜5)に交差するように対向させる。以上の後、ベースフィルム31(別の基材)とベースフィルム39とを圧接する(基材圧接工程)。以上により、実施例1で説明した本発明の接着力センサ30の構造に基づき、圧縮力および引張力の分布測定をすることが可能な多点接着力センサ40およびその製造方法を提供することができる。上述したように、実施例1の接着力センサ30ではベースフィルム39等の接着面積割合が高いため、大きな引張力が加わった場合でも剥離強度が高いという効果がある。このような接着力センサ30の構造を利用することにより、測定点D(i,j)を小型化・高集積化させても安定的に大きな引張力を測定できるという顕著な効果を奏することができる。以上、多点接着力センサ40が引張力を検出できる点について詳しく説明した。接着力センサ30の構造に基づく多点接着力センサ40が、実施例1で説明したように圧縮力を検出できることは言うまでもない。 From the above, according to the second embodiment (manufacturing method of the multipoint adhesive force sensor 40) of the present invention, first, the lower electrode (a predetermined rod-shaped electrode) 36-i (i =) is placed on the base film (base material) 39. A predetermined number of 1 to 5) are formed (lower electrode forming step). Subsequently, on each lower electrode 36-i (i = 1 to 5) formed in the lower electrode forming step described above, a detection point for detecting a compressive force or a tensile force (in the case of the one-point adhesive force sensor 30 described above). Cover with a predetermined number of masks that match the planar shape (approximately circular shape) of the measurement point (almost synonymous with the measurement point). After that, an adhesive is applied onto the base film 39 and each lower electrode 36-i (i = 1 to 5) (adhesive application step). Next, the lower part in each hole Hij (i = 1-5, j = 1-5) after removing the mask Mij (i = 1-5, j = 1-5) used in the adhesive coating step. The pressure sensitive body 34 (i, j) (i = 1 to 5, j = 1 to 5) is placed on the electrodes 36-i (i = 1 to 5) (pressure sensitive body mounting step). Each upper electrode 32-j (j) was placed on the base film 39 on the side on which the pressure sensitive body 34 (i, j) was placed in the pressure sensitive body mounting step on the upper electrode 32-j (j = 1 to 5). = 1 to 5) are opposed to each lower electrode 36-i (i = 1 to 5) so as to intersect. After the above, the base film 31 (another base material) and the base film 39 are pressure-welded (base material pressure-welding step). Based on the structure of the adhesive force sensor 30 of the present invention described in the first embodiment, it is possible to provide a multipoint adhesive force sensor 40 capable of measuring the distribution of compressive force and tensile force and a method for manufacturing the same. it can. As described above, in the adhesive force sensor 30 of the first embodiment, since the adhesive area ratio of the base film 39 and the like is high, there is an effect that the peel strength is high even when a large tensile force is applied. By utilizing the structure of the adhesive force sensor 30, it is possible to achieve a remarkable effect that a large tensile force can be stably measured even if the measurement points D (i, j) are miniaturized and highly integrated. it can. The point that the multi-point adhesive force sensor 40 can detect the tensile force has been described in detail above. Needless to say, the multipoint adhesive force sensor 40 based on the structure of the adhesive force sensor 30 can detect the compressive force as described in the first embodiment.
実施例2の接着剤塗布工程および感圧体載置工程に替えて、以下のように液状感圧体をスクリーン印刷する方法がある。即ち、下部電極形成工程後の下部電極36−i(i=1〜5)上に所定径の液状感圧体を所定数印刷する。所定径とは、図3(C)に示される載置する感圧体34(i、j)(i=1〜5、j=1〜5)の各径である。この結果、下部電極36−i(i=1〜5)上にマトリックスの要素状に液状感圧体がスクリーン印刷される。次に、印刷された各液状感圧体をマスクした後、ベースフィルム39および下部電極36−i(i=1〜5)上に接着剤38を塗布する(印刷・塗布工程)。実施例2では感圧体34(i、j)として導電ゴムを個別に置いたため、検出点間ピッチは数mm程度が好適であった。しかし、実施例3の液状感圧体をスクリーン印刷する方法では検出点間ピッチを数100μm程度まで高集積化することができる。 Instead of the adhesive application step and the pressure sensitive body mounting step of the second embodiment, there is a method of screen printing the liquid pressure sensitive body as follows. That is, a predetermined number of liquid pressure sensitive bodies having a predetermined diameter are printed on the lower electrodes 36-i (i = 1 to 5) after the lower electrode forming step. The predetermined diameter is each diameter of the pressure sensitive body 34 (i, j) (i = 1 to 5, j = 1 to 5) to be placed as shown in FIG. 3 (C). As a result, the liquid pressure sensitive body is screen-printed on the lower electrode 36-i (i = 1 to 5) in the form of matrix elements. Next, after masking each printed liquid pressure sensitive body, the adhesive 38 is applied onto the base film 39 and the lower electrodes 36-i (i = 1 to 5) (printing / coating step). In Example 2, since the conductive rubbers were individually placed as the pressure sensitive bodies 34 (i, j), the pitch between the detection points was preferably about several mm. However, in the method of screen printing the liquid pressure sensitive body of Example 3, the pitch between detection points can be highly integrated up to about several hundred μm.
以上より、本発明の実施例3によれば実施例2の接着剤塗布工程および感圧体載置工程に替えて、液状感圧体をスクリーン印刷する方法を用いることができる。詳しくは、下部電極形成工程後の下部電極36−i(i=1〜5)上に所定径の液状感圧体を所定数印刷する。つまり、下部電極36−i(i=1〜5)上にマトリックスの要素状に液状感圧体がスクリーン印刷される。次に、印刷された各液状感圧体をマスクした後、ベースフィルム39および下部電極36−i(i=1〜5)上に接着剤38を塗布する。この結果、検出点間ピッチを数100μm程度まで高集積化することができる。 From the above, according to the third embodiment of the present invention, a method of screen printing a liquid pressure sensitive body can be used instead of the adhesive coating step and the pressure sensitive body mounting step of the second embodiment. Specifically, a predetermined number of liquid pressure sensitive bodies having a predetermined diameter are printed on the lower electrodes 36-i (i = 1 to 5) after the lower electrode forming step. That is, the liquid pressure sensitive body is screen-printed on the lower electrode 36-i (i = 1 to 5) in the form of matrix elements. Next, after masking each printed liquid pressure sensitive body, the adhesive 38 is applied on the base film 39 and the lower electrodes 36-i (i = 1 to 5). As a result, the pitch between detection points can be highly integrated up to about several hundred μm.
図6は、本発明の別のタイプの接着力センサ50およびその製造方法を示す。図6で図2と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図6(A)が図2(A)と異なる点は、ベースフィルム39の端部に接着剤38a等が吐出されていない点である。つまり、ベースフィルム31上に形成された電極32(図6(A)ではベースフィルム31下に形成された電極とも言える。)と別のベースフィルム39上に形成された別の電極36との間に感圧体34を配置する構造である点は実施例1と同様である。次に、図6(B)に示されるように、感圧体34と両電極32及び36との界面を所定の導電性接着剤55で接合する。ここで、当該界面は感圧体34と各電極32および36との間で対向する平面形状の面である。つまり、感圧体34と各電極32および36との間の平面形状の界面に、導電性接着剤55が隙間なく塗布されているため、感圧体34と各電極32および36とは隙間なく平面で接合している。図6(B)に示されるように、導電性接着剤55は両電極32および26の各周囲部分にも塗布されている。 FIG. 6 shows another type of adhesive force sensor 50 of the present invention and a method for manufacturing the same. In FIG. 6, the parts having the same reference numerals as those in FIG. 2 indicate the same elements, and thus the description thereof will be omitted. The difference between FIG. 6A and FIG. 2A is that the adhesive 38a or the like is not discharged to the end portion of the base film 39. That is, between the electrode 32 formed on the base film 31 (in FIG. 6A, it can be said that the electrode is formed under the base film 31) and another electrode 36 formed on another base film 39. The structure is the same as that of the first embodiment in that the pressure sensitive body 34 is arranged on the surface. Next, as shown in FIG. 6B, the interface between the pressure sensitive body 34 and both electrodes 32 and 36 is joined with a predetermined conductive adhesive 55. Here, the interface is a planar surface facing the pressure sensitive body 34 and the electrodes 32 and 36. That is, since the conductive adhesive 55 is applied without gaps to the planar interface between the pressure sensitive body 34 and the electrodes 32 and 36, there are no gaps between the pressure sensitive body 34 and the electrodes 32 and 36. It is joined on a flat surface. As shown in FIG. 6B, the conductive adhesive 55 is also applied to the peripheral portions of both electrodes 32 and 26.
ベースフィルム31および39、電極32および36、感圧体34の材質は実施例1と同様である。今回、所定の導電性接着剤55として銀ペーストを用いた。あるいは異方性導電フィルム(ACF)を用いてもよい。熱圧着する分、圧着条件が整えば大きい剥離強度を得ることが可能である。接着力センサ50が圧縮力Fpおよび引張力Fdを検出する方法は実施例1で説明した通りであり、圧縮力Fpについては図1(A)の一般的な力センサ10、引張力Fdについては図1(C)の接着力センサ20と同様であるため、説明は省略する。 The materials of the base films 31 and 39, the electrodes 32 and 36, and the pressure sensitive body 34 are the same as those in the first embodiment. This time, a silver paste was used as the predetermined conductive adhesive 55. Alternatively, an anisotropic conductive film (ACF) may be used. It is possible to obtain a large peeling strength if the crimping conditions are met by the amount of thermocompression bonding. The method by which the adhesive force sensor 50 detects the compressive force Fp and the tensile force Fd is as described in the first embodiment. The compressive force Fp is the general force sensor 10 of FIG. 1 (A), and the tensile force Fd is the tensile force Fd. Since it is the same as the adhesive force sensor 20 of FIG. 1C, the description thereof will be omitted.
以上より、本発明の実施例4によれば実施例1と同様に、接着力センサ50はベースフィルム31上に形成された電極32と別のベースフィルム39上に形成された別の電極36との間に感圧体34を配置する構造である。但し、感圧体34と両電極32および36との界面を所定の導電性接着剤55で接合した。ここで、当該界面は感圧体34と各電極32および36との間で対向する平面形状の面である。この結果、実施例1と同様に圧縮力の検出だけではなく大きな引張力の検出にも対応可能な接着力センサ50を提供することができる。 From the above, according to the fourth embodiment of the present invention, as in the first embodiment, the adhesive force sensor 50 has an electrode 32 formed on the base film 31 and another electrode 36 formed on another base film 39. It is a structure in which the pressure sensitive body 34 is arranged between the two. However, the interface between the pressure sensitive body 34 and both electrodes 32 and 36 was joined with a predetermined conductive adhesive 55. Here, the interface is a planar surface facing the pressure sensitive body 34 and the electrodes 32 and 36. As a result, it is possible to provide the adhesive force sensor 50 capable of not only detecting the compressive force but also detecting a large tensile force as in the first embodiment.
実施例1では図1(A)等を用いて2層からなる電極対(上部電極12および下部電極16)と感圧体14に電気を流すための導電経路Cpとを示した。図7は、別の導電経路Cp’を示す。図7で図1(A)〜(C)と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図7に示される接着力センサ20’では、感圧体14に電気を流すための電極対は必ずしも上下2層から構成されている必要はなく、電極12’と電極16’とのように左右の対になっていてもよい。この場合でも、実施例1で説明したように圧縮力Fpおよび引張力Fdを検出することができる。ベースフィルム(不図示)は電極対12‘および16’の下側と、感圧体14の上側とに設けることができる。つまり接着力センサ20’は、ベースフィルム上に形成された電極対12’および16’と、電極対12’および16’上に亘って配置された感圧体14と、感圧体14上に配置された別のベースフィルムとを備え、感圧体14と両電極12’および16’との界面は所定の導電性接着剤Adで接合された構造を有している。当該界面は感圧体14と各電極12’および16’との間で対向する平面形状の面である。 In Example 1, FIG. 1 (A) and the like are used to show a pair of electrodes (upper electrode 12 and lower electrode 16) composed of two layers and a conductive path Cp for passing electricity through the pressure sensitive body 14. FIG. 7 shows another conductive path Cp'. In FIG. 7, the parts having the same reference numerals as those in FIGS. 1A to 1C indicate the same elements, and thus the description thereof will be omitted. In the adhesive force sensor 20'shown in FIG. 7, the electrode pair for passing electricity through the pressure sensitive body 14 does not necessarily have to be composed of two upper and lower layers, and the left and right electrodes 12'and 16' are left and right. It may be paired with. Even in this case, the compressive force Fp and the tensile force Fd can be detected as described in the first embodiment. Base films (not shown) can be provided below the electrode pairs 12'and 16'and above the pressure sensitive body 14. That is, the adhesive force sensor 20'is placed on the electrode pairs 12'and 16'formed on the base film, the pressure sensitive body 14 arranged on the electrode pairs 12'and 16', and the pressure sensitive body 14. It is provided with another base film arranged, and the interface between the pressure sensitive body 14 and both electrodes 12'and 16'has a structure joined by a predetermined conductive adhesive Ad. The interface is a planar surface facing the pressure sensitive body 14 and the electrodes 12'and 16'.
上述した本発明の接着力センサ20、30および50は種々のセンサにも応用可能である。図8は、櫛形電極を交差させた構造の圧力分布センサ60を示す。図8に示されるように、電極層2は銅張ポリイミドフィルムをウェットエッチング処理により櫛目状に加工し、櫛目状の銅電極66−1〜66−5として構成されている。銅電極66−1等の材料は上述した接着力センサ20、30の上部電極12または32、下部電極16または36の材料と同様である。ベースフィルムはポリイミドフィルムであり、上述した接着力センサ20等のベースフィルム31または39と同様の材料である。感圧層は圧力分布センサ60の圧力変換素子である導電性フィルムであり、作用圧力に応じて厚さ方向の電気抵抗値が変化する特性を有している。上述した接着力センサ20等の感圧体14等と同様の材料である。 The adhesive strength sensors 20, 30 and 50 of the present invention described above can also be applied to various sensors. FIG. 8 shows a pressure distribution sensor 60 having a structure in which comb-shaped electrodes are crossed. As shown in FIG. 8, the electrode layer 2 is formed by processing a copper-clad polyimide film into a comb shape by a wet etching treatment to form comb-shaped copper electrodes 66-1 to 66-5. The materials such as the copper electrode 66-1 are the same as the materials of the upper electrode 12 or 32 and the lower electrode 16 or 36 of the adhesive force sensors 20 and 30 described above. The base film is a polyimide film, which is the same material as the base film 31 or 39 of the adhesive force sensor 20 or the like described above. The pressure-sensitive layer is a conductive film that is a pressure conversion element of the pressure distribution sensor 60, and has a characteristic that the electric resistance value in the thickness direction changes according to the acting pressure. It is the same material as the pressure sensitive body 14 and the like of the adhesive force sensor 20 and the like described above.
本発明の接着力センサ20等を応用するためには、実施例1(図1)または実施例4(図6)と同様に、電極層2と感圧層との間、および感圧層と電極層1との間に接着剤Adまたは55(不図示)を塗布すればよい。この結果、圧力分布センサ60は、電極層2上に形成された櫛目状の銅電極66−1〜66−5と電極層1下に形成された櫛目状の銅電極(図8では一部のみ示す。)との2枚で、接着剤を介して感圧層を挟み込む構造を有することになる。2枚の各櫛目状の銅電極66−1〜66−5と電極層1側の銅電極とは相互に直交しており、この直交により形成されたマトリックス状の交点が検出点となっている。あるいは実施例2(図2)と同様に、圧力分布センサ60の2枚のベースフィルムの端部に接着剤38a等を吐出し、2枚のベースフィルムを圧接する構造としてもよい。 In order to apply the adhesive force sensor 20 and the like of the present invention, as in Example 1 (FIG. 1) or Example 4 (FIG. 6), between the electrode layer 2 and the pressure-sensitive layer, and with the pressure-sensitive layer. Adhesive Ad or 55 (not shown) may be applied between the electrode layer 1 and the adhesive layer 1. As a result, the pressure distribution sensor 60 has a comb-shaped copper electrode 66-1 to 66-5 formed on the electrode layer 2 and a comb-shaped copper electrode formed under the electrode layer 1 (only a part in FIG. 8). It has a structure in which the pressure-sensitive layer is sandwiched between the two sheets (shown). The two comb-shaped copper electrodes 66-1 to 66-5 and the copper electrode on the electrode layer 1 side are orthogonal to each other, and the matrix-shaped intersection formed by the orthogonality is the detection point. .. Alternatively, as in the second embodiment (FIG. 2), the adhesive 38a or the like may be discharged to the ends of the two base films of the pressure distribution sensor 60, and the two base films may be pressure-welded.
上述した本発明の接着力センサ20、30および50は種々のセンサにも応用可能である。図9は、ずり応力(せん断応力)を測定可能なセンサ70の平面図である。図9に例示されるように、電極層1は一部の面積が電極層2の一部の面積と上下に(x−y軸と垂直なz軸方向に)重なるように設計されている。電極層1と2との間には感圧体(不図示)が挟まれている。ここで電極層1と2との間にずり応力が働くと、当該重なる領域における感圧体のx軸またはy軸方向のせん断変形により、電極層1と2との間の電気抵抗値が変化するため、x軸またはy軸方向のずり応力を測定することができる。電極層2の中程において、電極層1はその全部の面積が電極層2の一部の面積と上下に(x−y軸と垂直なz軸方向に)重なるように設計されている。ここで、電極層1と電極層2との間に引張力または圧縮力が働くと、当該重なる領域における感圧体のz軸方向の変形により、電極層1と電極層2との間の電気抵抗値が変化するため、z軸方向の引張力または圧縮力を測定することができる。 The adhesive strength sensors 20, 30 and 50 of the present invention described above can also be applied to various sensors. FIG. 9 is a plan view of the sensor 70 capable of measuring shear stress. As illustrated in FIG. 9, the electrode layer 1 is designed so that a part of the area overlaps a part of the area of the electrode layer 2 vertically (in the z-axis direction perpendicular to the xy axis). A pressure sensitive body (not shown) is sandwiched between the electrode layers 1 and 2. Here, when a shear stress acts between the electrode layers 1 and 2, the electrical resistance value between the electrode layers 1 and 2 changes due to shear deformation in the x-axis or y-axis direction of the pressure-sensitive body in the overlapping region. Therefore, the shear stress in the x-axis or y-axis direction can be measured. In the middle of the electrode layer 2, the electrode layer 1 is designed so that the entire area thereof overlaps the area of a part of the electrode layer 2 vertically (in the z-axis direction perpendicular to the xy axis). Here, when a tensile force or a compressive force acts between the electrode layer 1 and the electrode layer 2, the electricity between the electrode layer 1 and the electrode layer 2 due to the deformation of the pressure sensitive body in the z-axis direction in the overlapping region. Since the resistance value changes, the tensile force or compressive force in the z-axis direction can be measured.
本発明の接着力センサ20等を応用するためには、実施例1(図1)または実施例4(図6)と同様に、電極層2と感圧層との間、および感圧層と電極層1との間に接着剤Adまたは導電性接着剤55(不図示)を塗布すればよい。この結果、センサ70は電極層2と電極層1との2枚で、接着剤Ad等を介して感圧層を挟み込む構造を有することになる。あるいは実施例2(図2)と同様に、センサ70を2枚のベースフィルムで挟み、その端部に接着剤38a等を吐出し、2枚のベースフィルムを圧接する構造としてもよい。 In order to apply the adhesive force sensor 20 and the like of the present invention, as in Example 1 (FIG. 1) or Example 4 (FIG. 6), between the electrode layer 2 and the pressure-sensitive layer, and with the pressure-sensitive layer. Adhesive Ad or conductive adhesive 55 (not shown) may be applied between the electrode layer 1 and the adhesive layer 1. As a result, the sensor 70 has a structure in which the electrode layer 2 and the electrode layer 1 sandwich the pressure-sensitive layer with the adhesive Ad or the like. Alternatively, as in the second embodiment (FIG. 2), the sensor 70 may be sandwiched between two base films, and an adhesive 38a or the like may be discharged to the ends thereof to press-contact the two base films.
実験.
上述した各実施例の接着力センサ20、30、40、50および20’の引張力・圧縮力の検出用に、以下のような実験装置100を用いて実験を行った。図10は、接着力センサ20等の実験を行う実験装置100を示す。図10で、符号102は材料試験機であり、INSTRON(登録商標)社の4464を用いた。但し、荷重レンジが大きく異なるため、精密測定用にロードセル110(UNIPULSE(登録商標)社のUSM−5N)を材料試験機102のチャック104aおよび104b(図11参照)で挟んだ。ロードセル110により、アクリル-ゴムブロック120を介して本発明の接着力センサ20等から構成されるセンサシート130を押し(圧縮力)引き(引張力)している。引張力の試験をするため、センサシート130は感圧体14、34等以外をビニルテープ134でカバーすることによりステージ132に固定した。センサシート130−アクリル−ゴムブロック120−ロードセル110間の各界面は強力両面テープで貼り合わせた。材料試験機102の駆動は駆動回路140により行い、測定結果等はデータロガー142に記録されている。駆動、測定の制御はPC144により行った。
Experiment.
An experiment was conducted using the following experimental device 100 for detecting the tensile force / compressive force of the adhesive force sensors 20, 30, 40, 50 and 20'of each of the above-described examples. FIG. 10 shows an experimental device 100 for performing an experiment such as an adhesive force sensor 20. In FIG. 10, reference numeral 102 is a material testing machine, and 4464 manufactured by INSTRON (registered trademark) was used. However, since the load range is significantly different, a load cell 110 (USM-5N manufactured by UNIpulse Corporation (registered trademark)) is sandwiched between chucks 104a and 104b (see FIG. 11) of the material testing machine 102 for precision measurement. The load cell 110 pushes (compressive force) and pulls (tensile force) the sensor sheet 130 composed of the adhesive force sensor 20 and the like of the present invention via the acrylic-rubber block 120. In order to test the tensile force, the sensor sheet 130 was fixed to the stage 132 by covering the pressure sensitive bodies 14, 34 and the like with vinyl tape 134. Each interface between the sensor sheet 130-acrylic-rubber block 120-load cell 110 was attached with strong double-sided tape. The material testing machine 102 is driven by the drive circuit 140, and the measurement results and the like are recorded in the data logger 142. The drive and measurement were controlled by PC 144.
図11は図10の点線円C内の拡大写真を示す。図11で図10と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図11に示されるように、材料試験機102の先端にある2つの爪(チャック104aおよび104b)からなる把持具106でロードセル110を挟んだ。図12は把持具106の拡大写真を示す。図12で図11と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図12に示されるように、把持具106のネジ部分108をR方向へ回すと、チャック104aと104bとが点線円D内に示す矢印方向へ進み、把持具106が締まる。図13はロードセル110の拡大写真を示す。図13で図11と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図13に示されるように、ロードセル110のネジ112の両脇(矢印で示す。)をスポンジ(不図示)を介してチャック104aと104bとで挟む。図14は、センサシート130−アクリル−ゴムブロック120−ロードセル110間の貼り合わせについて説明するための分解略図である。図14で図10と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図14に示されるように、アクリル-ゴムブロック120は分解するとアクリル板122とゴム板124とから構成されており、ビニルテープ(カバーテープ)134はセンサシート130の感圧体14、34等のみ覆わずに露出させている。図14に示されるように、センサシート130とアクリル−ゴムブロック120との界面Ssa、ゴム板124とアクリル板122との界面Sra、アクリル板122とロードセル110との界面Salは、各々強力両面テープで貼り合わせた。 FIG. 11 shows an enlarged photograph in the dotted circle C of FIG. In FIG. 11, the parts having the same reference numerals as those in FIG. 10 indicate the same elements, and thus the description thereof will be omitted. As shown in FIG. 11, the load cell 110 is sandwiched by a gripping tool 106 composed of two claws (chuck 104a and 104b) at the tip of the material testing machine 102. FIG. 12 shows an enlarged photograph of the gripping tool 106. In FIG. 12, the parts having the same reference numerals as those in FIG. 11 indicate the same elements, and thus the description thereof will be omitted. As shown in FIG. 12, when the screw portion 108 of the gripping tool 106 is turned in the R direction, the chucks 104a and 104b advance in the direction of the arrow shown in the dotted circle D, and the gripping tool 106 is tightened. FIG. 13 shows an enlarged photograph of the load cell 110. In FIG. 13, the parts having the same reference numerals as those in FIG. 11 indicate the same elements, and thus the description thereof will be omitted. As shown in FIG. 13, both sides (indicated by arrows) of the screw 112 of the load cell 110 are sandwiched between the chucks 104a and 104b via a sponge (not shown). FIG. 14 is an exploded schematic diagram for explaining the bonding between the sensor sheet 130-acrylic-rubber block 120-load cell 110. In FIG. 14, the parts having the same reference numerals as those in FIG. 10 indicate the same elements, and thus the description thereof will be omitted. As shown in FIG. 14, the acrylic-rubber block 120 is composed of an acrylic plate 122 and a rubber plate 124 when disassembled, and the vinyl tape (cover tape) 134 is only the pressure sensitive bodies 14, 34, etc. of the sensor sheet 130. It is exposed without covering. As shown in FIG. 14, the interface Ssa between the sensor sheet 130 and the acrylic-rubber block 120, the interface Sra between the rubber plate 124 and the acrylic plate 122, and the interface Sal between the acrylic plate 122 and the load cell 110 are strong double-sided tapes, respectively. I pasted them together.
図15は、材料試験機102を用いて引張力/圧縮力の実験を行った結果をグラフで示す。図15で、横軸は材料試験機102がロードセル110を介してセンサシート130の感圧体14、34等に印加する印加圧力(kPa)、縦軸はセンサ出力(V)である。センサ出力とは、実験に用いた接着力センサ(フィルムセンサ)20等と電気回路(後述)とを用いて引張力/圧縮力の大きさを電圧信号に変えた結果の出力のことであり、引張力/圧縮力が大きい程、センサ出力は大きくなる。図15(原図)では接着力センサ30(図2:実施例1)を赤丸(上側の分布)、接着力センサ50(図6:実施例4)を青丸(中程の分布)、力センサ10(図1(B):実施例1)を緑丸(下側の分布)で示した。図15の上側の分布に示されるように、接着力センサ30は引張力および圧縮力共に印加圧力に応じてセンサ出力が変化し、且つ最もセンサ出力が大きかった。特に引張力の場合では印加圧力が23kPaまでセンサ出力を計測することができた。これは、接着力センサ30の剥離強度が少なくとも23kPa以上あることを示す。図15の中程の分布に示されるように、接着力センサ50は引張力および圧縮力共に印加圧力に応じてセンサ出力が変化し、且つセンサ出力が中程度の大きさであった。引張力の場合では印加圧力が8kPaまでセンサ出力を計測することができた。これは、接着力センサ50の剥離強度が少なくとも8kPa以上あることを示す。図15の下側の分布に示されるように、力センサ10(非密着型のセンサ)は圧縮力の場合は印加圧力に応じてセンサ出力が変化し、且つセンサ出力が最も低かった。但し、引張力の場合ではセンサ出力を計測することができなかった。 FIG. 15 is a graph showing the results of conducting a tensile force / compressive force experiment using the material testing machine 102. In FIG. 15, the horizontal axis is the applied pressure (kPa) applied by the material testing machine 102 to the pressure sensitive bodies 14, 34 and the like of the sensor sheet 130 via the load cell 110, and the vertical axis is the sensor output (V). The sensor output is the output as a result of changing the magnitude of the tensile force / compressive force into a voltage signal using the adhesive force sensor (film sensor) 20 or the like used in the experiment and an electric circuit (described later). The greater the tensile / compressive force, the greater the sensor output. In FIG. 15 (original drawing), the adhesive force sensor 30 (FIG. 2: Example 1) is a red circle (upper distribution), and the adhesive force sensor 50 (FIG. 6: Example 4) is a blue circle (middle distribution). 10 (FIG. 1 (B): Example 1) is indicated by a green circle (lower distribution). As shown in the distribution on the upper side of FIG. 15, the sensor output of the adhesive force sensor 30 changed according to the applied pressure in both the tensile force and the compressive force, and the sensor output was the largest. Especially in the case of tensile force, the sensor output could be measured up to an applied pressure of 23 kPa. This indicates that the peel strength of the adhesive force sensor 30 is at least 23 kPa or more. As shown in the distribution in the middle of FIG. 15, the adhesive force sensor 50 had a sensor output that changed according to the applied pressure in both tensile force and compressive force, and the sensor output was medium in magnitude. In the case of tensile force, the sensor output could be measured up to an applied pressure of 8 kPa. This indicates that the peel strength of the adhesive force sensor 50 is at least 8 kPa or more. As shown in the distribution on the lower side of FIG. 15, in the case of the force sensor 10 (non-contact type sensor), the sensor output changed according to the applied pressure in the case of the compressive force, and the sensor output was the lowest. However, in the case of tensile force, the sensor output could not be measured.
以上の実験結果から明らかなように、力センサ10に引張力が加わった場合、上部電極12と感圧体14との間、感圧体14と下部電極16との間は分離するため、上部電極12−感圧体14−下部電極16(導電経路Cp)間は絶縁状態となる。この結果、引張力を検出することはできないことが証明された。一方、接着力センサ50は感圧体34と両電極32および36との界面を所定の導電性接着剤55で接合してある。このため、圧縮力の検出だけではなく引張力の検出にも対応可能であることが証明された。接着力センサ30では接着剤38a等は電極36、感圧体34および電極32から構成される測定点の周囲を囲むように、両ベースフィルム31および39の端部を密着させている。この結果、接着力センサ30は接着力センサ50よりも大きな圧縮力および引張力を測定することができるということが証明された。つまり、接着力センサ50では導電性接着剤55が剥がれることにより、接着力センサ30では測定点または検出点の周囲の接着剤38等が剥がれることにより、各々両電極32および36と感圧体34とが分離するまで引張力を検出することができる。 As is clear from the above experimental results, when a tensile force is applied to the force sensor 10, the upper electrode 12 and the pressure sensitive body 14 are separated from each other, and the pressure sensitive body 14 and the lower electrode 16 are separated from each other. The electrode 12-pressure sensitive body 14-lower electrode 16 (conductive path Cp) is in an insulated state. As a result, it was proved that the tensile force could not be detected. On the other hand, in the adhesive force sensor 50, the interface between the pressure sensitive body 34 and both electrodes 32 and 36 is joined with a predetermined conductive adhesive 55. Therefore, it was proved that it is possible to detect not only the compressive force but also the tensile force. In the adhesive force sensor 30, the adhesive 38a and the like are in close contact with the ends of both base films 31 and 39 so as to surround the measurement point composed of the electrode 36, the pressure sensitive body 34, and the electrode 32. As a result, it was proved that the adhesive force sensor 30 can measure a compressive force and a tensile force larger than those of the adhesive force sensor 50. That is, the adhesive force sensor 50 peels off the conductive adhesive 55, and the adhesive force sensor 30 peels off the adhesive 38 or the like around the measurement point or the detection point, so that the electrodes 32 and 36 and the pressure sensitive body 34, respectively. The tensile force can be detected until the and is separated.
図16は、上述した実験に用いた電気回路を示す。図16において、VINは入力電圧(5V)、Rsはセンサ抵抗、RFは固定抵抗、VOUTはセンサ出力電圧である。センサ出力電圧VOUTは次の式1で得られる。 FIG. 16 shows an electric circuit used in the above-mentioned experiment. In FIG. 16, V IN is an input voltage (5 V), R s is a sensor resistance, R F is a fixed resistance, and V OUT is a sensor output voltage. The sensor output voltage V OUT is obtained by the following equation 1.
接着力センサ30等に圧縮力/引張力が加わるとセンサ抵抗Rsは小さく/大きくなり、結果として式1に示されるように、センサ出力VOUTは大きく/小さくなる。ここで、センサ抵抗Rsは主に「センサ自体の抵抗」と「センサ−電極間の接触抵抗」からなる。圧縮力が弱い場合、力センサ10ではゴムと電極とが十分に接触していないため「センサ−電極間の接触抵抗」が高くなる。一方、接着力センサ50では導電性接着剤55で初めから両者は固定されているため、「センサ−電極間の接触抵抗」はほぼゼロである。従って図15に示されるように、「センサ−電極間の接触抵抗」がほとんどない接着力センサ50の方が力センサ10より、小さい圧縮力が作用した際のセンサ出力VOUTは大きくなる。 When a compressive force / tensile force is applied to the adhesive force sensor 30 or the like, the sensor resistance R s becomes small / large, and as a result, the sensor output V OUT becomes large / small as shown in Equation 1. Here, the sensor resistance R s mainly consists of "the resistance of the sensor itself" and "the contact resistance between the sensor and the electrode". When the compressive force is weak, the “contact resistance between the sensor and the electrode” becomes high because the rubber and the electrode are not sufficiently in contact with each other in the force sensor 10. On the other hand, in the adhesive force sensor 50, since both are fixed by the conductive adhesive 55 from the beginning, the "contact resistance between the sensor and the electrode" is almost zero. Therefore, as shown in FIG. 15, the adhesive force sensor 50 having almost no “contact resistance between the sensor and the electrode” has a larger sensor output V OUT when a smaller compressive force is applied than the force sensor 10.
本発明の活用例として、上述した櫛形電極を交差させた構造の圧力分布センサ60、ずり応力(せん断応力)を測定可能なセンサ70の他にも、薄くフレキシブルなセンサとして種々の分野で利用可能である。例えば、テープまたは粘着剤の引き剥がし強度評価、細胞培養時に基板上にセンサを敷くことによる細胞と基板との間にはたらく接着力評価等に適用することができる。 As an application example of the present invention, in addition to the pressure distribution sensor 60 having a structure in which comb-shaped electrodes are crossed and the sensor 70 capable of measuring shear stress, it can be used in various fields as a thin and flexible sensor. Is. For example, it can be applied to the evaluation of the peeling strength of a tape or an adhesive, the evaluation of the adhesive strength acting between cells and the substrate by laying a sensor on the substrate during cell culture, and the like.
1 上側電極、 3 下側電極、 5 感圧層、 7 スペーサ、 10 力センサ、 12、12’ 上部電極、 14 感圧体、 16、16’ 下部電極、 20、30、50 接着力センサ、 31、39 ベースフィルム、 32、36 電極、 32−1〜32−5 上部電極、 34、34(1、1)〜34(5、5) 感圧体、 36−1〜36−5 下部電極、 38、38a、38b 接着剤、 40 多点接着力センサ、 55 導電性接着剤、 60 圧力分布センサ、 66−1〜66−5 銅電極、 70 ずり応力(せん断応力)を測定可能なセンサ、 100 実験装置、 102 材料試験機、 104a、104b チャック、 106 把持具、 108 ネジ部分、 110 ロードセル、 112 ネジ、 120 アクリル−ゴムブロック、 122 アクリル板、 124 ゴム板、 130 センサシート(フィルムセンサ)、 132 ステージ、 134 ビニルテープ(カバーテープ)、 140 データロガー、 144 PC。 1 Upper electrode, 3 Lower electrode, 5 Pressure sensitive layer, 7 Spacer, 10 Force sensor, 12, 12'Upper electrode, 14 Pressure sensitive body, 16, 16' Lower electrode, 20, 30, 50 Adhesive force sensor, 31 , 39 Base film, 32, 36 electrodes, 32-1 to 2-32 5 upper electrodes, 34, 34 (1, 1) to 34 (5, 5) pressure sensor, 36-1 to 36-5 lower electrodes, 38 , 38a, 38b adhesive, 40 multi-point adhesive force sensor, 55 conductive adhesive, 60 pressure distribution sensor, 66-1 to 66-5 copper electrodes, 70 sensor capable of measuring shear stress, 100 experiments Equipment, 102 Material Testing Machine, 104a, 104b Chuck, 106 Grip, 108 Screw Part, 110 Load Cell, 112 Screw, 120 Acrylic-Rubber Block, 122 Acrylic Plate, 124 Rubber Plate, 130 Sensor Sheet (Film Sensor), 132 Stage , 134 Vinyl tape (cover tape), 140 data logger, 144 PC.
Claims (7)
基材上に所定形の棒状電極(下部電極)を所定数形成する下部電極形成工程と、
前記下部電極形成工程で形成された各下部電極上において、圧縮力又は引張力を検出する検出点をマスクで覆った後、前記基材上及び前記各下部電極上に接着剤を塗布する接着剤塗布工程と、
前記接着剤塗布工程で用いられたマスクを除去した後の各孔内の下部電極上に感圧体を載置する感圧体載置工程と、
所定形の棒状電極(上部電極)が所定数形成された別の基材を、前記感圧体載置工程で感圧体が載置された側の基材に対し各上部電極が前記各下部電極に相互に直交するように対向させた後、該別の基材と該基材とを圧接する基材圧接工程とを備えたことを特徴とする多点接着力センサの製造方法。 The method for manufacturing a multipoint adhesive force sensor according to claim 3.
A lower electrode forming step of forming a predetermined number of rod-shaped electrodes (lower electrodes) on a base material,
An adhesive that applies an adhesive on the base material and on each of the lower electrodes after covering a detection point for detecting a compressive force or a tensile force with a mask on each of the lower electrodes formed in the lower electrode forming step. The coating process and
A pressure-sensitive body mounting step of mounting the pressure-sensitive body on the lower electrode in each hole after removing the mask used in the adhesive application step,
Another base material on which a predetermined number of rod-shaped electrodes (upper electrodes) of a predetermined shape are formed is placed on the base material on the side on which the pressure sensitive body is mounted in the pressure sensitive body mounting step. A method for manufacturing a multi-point adhesive force sensor, which comprises a base material pressure welding step of pressing the other base material and the base material after facing the electrodes so as to be orthogonal to each other.
前記下部電極形成工程後の前記下部電極上に所定径の液状感圧体を所定数印刷し、各液状感圧体をマスクした後、前記基材及び前記下部電極上に接着剤を塗布する印刷・塗布工程を備えたことを特徴とする多点接着力センサの製造方法。 In the method for manufacturing a multi-point adhesive force sensor according to claim 4, instead of the adhesive coating step and the pressure sensitive body mounting step,
Printing in which a predetermined number of liquid pressure-sensitive bodies having a predetermined diameter are printed on the lower electrode after the lower electrode forming step, each liquid pressure-sensitive body is masked, and then an adhesive is applied on the base material and the lower electrode. -A method for manufacturing a multi-point adhesive force sensor, which is characterized by having a coating process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019116408A JP2021001839A (en) | 2019-06-24 | 2019-06-24 | Adhesive strength sensor, multipoint adhesive strength sensor, and manufacturing method of multipoint adhesive strength sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019116408A JP2021001839A (en) | 2019-06-24 | 2019-06-24 | Adhesive strength sensor, multipoint adhesive strength sensor, and manufacturing method of multipoint adhesive strength sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021001839A true JP2021001839A (en) | 2021-01-07 |
Family
ID=73994955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019116408A Pending JP2021001839A (en) | 2019-06-24 | 2019-06-24 | Adhesive strength sensor, multipoint adhesive strength sensor, and manufacturing method of multipoint adhesive strength sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021001839A (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63238502A (en) * | 1987-03-27 | 1988-10-04 | Yokohama Rubber Co Ltd:The | Proximity and tactile sensor |
JP2001013015A (en) * | 1999-07-01 | 2001-01-19 | Furukawa Electric Co Ltd:The | Filmy pressure sensitive sensor and semiconductor pressure sensitive ink for it |
WO2006030405A1 (en) * | 2004-09-14 | 2006-03-23 | University Of Limerick | A transducer apparatus for measuring biomedical pressures |
JP2007033194A (en) * | 2005-07-26 | 2007-02-08 | Toshiba Corp | Test substrate and stress measuring method of joint |
JP2008309589A (en) * | 2007-06-13 | 2008-12-25 | Tokai Rubber Ind Ltd | Deformation sensor system |
JP2009031045A (en) * | 2007-07-25 | 2009-02-12 | Seiko Epson Corp | pressure sensor |
JP2009229416A (en) * | 2008-03-25 | 2009-10-08 | Denso Corp | Load sensor |
JP2013083548A (en) * | 2011-10-11 | 2013-05-09 | Takano Co Ltd | Pressure sensor |
JP2013178241A (en) * | 2012-02-07 | 2013-09-09 | Sumitomo Electric Ind Ltd | Pressure-sensitive sensor mounting wiring board |
JP2015114308A (en) * | 2013-12-16 | 2015-06-22 | 株式会社トライフォース・マネジメント | Tactile sensor |
-
2019
- 2019-06-24 JP JP2019116408A patent/JP2021001839A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63238502A (en) * | 1987-03-27 | 1988-10-04 | Yokohama Rubber Co Ltd:The | Proximity and tactile sensor |
JP2001013015A (en) * | 1999-07-01 | 2001-01-19 | Furukawa Electric Co Ltd:The | Filmy pressure sensitive sensor and semiconductor pressure sensitive ink for it |
WO2006030405A1 (en) * | 2004-09-14 | 2006-03-23 | University Of Limerick | A transducer apparatus for measuring biomedical pressures |
JP2007033194A (en) * | 2005-07-26 | 2007-02-08 | Toshiba Corp | Test substrate and stress measuring method of joint |
JP2008309589A (en) * | 2007-06-13 | 2008-12-25 | Tokai Rubber Ind Ltd | Deformation sensor system |
JP2009031045A (en) * | 2007-07-25 | 2009-02-12 | Seiko Epson Corp | pressure sensor |
JP2009229416A (en) * | 2008-03-25 | 2009-10-08 | Denso Corp | Load sensor |
JP2013083548A (en) * | 2011-10-11 | 2013-05-09 | Takano Co Ltd | Pressure sensor |
JP2013178241A (en) * | 2012-02-07 | 2013-09-09 | Sumitomo Electric Ind Ltd | Pressure-sensitive sensor mounting wiring board |
JP2015114308A (en) * | 2013-12-16 | 2015-06-22 | 株式会社トライフォース・マネジメント | Tactile sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3132335A1 (en) | An apparatus and method for sensing | |
JPH08203382A (en) | Analog transparent touch screen and its manufacture | |
US11264145B2 (en) | Extensible electroconductive wiring material, and extensible electroconductive wiring module having same | |
JPH09305289A (en) | Coordinate input device | |
JP2018092940A (en) | Method of forming electrically conductive composite | |
CN105493010A (en) | Sensor device, display device, and input device | |
TW201104550A (en) | Pesist film type of touch panel having function of press detection | |
TW200424723A (en) | Liquid crystal display | |
US8680741B2 (en) | Haptic actuator using cellulose electro-active paper film | |
WO2020000897A1 (en) | Touch panel and fabrication method therefor, and display device | |
JP2001099726A (en) | Pressure sensitive sensor and its manufacturing method | |
TWM604405U (en) | Electronic apparatus | |
JP2021001839A (en) | Adhesive strength sensor, multipoint adhesive strength sensor, and manufacturing method of multipoint adhesive strength sensor | |
JP2015055925A (en) | Sensor device, method of manufacturing sensor device, display apparatus, and input apparatus | |
CN108822760B (en) | Anisotropic conductive adhesive and substrate structure bonded by anisotropic conductive adhesive | |
CN115235656A (en) | High-sensitivity flexible piezoresistive sensor and preparation method thereof | |
JP2016115178A (en) | Flexible laminate, manufacturing method thereof, and capacitive three-dimensional sensor | |
JP2005010986A (en) | Touch panel and method for manufacturing the same | |
CN109357609A (en) | A Large Format Force/Bit Tactile Sensor | |
JP3971325B2 (en) | Anisotropic conductive film connector manufacturing method, anisotropic conductive film connector and touch panel input device using the same | |
CN114637424A (en) | Display module and electronic equipment | |
JP2006286790A (en) | Method of bonding wiring board, structure of bonded part thereof, and electric circuit device with bonded part thereof | |
JP6489710B2 (en) | Capacitance type 3D sensor | |
JP2011003105A (en) | Resistive film type touch panel | |
JPH09120745A (en) | Touch panel and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20190716 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220407 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230327 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230523 |