JP2021099969A - Power storage element - Google Patents
Power storage element Download PDFInfo
- Publication number
- JP2021099969A JP2021099969A JP2019232142A JP2019232142A JP2021099969A JP 2021099969 A JP2021099969 A JP 2021099969A JP 2019232142 A JP2019232142 A JP 2019232142A JP 2019232142 A JP2019232142 A JP 2019232142A JP 2021099969 A JP2021099969 A JP 2021099969A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- positive electrode
- power storage
- active material
- mixture layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003860 storage Methods 0.000 title claims abstract description 79
- 239000000203 mixture Substances 0.000 claims abstract description 80
- 239000007773 negative electrode material Substances 0.000 claims abstract description 31
- 229920002678 cellulose Polymers 0.000 claims abstract description 30
- 239000001913 cellulose Substances 0.000 claims abstract description 30
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 claims abstract description 30
- 230000005611 electricity Effects 0.000 claims abstract description 29
- 239000007774 positive electrode material Substances 0.000 claims abstract description 20
- 150000001768 cations Chemical class 0.000 claims abstract description 16
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 45
- 229910052759 nickel Inorganic materials 0.000 claims description 19
- 229910021469 graphitizable carbon Inorganic materials 0.000 claims description 14
- 239000011572 manganese Substances 0.000 claims description 14
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 claims description 12
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 9
- 239000010941 cobalt Substances 0.000 claims description 9
- 229910017052 cobalt Inorganic materials 0.000 claims description 9
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims description 4
- 229910001415 sodium ion Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 12
- 239000010410 layer Substances 0.000 description 74
- 239000000463 material Substances 0.000 description 50
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 34
- 239000011255 nonaqueous electrolyte Substances 0.000 description 33
- 239000011230 binding agent Substances 0.000 description 31
- -1 and the like Substances 0.000 description 22
- 229910052799 carbon Inorganic materials 0.000 description 19
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 238000012360 testing method Methods 0.000 description 14
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 13
- 239000006258 conductive agent Substances 0.000 description 13
- 229910001416 lithium ion Inorganic materials 0.000 description 13
- 239000003125 aqueous solvent Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 239000000945 filler Substances 0.000 description 10
- 239000011149 active material Substances 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000003575 carbonaceous material Substances 0.000 description 7
- 150000005676 cyclic carbonates Chemical class 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 229920003048 styrene butadiene rubber Polymers 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 150000005678 chain carbonates Chemical class 0.000 description 6
- 239000002800 charge carrier Substances 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 229910003002 lithium salt Inorganic materials 0.000 description 6
- 159000000002 lithium salts Chemical class 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000002174 Styrene-butadiene Substances 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 239000002612 dispersion medium Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 229920002943 EPDM rubber Polymers 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 229920000447 polyanionic polymer Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 125000004181 carboxyalkyl group Chemical group 0.000 description 2
- 150000001786 chalcogen compounds Chemical class 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- 229920005608 sulfonated EPDM Polymers 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- PEVRKKOYEFPFMN-UHFFFAOYSA-N 1,1,2,3,3,3-hexafluoroprop-1-ene;1,1,2,2-tetrafluoroethene Chemical group FC(F)=C(F)F.FC(F)=C(F)C(F)(F)F PEVRKKOYEFPFMN-UHFFFAOYSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- WFLOTYSKFUPZQB-UHFFFAOYSA-N 1,2-difluoroethene Chemical group FC=CF WFLOTYSKFUPZQB-UHFFFAOYSA-N 0.000 description 1
- NZPSDGIEKAQVEZ-UHFFFAOYSA-N 1,3-benzodioxol-2-one Chemical compound C1=CC=CC2=C1OC(=O)O2 NZPSDGIEKAQVEZ-UHFFFAOYSA-N 0.000 description 1
- SROHGOJDCAODGI-UHFFFAOYSA-N 4,5-diphenyl-1,3-dioxol-2-one Chemical compound O1C(=O)OC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 SROHGOJDCAODGI-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- VMAJRFCXVOIAAS-UHFFFAOYSA-N 4-phenyl-1,3-dioxol-2-one Chemical compound O1C(=O)OC=C1C1=CC=CC=C1 VMAJRFCXVOIAAS-UHFFFAOYSA-N 0.000 description 1
- ZKOGUIGAVNCCKH-UHFFFAOYSA-N 4-phenyl-1,3-dioxolan-2-one Chemical compound O1C(=O)OCC1C1=CC=CC=C1 ZKOGUIGAVNCCKH-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920008712 Copo Polymers 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013392 LiN(SO2CF3)(SO2C4F9) Inorganic materials 0.000 description 1
- 229910013086 LiNiPO Inorganic materials 0.000 description 1
- 229910012258 LiPO Inorganic materials 0.000 description 1
- 229910012424 LiSO 3 Inorganic materials 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 1
- GAMPNQJDUFQVQO-UHFFFAOYSA-N acetic acid;phthalic acid Chemical compound CC(O)=O.OC(=O)C1=CC=CC=C1C(O)=O GAMPNQJDUFQVQO-UHFFFAOYSA-N 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 150000001450 anions Chemical group 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 229920003064 carboxyethyl cellulose Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000004354 sulfur functional group Chemical group 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、蓄電素子に関する。 The present invention relates to a power storage element.
リチウムイオン非水電解質二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極を有する電極体、及び電極間に介在する非水電解質を備え、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。 Non-aqueous electrolyte secondary batteries typified by lithium-ion non-aqueous electrolyte secondary batteries are widely used in personal computers, electronic devices such as communication terminals, automobiles, etc. due to their high energy density. The non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrodes electrically separated by a separator, and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between both electrodes. It is configured to charge and discharge by doing so. In addition, capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as power storage elements other than non-aqueous electrolyte secondary batteries.
このような蓄電素子の負極の活物質には、黒鉛や非黒鉛質炭素、非晶質炭素といった炭素材料が広く用いられている。例えば、高容量化を目的として負極活物質として単位質量あたりの充放電可能容量が深い難黒鉛化性炭素質材料を用いたリチウムイオン二次電池が提案されている(特許文献1参照)。 Carbon materials such as graphite, non-graphitic carbon, and amorphous carbon are widely used as the active material for the negative electrode of such a power storage element. For example, for the purpose of increasing the capacity, a lithium ion secondary battery using a graphitizable carbonaceous material having a deep chargeable / discharging capacity per unit mass as a negative electrode active material has been proposed (see Patent Document 1).
しかしながら、電池の高容量化を目的として負極活物質に難黒鉛化性炭素を用いて負極の充電深度を深くすると、負極電位が卑となり、充電時に金属リチウムの析出を起こすことによる充放電サイクル後の抵抗増加が生じるおそれがある。従って、高容量化を目的として負極の充電深度が深い電池の負極活物質に難黒鉛化性炭素を用いた場合においても、充放電サイクル後の抵抗の増加に対する抑制効果に優れる蓄電素子が求められている。 However, when the charge depth of the negative electrode is deepened by using non-graphitizable carbon as the negative electrode active material for the purpose of increasing the capacity of the battery, the negative electrode potential becomes low and after the charge / discharge cycle due to precipitation of metallic lithium during charging. Resistance may increase. Therefore, even when non-graphitizable carbon is used as the negative electrode active material of a battery having a deep negative electrode charging depth for the purpose of increasing the capacity, a power storage element having an excellent effect of suppressing an increase in resistance after a charge / discharge cycle is required. ing.
本発明は、以上のような事情に基づいてなされたものであり、充電深度が深い負極の活物質に難黒鉛化性炭素を用いた場合に、充放電サイクル後の抵抗の増加に対する抑制効果に優れる蓄電素子を提供することを目的とする。 The present invention has been made based on the above circumstances, and when non-graphitizable carbon is used as the active material of the negative electrode having a deep charging depth, it has an effect of suppressing an increase in resistance after a charge / discharge cycle. An object of the present invention is to provide an excellent power storage element.
上記課題を解決するためになされた本発明の一側面は、負極活物質を含む負極合剤層を備える負極と、正極活物質を含む正極合剤層を備える正極とを備えており、上記負極合剤層にカウンターカチオンが金属イオンであるセルロース誘導体を含み、上記負極活物質が主成分として難黒鉛化性炭素を含み、上記難黒鉛化性炭素の真密度をA[g/cm3]としたとき、満充電状態における上記負極の充電電気量B[mAh/g]が、下記式1を満たす蓄電素子である。
−580×A+1258≦B≦−830×A+1800 ・・・1
One aspect of the present invention made to solve the above problems is a negative electrode having a negative electrode mixture layer containing a negative electrode active material and a positive electrode having a positive electrode mixture layer containing a positive electrode active material. The mixture layer contains a cellulose derivative in which the counter cation is a metal ion, the negative electrode active material contains non-graphitizable carbon as a main component, and the true density of the non-graphitizable carbon is A [g / cm 3 ]. When this is done, the charging electricity amount B [mAh / g] of the negative electrode in the fully charged state is a power storage element that satisfies the following formula 1.
−580 × A + 1258 ≦ B ≦ -830 × A + 1800 ・ ・ ・ 1
本発明によれば、充電深度が深い負極の活物質に難黒鉛化性炭素を用いた場合に、充放電サイクル後の抵抗の増加に対する抑制効果に優れる蓄電素子を提供できる。 According to the present invention, when non-graphitizable carbon is used as the active material of the negative electrode having a deep charging depth, it is possible to provide a power storage element having an excellent effect of suppressing an increase in resistance after a charge / discharge cycle.
本発明者は、種々実験を行った結果, 負極合剤層に含まれる難黒鉛化性炭素の真密度Aと、該難黒鉛化性炭素に電荷担体(リチウムイオン二次電池の場合、リチウムイオン)の析出を抑制しつつ吸蔵することができる電荷担体量(充電電気量B)との間に一定の相関関係があることに思い至り、さらに負極合剤層のバインダーを適切に選定することによって、上記電荷担体の析出をより効果的に抑制し得ることを見出し、本発明を完成した。
すなわち、本発明の一実施形態に係る蓄電素子は、負極活物質を含む負極合剤層を備える負極と、正極活物質を含む正極合剤層を備える正極とを備えており、上記負極合剤層にカウンターカチオンが金属イオンであるセルロース誘導体を含み、上記負極活物質が主成分として難黒鉛化性炭素を含み、上記難黒鉛化性炭素の真密度をA[g/cm3]としたとき、満充電状態における上記負極の充電電気量B[mAh/g]が、下記式1を満たす。
−580×A+1258≦B≦−830×A+1800 ・・・1
As a result of various experiments, the present inventor has found that the true density A of graphitizable carbon contained in the negative electrode mixture layer and the charge carrier (lithium ion in the case of a lithium ion secondary battery) are added to the graphitizable carbon. ), It was realized that there is a certain correlation with the amount of charge carriers (charged electricity amount B) that can be occluded while suppressing precipitation, and by appropriately selecting the binder for the negative electrode mixture layer. , The present invention has been completed by finding that the precipitation of the charge carrier can be suppressed more effectively.
That is, the power storage element according to the embodiment of the present invention includes a negative electrode having a negative electrode mixture layer containing a negative electrode active material and a positive electrode having a positive electrode mixture layer containing a positive electrode active material. When the layer contains a cellulose derivative in which the counter cation is a metal ion, the negative electrode active material contains non-graphitizable carbon as a main component, and the true density of the non-graphitizable carbon is A [g / cm 3 ]. The charging electricity amount B [mAh / g] of the negative electrode in the fully charged state satisfies the following formula 1.
−580 × A + 1258 ≦ B ≦ -830 × A + 1800 ・ ・ ・ 1
当該蓄電素子は、高容量化を目的として充電深度が深い負極の活物質に難黒鉛化性炭素を用いた場合に電荷担体の析出を抑制し、充放電サイクル後の抵抗の増加に対する抑制効果に優れる。この理由については定かでは無いが、以下の理由が推測される。負極の活物質に難黒鉛化性炭素を用いた場合に、負極の充電深度を深くすると、負極電位が卑にシフトするため、電荷担体が析出しやすくなるおそれがある。当該蓄電素子は、難黒鉛化性炭素の真密度をA[g/cm3]としたとき、満充電状態における上記負極の充電電気量B[mAh/g]が−830×A+1800以下であることで、充電電気量Bが適度な大きさとなり、過剰に電荷担体の析出が生じることを抑制できる。一方、上記負極の充電電気量B[mAh/g]が−580×A+1258以上の範囲においては、負極合剤層のバインダーとして、耐還元性に優れ、負極電位が卑の状態においても還元分解されにくいと考えられるカウンターカチオンが金属イオンであるセルロース誘導体を用いることで、充放電サイクル後の抵抗の増加を抑制できる。従って、当該蓄電素子は、充電深度が深い負極の活物質に難黒鉛化性炭素を用いた場合に、充放電サイクル後の抵抗の増加に対する抑制効果に優れる。
ここで、「満充電状態」とは、電池設計で決められた定格容量を確保するための定格上限電圧となるまで充電された状態をいう。また、定格容量に関する記載がない場合は、当該蓄電素子が採用している充電制御装置を用いて充電を行った際に、該充電操作が停止制御されるときの充電終止電圧となるまで充電された状態をいう。例えば、当該蓄電素子を、(1/3)CAの電流で上記定格上限電圧または上記充電終止電圧となるまで定電流充電した後、上記定格上限電圧または上記充電終止電圧にて0.01CAとなるまで定電流定電圧(CCCV)充電を行った状態が、ここでいう「満充電状態」の典型例である。
The power storage element suppresses the precipitation of charge carriers when non-graphitizable carbon is used as the active material of the negative electrode having a deep charging depth for the purpose of increasing the capacity, and has an effect of suppressing an increase in resistance after a charge / discharge cycle. Excellent. The reason for this is not clear, but the following reasons can be inferred. When non-graphitizable carbon is used as the active material of the negative electrode, if the charging depth of the negative electrode is deepened, the negative electrode potential shifts to a low level, so that the charge carrier may easily precipitate. When the true density of non-graphitizable carbon is A [g / cm 3 ], the electricity storage element has a charge electricity amount B [mAh / g] of the negative electrode in a fully charged state of −830 × A + 1800 or less. Therefore, the amount of charging electricity B becomes an appropriate size, and it is possible to suppress excessive precipitation of charge carriers. On the other hand, in the range where the charging electricity amount B [mAh / g] of the negative electrode is −580 × A + 1258 or more, the negative electrode mixture layer has excellent reduction resistance and is reduced and decomposed even when the negative electrode potential is low. By using a cellulose derivative in which the counter cation, which is considered to be difficult, is a metal ion, an increase in resistance after the charge / discharge cycle can be suppressed. Therefore, the power storage element is excellent in suppressing the increase in resistance after the charge / discharge cycle when graphitizable carbon is used as the active material of the negative electrode having a deep charging depth.
Here, the "fully charged state" means a state in which the battery is charged until the rated upper limit voltage for securing the rated capacity determined by the battery design is reached. If there is no description about the rated capacity, when charging is performed using the charge control device adopted by the power storage element, the battery is charged until the charge end voltage at which the charging operation is stopped and controlled is reached. The state of being. For example, the power storage element is constantly charged with a current of (1/3) CA until it reaches the rated upper limit voltage or the charging end voltage, and then becomes 0.01 CA at the rated upper limit voltage or the charging end voltage. The state in which constant current and constant voltage (CCCV) charging is performed up to is a typical example of the "fully charged state" here.
上記金属イオンがナトリウムイオンであることが好ましい。上記金属イオンがナトリウムイオンであることで、充放電サイクル後の抵抗の増加に対する抑制効果をより向上できる。 It is preferable that the metal ion is a sodium ion. When the metal ion is a sodium ion, the effect of suppressing the increase in resistance after the charge / discharge cycle can be further improved.
上記正極活物質がニッケル、コバルト及びマンガンを含むリチウム遷移金属酸化物を主成分とし、上記リチウム遷移金属酸化物におけるニッケル、コバルト及びマンガンの総和に対するニッケルのモル比率が0.5以上であることが好ましい。上記リチウム遷移金属酸化物におけるニッケル、コバルト及びマンガンの総和に対するニッケルのモル比率を上記範囲とすることで、当該蓄電素子の容量を高めるとともに、上述した効果がより良く発揮され得る。 The positive electrode active material contains a lithium transition metal oxide containing nickel, cobalt and manganese as a main component, and the molar ratio of nickel to the total of nickel, cobalt and manganese in the lithium transition metal oxide is 0.5 or more. preferable. By setting the molar ratio of nickel to the total sum of nickel, cobalt and manganese in the lithium transition metal oxide in the above range, the capacity of the power storage element can be increased and the above-mentioned effect can be more exerted.
以下、本発明の一実施形態に係る蓄電素子について詳説する。 Hereinafter, the power storage element according to the embodiment of the present invention will be described in detail.
<蓄電素子>
本発明の一実施形態に係る蓄電素子は、負極と、正極と、上記正極及び上記負極間に介在するセパレータと、非水電解質とを備えている。以下、蓄電素子の好ましい一例として、非水電解質二次電池について説明する。上記正極及び負極は、通常、セパレータを介して積層又は巻回により交互に重畳された電極体を形成する。この電極体は電池容器に収納され、この電池容器内に非水電解質が充填される。
<Power storage element>
The power storage element according to an embodiment of the present invention includes a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. Hereinafter, a non-aqueous electrolyte secondary battery will be described as a preferable example of the power storage element. The positive electrode and the negative electrode usually form electrode bodies that are alternately superposed by stacking or winding through a separator. The electrode body is housed in a battery container, and the battery container is filled with a non-aqueous electrolyte.
[負極]
負極は、負極基材と、上記負極基材の少なくとも一方の面に直接又は間接に積層される負極合剤層とを備える。負極合剤層は、負極活物質を含む。負極は、負極基材と負極合剤層との間に配される中間層を備えていてもよい。
[Negative electrode]
The negative electrode includes a negative electrode base material and a negative electrode mixture layer that is directly or indirectly laminated on at least one surface of the negative electrode base material. The negative electrode mixture layer contains a negative electrode active material. The negative electrode may include an intermediate layer arranged between the negative electrode base material and the negative electrode mixture layer.
(負極基材)
負極基材は、導電性を有する基材である。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。また、負極基材の形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、負極基材としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。なお、「導電性」を有するとは、JIS−H−0505(1975年)に準拠して測定される体積抵抗率が1×107Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が1×107Ω・cm超であることを意味する。
(Negative electrode base material)
The negative electrode base material is a base material having conductivity. As the material of the negative electrode base material, metals such as copper, nickel, stainless steel and nickel-plated steel or alloys thereof are used, and copper or a copper alloy is preferable. Further, examples of the form of the negative electrode base material include foil, a vapor-deposited film, and the like, and foil is preferable from the viewpoint of cost. That is, copper foil is preferable as the negative electrode base material. Examples of the copper foil include rolled copper foil and electrolytic copper foil. Note that has a "conductive" means that the volume resistivity is measured according to JIS-H-0505 (1975 years) is not more than 1 × 10 7 Ω · cm, "non-conductive "means that the volume resistivity is 1 × 10 7 Ω · cm greater.
負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上25μm以下がより好ましく、4μm以上20μm以下がさらに好ましく、5μm以上15μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、蓄電素子の体積あたりのエネルギー密度を高めることができる。「基材の平均厚さ」とは、所定の面積の基材を打ち抜いた際の打ち抜き質量を、基材の真密度及び打ち抜き面積で除した値をいう。 The average thickness of the negative electrode base material is preferably 2 μm or more and 35 μm or less, more preferably 3 μm or more and 25 μm or less, further preferably 4 μm or more and 20 μm or less, and particularly preferably 5 μm or more and 15 μm or less. By setting the average thickness of the negative electrode base material in the above range, it is possible to increase the strength of the negative electrode base material and the energy density per volume of the power storage element. The "average thickness of the base material" means a value obtained by dividing the punching mass when punching a base material having a predetermined area by the true density of the base material and the punched area.
(負極合剤層)
負極合剤層は、負極活物質を含むいわゆる負極合剤から形成される。
(Negative electrode mixture layer)
The negative electrode mixture layer is formed from a so-called negative electrode mixture containing a negative electrode active material.
上記負極活物質としては、主成分として難黒鉛化性炭素を含む。負極活物質が主成分として難黒鉛化性炭素を含むことで、当該蓄電素子の容量を高めることができる。また、上記負極合剤としては、上記難黒鉛化性炭素以外のその他の負極活物質を含んでいてもよい。なお、上記「負極活物質における主成分」とは、最も含有量の多い成分を意味し、負極活物質の総質量に対して90質量%以上含まれる成分をいう。 The negative electrode active material contains non-graphitizable carbon as a main component. Since the negative electrode active material contains non-graphitizable carbon as a main component, the capacity of the power storage element can be increased. Further, the negative electrode mixture may contain other negative electrode active materials other than the graphitizable carbon. The "main component in the negative electrode active material" means a component having the highest content, and means a component contained in an amount of 90% by mass or more with respect to the total mass of the negative electrode active material.
(難黒鉛化性炭素)
難黒鉛化性炭素とは、放電状態においてX線回折法から測定される(002)面の平均格子面間隔d(002)が0.36nmより大きく0.42nmより小さい炭素物質である。難黒鉛化性炭素は、通常、微小な黒鉛の結晶がランダムな方向に配置され、結晶層と結晶層との間にナノオーダーの空隙を有する材料をいう。上記難黒鉛化性炭素としては、フェノール樹脂焼成体、フラン樹脂焼成体、フルフリルアルコール樹脂焼成体等を挙げることができる。
(Difficult graphitizing carbon)
The graphitizable carbon is a carbon substance having an average lattice spacing d (002) of the (002) plane measured by the X-ray diffractometry in a discharged state larger than 0.36 nm and smaller than 0.42 nm. Non-graphitizable carbon usually refers to a material in which fine graphite crystals are arranged in random directions and have nano-order voids between the crystal layers. Examples of the non-graphitizable carbon include a phenol resin fired body, a furan resin fired body, and a furfuryl alcohol resin fired body.
ここで、「放電状態」とは、負極活物質として炭素物質を含む負極を作用極として、金属Liを対極として用いた単極電池において、開回路電圧が0.7V以上である状態をいう。開回路状態での金属Li対極の電位は、Liの酸化還元電位とほぼ等しいため、上記単極電池における開回路電圧は、Liの酸化還元電位に対する炭素材料を含む負極の電位とほぼ同等である。つまり、上記単極電池における開回路電圧が0.7V以上であることは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されていることを意味する。 Here, the "discharged state" refers to a state in which the open circuit voltage is 0.7 V or more in a unipolar battery using a negative electrode containing a carbon substance as a negative electrode active material as a working electrode and a metal Li as a counter electrode. Since the potential of the metal Li counter electrode in the open circuit state is substantially equal to the oxidation-reduction potential of Li, the open circuit voltage in the single-pole battery is substantially equal to the potential of the negative electrode containing the carbon material with respect to the oxidation-reduction potential of Li. .. That is, the fact that the open circuit voltage in the single-pole battery is 0.7 V or more means that lithium ions that can be occluded and discharged are sufficiently released from the carbon material that is the negative electrode active material during charging and discharging. ..
難黒鉛化性炭素の真密度Aとしては、真密度Aと充電電気量Bとの関係が前記式を満たす限りにおいて特に限定されないが、その下限としては、1.4[g/cm3]が好ましく、1.45[g/cm3]がより好ましい。いくつかの態様において、真密度Aは、1.5[g/cm3]以上であってもよく、1.55[g/cm3]以上であってもよく、1.6[g/cm3]以上であってもよい。上記真密度の上限としては、1.8[g/cm3]が好ましく、1.7[g/cm3]がより好ましい。いくつかの態様において、真密度Aは、1.65[g/cm3]以下であってもよく、1.58[g/cm3]以下であってもよく、1.52[g/cm3]以下であってもよい。難黒鉛化性炭素の真密度が小さすぎると原料由来の不純物や反応活性面が増えることで不可逆容量が大きくなってしまい、真密度が大きすぎると結晶構造間へのリチウムイオン吸蔵可能量が少なくなってしまう。すなわち、上記範囲であることで、不可逆容量を抑制したまま、リチウムイオン吸蔵可能量を大きくすることができる。真密度は、ブタノールを用いたピクノメーター法で測定される。 The true density A of non-graphitizable carbon is not particularly limited as long as the relationship between the true density A and the amount of electricity charged B satisfies the above equation, but the lower limit thereof is 1.4 [g / cm 3 ]. Preferably, 1.45 [g / cm 3 ] is more preferable. In some embodiments, the true density A may be 1.5 [g / cm 3 ] or higher, 1.55 [g / cm 3 ] or higher, and 1.6 [g / cm] or higher. 3 ] or more. As the upper limit of the true density, 1.8 [g / cm 3 ] is preferable, and 1.7 [g / cm 3 ] is more preferable. In some embodiments, the true density A may be 1.65 [g / cm 3 ] or less, 1.58 [g / cm 3 ] or less, and 1.52 [g / cm] or less. 3 ] It may be less than or equal to. If the true density of graphitizable carbon is too small, impurities derived from raw materials and reaction active surfaces increase, resulting in a large irreversible capacity. If the true density is too high, the amount of lithium ions that can be occluded between crystal structures is small. turn into. That is, within the above range, the amount of lithium ions that can be occluded can be increased while suppressing the irreversible capacity. The true density is measured by the pycnometer method using butanol.
上記負極活物質の総質量に対する上記難黒鉛化性炭素の含有量の下限としては、90質量%が好ましい。難黒鉛化性炭素の含有量を上記下限以上とすることで、当該蓄電素子の容量をより高めることができる。一方、上記負極活物質の総質量に対する上記難黒鉛化性炭素の含有量の上限としては、例えば100質量%であってもよい。 The lower limit of the content of the non-graphitizable carbon with respect to the total mass of the negative electrode active material is preferably 90% by mass. By setting the content of non-graphitizable carbon to the above lower limit or more, the capacity of the power storage element can be further increased. On the other hand, the upper limit of the content of the non-graphitizable carbon with respect to the total mass of the negative electrode active material may be, for example, 100% by mass.
(他の負極活物質)
難黒鉛化性炭素以外に含まれていてもよい他の負極活物質としては、易黒鉛化性炭素、黒鉛、Si、Sn等の金属、これら金属の酸化物、又は、これら金属と炭素材料との複合体等が挙げられる。
(Other negative electrode active materials)
Other negative electrode active materials that may be contained in addition to non-graphitizable carbon include easily graphitizable carbon, metals such as graphite, Si, and Sn, oxides of these metals, or these metals and carbon materials. Complex and the like.
負極合剤層中の負極活物質の含有量は特に限定されないが、その下限としては、50質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。一方、この含有量の上限としては、99質量%が好ましく、98質量がより好ましい。 The content of the negative electrode active material in the negative electrode mixture layer is not particularly limited, but the lower limit thereof is preferably 50% by mass, more preferably 80% by mass, and even more preferably 90% by mass. On the other hand, as the upper limit of this content, 99% by mass is preferable, and 98% by mass is more preferable.
上記負極合剤層は、カウンターカチオンが金属イオンであるセルロース誘導体を含む。セルロース誘導体は、塗工等により負極合剤層を形成する際の増粘剤として機能する成分である。セルロース誘導体は、セルロースが有するヒドロキシ基の水素原子が、他の基で置換された構造を有する化合物である。カウンターカチオンを有するセルロース誘導体としては、カルボキシアルキルセルロース(カルボキシメチルセルロース(CMC)、カルボキシエチルセルロース、カルボキシプロピルセルロース等)、アルキルセルロース(メチルセルロース、エチルセルロース等)、ヒドロキシアルキルセルロース(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等)、酢酸フタル酸セルロース、ヒドロキシプロピルメチルセルロースフタレート、アセチルセルロース等を挙げることができる。これらの中でも、カルボキシアルキルセルロースが好ましく、CMCがより好ましい。上記セルロース誘導体は1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。また、上記カウンターカチオンとなる金属イオンとしては、例えばナトリウムイオン、マグネシウムイオン、リチウムイオン等が挙げられる。 The negative electrode mixture layer contains a cellulose derivative whose counter cation is a metal ion. The cellulose derivative is a component that functions as a thickener when forming a negative electrode mixture layer by coating or the like. A cellulose derivative is a compound having a structure in which a hydrogen atom of a hydroxy group of cellulose is substituted with another group. Examples of the cellulose derivative having a counter cation include carboxyalkyl cellulose (carboxymethyl cellulose (CMC), carboxyethyl cellulose, carboxypropyl cellulose, etc.), alkyl cellulose (methyl cellulose, ethyl cellulose, etc.), hydroxyalkyl cellulose (hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl, etc.). Methyl cellulose, hydroxypropyl methyl cellulose, etc.), cellulose phthalate acetate, hydroxypropyl methyl cellulose phthalate, acetyl cellulose, etc. can be mentioned. Among these, carboxyalkyl cellulose is preferable, and CMC is more preferable. The above-mentioned cellulose derivative may be used alone or in combination of two or more. Examples of the metal ion serving as the counter cation include sodium ion, magnesium ion, lithium ion and the like.
負極合剤層における上記セルロース誘導体の含有量は特に制限されないが、その下限としては、0.1質量%である。上記セルロース誘導体の含有量の下限としては、0.3質量%が好ましく、0.5質量%がより好ましい。一方、上記セルロース誘導体の含有量の上限としては、例えば10質量%である。上記セルロース誘導体の含有量の上限としては、5質量%が好ましく、3質量%がより好ましい。いくつかの態様において、セルロース誘導体の含有量の上限は、2質量%であってもよく、1.5質量%(例えば1.2質量%)であってもよい。セルロース誘導体の含有量を上記下限以上とすることで、負極合剤層を形成する際の負極合剤ペーストに十分な粘性を与えることができ、効率的に負極合剤層を形成することができる。一方、セルロース誘導体の含有量を上記上限以下とすることで、前述した性能向上効果(例えば充放電サイクル後の抵抗の増加を抑制する効果)がより良く発揮され得る。 The content of the cellulose derivative in the negative electrode mixture layer is not particularly limited, but the lower limit thereof is 0.1% by mass. The lower limit of the content of the cellulose derivative is preferably 0.3% by mass, more preferably 0.5% by mass. On the other hand, the upper limit of the content of the cellulose derivative is, for example, 10% by mass. The upper limit of the content of the cellulose derivative is preferably 5% by mass, more preferably 3% by mass. In some embodiments, the upper limit of the content of the cellulose derivative may be 2% by weight or 1.5% by weight (eg 1.2% by weight). By setting the content of the cellulose derivative to the above lower limit or more, sufficient viscosity can be given to the negative electrode mixture paste when forming the negative electrode mixture layer, and the negative electrode mixture layer can be efficiently formed. .. On the other hand, by setting the content of the cellulose derivative to the above upper limit or less, the above-mentioned performance improving effect (for example, the effect of suppressing the increase in resistance after the charge / discharge cycle) can be more effectively exhibited.
(その他の任意成分)
負極合剤は、必要に応じて導電剤、バインダー、フィラー等の任意成分を含む。
(Other optional ingredients)
The negative electrode mixture contains optional components such as a conductive agent, a binder, and a filler, if necessary.
上記難黒鉛化性炭素も導電性を有するが、上記導電剤としては、導電性材料であれば特に限定されない。このような導電剤としては、例えば、黒鉛、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、非黒鉛化炭素、グラフェン系炭素等が挙げられる。非黒鉛化炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。 The graphitizable carbon also has conductivity, but the conductive agent is not particularly limited as long as it is a conductive material. Examples of such a conductive agent include graphite, carbonaceous materials, metals, conductive ceramics and the like. Examples of the carbonaceous material include non-graphitized carbon and graphene-based carbon. Examples of non-graphitized carbon include carbon nanofibers, pitch-based carbon fibers, and carbon black. Examples of carbon black include furnace black, acetylene black, and ketjen black. Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), and fullerenes. Examples of the shape of the conductive agent include powder and fibrous. As the conductive agent, one of these materials may be used alone, or two or more of these materials may be mixed and used. Further, these materials may be used in combination. For example, a material in which carbon black and CNT are composited may be used. Among these, carbon black is preferable from the viewpoint of electron conductivity and coatability, and acetylene black is particularly preferable.
上記バインダーとしては、水系バインダー及び非水系バインダーのいずれも用いることができるが、水系バインダーが好ましい。水系バインダーと非水系バインダーとを併用してもよい。水系バインダーとは、合剤を調製する際に、水系溶媒に溶解又は分散可能なバインダーを意味する。なお、水系溶媒とは、水、又は水を主体とする混合溶媒を意味する。混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコールや低級ケトン等)を例示することができる。また、非水系バインダーとは、合剤を調製する際に、非水系溶媒に溶解又は分散可能なバインダーを意味する。非水系溶媒としては、N−メチル−2−ピロリドン(NMP)等を例示することができる。インダーとしては、公知のものを使用することができ、例えばフッ素樹脂(ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、エチレン−テトラフルオロエチレン共重合体(ETFE)等)、酢酸ビニル共重合体、スチレンブタジエンゴム(SBR)、アクリル酸変性SBR、エチレン−プロピレン−ジエンゴム(EPDM)、スルホン化EPDM、フッ素ゴム、アラビアゴム、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリエチレン、ポリプロピレン、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレンオキサイド−プロピレンオキサイド共重合体(PEO−PPO)などを用いることができる。これらの中でも、結着性や抵抗上昇抑制性の観点から、SBR、アクリル酸変性SBR、EPDM、スルホン化EPDM、フッ素ゴム、アラビアゴム等のゴム系バインダーが好ましく、SBRがより好ましい。なお、バインダーがリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。負極合剤層におけるバインダーの含有量の下限としては、1質量%が好ましく、2質量%がより好ましい。一方、バインダーの含有量の上限としては、10質量%が好ましく、5質量%がより好ましい。バインダーの含有量を上記範囲とすることで、当該非水電解質蓄電素子の低温下での入力性能等をより高めることなどができる。 As the binder, either an aqueous binder or a non-aqueous binder can be used, but an aqueous binder is preferable. A water-based binder and a non-water-based binder may be used in combination. The aqueous binder means a binder that can be dissolved or dispersed in an aqueous solvent when preparing a mixture. The aqueous solvent means water or a mixed solvent mainly composed of water. Examples of the solvent other than water constituting the mixed solvent include organic solvents (lower alcohols, lower ketones, etc.) that can be uniformly mixed with water. The non-aqueous binder means a binder that can be dissolved or dispersed in a non-aqueous solvent when preparing a mixture. Examples of the non-aqueous solvent include N-methyl-2-pyrrolidone (NMP) and the like. As the inder, known ones can be used, for example, fluororesin (polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene). Polymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), etc.), vinyl acetate copolymer, styrene butadiene rubber (SBR), acrylic acid-modified SBR, ethylene-propylene-diene rubber (EPDM), sulfonated EPDM , Fluororubber, Arabic rubber, Polyfluorovinylidene (PVDF), Polychloride vinylidene (PVDC), Polypropylene, Polypropylene, Polyethylene oxide (PEO), Polypropylene oxide (PPO), Polyethyleneoxide-propylene oxide copolymer (PEO-PPO) Etc. can be used. Among these, rubber-based binders such as SBR, acrylic acid-modified SBR, EPDM, sulfonated EPDM, fluororubber, and Arabic rubber are preferable, and SBR is more preferable, from the viewpoint of binding property and resistance increase inhibitory property. When the binder has a functional group that reacts with lithium or the like, this functional group may be deactivated in advance by methylation or the like. The lower limit of the binder content in the negative electrode mixture layer is preferably 1% by mass, more preferably 2% by mass. On the other hand, as the upper limit of the content of the binder, 10% by mass is preferable, and 5% by mass is more preferable. By setting the content of the binder in the above range, it is possible to further improve the input performance and the like of the non-aqueous electrolyte power storage element at a low temperature.
フィラーは、特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、酸化アルミニウム、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。負極合剤層においてフィラーを使用する場合、負極合剤層全体に占めるフィラーの割合は、およそ8.0質量%以下とすることができ、通常はおよそ5.0質量%以下(例えば1.0質量%以下)とすることが好ましい。 The filler is not particularly limited. The main components of the filler are polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, aluminum oxide, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate, magnesium hydroxide and hydroxide. Hydroxides such as calcium and aluminum hydroxide, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride and barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc and montmorillonite, Examples thereof include mineral resource-derived substances such as boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, cericite, bentonite, and mica, or man-made products thereof. When a filler is used in the negative electrode mixture layer, the proportion of the filler in the entire negative electrode mixture layer can be about 8.0% by mass or less, and usually about 5.0% by mass or less (for example, 1.0). It is preferably mass% or less).
(中間層)
上記中間層は、負極基材の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで負極基材と負極合剤層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば樹脂バインダー及び導電性粒子を含有する組成物により形成できる。
(Middle layer)
The intermediate layer is a coating layer on the surface of the negative electrode base material, and contains conductive particles such as carbon particles to reduce the contact resistance between the negative electrode base material and the negative electrode mixture layer. The composition of the intermediate layer is not particularly limited, and can be formed by, for example, a composition containing a resin binder and conductive particles.
当該蓄電素子は、上記難黒鉛化性炭素の真密度をA[g/cm3]としたとき、満充電状態における上記負極の充電電気量B[mAh/g]が、下記式1を満たす。
−580×A+1258≦B≦−830×A+1800 ・・・1
当該蓄電素子は、難黒鉛化性炭素の真密度をA[g/cm3]としたとき、満充電状態における上記負極の充電電気量B[mAh/g]が−830×A+1800以下であることで、充電電気量Bが適度な大きさとなり、過剰に金属リチウムの析出が生じることを抑制できる。また、上記負極の充電電気量Bが−580×A+1258以上の範囲においては、負極合剤層のバインダーとして、耐還元性に優れ、負極電位が卑の状態においても還元分解されにくいと考えられるカウンターカチオンが金属イオンであるセルロース誘導体を用いることで、充放電サイクル後の抵抗の増加を抑制できる。従って、当該蓄電素子は、充電深度が深い負極の活物質に難黒鉛化性炭素を用いた場合に、充放電サイクル後の抵抗の増加に対する抑制効果に優れる。
In the power storage element, when the true density of the graphitizable carbon is A [g / cm 3 ], the charging electricity amount B [mAh / g] of the negative electrode in the fully charged state satisfies the following formula 1.
−580 × A + 1258 ≦ B ≦ -830 × A + 1800 ・ ・ ・ 1
When the true density of graphitizable carbon is A [g / cm 3 ], the electricity storage element has a charge electricity amount B [mAh / g] of the negative electrode in a fully charged state of −830 × A + 1800 or less. Therefore, the amount of charging electricity B becomes an appropriate size, and it is possible to suppress excessive precipitation of metallic lithium. Further, in the range where the charging electricity amount B of the negative electrode is −580 × A + 1258 or more, the counter is considered to have excellent reduction resistance as a binder of the negative electrode mixture layer and is unlikely to be reduced and decomposed even when the negative electrode potential is low. By using a cellulose derivative in which the cation is a metal ion, an increase in resistance after the charge / discharge cycle can be suppressed. Therefore, the power storage element is excellent in suppressing the increase in resistance after the charge / discharge cycle when graphitizable carbon is used as the active material of the negative electrode having a deep charging depth.
上記負極12の充電電気量Bは、以下の手順で測定するものとする。
(1)グローブボックス内で上記対象となる電池を放電末期(低SOC領域)まで放電して解体する。
(2)酸素濃度5ppm以下の雰囲気に制御した上記グローブボックス内で、正極板及び負極板を取り出して小型ラミネートセルを組み立てる。
(3)小型ラミネートセルを充電して前記満充電状態とした後、上記蓄電素子で定格容量が得られたときの下限電圧にて0.01CAまで定電流定電圧(CCCV)放電を行う。
(4)酸素濃度5ppm以下の雰囲気に制御したグローブボックス内で、小型ラミネートセルを解体し、負極を取り出して対極としてリチウム金属を配置した小型ラミネートセルに組みなおす。
(5)負極電位が2.0V(vs.Li/Li+)となるまで、0.01CAの電流密度で追加放電を行い、負極を完全放電状態に調整する。
(6)上記(3)及び(5)における合計電気量を小型ラミネートセルにおける正負極対向部の負極質量で割り算して充電電気量とする。
The charging electricity amount B of the negative electrode 12 shall be measured by the following procedure.
(1) The target battery is discharged and disassembled in the glove box until the end of discharge (low SOC region).
(2) In the glove box controlled to an atmosphere having an oxygen concentration of 5 ppm or less, the positive electrode plate and the negative electrode plate are taken out to assemble a small laminate cell.
(3) After charging the small laminate cell to the fully charged state, constant current constant voltage (CCCV) discharge is performed up to 0.01 CA at the lower limit voltage when the rated capacity is obtained by the power storage element.
(4) In the glove box controlled to have an oxygen concentration of 5 ppm or less, the small laminate cell is disassembled, the negative electrode is taken out, and the small laminate cell in which lithium metal is arranged as the counter electrode is reassembled.
(5) Additional discharge is performed at a current density of 0.01 CA until the negative electrode potential reaches 2.0 V (vs. Li / Li +) to adjust the negative electrode to a completely discharged state.
(6) The total amount of electricity in (3) and (5) above is divided by the mass of the negative electrode opposite the positive and negative electrodes in the small laminate cell to obtain the amount of electricity to be charged.
[正極]
正極は、正極基材と、上記正極基材の少なくとも一方の面に直接又は間接に積層される正極合剤層とを備える。正極合剤層は、正極活物質を含む。正極は、正極基材と正極合剤層との間に配される中間層を備えていてもよい。
[Positive electrode]
The positive electrode includes a positive electrode base material and a positive electrode mixture layer that is directly or indirectly laminated on at least one surface of the positive electrode base material. The positive electrode mixture layer contains a positive electrode active material. The positive electrode may include an intermediate layer arranged between the positive electrode base material and the positive electrode mixture layer.
(正極基材)
上記正極基材21は、導電性を有する基材である。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。また、正極基材21の形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材21としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS−H4000(2014)に規定されるA1085、A3003等が例示できる。
(Positive electrode base material)
The positive electrode base material 21 is a base material having conductivity. As the material of the positive electrode base material, metals such as aluminum, titanium, tantalum, and stainless steel or alloys thereof are used. Among these, aluminum and aluminum alloys are preferable from the viewpoint of balance of potential resistance, high conductivity and cost. Further, examples of the form of the positive electrode base material 21 include a foil, a vapor-deposited film, and the like, and the foil is preferable from the viewpoint of cost. That is, aluminum foil is preferable as the positive electrode base material 21. Examples of aluminum or aluminum alloy include A1085 and A3003 specified in JIS-H4000 (2014).
(正極合剤層)
正極合剤層は、正極活物質を含むいわゆる正極合剤から形成される。上記正極活物質としては、例えば、公知の正極活物質の中から適宜選択できる。リチウムイオン非水電解質二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α−NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α−NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LixNi1−x]O2(0≦x<0.5)、Li[LixNiγCo(1−x−γ)]O2(0≦x<0.5、0<γ<1)、Li[LixCo(1−x)]O2(0≦x<0.5)、Li[LixNiγMn(1−x−γ)]O2(0≦x<0.5、0<γ<1)、Li[LixNiγMnβCo(1−x−γ−β)]O2(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)、Li[LixNiγCoβAl(1−x−γ−β)]O2(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属酸化物として、LixMn2O4、LixNiγMn(2−γ)O4等が挙げられる。ポリアニオン化合物として、LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4、Li3V2(PO4)3、Li2MnSiO4、Li2CoPO4F等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。これらの材料は表面が他の材料で被覆されていてもよい。
(Positive electrode mixture layer)
The positive electrode mixture layer is formed from a so-called positive electrode mixture containing a positive electrode active material. As the positive electrode active material, for example, a known positive electrode active material can be appropriately selected. As the positive electrode active material for a lithium ion non-aqueous electrolyte secondary battery, a material capable of occluding and releasing lithium ions is usually used. Examples of the positive electrode active material include a lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure, a lithium transition metal oxide having a spinel type crystal structure, a polyanion compound, a chalcogen compound, sulfur and the like. Examples of the lithium transition metal composite oxide having an α-NaFeO type 2 crystal structure include Li [Li x Ni 1-x ] O 2 (0 ≦ x <0.5) and Li [Li x Ni γ Co (1-). x-γ) ] O 2 (0 ≦ x <0.5, 0 <γ <1), Li [Li x Co (1-x) ] O 2 (0 ≦ x <0.5), Li [Li x Ni γ Mn (1-x-γ) ] O 2 (0 ≦ x <0.5, 0 <γ <1), Li [Li x Ni γ Mn β Co (1-x-γ-β) ] O 2 (0 ≦ x <0.5, 0 <γ, 0 <β, 0.5 <γ + β <1), Li [Li x Ni γ Co β Al (1-x-γ-β) ] O 2 (0 ≦ Examples thereof include x <0.5, 0 <γ, 0 <β, 0.5 <γ + β <1). Examples of the lithium transition metal oxide having a spinel-type crystal structure include Li x Mn 2 O 4 and Li x Ni γ Mn (2-γ) O 4 . Examples of the polyanion compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F and the like. Examples of the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like. The atoms or polyanions in these materials may be partially substituted with atoms or anion species consisting of other elements. The surface of these materials may be coated with other materials.
正極活物質としては、ニッケルを含むニッケル含有リチウム遷移金属酸化物であることが好ましい。上記ニッケル含有リチウム遷移金属酸化物におけるリチウムを除く金属元素の総和に対するニッケルのモル比率が0.5以上(例えば0.5以上1以下)であることが好ましく、0.55以上(例えば0.6以上0.9以下)であることがより好ましい。特に好ましい正極活物質の例として、ニッケル、コバルト及びマンガンを含むリチウム遷移金属酸化物を主成分とし、上記リチウム遷移金属酸化物におけるニッケル、コバルト及びマンガンの総和に対するニッケルのモル比率が0.5以上(例えば0.5以上0.9
以下、典型的には0.6以上0.8以下)であるものが挙げられる。上記リチウム遷移金属酸化物におけるニッケル、コバルト及びマンガンの総和に対するニッケルのモル比率を上記範囲とすることで、当該蓄電素子の容量を高めることができる。
The positive electrode active material is preferably a nickel-containing lithium transition metal oxide containing nickel. The molar ratio of nickel to the total amount of metal elements other than lithium in the nickel-containing lithium transition metal oxide is preferably 0.5 or more (for example, 0.5 or more and 1 or less), and 0.55 or more (for example, 0.6). More than 0.9 or less) is more preferable. As a particularly preferable example of the positive electrode active material, a lithium transition metal oxide containing nickel, cobalt and manganese is used as a main component, and the molar ratio of nickel to the total of nickel, cobalt and manganese in the lithium transition metal oxide is 0.5 or more. (For example, 0.5 or more and 0.9
Hereinafter, typically 0.6 or more and 0.8 or less) can be mentioned. By setting the molar ratio of nickel to the sum of nickel, cobalt and manganese in the lithium transition metal oxide within the above range, the capacity of the power storage element can be increased.
正極合剤層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。正極合剤層においては、これら化合物の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 In the positive electrode mixture layer, one of these materials may be used alone, or two or more of these materials may be mixed and used. In the positive electrode mixture layer, one of these compounds may be used alone, or two or more of these compounds may be mixed and used.
正極合剤層中の正極活物質の含有量は特に限定されないが、その下限としては、50質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。一方、この含有量の上限としては、99質量%が好ましく、98質量%がより好ましい。 The content of the positive electrode active material in the positive electrode mixture layer is not particularly limited, but the lower limit thereof is preferably 50% by mass, more preferably 80% by mass, and even more preferably 90% by mass. On the other hand, as the upper limit of this content, 99% by mass is preferable, and 98% by mass is more preferable.
満充電状態における上記負極の充電電気量Bは、例えば、上記正極合剤層における単位面積当たりの上記正極活物質の質量Pに対する上記負極合剤層における単位面積当たりの上記負極活物質の質量Nの比N/Pを変えることによって調整することができる。ある一態様では、上記難黒鉛化性炭素の真密度をA[g/cm3]としたとき、上記正極合剤層における単位面積当たりの上記正極活物質の質量Pに対する上記負極合剤層における単位面積当たりの上記負極活物質の質量Nの比N/Pが、下記式2を満たすことが好ましい。
0.57×A−0.53≦N/P≦0.83×A−0.77 ・・・2
従来の難黒鉛化性炭素を用いた電池に上記式2を満たすN/Pを適用した場合、通常の充電深度よりも深くなることで、負極電位が卑となり、充電時に金属リチウムの析出を起こすことによる充放電サイクル後の抵抗増加が生じるおそれがある。しかしながら、当該蓄電素子は、負極合剤層のバインダーとして、耐還元性に優れ、負極電位が卑の状態においても還元分解されにくいと考えられるカウンターカチオンが金属イオンであるセルロース誘導体を上記式2を満たすN/Pの範囲で用いることで、充放電サイクル後の抵抗の増加に対する抑制効果を発揮できる。
The charging electricity amount B of the negative electrode in the fully charged state is, for example, the mass N of the negative electrode active material per unit area of the negative electrode mixture layer with respect to the mass P of the positive electrode active material per unit area of the positive electrode mixture layer. It can be adjusted by changing the ratio N / P of. In one embodiment, when the true density of the non-graphitizable carbon is A [g / cm 3 ], the negative electrode mixture layer has a mass P of the positive electrode active material per unit area of the positive electrode mixture layer. It is preferable that the ratio N / P of the mass N of the negative electrode active material per unit area satisfies the following
0.57 × A-0.53 ≦ N / P ≦ 0.83 × A-0.77 ・ ・ ・ 2
When N / P satisfying the
(その他の任意成分)
正極合剤は、必要に応じて導電剤、バインダー、フィラー等の任意成分を含む。導電剤、バインダー、フィラー等の任意成分は、上記負極で例示した材料から選択できる。
(Other optional ingredients)
The positive electrode mixture contains optional components such as a conductive agent, a binder, and a filler, if necessary. Optional components such as a conductive agent, a binder, and a filler can be selected from the materials exemplified by the negative electrode.
上記導電剤としては、導電性材料であれば特に限定されない。このような導電剤としては、上記負極で例示した材料から選択できる。導電剤を使用する場合、正極合剤層全体に占める導電剤の割合は、およそ1.0質量%から20質量%とすることができ、通常はおよそ2.0質量%から15質量%(例えば3.0質量%から6.0質量%)とすることが好ましい。 The conductive agent is not particularly limited as long as it is a conductive material. Such a conductive agent can be selected from the materials exemplified in the negative electrode. When a conductive agent is used, the proportion of the conductive agent in the entire positive electrode mixture layer can be about 1.0% by mass to 20% by mass, and usually about 2.0% by mass to 15% by mass (for example). It is preferably 3.0% by mass to 6.0% by mass).
上記バインダーとしては、上記負極で例示した材料から選択できる。バインダーを使用する場合、正極合剤層全体に占めるバインダーの割合は、およそ0.50質量%から15質量%とすることができ、通常はおよそ1.0質量%から10質量%(例えば1.5質量%から3.0質量%)とすることが好ましい。 The binder can be selected from the materials exemplified in the negative electrode. When a binder is used, the proportion of the binder in the entire positive mixture layer can be approximately 0.50% by mass to 15% by mass, and is usually approximately 1.0% by mass to 10% by mass (for example, 1. 5% by mass to 3.0% by mass) is preferable.
上記フィラーとしては、上記負極で例示した材料から選択できる。フィラーを使用する場合、正極合剤層全体に占めるフィラーの割合は、およそ8.0質量%以下とすることができ、通常はおよそ5.0質量%以下(例えば1.0質量%以下)とすることが好ましい。 The filler can be selected from the materials exemplified in the negative electrode. When a filler is used, the proportion of the filler in the entire positive electrode mixture layer can be about 8.0% by mass or less, and usually about 5.0% by mass or less (for example, 1.0% by mass or less). It is preferable to do so.
(中間層)
上記中間層は、正極基材21の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで正極基材21と正極合剤層との接触抵抗を低減する。負極と同様、中間層の構成は特に限定されず、例えば樹脂バインダー及び導電性粒子を含有する組成物により形成できる。
(Middle layer)
The intermediate layer is a coating layer on the surface of the positive electrode base material 21, and includes conductive particles such as carbon particles to reduce the contact resistance between the positive electrode base material 21 and the positive electrode mixture layer. Similar to the negative electrode, the structure of the intermediate layer is not particularly limited, and can be formed by, for example, a composition containing a resin binder and conductive particles.
[非水電解質]
上記非水電解質としては、一般的な非水電解質二次電池(蓄電素子)に通常用いられる公知の非水電解質が使用できる。上記非水電解質は、非水溶媒と、この非水溶媒に溶解されている電解質塩を含む。なお、上記非水電解質は、固体電解質等であってもよい。
[Non-aqueous electrolyte]
As the non-aqueous electrolyte, a known non-aqueous electrolyte usually used for a general non-aqueous electrolyte secondary battery (storage element) can be used. The non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. The non-aqueous electrolyte may be a solid electrolyte or the like.
上記非水溶媒としては、一般的な蓄電素子用非水電解質の非水溶媒として通常用いられる公知の非水溶媒を用いることができる。上記非水溶媒としては、環状カーボネート、鎖状カーボネート、エステル、エーテル、アミド、スルホン、ラクトン、ニトリル等を挙げることができる。これらの中でも、環状カーボネート又は鎖状カーボネートを少なくとも用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比(環状カーボネート:鎖状カーボネート)としては、特に限定されないが、例えば5:95から50:50とすることが好ましい。 As the non-aqueous solvent, a known non-aqueous solvent usually used as a non-aqueous solvent for a general non-aqueous electrolyte for a power storage element can be used. Examples of the non-aqueous solvent include cyclic carbonates, chain carbonates, esters, ethers, amides, sulfones, lactones, nitriles and the like. Among these, it is preferable to use at least cyclic carbonate or chain carbonate, and it is more preferable to use cyclic carbonate and chain carbonate in combination. When the cyclic carbonate and the chain carbonate are used in combination, the volume ratio of the cyclic carbonate to the chain carbonate (cyclic carbonate: chain carbonate) is not particularly limited, but may be, for example, 5:95 to 50:50. preferable.
上記環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、カテコールカーボネート、1−フェニルビニレンカーボネート、1,2−ジフェニルビニレンカーボネート等を挙げることができ、これらの中でもECが好ましい。 Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene. Examples thereof include carbonate (DFEC), styrene carbonate, catechol carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate, and among these, EC is preferable.
上記鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート等を挙げることができ、これらの中でもEMCが好ましい。 Examples of the chain carbonate include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diphenyl carbonate and the like, and among these, EMC is preferable.
上記電解質塩としては、一般的な蓄電素子用非水電解質の電解質塩として通常用いられる公知の電解質塩を用いることができる。上記電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等を挙げることができるが、リチウム塩が好ましい。 As the electrolyte salt, a known electrolyte salt usually used as an electrolyte salt of a general non-aqueous electrolyte for a power storage element can be used. Examples of the electrolyte salt include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt and the like, but lithium salt is preferable.
上記リチウム塩としては、LiPF6、LiPO2F2、LiBF4、LiClO4、LiN(SO2F)2等の無機リチウム塩、LiSO3CF3、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiN(SO2CF3)(SO2C4F9)、LiC(SO2CF3)3、LiC(SO2C2F5)3等の水素がフッ素で置換された炭化水素基を有するリチウム塩などを挙げることができる。これらの中でも、無機リチウム塩が好ましく、LiPF6がより好ましい。 Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , and LiN (SO). 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 etc. Hydrogen is replaced with fluorine Examples thereof include a lithium salt having a sulfur group. Among these, an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
上記非水電解質における上記電解質塩の濃度の下限としては、0.1mol/dm3が好ましく、0.3mol/dm3がより好ましく、0.5mol/dm3がさらに好ましく、0.7mol/dm3が特に好ましい。一方、この上限としては、特に限定されないが、2.5mol/dm3が好ましく、2.0mol/dm3がより好ましく、1.5mol/dm3がさらに好ましい。 The lower limit of the concentration of the electrolyte salt in the nonaqueous electrolyte is preferably 0.1 mol / dm 3, more preferably 0.3 mol / dm 3, more preferably 0.5mol / dm 3, 0.7mol / dm 3 Is particularly preferable. On the other hand, the upper limit is not particularly limited, but is preferably 2.5 mol / dm 3, more preferably 2.0 mol / dm 3, more preferably 1.5 mol / dm 3.
上記非水電解質には、その他の添加剤が添加されていてもよい。また、上記非水電解質として、常温溶融塩、イオン液体などを用いることもできる。 Other additives may be added to the non-aqueous electrolyte. Further, as the non-aqueous electrolyte, a molten salt at room temperature, an ionic liquid, or the like can also be used.
[セパレータ]
セパレータは、上記負極及び上記正極の間に介在する。上記セパレータとしては、例えば織布、不織布、多孔質樹脂フィルム等が用いられる。これらの中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。上記セパレータの主成分としては、強度の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。また、これらの樹脂を複合してもよい。
[Separator]
The separator is interposed between the negative electrode and the positive electrode. As the separator, for example, a woven fabric, a non-woven fabric, a porous resin film, or the like is used. Among these, a porous resin film is preferable from the viewpoint of strength, and a non-woven fabric is preferable from the viewpoint of liquid retention of a non-aqueous electrolyte. As the main component of the separator, polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of strength, and polyimide and aramid are preferable from the viewpoint of oxidative decomposition resistance. Moreover, you may combine these resins.
なお、セパレータと電極(通常、正極)との間に、無機層が積層されていてもよい。この無機層は、耐熱層等とも呼ばれる多孔質の層である。また、多孔質樹脂フィルムの一方の面又は両面に無機層が形成されたセパレータを用いることもできる。上記無機層は、通常、無機粒子及びバインダーとで構成され、その他の成分が含有されていてもよい。 An inorganic layer may be laminated between the separator and the electrode (usually a positive electrode). This inorganic layer is a porous layer also called a heat-resistant layer or the like. Further, a separator having an inorganic layer formed on one surface or both surfaces of the porous resin film can also be used. The inorganic layer is usually composed of inorganic particles and a binder, and may contain other components.
[蓄電素子の具体的構成]
本実施形態の蓄電素子の形状については特に限定されるものではなく、例えば、円筒型電池、パウチフィルム型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。
[Specific configuration of power storage element]
The shape of the power storage element of the present embodiment is not particularly limited, and examples thereof include a cylindrical battery, a pouch film type battery, a square type battery, a flat type battery, a coin type battery, and a button type battery.
図1に蓄電素子の一例としての角型の非水電解質二次電池1を示す。なお、同図は、電池容器内部を透視した図としている。セパレータを挟んで巻回された正極及び負極を有する電極体2が角型の電池容器3に収納される。正極は正極集電体41を介して正極端子4と電気的に接続されている。負極は負極集電体51を介して負極端子5と電気的に接続されている。
FIG. 1 shows a square non-aqueous electrolyte secondary battery 1 as an example of a power storage element. The figure is a perspective view of the inside of the battery container. The
[蓄電素子の製造方法]
当該蓄電素子の製造方法は、負極を作製すること、正極を作製すること、非水電解質を調製すること、セパレータを介して正極及び負極を積層又は巻回することにより交互に重畳された電極体を形成すること、電極体を容器に収容すること、並びに上記容器に上記非水電解質を注入することを備える。上記正極は、正極基材に直接又は中間層を介して上記正極合剤層を積層することにより得ることができる。上記正極合剤層の積層は、正極基材に、正極合剤ペーストを塗工することにより行う。また、上記負極は、上記正極と同様、負極基材に直接又は中間層を介して上記負極合剤層を積層することにより得ることができる。上記負極合剤層の積層は、負極基材に、難黒鉛化炭素を含む負極合剤ペーストを塗工することにより行う。上記正極合剤ペースト及び負極合剤ペーストは、分散媒を含んでいてもよい。この分散媒としては、例えば、水、水を主体とする混合溶媒等の水系溶媒;N−メチルピロリドン、トルエン等の有機系溶媒を用いることができる。
[Manufacturing method of power storage element]
The method for manufacturing the power storage element is as follows: producing a negative electrode, producing a positive electrode, preparing a non-aqueous electrolyte, and laminating or winding the positive electrode and the negative electrode via a separator so that the electrodes are alternately superimposed. The electrode body is housed in a container, and the non-aqueous electrolyte is injected into the container. The positive electrode can be obtained by laminating the positive electrode mixture layer directly on the positive electrode base material or via an intermediate layer. The positive electrode mixture layer is laminated by applying the positive electrode mixture paste to the positive electrode base material. Further, the negative electrode can be obtained by laminating the negative electrode mixture layer directly on the negative electrode base material or via an intermediate layer, similarly to the positive electrode. The negative electrode mixture layer is laminated by applying a negative electrode mixture paste containing non-graphitized carbon to the negative electrode base material. The positive electrode mixture paste and the negative electrode mixture paste may contain a dispersion medium. As the dispersion medium, for example, an aqueous solvent such as water or a mixed solvent mainly composed of water; or an organic solvent such as N-methylpyrrolidone or toluene can be used.
上記負極、正極、非水電解質等をケースに収容する方法は、公知の方法により行うことができる。収容後、収容口を封止することにより蓄電素子を得ることができる。上記製造方法によって得られる蓄電素子を構成する各要素についての詳細は上述したとおりである。 The method of accommodating the negative electrode, the positive electrode, the non-aqueous electrolyte, etc. in the case can be performed by a known method. After accommodating, a power storage element can be obtained by sealing the accommodating port. Details of each element constituting the power storage element obtained by the above manufacturing method are as described above.
当該蓄電素子によれば、充電深度が深い負極の活物質に難黒鉛化性炭素を用いた場合に金属リチウムの析出を抑制し、充放電サイクル後の抵抗の増加に対する抑制効果に優れる。 According to the power storage element, when non-graphitizable carbon is used as the active material of the negative electrode having a deep charging depth, precipitation of metallic lithium is suppressed, and the effect of suppressing an increase in resistance after a charge / discharge cycle is excellent.
[その他の実施形態]
なお、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
[Other Embodiments]
The power storage element of the present invention is not limited to the above embodiment, and various modifications may be made without departing from the gist of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a well-known technique. In addition, some of the configurations of certain embodiments can be deleted. Further, a well-known technique can be added to the configuration of a certain embodiment.
上記実施形態においては、当該蓄電素子が非水電解質二次電池である形態を中心に説明したが、その他の蓄電素子であってもよい。その他の蓄電素子としては、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)等が挙げられる。非水電解質二次電池としては、リチウムイオン非水電解質二次電池が挙げられる。 In the above embodiment, the mode in which the power storage element is a non-aqueous electrolyte secondary battery has been mainly described, but other power storage elements may be used. Examples of other power storage elements include capacitors (electric double layer capacitors, lithium ion capacitors) and the like. Examples of the non-aqueous electrolyte secondary battery include a lithium ion non-aqueous electrolyte secondary battery.
本発明は、複数の上記蓄電素子を備える蓄電装置としても実現することができる。この場合、蓄電装置に含まれる少なくとも一つの蓄電素子に対して、本発明の技術が適用されていればよい。また、単数個又は複数個の本発明の蓄電素子(セル)を用いることにより組電池を構成することができ、さらにこの組電池を用いて蓄電装置を構成することができる。上記蓄電装置は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として用いることができる。さらに、上記蓄電装置は、エンジン始動用電源装置、補機用電源装置、無停電電源装置(UPS)等の種々の電源装置に用いることができる。 The present invention can also be realized as a power storage device including the plurality of the power storage elements. In this case, the technique of the present invention may be applied to at least one power storage element included in the power storage device. Further, an assembled battery can be constructed by using a single or a plurality of power storage elements (cells) of the present invention, and a power storage device can be further configured by using the assembled battery. The power storage device can be used as a power source for automobiles such as electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid vehicles (PHEV). Further, the power storage device can be used for various power supply devices such as an engine starting power supply device, an auxiliary power supply device, and an uninterruptible power supply (UPS).
図2に、電気的に接続された二以上の蓄電素子1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上の蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。
FIG. 2 shows an example of a
以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[例1から例21]
(負極の作製)
負極活物質である難黒鉛化性炭素、バインダーであるスチレン−ブタジエンゴム(SBR)、増粘剤であるカルボキシメチルセルロース(CMC)、及び分散媒である水を混合して負極合剤ペーストを調製した。難黒鉛化性炭素とスチレン−ブタジエンゴムと(カルボキシメチルセルロース(CMC)との質量比率は固形分換算で97.4:2.0:0.6とした。
[Examples 1 to 21]
(Preparation of negative electrode)
A negative electrode mixture paste was prepared by mixing non-graphitizable carbon as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, carboxymethyl cellulose (CMC) as a thickener, and water as a dispersion medium. .. The mass ratio of graphitizable carbon, styrene-butadiene rubber, and (carboxymethyl cellulose (CMC)) was 97.4: 2.0: 0.6 in terms of solid content.
負極合剤ペーストは、水の量により粘度を調整し、マルチブレンダーミルを用いた混練により作製した。この負極合剤ペーストを銅箔の両面に塗工した。次に、乾燥することにより負極合剤層を作製した。上記乾燥後、所定の充填密度となるように負極合剤層にロールプレスを行い、負極を得た。 The negative electrode mixture paste was prepared by adjusting the viscosity with the amount of water and kneading with a multi-blender mill. This negative electrode mixture paste was applied to both sides of the copper foil. Next, a negative electrode mixture layer was prepared by drying. After the above drying, the negative electrode mixture layer was roll-pressed so as to have a predetermined packing density to obtain a negative electrode.
(正極の作製)
正極活物質であるリチウムニッケルコバルトマンガン複合酸化物、導電剤であるアセチレンブラック(AB)、バインダーであるポリフッ化ビニリデン(PVDF)及び非水系分散媒であるN−メチルピロリドン(NMP)を用いて正極合剤ペースト(正極合剤層形成用材料)を調製した。なお、正極活物質、バインダー及び導電剤の質量比率は固形分換算で94.5:4.0:1.5とした。この正極合剤ペーストを、アルミ箔の一端縁に非積層部が形成されるように、アルミ箔の両面に塗工した。次に、乾燥することにより正極合剤層を作製した。上記乾燥後、所定の充填密度となるように正極合剤層にロールプレスを行い、正極を得た。また、例1から例28のN/Pを表1に示す。ここで、正極活物質であるリチウムニッケルコバルトマンガン複合酸化物のニッケル、コバルト及びマンガンのモル比(Ni:Co:Mn比)は、6.0:2.0:2.0とした。
(Preparation of positive electrode)
Positive electrode using lithium nickel cobalt manganese composite oxide as a positive electrode active material, acetylene black (AB) as a conductive agent, vinylidene fluoride (PVDF) as a binder, and N-methylpyrrolidone (NMP) as a non-aqueous dispersion medium. A mixture paste (material for forming a positive electrode mixture layer) was prepared. The mass ratio of the positive electrode active material, the binder and the conductive agent was 94.5: 4.0: 1.5 in terms of solid content. This positive electrode mixture paste was applied to both sides of the aluminum foil so that a non-laminated portion was formed on one end edge of the aluminum foil. Next, a positive electrode mixture layer was prepared by drying. After the above drying, the positive electrode mixture layer was roll-pressed so as to have a predetermined packing density to obtain a positive electrode. The N / Ps of Examples 1 to 28 are shown in Table 1. Here, the molar ratio (Ni: Co: Mn ratio) of nickel, cobalt and manganese of the lithium nickel cobalt manganese composite oxide as the positive electrode active material was set to 6.0: 2.0: 2.0.
(非水電解質)
非水電解質は、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)の体積比率が30:70となるように混合した溶媒に、塩濃度が1.2mol/dm3となるようにLiPF6を溶解させて調製した。
(Non-aqueous electrolyte)
For the non-aqueous electrolyte, LiPF 6 was dissolved in a solvent in which propylene carbonate (PC) and diethyl carbonate (DEC) were mixed so that the volume ratio was 30:70 so that the salt concentration was 1.2 mol / dm 3. Prepared.
(セパレータ)
セパレータには、厚さ14μmのポリエチレン微多孔膜を用いた。
(Separator)
A polyethylene microporous membrane having a thickness of 14 μm was used as the separator.
(蓄電素子)
上記正極と負極とセパレータとを積層し、電極体を作製した。その後、電極体を容器に封入した。次に、容器と蓋板とを溶接後、上記非水電解質を注入して封口した。この様にして例1から例21の電池(蓄電素子)を得た。
(Power storage element)
The positive electrode, the negative electrode, and the separator were laminated to prepare an electrode body. Then, the electrode body was sealed in a container. Next, after welding the container and the lid plate, the non-aqueous electrolyte was injected and sealed. In this way, the batteries (storage elements) of Examples 1 to 21 were obtained.
[評価]
(難黒鉛化炭素の真密度)
難黒鉛化性炭素の真密度の測定は、以下の手順でおこなった。
放電状態の難黒鉛化炭素を水中に浸漬させ、バインダー及び増粘剤を除去した後に、25℃で12時間真空乾燥した後に難黒鉛化炭素を取り出した。次に、この難黒鉛化炭素を120℃で2時間乾燥し、デシケーター中で室温まで冷却した。比重瓶の質量(m1)を正確に量り、難黒鉛化炭素を約3g入れて、質量を正確に量った(m2)。次に、比重瓶に1−ブタノールを底から20mm程度の深さになるまで静かに加え、真空デシケーター中に入れ、徐々に排気して圧力を2.0kPaから2.6kPaに維持した。この圧力を20分間保ち、気泡の発生が止まった後に、比重瓶を真空デシケーターから取り出し、更に1−ブタノールを加えた。30±0.5℃の恒温水槽に比重瓶を30分間浸し、1−ブタノール液面を標線に合わせた。比重瓶を取り出し、外側をよく拭いて質量正確に量った。再び恒温水槽に15分間浸し、1−ブタノール液面を標線に合わせ、比重瓶を取り出して外側をよくふき取り、質量を量った。この工程を3回繰り返し、3回繰り返した時の各質量の平均値を(m4)とする。次に、同じ比重瓶に1−ブタノールを満たし、上記と同様に恒温水槽に浸し、標線に合わせた後に質量を量る工程を4回繰り返し、4回繰り返した時の各質量その平均値を(m3)とする。また、使用直前に脱気した水を比重瓶に入れ、前記と同様に恒温水槽に浸し、標線に合わせた後に質量を量る工程を4回繰り返しその平均値を(m5)とする。下記式2により真密度Aを計算した。なお、下記式2において、dは30℃における比重であり、d=0.9946である。
A=(m2−m1)/(m2−m1−(m4−m3))×((m3−m1)/(m5−m1))×d ・・・2
[Evaluation]
(True density of graphitized carbon)
The true density of non-graphitizable carbon was measured by the following procedure.
The discharged carbon-degraphitized carbon was immersed in water to remove the binder and the thickener, and then vacuum-dried at 25 ° C. for 12 hours, and then the non-graphitized carbon was taken out. Next, the non-graphitized carbon was dried at 120 ° C. for 2 hours and cooled to room temperature in a desiccator. The mass (m1) of the specific gravity bottle was accurately weighed, and about 3 g of non-graphitized carbon was added to accurately weigh the mass (m2). Next, 1-butanol was gently added to the specific gravity bottle to a depth of about 20 mm from the bottom, placed in a vacuum desiccator, and gradually exhausted to maintain the pressure from 2.0 kPa to 2.6 kPa. This pressure was maintained for 20 minutes, and after the generation of bubbles stopped, the densitometer was removed from the vacuum desiccator and 1-butanol was further added. The specific gravity bottle was immersed in a constant temperature water bath at 30 ± 0.5 ° C. for 30 minutes, and the 1-butanol liquid level was aligned with the marked line. The specific density bottle was taken out, the outside was wiped well, and the mass was accurately weighed. It was immersed in a constant temperature water tank again for 15 minutes, the 1-butanol liquid level was aligned with the marked line, the specific density bottle was taken out, the outside was wiped well, and the mass was weighed. This step is repeated 3 times, and the average value of each mass when repeated 3 times is defined as (m4). Next, the same specific density bottle is filled with 1-butanol, soaked in a constant temperature water tank in the same manner as above, and the process of measuring the mass after aligning with the marked line is repeated 4 times, and the average value of each mass when repeated 4 times is calculated. Let it be (m3). Further, the degassed water immediately before use is placed in a specific gravity bottle, immersed in a constant temperature water tank in the same manner as described above, aligned with the marked line, and then weighed four times, and the average value is taken as (m5). The true density A was calculated by the following
A = (m2-m1) / (m2-m1- (m4-m3)) x ((m3-m1) / (m5-m1)) x d ... 2
(負極の充電電気量)
負極の充電電気量は、上述の方法で測定した。
(Amount of electricity charged in the negative electrode)
The amount of electricity charged in the negative electrode was measured by the method described above.
(充放電サイクル後のDCR(直流抵抗)増加率)
(1)初期放電容量確認試験
25℃の恒温槽内において充電電流13.6A、充電終止電圧4.32Vの条件で、充電電流が0.4A以下になるまで定電流定電圧(CCCV)充電を行い、その後、20分間の休止期間を設けた。その後、放電電流40.9A、放電終止電圧2.4Vで定電流(CC)放電を行った。このときの放電容量を「初期放電容量」とした。
(2)充放電サイクル試験
「初期放電容量」測定後の各蓄電素子について、45℃の恒温槽内において充電電流13.6A、充電終止電圧4.32Vの条件で、充電電流が0.4A以下になるまで定電流定電圧(CCCV)充電を行い、その後、10分間の休止期間を設けた。その後、放電電流40.9A、放電終止電圧2.4Vで定電流(CC)放電を行い、その後、10分間の休止期間を設けた。この充放電サイクルを1000サイクル実施した。1000サイクル実施後に、「初期容量」の測定試験と同様の条件で放電容量を測定し、このときの放電容量を「1000サイクル後の容量」とした。
(3)充放電サイクル後のDCR増加率
上記充放電サイクル試験後の蓄電素子のDCRを評価した。充放電サイクル試験後の各蓄電素子について、初期放電容量測定後及び1000サイクル試験後の各蓄電素子を、25℃の恒温槽内で、上記放電容量測定方法と同条件で測定した放電容量の50%SOC分の充電電気量を13.6Aの電流値で定電流充電した。上記条件で電池のSOCを50%にした後、各々40.9A、81.8A、122.7A、300.0Aの電流値で10秒間放電させ、放電開始10秒後の電圧を縦軸に、放電電流値を横軸にプロットして得た電流−電圧性能のグラフから、その勾配に相当する値であるDCR値を求めた。そして、各試験例について、25℃における「充放電サイクル試験開始前のDCR」に対する「充放電サイクル試験後のDCR」の比率(「充放電サイクル試験実施後のDCR」/「充放電サイクル試験開始前のDCR」)を算出し、「DCR増加率[%]」を求めた。このDCR増加率について、表1に例1のDCR増加率に対する各試験例のDCR増加率の割合[%]を示す。
(DCR (direct current resistance) increase rate after charge / discharge cycle)
(1) Initial discharge capacity confirmation test Constant current constant voltage (CCCV) charging is performed in a constant temperature bath at 25 ° C. under the conditions of charging current 13.6A and charging termination voltage 4.32V until the charging current becomes 0.4A or less. After that, a 20-minute rest period was provided. Then, a constant current (CC) discharge was performed with a discharge current of 40.9 A and a discharge end voltage of 2.4 V. The discharge capacity at this time was defined as the "initial discharge capacity".
(2) Charge / discharge cycle test For each power storage element after measuring the "initial discharge capacity", the charging current is 0.4A or less under the conditions of a charging current of 13.6A and a final charging voltage of 4.32V in a constant temperature bath at 45 ° C. It was charged with constant current and constant voltage (CCCV) until it became, and then a rest period of 10 minutes was provided. Then, a constant current (CC) discharge was performed with a discharge current of 40.9 A and a discharge end voltage of 2.4 V, and then a rest period of 10 minutes was provided. This charge / discharge cycle was carried out for 1000 cycles. After 1000 cycles, the discharge capacity was measured under the same conditions as in the "initial capacity" measurement test, and the discharge capacity at this time was defined as "capacity after 1000 cycles".
(3) DCR increase rate after charge / discharge cycle The DCR of the power storage element after the charge / discharge cycle test was evaluated. For each power storage element after the charge / discharge cycle test, 50 of the discharge capacity measured after the initial discharge capacity measurement and after the 1000 cycle test in a constant temperature bath at 25 ° C. under the same conditions as the above discharge capacity measurement method. The amount of electricity charged for% SOC was constantly charged with a current value of 13.6 A. After setting the SOC of the battery to 50% under the above conditions, discharge the battery at current values of 40.9A, 81.8A, 122.7A, and 300.0A for 10 seconds, respectively, and set the
下記表1に、例1から例21の難黒鉛化炭素の真密度、セルロース誘導体のカウンターカチオン、負極の充電電気量、N/P比、例1のDCR増加率に対する各試験例のDCR増加率の割合を示す。また、例1から例21における負極活物質中の難黒鉛化炭素の真密度と満充電状態の負極の充電電気量との関係を図3に示す。 Table 1 below shows the true density of graphitized carbon of Examples 1 to 21, the counter cation of the cellulose derivative, the amount of charge electricity of the negative electrode, the N / P ratio, and the DCR increase rate of each Test Example with respect to the DCR increase rate of Example 1. Indicates the ratio of. Further, FIG. 3 shows the relationship between the true density of non-graphitized carbon in the negative electrode active material in Examples 1 to 21 and the charging electricity amount of the negative electrode in a fully charged state.
表1及び図3に示されるように、上記難黒鉛化性炭素の真密度をA[g/cm3]としたとき、満充電状態における上記負極の充電電気量B[mAh/g]が、−580×A+1258≦B≦−830×A+1800の範囲であり、負極合剤層にカウンターカチオンが金属イオンであるセルロース誘導体を含む例1から例5、例12、例14および例18は、充放電サイクル後のDCR増加率に対する抑制効果が良好であった。 As shown in Table 1 and FIG. 3, when the true density of the graphitizable carbon is A [g / cm 3 ], the charging electricity amount B [mAh / g] of the negative electrode in the fully charged state is In the range of −580 × A + 1258 ≦ B ≦ −830 × A + 1800, Examples 1 to 5, Example 12, Example 14 and Example 18 in which the negative electrode mixture layer contains a cellulose derivative in which the counter cation is a metal ion are charged and discharged. The inhibitory effect on the DCR increase rate after the cycle was good.
一方、上記負極の充電電気量Bが、−580×A+1258≦B≦−830×A+1800の範囲であるが、負極合剤層にカウンターカチオンが金属イオンでないセルロース誘導体を含む例7、例13、例15および例19は、充放電サイクル後の抵抗の増加に対する抑制効果が低下した。
また、負極の充電電気量Bが、−580×A+1258未満の例8、例9、例16、例17、例20及び例21は、セルロース誘導体のカウンターカチオンに係わらずDCR増加率は良好であった。
さらに、上記負極の充電電気量Bが、−830×A+1800超の例6、例10及び例11は、負極合剤層にカウンターカチオンが金属イオンであるセルロース誘導体を含むにも係わらず、充放電サイクル後の抵抗の増加に対する抑制効果が低下した。
当該蓄電素子は、満充電状態における上記負極の充電電気量Bが、−580×A+1258≦B≦−830×A+1800を満たす特定の範囲である場合において、カウンターカチオンが金属イオンであるセルロース誘導体を含むことで、負極の充電深度が比較的深い場合であっても充放電サイクル後の抵抗の増加を抑制できることがわかる。
On the other hand, the charge electricity amount B of the negative electrode is in the range of −580 × A + 1258 ≦ B ≦ -830 × A + 1800, but the negative electrode mixture layer contains a cellulose derivative in which the counter cation is not a metal ion. In 15 and Example 19, the effect of suppressing the increase in resistance after the charge / discharge cycle was reduced.
Further, in Example 8, Example 9, Example 16, Example 17, Example 20, and Example 21 in which the charge electricity amount B of the negative electrode is less than −580 × A + 1258, the DCR increase rate is good regardless of the counter cation of the cellulose derivative. It was.
Further, in Examples 6, 10 and 11 in which the charging electricity amount B of the negative electrode exceeds −830 × A + 1800, the negative electrode mixture layer is charged and discharged even though the negative electrode mixture layer contains a cellulose derivative in which the counter cation is a metal ion. The inhibitory effect on the increase in resistance after the cycle decreased.
The power storage element contains a cellulose derivative in which the counter cation is a metal ion when the charge electricity amount B of the negative electrode in the fully charged state is in a specific range satisfying −580 × A + 1258 ≦ B ≦ −830 × A + 1800. Therefore, it can be seen that the increase in resistance after the charge / discharge cycle can be suppressed even when the charge depth of the negative electrode is relatively deep.
以上の結果、当該蓄電素子は、充電深度が深い負極の活物質に難黒鉛化性炭素を用いた場合に充放電サイクル後の抵抗の増加に対する抑制効果に優れることが示された。 As a result of the above, it was shown that the power storage element is excellent in suppressing the increase in resistance after the charge / discharge cycle when non-graphitizable carbon is used as the active material of the negative electrode having a deep charging depth.
本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される非水電解質二次電池をはじめとした蓄電素子として好適に用いられる。 INDUSTRIAL APPLICABILITY The present invention is suitably used as a power storage element such as a non-aqueous electrolyte secondary battery used as a power source for personal computers, electronic devices such as communication terminals, automobiles, and the like.
1 蓄電素子
2 電極体
3 電池容器
4 正極端子
41 正極集電体
5 負極端子
51 負極集電体
20 蓄電ユニット
30 蓄電装置
1
Claims (3)
正極活物質を含む正極合剤層を備える正極と、
を備えており、
上記負極合剤層にカウンターカチオンが金属イオンであるセルロース誘導体を含み、
上記負極活物質が主成分として難黒鉛化性炭素を含み、
上記難黒鉛化性炭素の真密度をA[g/cm3]としたとき、満充電状態における上記負極の充電電気量B[mAh/g]が、下記式1を満たす蓄電素子。
−580×A+1258≦B≦−830×A+1800 ・・・1 A negative electrode having a negative electrode mixture layer containing a negative electrode active material, and a negative electrode
A positive electrode having a positive electrode mixture layer containing a positive electrode active material, and a positive electrode
Is equipped with
The negative electrode mixture layer contains a cellulose derivative whose counter cation is a metal ion.
The above negative electrode active material contains non-graphitizable carbon as a main component and contains
When the true density of the graphitizable carbon is A [g / cm 3 ], the charging electricity amount B [mAh / g] of the negative electrode in the fully charged state satisfies the following formula 1.
−580 × A + 1258 ≦ B ≦ -830 × A + 1800 ・ ・ ・ 1
上記リチウム遷移金属酸化物におけるニッケル、コバルト及びマンガンの総和に対するニッケルのモル比率が0.5以上である請求項1又は請求項2に記載の蓄電素子。 The positive electrode active material is mainly composed of a lithium transition metal oxide containing nickel, cobalt and manganese.
The power storage element according to claim 1 or 2, wherein the molar ratio of nickel to the total sum of nickel, cobalt and manganese in the lithium transition metal oxide is 0.5 or more.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019232142A JP7451994B2 (en) | 2019-12-23 | 2019-12-23 | Energy storage element |
DE112020006313.5T DE112020006313T5 (en) | 2019-12-23 | 2020-12-22 | ENERGY STORAGE DEVICE |
PCT/JP2020/047838 WO2021132208A1 (en) | 2019-12-23 | 2020-12-22 | Electricity storage element |
CN202080089813.6A CN115210903A (en) | 2019-12-23 | 2020-12-22 | Electric storage element |
US17/787,448 US20230022950A1 (en) | 2019-12-23 | 2020-12-22 | Energy storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019232142A JP7451994B2 (en) | 2019-12-23 | 2019-12-23 | Energy storage element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021099969A true JP2021099969A (en) | 2021-07-01 |
JP7451994B2 JP7451994B2 (en) | 2024-03-19 |
Family
ID=76541425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019232142A Active JP7451994B2 (en) | 2019-12-23 | 2019-12-23 | Energy storage element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7451994B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08298114A (en) * | 1995-04-27 | 1996-11-12 | Sony Corp | Carbon material for negative electrode and nonaqueous electrolyte secondary battery |
JP2002110155A (en) * | 2000-09-27 | 2002-04-12 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP2009266467A (en) * | 2008-04-23 | 2009-11-12 | Nissan Motor Co Ltd | Bipolar secondary battery |
JP2010199077A (en) * | 2010-04-16 | 2010-09-09 | Sanyo Electric Co Ltd | Non-aqueous electrolyte secondary battery and method of charging the same |
JP2011065929A (en) * | 2009-09-18 | 2011-03-31 | Panasonic Corp | Negative electrode for nonaqueous electrolyte secondary battery, and method of manufacturing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5908715A (en) | 1997-05-30 | 1999-06-01 | Hughes Electronics Corporation | Composite carbon materials for lithium ion batteries, and method of producing same |
JP5245203B2 (en) | 2006-03-29 | 2013-07-24 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery |
KR101635850B1 (en) | 2009-03-27 | 2016-07-04 | 도쿄 유니버시티 오브 사이언스 에듀케이셔널 파운데이션 애드미니스트레이티브 오거니제이션 | Sodium ion secondary battery |
CN104521044B (en) | 2012-09-18 | 2017-05-03 | 株式会社吴羽 | Binder for nonaqueous electrolyte secondary cell, binder solution for nonaqueous electrolyte secondary cell, anode mixture for nonaqueous electrolyte secondary cell, and uses thereof |
JP2014216299A (en) | 2013-04-30 | 2014-11-17 | パナソニック株式会社 | Sodium ion secondary battery |
-
2019
- 2019-12-23 JP JP2019232142A patent/JP7451994B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08298114A (en) * | 1995-04-27 | 1996-11-12 | Sony Corp | Carbon material for negative electrode and nonaqueous electrolyte secondary battery |
JP2002110155A (en) * | 2000-09-27 | 2002-04-12 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP2009266467A (en) * | 2008-04-23 | 2009-11-12 | Nissan Motor Co Ltd | Bipolar secondary battery |
JP2011065929A (en) * | 2009-09-18 | 2011-03-31 | Panasonic Corp | Negative electrode for nonaqueous electrolyte secondary battery, and method of manufacturing the same |
JP2010199077A (en) * | 2010-04-16 | 2010-09-09 | Sanyo Electric Co Ltd | Non-aqueous electrolyte secondary battery and method of charging the same |
Also Published As
Publication number | Publication date |
---|---|
JP7451994B2 (en) | 2024-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6848330B2 (en) | Non-aqueous electrolyte power storage element | |
JP6769334B2 (en) | Method for manufacturing negative electrode for non-aqueous electrolyte storage element, negative electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element | |
WO2021132208A1 (en) | Electricity storage element | |
JP6911655B2 (en) | A method for manufacturing a non-aqueous electrolyte for a power storage element, a non-aqueous electrolyte power storage element, and a non-aqueous electrolyte power storage element. | |
JP2024113061A (en) | Non-aqueous electrolyte storage element | |
WO2021095293A1 (en) | Nonaqueous electrolyte electricity storage element | |
JP7409132B2 (en) | Nonaqueous electrolyte storage element | |
JP6919202B2 (en) | Manufacturing method of non-aqueous electrolyte, power storage element and power storage element | |
JP6848363B2 (en) | Negative electrode and non-aqueous electrolyte power storage element | |
JP7571735B2 (en) | Energy storage element | |
JP7451994B2 (en) | Energy storage element | |
JP7451995B2 (en) | Energy storage element | |
JP7451996B2 (en) | Energy storage element | |
WO2021020290A1 (en) | Non-aqueous electrolyte power storage element, manufacturing method thereof, and power storage device | |
JP2020173998A (en) | Non-aqueous electrolyte storage element and manufacturing method thereof | |
JP7484884B2 (en) | Nonaqueous electrolyte storage element and storage device | |
JP7600994B2 (en) | Nonaqueous electrolyte storage element and storage device | |
JP7547761B2 (en) | Non-aqueous electrolyte storage element | |
EP4280330A1 (en) | Nonaqueous electrolyte power storage element | |
WO2022009734A1 (en) | Nonaqueous electrolyte power storage element | |
WO2021141074A1 (en) | Non-aqueous electrolyte power storage element and method for manufacturing same | |
WO2021182488A1 (en) | Electricity storage element | |
JP6822159B2 (en) | Non-aqueous electrolyte, non-aqueous electrolyte power storage element | |
JP2021022543A (en) | Power storage element | |
WO2023224071A1 (en) | Nonaqueous electrolyte power storage element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230801 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7451994 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |